
Automatic parallelisation of Python programs

Chris Lamb (cgl@dcs.warwick.ac.uk)

May 2008

The Python programming language is a high-level, multi-paradigm, object-
oriented scripting language which is used in an ever-growing number of envi-
ronments, both academic and industrial. Its popularity has been attributed
in the most part to its design philosophy which emphasises programmer pro-
ductivity and code readability, but also to a large number of high-quality
libraries that have become available.

However, dispite a high level of interest, implementions of the language
suffer from performance problems; depending on the benchmark used, Python
programs can run up to 250 times slower the the corresponding programs
written in C. This can be attributed to a number of reasons, including dy-
namic dispatch of all methods, ‘boxed’ arithmetic, extreme reflective capa-
bilities and a general interpretative overhead.

A large number of solutions have been offered, but the overwhelming ma-
jority are not used (or are simply rendered obsolete) due to incompatibilities
with the canonical implementation written in the C programming language
(“CPython”). It is also clear that some tools are not used simply because
they are not CPython, which poses interesting political questions for software
tool uptake.

In conjunction with this, we have noticed a general trend towards ‘multi-
core’ processors becoming de-facto in common consumer hardware, but whilst
there are a growing number of tools for performing explicit parallelisation in
Python, there is a lack of usable tools that can automatically (or even semi-
automatically) parallelise Python programs that can exploit these additional
processing units that are becoming commonplace.

My presentation will consist of a brief overview of the Python language,
the difficulties associated with interpreting Python and CPython programs
in parallel, and my attempts to develop a tool to automatically parallelise
Python programs, which have concentrated on using the Cartesian Product
Algorithm for localised type inference.

1


