
Problems in Providing Declarative Integrity Constraints and Semantic

Optimization in Database Systems

Adrian Hudnott
adrianh@dcs.warwick.ac.uk

Integrity constraints are an essential component of
database design, yet declarative support for constraints
in contemporary systems is severely limited, which
forces users to write tricky and inflexible procedural
code to maintain database consistency. Modern business
applications hold large amounts of data about each
individual or organization, and with more complex
schemas come more complex integrity constraints. There
is a need for an efficient method of enforcing a wide
variety of declarative constraints that can be applied to
realistic databases without significantly degrading their
performance. The Third Manifesto by Hugh Darwen
and C.J. Date prescribes such support for declarative
integrity constraints in a relational database system, but
its prescriptions raise several research problems, each of
which is linked to integrity constraints and beginning
with enforcing the constraints. In the presentation I
will describe these problems in further detail and show
how they interrelate to each other and merit a common
solution. The theme is the dependencies between data
and the area is automated theorem proving for relational
database applications.

Sometimes an update command can violate a constraint
if it is interpreted in isolation, even though the over-
all transaction is valid. Contemporary SQL systems
support “deferred constraint checking” to handle these
situations. However, deferred constraint checking imposes
the additional difficulty that the author of a user-defined
operator cannot assume that the database is consistent
upon entry to that operator. The Manifesto solves this by
introducing simultaneous assignment instead of deferred
checking. Simultaneous assignment is common in formal
methods, but the usual implementation by copying into
a temporary variable is too slow for large relations. I am
developing an algorithm based on syntactic analysis and
multiversion timestamps to address this problem.

Once integrity constraints have been checked the system
must decide what to do with any invalid data. Usually
transactions that leave the database inconsistent will be
rolled back. However some compensating actions to repair
the transaction may be desired, thereby making it an
acceptable one after all. An example of a declaration
requesting compensating actions is ON DELETE CASCADE in
SQL. Finding workable sequences of compensating actions
is called the transaction repair problem.

A database can contain “views”, which are expressed as a
formula over other data in the database. We may choose
to cache the value of a view, which increases performance
at the expense of introducing a cache coherence problem.

I show that the task of keeping such “materialized views”
up to date is a generalization of the constraint checking
problem. Views can also be updated, which requires using
the inverse of a view’s defining formula to translate the
requested update into an equivalent update to the base
data. I show that this problem is an extension of the
transaction repair problem.

The main activity of a DBMS beyond storing and up-
dating data is processing users’ queries. Database query
languages are very expressive and constraint checking may
involve executing one or more queries. Therefore methods
that speed up querying are also beneficial to efficient
constraint checking. I consider optimizations of queries
that take advantage of constraint conformance as the
kind of optimization of interest, because of the symbiotic
relationship to enforcing the constraints and because this
new kind of query optimization further demonstrates the
usefulness of declarative constraints.

The most famous problem concerning dependencies be-
tween data in relational databases is deriving facts when
some fields are unknown. SQL provides NULL for this
purpose. However three-valued logic does not match
human understanding of what it means for data to be
unknown. I hope that by modeling missing data as free
variables the forthcoming results for constraint checking
will be able to derive genuine properties of missing data
items that can be subjected to querying.

Finally, the Manifesto has a second usage of constraints–
for defining subtypes. In object-oriented languages a
constructor call always returns an object of the class where
the constructor is declared. However under the Manifesto
type system the counterpart of a constructor, known as
a “selector”, can return a value of any subtype of the
type requested. This presents difficulties in efficiently
identifying the runtime type of a variable in order to choose
between multiple operator implementations. My research
includes a study of the Manifesto type system with the
intention of addressing this problem.

References

[1] Darwen, H., and Date, C. J. Databases, Types,
and the Relational Model: The Third Manifesto,
3rd ed. Pearson Education, USA, 2006.

Warwick Postgraduate Colloquium in Computer Science (WPCCS 2008)


	References

