Thinking Through
Computation: A Heresy

Stephen Ramsay
October 24, 2007

Any workshop that proposes to discuss alternatives to the theory
of computation must be about heresy, and like all those who find
themselves on the brink of schism, I must confess to a certain un-
ease. The essential theory of computation (the Church-Turing thesis
and its consequent ideas) is so deeply ingrained in the consciousness
of anyone who has thought seriously about computing, that one is
tempted ask whether any alternatives would still be within the realm
of computation? Can we talk about non-Church/Turing models and
still be talking about the same subject?

But when I consider why this subject seems so intransigent—why
it feels like a keystone, which, once dislodged, brings the whole edifice
crashing down—I am led not to the irrefragable nature of the the-
ory of computation, but to an historical insistence on a relationship
between computer science and mathematics. The theory of compu-
tation isn’t static; it’s not at all a settled domain. But a theory of
computation that did not behave like a mathematical system is quite
literally inconceivable within the present paradigm.



It’s not difficult to imagine why this might be so. Computer science
arises as a field because certain elegant responses to the Entschei-
dungsproblem (most significantly, the Universal Turing Machine and
the lambda calculus) were felt to warrant separate consideration. But
the demands of computation (understood in the broadest possible
sense) are ancient. If it is hard to imagine truly alternative models
of computation, it is perhaps because, in our modernity, we can no
longer imagine non-mathematical computation. Or rather, we can
no longer imagine a computational theory that does not aspire to be
mathematics.

Every aspect of modern computer science is shot through with the
notion that mathematical purity will get us closer to computational
effectiveness. The pantheon of modern programming languages, to
take one example, can be easily arrayed along a line stretching from
the impure to pure. Is not C++4, with its redundancies, its inconsis-
tencies, its side effects, something like an impure language from the
standpoint of computer science? And is not Haskell, with its mon-
ads, its recursion, its algebraic data types, and its near total lack of
side effects a “pure functional” language? The former, in the words
of Meilir Page-Jones, “has sacrificed orthogonality and elegance for
random expedience.” The latter has, in the opinion of some, come
closest to the ideal of “executable mathematics.” Yet despite the laws
of computational Kashrut, C++ is a wildly successful language, while
Haskell is the province aficionados, CS researchers, and people who
otherwise have the luxury of not having to write working systems for
actual people to use.

In saying this, I risk reducing the profound topic at hand to a
mere canard: the tension between town and gown that has always
set the working, hard-hatted programmer against the ivory towered
researcher. But when I consider my own proclivities as a practitioner,
I find I am more closely allied with the latter. I will follow any excuse
to write in Lisp, and in general, the languages of purity fill me with



a kind of satisfaction I find sorely lacking in the fallen world of Java.

But I cannot deny that there is a deep problem here—a deep prob-
lem with all of this. I am not, after all, a computer scientist. I'm
an English professor who has managed to gain some fluency with
modern programming and mathematics, and for whom the pleasing
collision of human art and computational rigidity holds great intel-
lectual fascination. In other words, a very strange sort of character
with no hope of converting anyone. It’s all too complex, really. Steve
and Meurig put it perfectly:

Notwithstanding its credentials as one of the most signif-
icant intellectual developments of the twentieth century,
[the theory of computation] is hard to relate to current
practice in multimedia, communications, social comput-
ing and so on, and is not popular with many—even very
able—students.

It’s certainly not popular with my very able students, many of whom
are extraordinarily well educated in areas at least as abstruse as dis-
crete mathematics. It’s not that they aren’t intelligent; it’s that the
disconnect between the theory of computation and the theory of lit-
erature are too far from one another conceptually. This, it seems to
me, is precisely the spirit of provocation put forth in the invitation
to this workshop. “It is hard to relate.”

We have tried all kinds of things in the past. We have focused on
graphics; we have experimented with visual programming; we have at-
tempted to make the “problem space” look like the “solution space;”
we have have played games, pursued highly simplified abstractions,
and engaged in all manner of tricks and subterfuges. But in the
end (or rather at the bottom) we find the rigid calculus of automata
theory, truth-functional logic, and numbers.



What would it look like if we did away with mathematical purity
as the gold standard of computation? It’s a risky proposition. Man-
ifestos are just that, and “whats” without “hows” descend quickly
into futurism. Yet it may be fruitful to consider the theological con-
sequences of heresy in this regard:

1. Instead of privileging correctness, completeness, and closure,
our theory would make a virtue of the partial, the mutable, and
the contingent. It would, in other words, honor the insistently
human way of apprehending the world. The lack of fit between
computation and the phenomenal world would not disappear,
but computation would cease to distinguish itself from that
world by being correct, complete, and closed.

2. Certain interface values would suddenly come to occupy the
lowest substrate of computational engagement. We would speak
of the “gestural” and the “intuitive” not as honorifics bestowed
upon good Uls, but as integral aspects of the theory of compu-
tation as such. The result might well be “user friendly” pro-
gramming languages, but from a theoretical standpoint, the
goal would be a human friendly epistemology for describing
calculation.

3. Niklaus Wirth’s venerable formula (data structures + algo-
rithms = programs) would be replaced with something more
easily conformable to what Boole inappropriately called the
Laws of Thought: observations + beliefs = epistemologies.

4. The notion of “computational intractable” data would be re-
placed by the notion of “phenomenally intractable” program-
ming languages. If data could not be processed by a system
(because it’s “unclean”), we would come to blame the program-
ming language for its inability to model the domain. Instead



of “munging” data, we would speak of “munging” computable
propositions.

I do not know if such reversals exist. My indoctrination has perhaps
been too complete to imagine computation as carnival. Yet I do
know that Turing’s intervention in mathematics was the product of
just such a spirit of misrule. It seems an obvious move to us now,
but nothing in the history of mathematics is quite as bizarre as the
sentence in “On Computable Numbers” that begins “Let us imagine
a machine ...”



