Generating Compiler Optimisations

Richard Warburton

May 29, 2008

Compilers are commonly used programs that translate source code into
object code. It is possible for a compiler to introduce a bug into the pro-
gram that it is compiling, if it changes the semantics of program during this
translation. Ensuring that compilers preserve the semantics of the source
code during this translation is a non trivial task, due to the difficulty of
finding an effective testing approach. This difficulty is further exacerbated
since modern compilers optimise the program whilst translating it.

Due to the well defined semantics of both input and output, and the com-
mon usage of compilers, a formal approach is well suited to the situation.
Existing literature has demonstrated the effectiveness of formal methods in
verifying simple compilers for trivial languages. Furthermore existing litera-
ture also describes the verification of some dataflow analyses that check the
safety and applicability of compiler optimisations.

A common approach to specifying compiler optimisations is to use a domain
specific language (DSL), with a formally defined semantics. When applying
optimisations specified within a DSL one needs to consider two properties:
efficiency, the time taken to apply an optimisation to a program, and effec-
tiveness, to what extent is the performance of the program improved by the
optimisation.

We use the TRANS language that can specify a large catalog of optimisa-
tions through the use of temporal logic and rewrite rules. Specifiable op-
timisations include dead code elimination, constant propagation, strength
reduction, branch elimination, skip elimination, loop fusion, partial redun-
dancy elimination, and lazy strength reduction and lazy code motion. A
compilation strategy for the TRANS language is described that produces
an optimisation phase for the Soot compiler framework for a given opti-
misation specification. An implementation is described and demonstrated
that generates optimisation phases that can be efficiently applied to Java
bytecode. Efficiency claims are examined up by empirical evaluation using
the industry leading Spec JVM benchmark.



