

Expressing Compiler Optimisations Using TRANS

by Robert Quill

An Example

How can the following loop be optimised?:

for(i = 0; i < 10; i++)
{
 a[i] = b[i] + n;
 if(k > 10)
 c[2m+n] = a[i] * b[i];
 else
 c[2m+n] = a[i] + b[i];
}

Possible Optimisations 1

The variable in the if statement does not change.

if(k > 10) {
 for(i = 0; i < 10; i++) {
 a[i] = b[i] + n;
 c[2m+n] = a[i] * b[i];
 }
}
else {
 for(i = 0; i < 10; i++) {
 a[i] = b[i] + n;
 c[2m+n] = a[i] + b[i];
 }
}

Possible Optimisations 2

2m+n is unchanged by the loop.

 d = 2m + n;
 for(i = 0; i < 10; i++)
 {
 [i] = b[i] + n;

 if(k > 10)
 c[d] = a[i] * b[i];
 else
 c[d] = a[i] + b[i];
}

Caveats

 If statement may be a complex expression
 Must be certain none of the variables are changed

during the loop.
 Can only replace occurences where variable values have

not changed.

What is TRANS?

 A language for writing compiler transformations.
 Transformations are applied to the CFG
 Specification has 2 parts:

 Rewrite: modifies CFG
 Side Condition: determines where to apply

transformation.

Extensions

 Block Matching
 More like representation used by a compiler
 More efficient to implement

 Array Notation
 Loop Dependence Analysis

Loop Dependence Analysis

Which iterations of this loop can we exectue in parallel?

for(i = 0; i < n; i++)
{
 a[i+k] = b[i];
 b[i+k] = a[i] + c[i];
}

Answer: k iterations.

Loop Dependence Analysis

 If an array element is written in one iteration and read in
another then there is a dependence between the
iterations.

 Can only parallelize iterations where no dependencies
exist.

 Solve i' = i + k
 Can parallelize at most k iterations at a time.
 Much more difficult with more variables, nested loops,etc
 Ananlysis for single variable subscript expressions in

TRANS.

Transformation Catalogue

 Paper contains 51 transformations
 23 have been implemented
 10 more to implement
 Other will not be implemented

 Too low level
 Architecture specific
 Parallelizing

Future Work

 Function calls
 Types
 Verfication

Any Questions?

 1

Expressing Compiler Optimisations Using TRANS

by Robert Quill

Hi. My name is Rob Quill and I'm going to talk to you about my
research into formalising compiler transformations using a
language called TRANS.

 2

An Example

How can the following loop be optimised?:

for(i = 0; i < 10; i++)
{
 a[i] = b[i] + n;
 if(k > 10)
 c[2m+n] = a[i] * b[i];
 else
 c[2m+n] = a[i] + b[i];
}

I'd like to start with an example. How can the following loop be
optimized? This loop may be run hundreds of thousands of times
in a scientific application, so the faster we can make it the
better. I'll give you a bit of time to look at this now.

 3

Possible Optimisations 1

The variable in the if statement does not change.

if(k > 10) {
 for(i = 0; i < 10; i++) {
 a[i] = b[i] + n;
 c[2m+n] = a[i] * b[i];
 }
}
else {
 for(i = 0; i < 10; i++) {
 a[i] = b[i] + n;
 c[2m+n] = a[i] + b[i];
 }
}

Here are a couple of possible optimisations.

Firstly, the expression which is evaluated for the if statement
within the loop does not change with each iteration of the loop,
so we can move the if statement outside the loop and recreate
the loop in each branch of the if statemnt.

This improves performance as we only need to branch once then
execute the loop instead of branching every time inside the
loop,

 4

Possible Optimisations 2

2m+n is unchanged by the loop.

 d = 2m + n;
 for(i = 0; i < 10; i++)
 {
 [i] = b[i] + n;

 if(k > 10)
 c[d] = a[i] * b[i];
 else
 c[d] = a[i] + b[i];
}

Secondly, each iteration we write to the 2m+n-th element of c, and
as this is a constant we could assign the value of 2m+n to some
variable d, and access the d-th element of c instead, saving us
having to evaluate 2m+n every iteration.

Although I haven't shown it here, there is no reason that both
these optimisations could not be applied together.

 5

Caveats

 If statement may be a complex expression
 Must be certain none of the variables are changed

during the loop.
 Can only replace occurences where variable values have

not changed.

However, there are some potential problems.

If the exoression being evaluated for the if statement is a complex
expression we must be certain that the entire expression is not
changed with each itertion of the loop. To do this we need to
make sure that none of the variables used in the expression are
changed by the loop.

 Also, we can replace occurences of 2m+n with d if and only if the
values of m and n have not be changed between the definition
and use of d.

For these reasons it is important for us to be able to formalise
these definitions so that a transformation is only applied at a
place where it is valid. This is the purpose of TRANS.

 6

What is TRANS?

 A language for writing compiler transformations.
 Transformations are applied to the CFG
 Specification has 2 parts:

 Rewrite: modifies CFG
 Side Condition: determines where to apply

transformation.

So, what is TRANS? TRANS is a language for writing compiler
transformations. Transformations in TRANS are applied to the
control flow graph of a program. A transformation is TRANS is
made up of two parts: a rewrites and a side condition.

The rewrite describes how the transformation should modify the
control flow graph of the program. A rewrite may modify or
replace the instrucion at a node, add or replace edges in the
graph or combinations of these.

The side condition is a CTL formula which describes where in the
graph a transformation can be applied by pattern matching
instructions at nodes, or matching properties of the control flow
graph.

 7

Extensions

 Block Matching
 More like representation used by a compiler
 More efficient to implement

 Array Notation
 Loop Dependence Analysis

The original version of TRANS, which was presented by David
Lacey in his PhD thesis matched programs written in L0, a
simple imperative language which contains only assignments, if
statements, goto statements and return statements. Nodes of
the flow graph also only contained a single instruction.

I've extended TRANS to represent each node in the CFG as a basic
block, i.e. a sequence of instructions where has one entry point,
one exit point and no branch instructions inbetween.

This format more closely resembles how the control flow graph is
represented within a compiler. It also makes the implementation
more efficient as we can store all the variables used and defined
at a node in a list instead of having to check every time we look
at a node.

I've also extended L0 and TRANS to support arrays as scientific
applications make heavy use loops and arrays.

I've also added features in TRANS to perform loop dependence
analysis.

 8

Loop Dependence Analysis

Which iterations of this loop can we exectue in parallel?

for(i = 0; i < n; i++)
{
 a[i+k] = b[i];
 b[i+k] = a[i] + c[i];
}

Answer: k iterations.

Which iterations of these loops can we execute in parallel?

The answer is k iterations, here's why...

 9

Loop Dependence Analysis

 If an array element is written in one iteration and read in
another then there is a dependence between the
iterations.

 Can only parallelize iterations where no dependencies
exist.

 Solve i' = i + k
 Can parallelize at most k iterations at a time.
 Much more difficult with more variables, nested loops,etc
 Ananlysis for single variable subscript expressions in

TRANS.

There is a dependence between two itertions of a loop if an
element of an array is read in one of the iterations and written in
another.

We can only parallelize iterations of loops where it is impossible for
there to be a dependence, due to the non-deterministic order of
execution.

In the previous example, if we formulate and solve the linear
equation i' = i + k, then we see that there are dependencies
between iterations (1,k), (2,k+1) etc, so we can do at most k
iterations in parallel.

It becomes much more difficult to forumalte and solve these
equations quicky when given nested loops and more complex
epressions.

I've added support to TRANS for determining dependencies where
the expression involves at most one loop indexing variable.

 10

Transformation Catalogue

 Paper contains 51 transformations
 23 have been implemented
 10 more to implement
 Other will not be implemented

 Too low level
 Architecture specific
 Parallelizing

The main aim of my thesis has been to implement an extensive
catalogue of compiler transformation in TRANS. So for I have
implemented 23 of the 51 transformations in the source paper. I
have a further 10 yet to implement. The remaining
transformations will not be implemented, for various reasons:

Some of the transformations are too low level. TRANS
optimisations take place at the intermediate representation
level, so transformations to save registers or organise memory
are irrelevant.

Some transformations are architecture specific, for example
transformations which use vector instructions, and the
interediate representation is not meant to be architecture
specific,

Some transformations involve paralizing loops but there is no
language contruct in TRANS to say that a loop may be executed
in parallel. We consider this to be carried out in a different
optimisation phase.

 11

Future Work

 Function calls
 Types
 Verfication

Before I submit my thesis I am hoping to add support to TRANS for
function calls, and implement optimisations relating to functions,
such as function inlining.

Some future work which is beyond the scope of my Masters is
adding support for types to TRANS as currently all the variables
are integers and also formally verifying all the transformations
in the catalogue, which I believe Richard is going to talk about
later.

 12

Any Questions?

That it. Any questions?

