

# CS909/CS429 Revision

#### Dr. Fayyaz Minhas

**Department of Computer Science** 

University of Warwick

https://warwick.ac.uk/fac/sci/dcs/teaching/material/cs909/

**CS909: Data Mining** 

**University of Warwick** 

#### Structure of this lecture

- Online
- Will be Recorded

- At end
  - Questions on Moodle

#### **Data Mining Objective**

- Learning from Data
- Identifying Patterns in Data

• Generalization: Generating Correct Predictions for unseen data

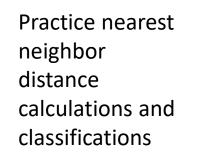
#### Updates

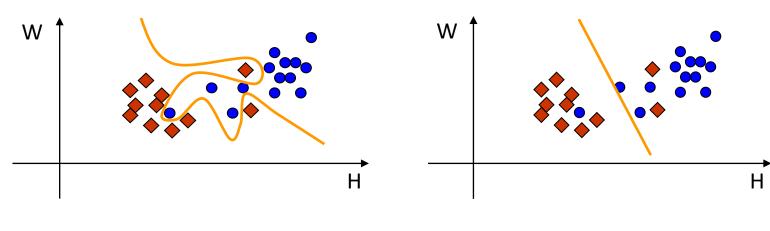
• Lectures now available on YouTube

- <u>https://www.youtube.com/playlist?list=PL9IcorxiyRbASB9DXjoWnBJO</u>
   <u>9RSKyzM2N</u>
- <u>https://bit.ly/2S8hZZV</u>
- With improved captioning! 🙂

#### Generalization

- Generalization vs. Memorization
  - A particular issue in classification is the tradeoff between memorization vs. generalization
    - Remembering everything is not learning
    - <u>The true test of learning is handling similar but unseen</u> <u>cases</u>





Has great memorization but may generalize poorly

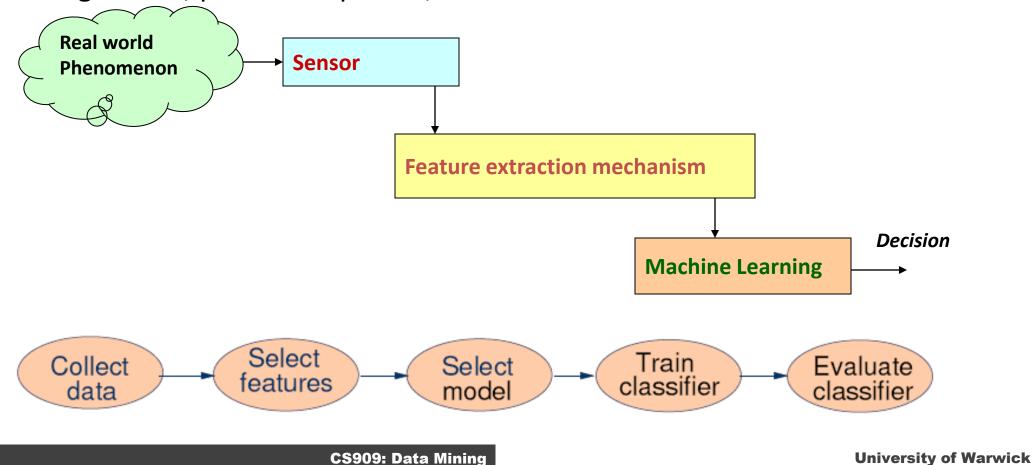
Has lesser memorization but may generalize better

**CS909: Data Mining** 

5

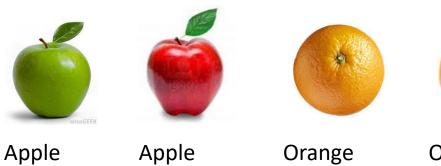
## Life Cycle

- Identify the objective
  - Identify the unit of classification (example)
    - Image block, protein sequence, ....



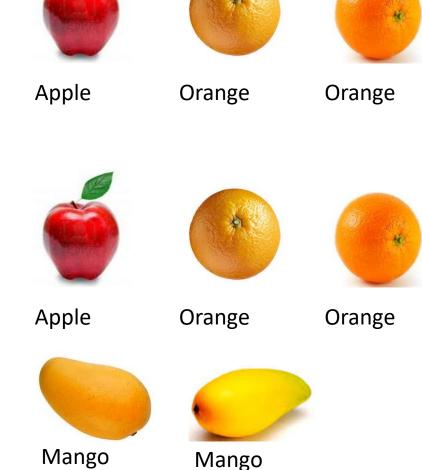
## Types of ML problems

- Supervised
   Classification
  - Apple or orange
  - Inductive: Infer a rule for classification and use it to label unknown examples





- Apple or orange or mango
- For a binary classifier we can use
- One vs. All
  - Apple vs. (Orange, Mango)
  - Orange vs. (Apple, Mango)
  - Mango vs, (Apple, Orange)
- One against One
  - Apple vs. Orange
  - Apple vs. Mango
  - Orange vs. Mango

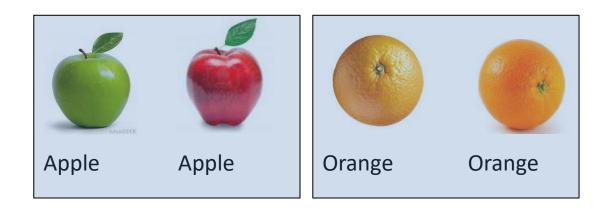


Apple

7

#### Types of ML problems

- One Class Classification
  - Apple or not
  - Orange or not
  - One-Class SVM



- Feature Selection
  - Select only the required features for classification
  - 1-norm SVM

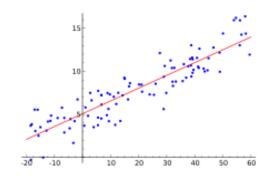






## Types of ML problems

- Regression
  - Price of the apple vs. prices of the orange
  - Can be multi-variable in both input and output
  - Support Vector Regression
- Ranking
- Recommender Systems
- Clustering
  - Unsupervised learning
  - Support Vector Clustering
  - Examples in one clusters should be similar (based on some criteria) to each other and different from other examples
  - Example: Apple sorting

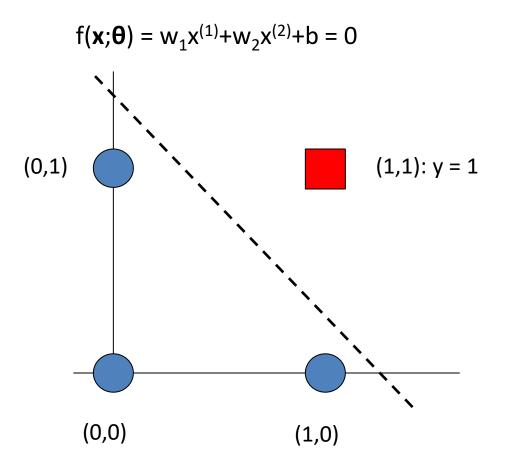




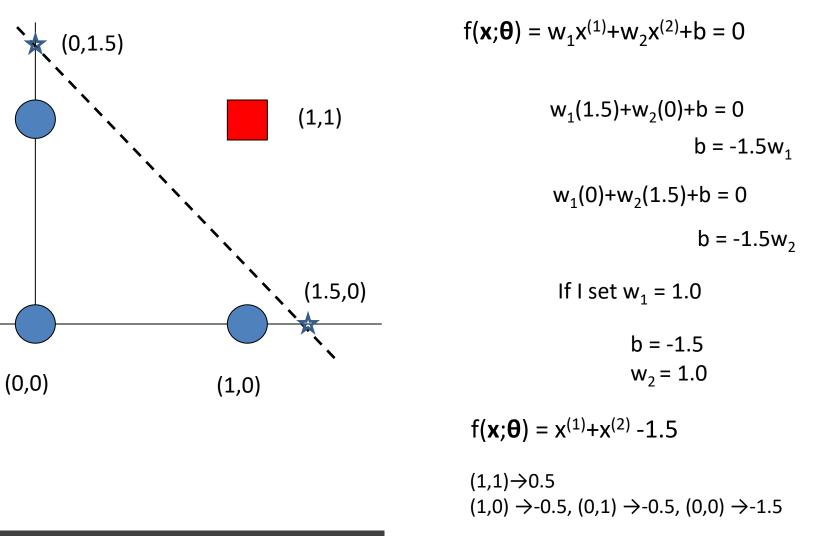
## Composition of machine learning models

- Representation
  - How the model produces its output
  - Feature Representation
    - Denoted by a vector **x**
  - Linear
    - Perceptron  $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + \mathbf{b}$
  - Non-linear
    - kNN: Assign class label to a novel example based on its nearest training example(s)
- Evaluation
  - Loss function
- Optimization
  - How to find parameters that minimize evaluation error

#### Linear Separability



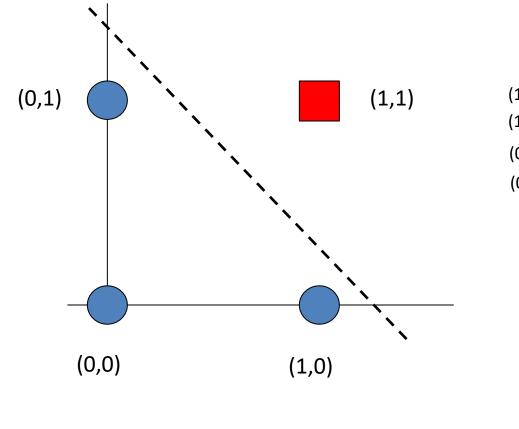
#### Example (Graphical Approach)



CS909: Data Mining

(0,1)

#### Example: Another Way (Algebraic Constraint Satisfaction)



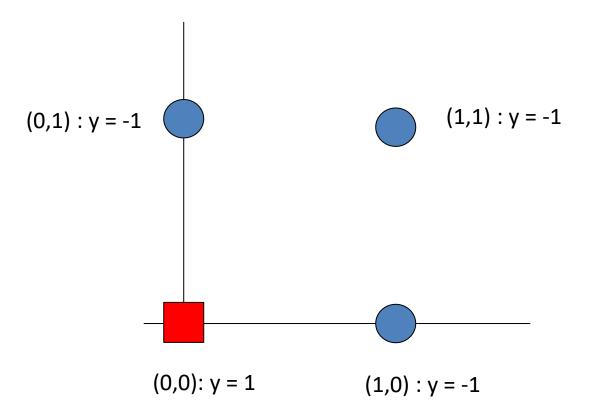
$$f(x;\theta) = w_1 x^{(1)} + w_2 x^{(2)} + b = 0$$

| (1,1): | $w_1(1.0)+w_2(1.0)+b > 0$ |
|--------|---------------------------|
| (1,0): | $w_1(1.0)+w_2(0.0)+b < 0$ |
| (0,1): | $w_1(0.0)+w_2(1.0)+b < 0$ |
| (0,0): | $w_1(0.0)+w_2(0.0)+b < 0$ |

 $w_1+w_2+b > 0$   $w_1+b < 0$   $w_2+b < 0$  b < 0 b = -1.5  $w_1 = 1.0$  $w_2 = 1.0$ 

#### Exercise

• Is this problem linearly separable?

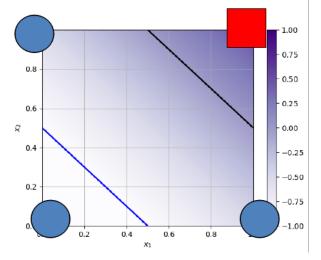


#### **Error Minimization**

- Representation
  - How does the model generate its output
  - $f(\mathbf{x};\mathbf{w}) = w_1 x^{(1)} + w_2 x^{(2)} + ... + w_2 x^{(d)} + b = \mathbf{w}^T \mathbf{x}$
- Evaluation
  - Define what constitutes as a prediction error

• 
$$L(X, Y; w) = \sum_{i=1}^{N} (f(x_i; w) - y_i)^2$$

- Optimization
  - $w^* = argmin_w L(X, Y; w) = X^+ y$
- Code
  - w = np.linalg.pinv(X)@y
- Evaluate

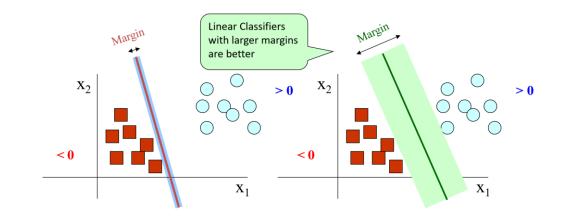


#### **Examples of REO**

- Try writing the
  - Representation
  - Evaluation (loss and regularization)
  - Optimization
- Of
  - OLS
  - Perceptron
  - -SVM
  - MLP
  - Clustering problems
  - Ranking problems

#### **Evaluation: Structural Risk Minimization**

- Loss or error
  - Hinge Loss
  - Squared Loss
  - Cross-entropy loss
  - Can you plot these?
  - But it is not enough!!
- Regularization
  - A small change in the input should not have a large impact on the output
  - Related to Margin and "Freedom" or "Complexity" of the classifier
    - Related to the "VC Dimension" of the data
    - Do read about it!



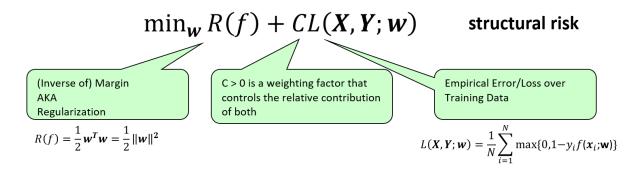
**University of Warwick** 

#### Example of SRM: SVM

• Representation

 $f(x;w) = w_1 x^{(1)} + w_2 x^{(2)} + \dots + w_2 x^{(d)} + b = w^T x + b$ 

• Evaluation & Optimization



$$\min_{\boldsymbol{w}} \frac{1}{2} \boldsymbol{w}^{T} \boldsymbol{w} + \frac{C}{N} \sum_{i=1}^{N} \max\{0, 1 - y_i f(\boldsymbol{x}_i; \boldsymbol{w})\}$$

- Other loss functions
  - Cross-entropy, 0-1 loss, squared loss...

#### Regularization

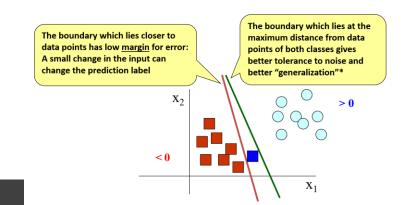
- Small changes in input should produce small changes in output
  - Achieved by minimization of the norm of the weight vector

$$R(\mathbf{w}) = \|\mathbf{w}\|_2^2 = w_1^2 + w_2^2 + \dots + w_d^2$$

• In general

$$\begin{split} \|\boldsymbol{w}\|_{p} &= (|w_{1}|^{p} + |w_{2}|^{p} + \dots + |w_{d}|^{p})^{1/p} \\ \|\boldsymbol{w}\|_{1} &= |w_{1}| + |w_{2}| + \dots + |w_{d}| \\ \|\boldsymbol{w}\|_{0} &= number \ of \ non - zero \ vector \ elements \end{split}$$

- Enables generalization esp. when the number of data points is quite small in comparison to the number of dimensions of each data point: A cure to the <u>Curse of dimensionality</u>
  - Given only training examples, optimizing empirical error over only a small number of training examples can lead to models that do not generalize to unseen examples effectively



Small weights limit "the butterfly effect"

• Let's quantify how sensitive the model is to a perturbation of its input

• 
$$f(x) = w^T x + b$$

•  $f(x + \delta x) = w^T(x + \delta x) + b = w^T x + b + w^T \delta x = f(x) + w^T \delta x$ 

• 
$$f(x+\delta x)-f(x)=w^T\delta x$$

•  $\|f(x + \delta x) - f(x)\| = \|w^T \delta x\| \le \|w\| \|\delta x\|$  (using Cauchy-Schwarz inequality)

• Therefore, 
$$\frac{\|f(x+\delta x)-f(x)\|}{\|\delta x\|} \le \|w\|$$

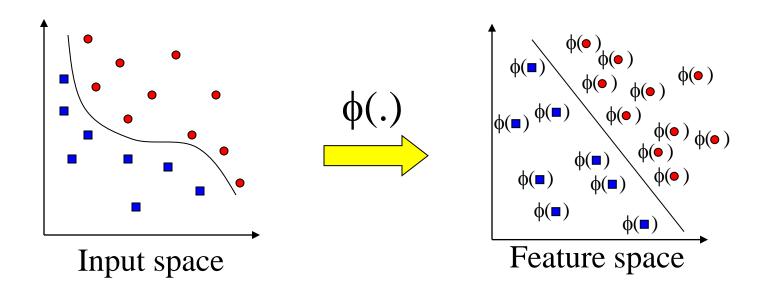
Change in model output per unit additive change in input is upper bounded by ||w||.

Consequently, minimizing the norm of the weight vector (or its square) would lead to a regularization effect as it would limit the effect of any change in the input on the output.

Vapnik showed that **minimizing "structural risk"** (combination of empirical error over training examples and the norm of the weight vector) **leads to minimization of the upper bound on generalization error over unseen examples effectively achieving a solution to the curse of dimensionality.** 

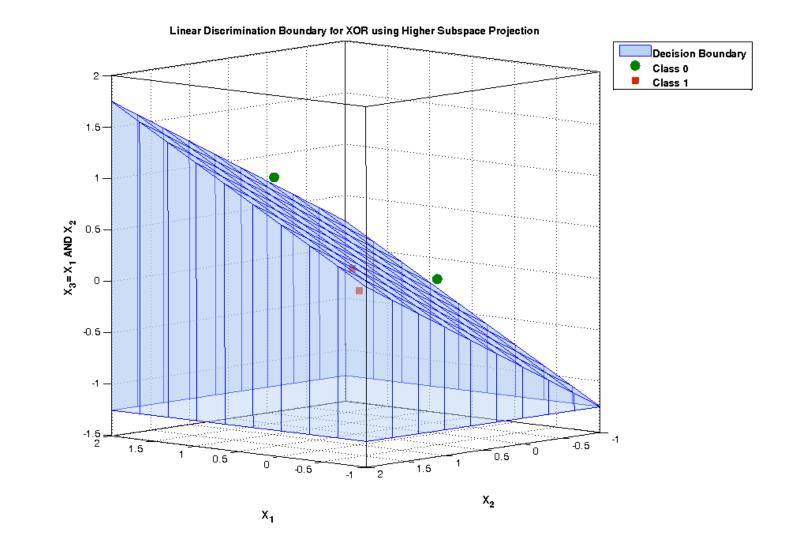
$$R(\boldsymbol{w}) \le R_{emp}(\boldsymbol{w}) + \Omega\left(\frac{1}{N}, \frac{1}{\|\boldsymbol{w}\|}, d\right)$$

#### Feature Transformations & Kernels



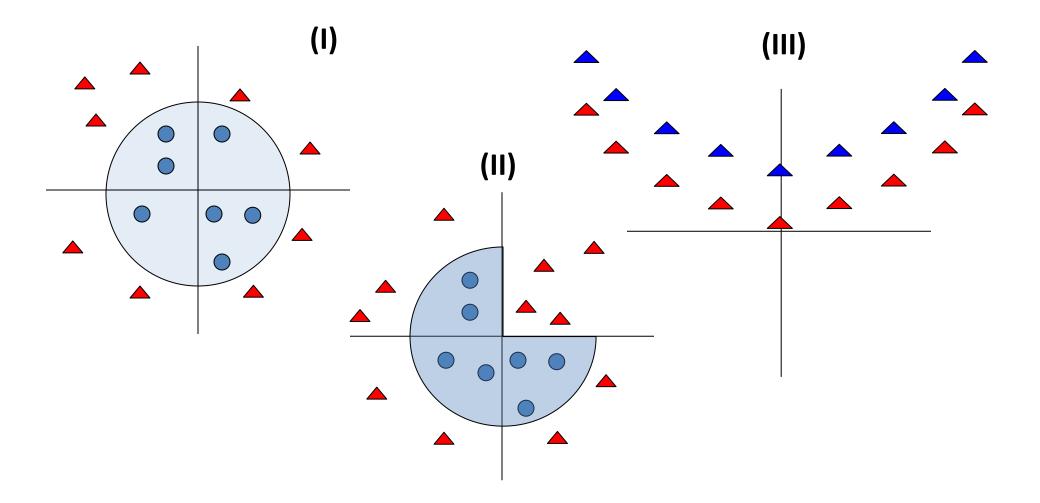
- Relevant features can lead to better accuracy
- Large number of features in a feature transformation can

#### **XOR Linear Separability**



#### **Transformation Examples**

• Can you find a transform that makes the following classification problems linear separable? Can you draw the data points in the new transformed feature space?



#### Effect of feature transformation

- A feature transformation changes the distance (or similarity) between points
- Can also be achieved through kernel functions by the "Kernel Trick"

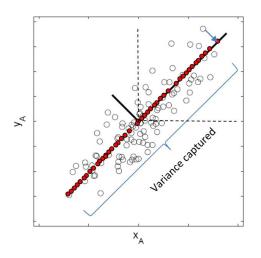
$$\min_{w} \frac{1}{2} w^{T} w + \frac{C}{N} \sum_{i=1}^{N} \max\{0, 1-y_{i}f(\boldsymbol{x}_{i}; \boldsymbol{w})\} \qquad \underbrace{w = \sum_{i=1}^{N} \alpha_{i} \boldsymbol{x}_{i}}_{i,j=1} \qquad \min_{\alpha, b} \sum_{i,j=1}^{N} \alpha_{i} \alpha_{j} k(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) + \frac{C}{N} \sum_{i=1}^{N} \alpha_{i} \alpha_{j} k(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) \Big) \Big\}$$
$$\min_{\alpha, b} \sum_{i,j=1}^{N} \alpha_{i} \alpha_{j} k(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) + \frac{C}{N} \sum_{i=1}^{N} \max\left\{0, 1-y_{i}\left(b + \sum_{j=1}^{N} \alpha_{j} k(\boldsymbol{x}_{i}, \boldsymbol{x}_{j})\right)\right\}$$

#### **Comprehension Questions**

- What are the different types of kernels?
  - What are linear and non-linear kernel functions?
  - What makes a kernel a valid kernel?
- What is the role of C?

## **Dimensionality Reduction**

- PCA
  - Project data along the directions of large variance in the data
    - Proof: Directions of maximum variance are along the direction of the Eigen vectors of the covariance matrix of the data
  - Look at the proofs!
  - Can you identify directions of maximum variance in the data and write their unit vectors?



https://github.com/foxtrotmike/PCA-Tutorial/blob/master/Minhas-PCA.pdf

CS909: Data Mining

**University of Warwick** 

#### **Other ML Problems**

- Regression
  - Loss functions: squared error, absolute loss, huber loss, epsilon insensitive loss
  - Performance Metrics
    - MAE/MSE
    - R2
    - Correlation Coefficient
- Clustering
  - Hierarchical Clustering
  - kmeans
- One-Class Classification
- Ranking
- Recommender Systems

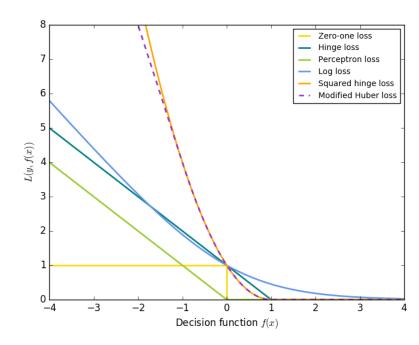
Representation:  $f(x; w, b) = w^T x + b$  or kernelized  $f(x; \alpha, b) = b + \sum_{j=1}^{N} \alpha_j k(x, x_j)$  via the Representer Theorem with Structural Risk Minimization under the general form  $\min_{w} \lambda R(w) + E[error \text{ or } loss \text{ over } training \text{ examples}]$ 

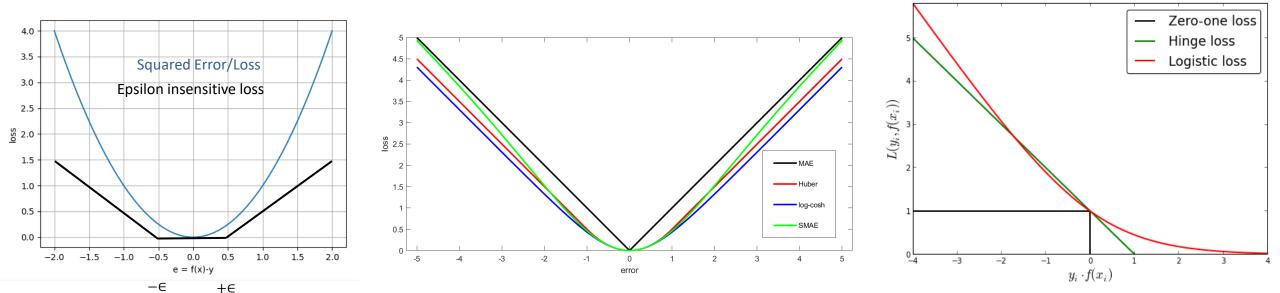
R(w) is the regularization term and SRM provides a bound on generalization error. The goal is to minimize the expected error but under i.i.d. assumption  $E[loss] = \frac{1}{N} \sum_{i=1}^{N} l(f(x_i), y_i)$ 

| Name                   | Evaluation (Optimization Problem)                                                                                                                                                                                                                                                          | Explanation                                                                              |  |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|
| Perceptron             | $min_{w}\sum_{i=1}^{N}max(0,1-y_{i}f(\boldsymbol{x};\boldsymbol{w}))$                                                                                                                                                                                                                      | Uses hinge loss for classification                                                       |  |  |
| SVC (Linear)           | $min_{w}\frac{\lambda}{2}\boldsymbol{w}^{T}\boldsymbol{w} + \sum_{i=1}^{N}max(0, 1 - y_{i}f(\boldsymbol{x}; \boldsymbol{w}))$                                                                                                                                                              | Regularized Perceptron                                                                   |  |  |
| SVC (Kernelized)       | $\min_{\boldsymbol{\alpha}, b} \frac{\lambda}{2} \sum_{i, j=1}^{N} \alpha_i \alpha_j k(\boldsymbol{x}_i, \boldsymbol{x}_j) + \frac{1}{N} \sum_{i=1}^{N} \max\left\{ 0, 1 - y_i \left( b + \sum_{j=1}^{N} \alpha_j k(\boldsymbol{x}_i, \boldsymbol{x}_j) \right) \right\}$                  | Kernelized SVC                                                                           |  |  |
| Logistic<br>Regression | $\min_{w,b} \frac{1}{2} \ w\ ^2 + \frac{C}{N} \sum_{i=1}^{N} \log(\exp(-y_i f(x_i)) + 1)$                                                                                                                                                                                                  | Uses the logistic loss for classification.                                               |  |  |
| РСА                    | $\min_{\boldsymbol{w}} \boldsymbol{\lambda} \boldsymbol{w}^T \boldsymbol{w} + \left( \boldsymbol{V} - \boldsymbol{w}^T \boldsymbol{C} \boldsymbol{w} \right)$                                                                                                                              | Find (orthogonal) direction(s) by minimizing the loss in variance after projection       |  |  |
| OLS                    | $\min_{w} \sum_{i=1}^{N} (w^{T} x_{i} - y_{i})^{2} = \ Xw - y\ ^{2}$                                                                                                                                                                                                                       | Find best linear regression fit under squared loss                                       |  |  |
| SVR (Linear)           | $\min_{\boldsymbol{w},\boldsymbol{b}} \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + \frac{C}{N} \sum_{i=1}^{N} \max(0,  f(\boldsymbol{x}_i) - y_i  - \epsilon)$                                                                                                                            | Uses epsilon-insensitive loss for regression                                             |  |  |
| SVR (Kernelized)       | $\min_{\boldsymbol{\alpha},\boldsymbol{b}} \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j  k(\boldsymbol{x}_i, \boldsymbol{x}_j) + \frac{C}{N} \sum_{i=1}^{N} max \left( 0, \left  \sum_{j=1}^{N} k(\boldsymbol{x}_i, \boldsymbol{x}_j) + b - y_i \right  - \epsilon \right)$              | Kernelized form of the above                                                             |  |  |
| Ridge Regression       | $\min_{\boldsymbol{w},\boldsymbol{b}} \alpha \ \boldsymbol{w}\ ^2 + \ \boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}\ ^2$                                                                                                                                                                   | OLS with regularization (squared norm)                                                   |  |  |
| Lasso                  | $\min_{\boldsymbol{w},\boldsymbol{b}} \alpha \ \boldsymbol{w}\ _{1} + \ \boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}\ ^{2}$                                                                                                                                                               | Use 1-norm regularization (minimize sum of absolute values rather than their squares)    |  |  |
| Elastic Net            | $\min_{w,b} \alpha \rho \ w\ _{1} + \frac{\alpha(1-\rho)}{2} \ w\ ^{2} + \ Xw - y\ ^{2}$                                                                                                                                                                                                   | Uses both types of regularization                                                        |  |  |
| Huber Regressor        | $\min_{\boldsymbol{w},\boldsymbol{b}} \alpha \ \boldsymbol{w}\ ^2 + \sum_{i=1}^N l_{huber}(f(x_i, y_i) \text{ with } l_{huber}(f(x_i, y_i)) = \begin{cases} \frac{1}{2} (y - f(x))^2 & \text{if }  y - f(x)  < \delta \\ \delta( y - f(x)  - \frac{1}{2}\delta) & \text{else} \end{cases}$ | Used for robust regression as huber loss is less sensitive to outliers than squared loss |  |  |
| Coding: https://scik   | it-learn.org/stable/modules/linear_model.html CS909: Data Mining                                                                                                                                                                                                                           | University of Warwick 27                                                                 |  |  |

## Loss Functions: $l(f(x_i, y_i))$

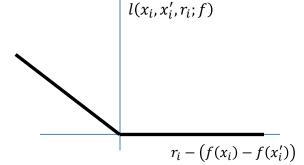
- Quantify Error
  - Misclassification
  - Misregression
  - Misreconstruction
  - Misclustering, Misranking, Misretrieval, ....
- The loss function determines the behaviour of the predictor
- More importantly, it determines the type of ML problem being solved
- Loss functions on the previous slide are all convex losses
  - Guaranteed single minima and convergence through gradient descent
  - Some even lead to closed form optimization which is great
  - However: LeCun, Yann. "Who is afraid of non-convex loss functions." NIPS Workshop on Efficient Machine Learning. 2007.
- A loss function doesn't even have to operate at a per-example level





#### Generalized Instance Ranking Problem

- Misclassification vs. mis-ranking
  - Mis-classification: assign wrong classification label
  - Mis-ranking: one example should have been ranked higher than the other but is not
- Generalized ranking loss:



$$(x_i, x'_i, r_i; f) = \max\left(0, r_i - (f(x_i) - f(x'_i))\right)$$

$$min_{w,b} \frac{1}{2} w^T w + \frac{C}{N} \sum_{i=1}^{N} l(x_i, x'_i, r_i; f)$$

| ML Task                                                                                                                                                                                                  | ML Task                                                                                                                                        |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Classification (Binary and Multi-class: OVR, OVA, etc)                                                                                                                                                   | Out of Domain Detection                                                                                                                        |  |  |
| Regression                                                                                                                                                                                               | Novelty Detection/One-Class Classification                                                                                                     |  |  |
| Dimensionality Reduction / Decomposition                                                                                                                                                                 | Retrieval / Vector Database Search                                                                                                             |  |  |
| Clustering and Biclustering                                                                                                                                                                              | Prediction under domain shift or concept drift                                                                                                 |  |  |
| Statistical Inference and Hypothesis testing                                                                                                                                                             | Counterfactual prediction                                                                                                                      |  |  |
| Recommender System, Basket (item co-occurrence analysis)                                                                                                                                                 | Zero and Few Shot Prediction                                                                                                                   |  |  |
| Learning to Rank (Ordinal Regression)                                                                                                                                                                    | Semi-Supervised Learning                                                                                                                       |  |  |
| Generative Modelling: Conditional and Unconditional                                                                                                                                                      | Weakly-supervised and multiple instance learning                                                                                               |  |  |
| Multi-task Prediction                                                                                                                                                                                    | Causal Learning, Inference, Discovery & Counterfactual prediction                                                                              |  |  |
| Multi-Label Prediction                                                                                                                                                                                   | Active Learning                                                                                                                                |  |  |
| Survival Prediction (Churn Prediction or Failure Prediction)                                                                                                                                             | Meta Learning                                                                                                                                  |  |  |
| Adaptive Prediction Sets & Conformal Prediction                                                                                                                                                          | Curriculum Learning                                                                                                                            |  |  |
| Meta-Learning: Learning to learn and learning to optimize                                                                                                                                                | Transfer Learning                                                                                                                              |  |  |
| Representation Learning                                                                                                                                                                                  | Contrastive and self-taught Learning                                                                                                           |  |  |
| Open Set Recognition                                                                                                                                                                                     | Online and Continuous Learning and Unlearning                                                                                                  |  |  |
| Subset Discovery                                                                                                                                                                                         | Reinforcement learning                                                                                                                         |  |  |
| Domain Specific tasks - CV: Object detection, localization, counting,<br>instance segmentation, semantic segmentation, image to image<br>regression. NLP: Tokenization, Embeddings, Next word prediction | Structured Output Learning<br><b>Topic Modeling</b> , Machine Translation,<br>Community discovery, graph learning, time series forecasting, 30 |  |  |

#### **Performance Evaluation**

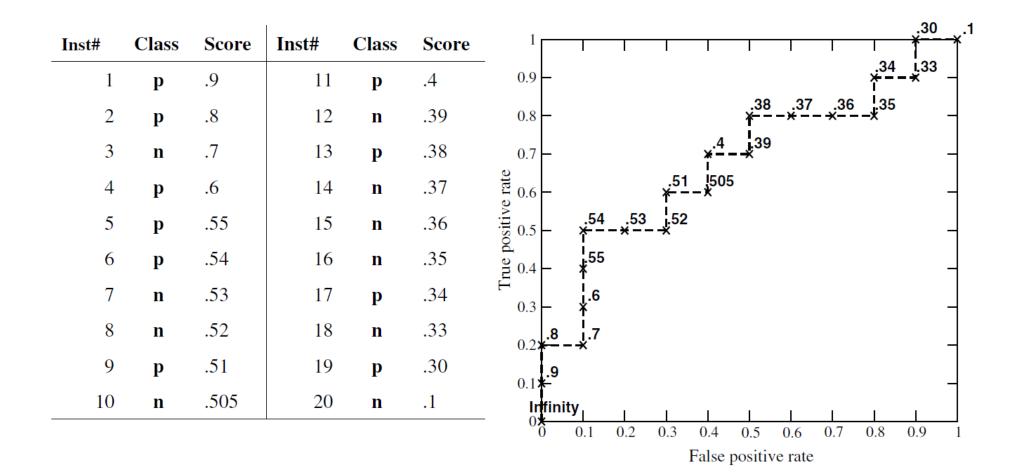
- Objective
  - How good is my ML model pipeline?
  - What parameters should I pick?
  - What am I doing wrong?
- Cross-validation
- Metrics
  - Accuracy, Balanced Accuracy
  - AUC-ROC, AUC-PR
- All metrics have assumptions and limitations
  - Try understanding those!

#### **Confusion Matrix**

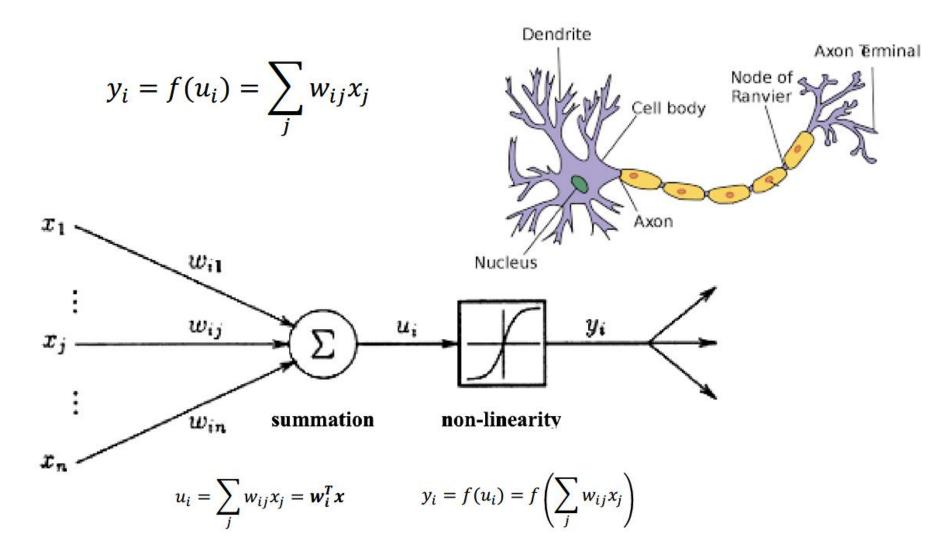
|                        |                                                                                                                       | True condition                                                                                                                 |                                                                                                                              |                                                                                                                                |                                                                                                                     |
|------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
|                        | Total population                                                                                                      | Condition positive                                                                                                             | Condition negative                                                                                                           | $= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$                                                  |                                                                                                                     |
| Predicted<br>condition | Predicted condition<br>positive                                                                                       | True positive                                                                                                                  | False positive<br>(Type I error)                                                                                             | Positive predictive value<br>(PPV), Precision<br>= $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Test outcome positive}}$ | False discovery rate (FDR)<br>= $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Test outcome positive}}$        |
|                        | Predicted condition<br>negative                                                                                       | False negative<br>(Type II error)                                                                                              | True negative                                                                                                                | False omission rate (FOR)<br>= $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Test outcome negative}}$                    | Negative predictive value<br>(NPV)<br>= $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Test outcome negative}}$ |
|                        | $\frac{\text{Accuracy (ACC)} =}{\sum \text{True positive} + \sum \text{True negative}}{\sum \text{Total population}}$ | True positive rate (TPR),<br>Sensitivity, Recall<br>= $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$ | False positive rate (FPR),<br>Fall-out<br>= $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$        | Positive likelihood ratio (LR+)<br>= $\frac{TPR}{FPR}$                                                                         | Diagnostic odds ratio (DOR)                                                                                         |
|                        |                                                                                                                       | False negative rate<br>(FNR), Miss rate<br>= $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$         | True negative rate<br>(TNR), Specificity (SPC)<br>= $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$ | Negative likelihood ratio<br>(LR-) = $\frac{FNR}{TNR}$                                                                         | $=\frac{LR+}{LR-}$                                                                                                  |

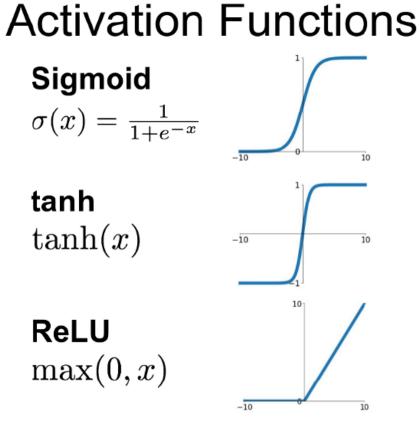
https://en.wikipedia.org/wiki/Sensitivity\_and\_specificity

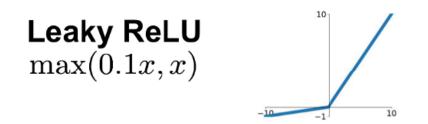
#### Making the ROC Curve



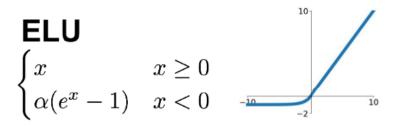
#### **Neural Networks**





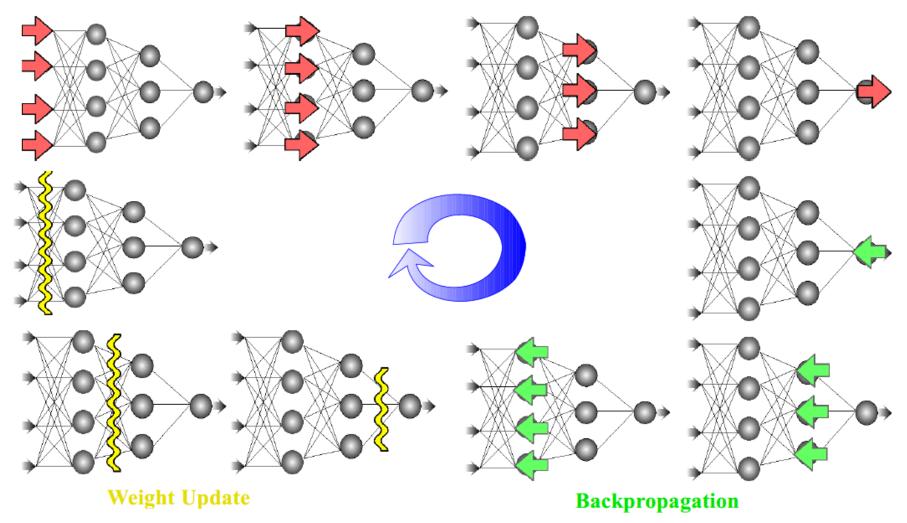


 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$ 



#### University of Warwick 35

#### Feed forward



By the Chain rule, we have: ••• •••  $E = 0.5 \sum_{\nu} (t_k - y_k)^2$ w<sub>0</sub>,  $\frac{\partial E}{\partial w_{jk}} = \frac{\partial}{\partial w_{jk}} 0.5 \sum_{k} (t_k - y_k)^2$  $= \frac{\partial}{\partial w_{jk}} 0.5 (t_k - y_k)^2 \quad \begin{array}{c} \text{Change in } w_{jk} \\ \text{affects only } y_k \end{array}$  $= -(t_k - y_k) \frac{\partial}{\partial w_{jk}} y_k$  $= -(t_k - y_k) \frac{\partial}{\partial w_{jk}} f(y_i n_k)$ X, ...  $= -(t_k - y_k)f'(y_i n_k)\frac{\partial}{\partial w_{jk}}y_i n_k$  $z_j = f(z_i n_j), z_{in_j} = \sum_{\substack{i=0 \ p}}^n x_i v_{ij}, x_0 = 1, j = 1...p$  $y_k = f(y_i n_k), y_{in_k} = \sum_{k=1}^{r} z_j w_{jk}, z_0 = 1, k = 1...m$  $= -(t_k - y_k)f'(y_i n_k) \frac{\partial}{\partial w_{ik}} \sum_{j=0}^p z_j w_{jk}$ **Use of Gradient Descent Minimization**  $= -(t_k - y_k)f'(y_i n_k)z_i = -\delta_k z_i$  $\Delta w_{jk} = -\alpha \frac{\partial E}{\partial w_{jk}} = \alpha \delta_k z_j$ With  $\delta_k = (t_k - y_k) f'(y_i n_k)$ 

$$\begin{split} \frac{\partial E}{\partial v_{ij}} &= \frac{\partial}{\partial v_{ij}} 0.5 \sum_{k} (t_{k} - y_{k})^{2} \\ &= 0.5 \sum_{k} \frac{\partial}{\partial v_{ij}} (t_{k} - y_{k})^{2} \\ &= \sum_{k} (t_{k} - y_{k}) \frac{\partial}{\partial v_{ij}} (-y_{k}) \\ &= -\sum_{k} (t_{k} - y_{k}) \frac{\partial}{\partial v_{ij}} f(y_{in_{k}}) \\ &= -\sum_{k} (t_{k} - y_{k}) f'(y_{in_{k}}) \frac{\partial}{\partial v_{ij}} y_{in_{k}} \\ &= -\sum_{k} \delta_{k} \frac{\partial}{\partial v_{ij}} \sum_{j=0}^{p} z_{j} w_{jk} \\ &= -\sum_{k} \delta_{k} \frac{\partial}{\partial v_{ij}} z_{j} w_{jk} = -\sum_{k} \delta_{k} w_{jk} \frac{\partial}{\partial v_{ij}} f(z_{in_{j}}) \\ &= -\sum_{k} \delta_{k} \frac{\partial}{\partial v_{ij}} z_{j} w_{jk} \\ &= -\sum_{k} \delta_{k} w_{jk} f'(z_{in_{j}}) \frac{\partial}{\partial v_{ij}} \sum_{i=0}^{n} x_{i} v_{ij} \\ &= -\sum_{k} \delta_{k} w_{jk} f'(z_{in_{j}}) \frac{\partial}{\partial v_{ij}} \sum_{i=0}^{n} x_{i} v_{ij} \\ &= -\sum_{k} \delta_{k} w_{jk} f'(z_{in_{j}}) \frac{\partial}{\partial v_{ij}} \sum_{i=0}^{n} x_{i} v_{ij} \\ &= -\sum_{k} \delta_{k} w_{jk} f'(z_{in_{j}}) \frac{\partial}{\partial v_{ij}} \sum_{i=0}^{n} x_{i} v_{ij} \\ &= -\sum_{k} \delta_{k} w_{jk} f'(z_{in_{j}}) \frac{\partial}{\partial v_{ij}} \sum_{i=0}^{n} x_{i} v_{ij} \\ &= -\sum_{k} \delta_{k} w_{jk} f'(z_{in_{j}}) \frac{\partial}{\partial v_{ij}} \sum_{i=0}^{n} x_{i} v_{ij} \\ &= -\sum_{k} \delta_{k} w_{jk} f'(z_{in_{j}}) \frac{\partial}{\partial v_{ij}} \sum_{i=0}^{n} x_{i} v_{ij} \\ &= -\sum_{k} \delta_{k} w_{jk} f'(z_{in_{j}}) \frac{\partial}{\partial v_{ij}} \sum_{i=0}^{n} x_{i} v_{ij} \\ &= -\sum_{k} \delta_{k} w_{jk} f'(z_{in_{j}}) \frac{\partial}{\partial v_{ij}} \sum_{i=0}^{n} x_{i} v_{ij} \\ &= -\sum_{k} \delta_{k} w_{jk} f'(z_{in_{j}}) \frac{\partial}{\partial v_{ij}} \sum_{i=0}^{n} x_{i} v_{ij} \\ &= -\sum_{k} \delta_{k} w_{jk} f'(z_{in_{j}}) \frac{\partial}{\partial v_{ij}} \sum_{i=0}^{n} x_{i} v_{ij} \\ &= -\sum_{k} \delta_{k} w_{jk} f'(z_{in_{j}}) \frac{\partial}{\partial v_{ij}} \sum_{i=0}^{n} x_{i} v_{ij} \\ &= -\sum_{k} \delta_{k} w_{jk} f'(z_{in_{j}}) \frac{\partial}{\partial v_{ij}} \sum_{i=0}^{n} x_{i} v_{ij} \\ &= -\sum_{k} \delta_{k} w_{jk} f'(z_{in_{j}}) \frac{\partial}{\partial v_{ij}} \sum_{i=0}^{n} x_{i} v_{ij} \\ &= -\sum_{k} \delta_{k} w_{jk} f'(z_{in_{j}}) \frac{\partial}{\partial v_{ij}} \sum_{i=0}^{n} x_{i} v_{ij} \\ &= -\sum_{k} \delta_{k} w_{jk} f'(z_{in_{j}}) x_{i} \\ &= -\sum_{k} \delta_{k} w_{jk} f'(z_{in_{j}}) \frac{\partial}{\partial v_{ij}} \sum_{i=0}^{n} x_{i} v_{ij} \\ &= -\sum_{k} \delta_{k} w_{jk} f'(z_{in_{j}}) \frac{\partial}{\partial v_{ij}} \sum_{i=0}^{n} x_{i} v_{ij} \\ &= -\sum_{k} \delta_{k} w_{jk} f'(z_{in_{j}}) \frac{\partial}{\partial v_{ij}} \sum_{i=0}^{n} x_{i} v_{ij} \\ &= -\sum_{k} \delta_{k} w_{jk} f'(z_{in_{j}}) \frac{\partial}{\partial v_{ij}} \sum_{i=0}^$$

38

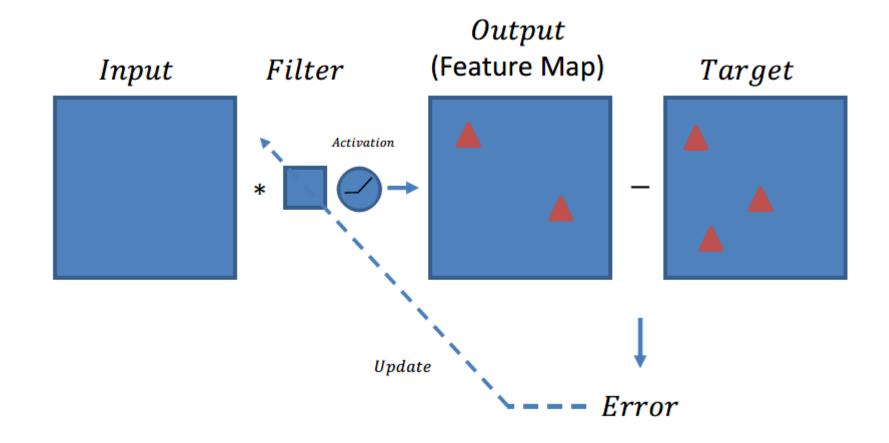
# Understanding NNs

- Understanding the role of
  - Gradients
  - Inputs
  - Activation functions (esp output layer activation functions such as softmax)
  - Learning rate
  - Number of layers
  - Number of neurons

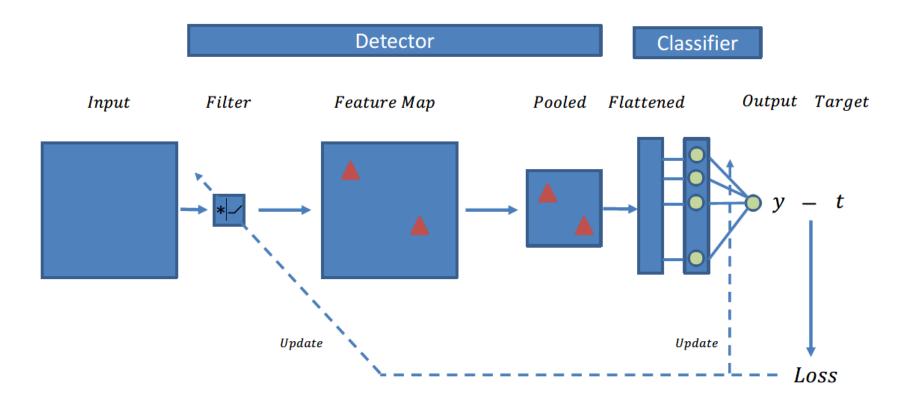
$$-\operatorname{Los}_{\Delta v_{ij}} = \alpha x_i f'(\boldsymbol{v}_j^T \boldsymbol{x}) \sum_{k=1}^m w_{jk} \left( t_k - f\left(\sum_{j=0}^p w_{jk} f(\boldsymbol{v}_j^T \boldsymbol{x})\right) \right) f'\left(\sum_{j=0}^p w_{jk} f(\boldsymbol{v}_j^T \boldsymbol{x})\right)$$

# **Convolution Neural Networks**

• Filter based object detection

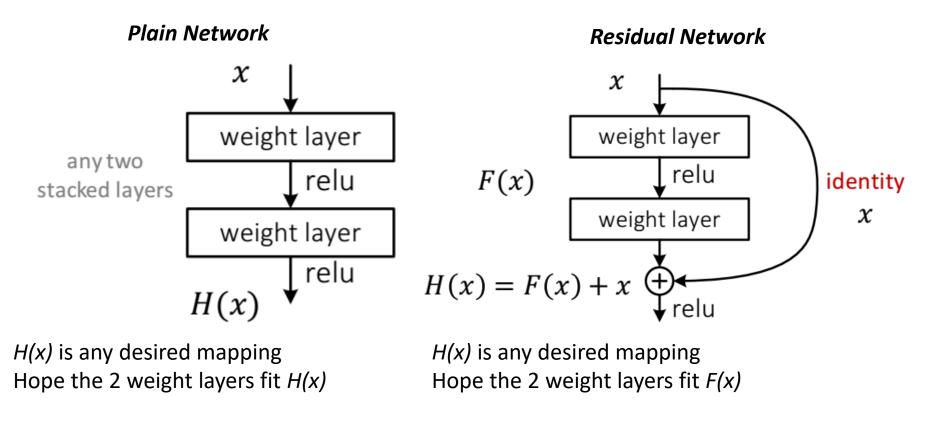


### CNNs



Understanding why CNNs work!

# Residual Learning: skip connections

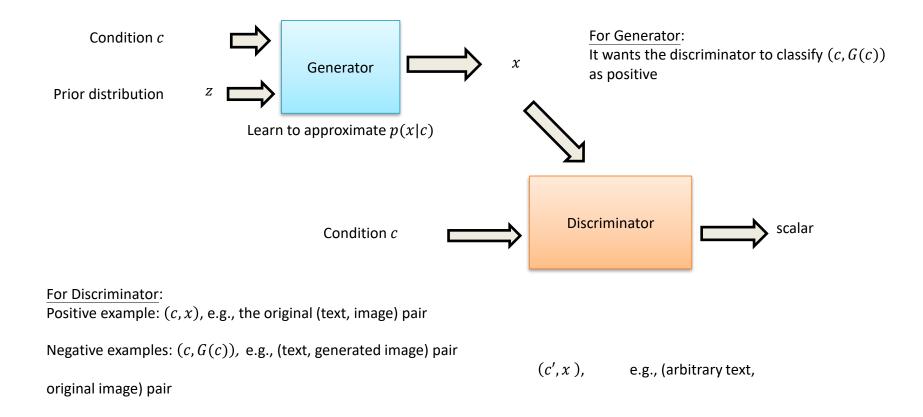


The network learns fluctuations *F(x)=H(x)-x* Easier!

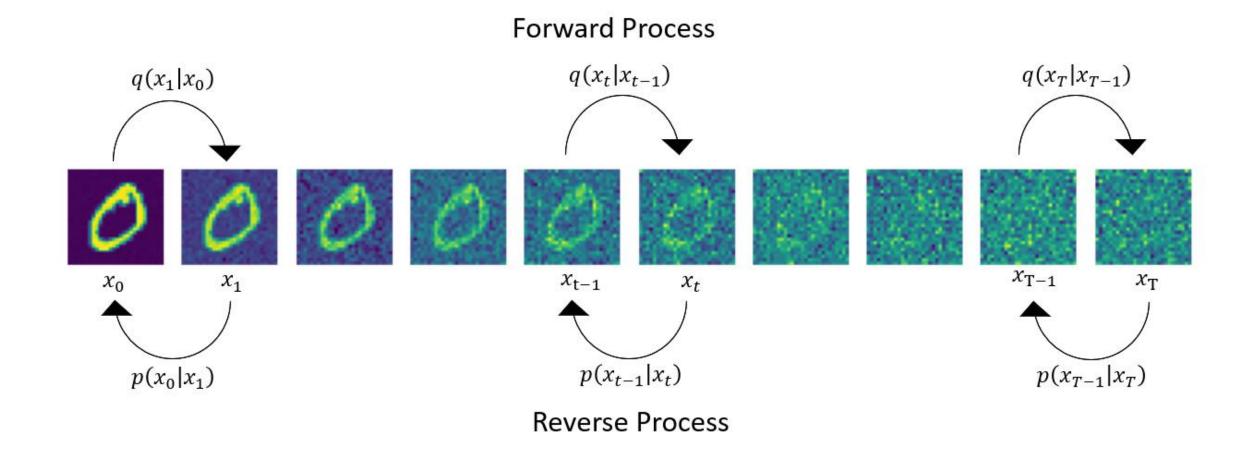
Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

#### **Conditional GAN**

Training data: (*c*, *x*), (condition, desired output), e.g., (text, image)

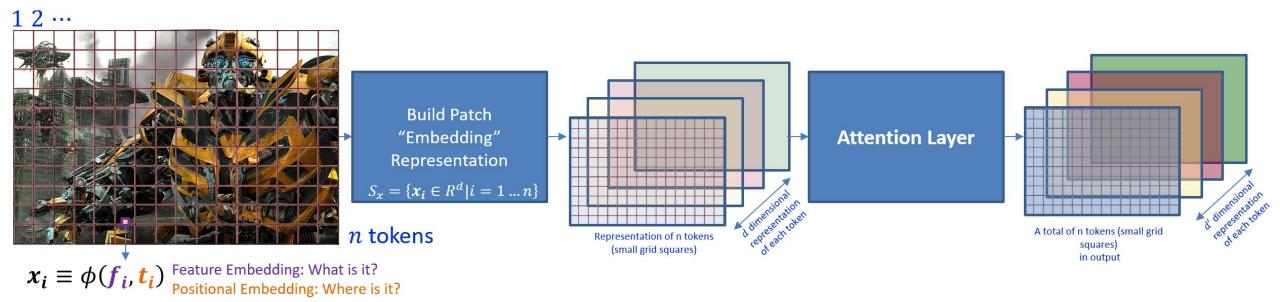


# Other Topics: Diffusion Models (Optional)

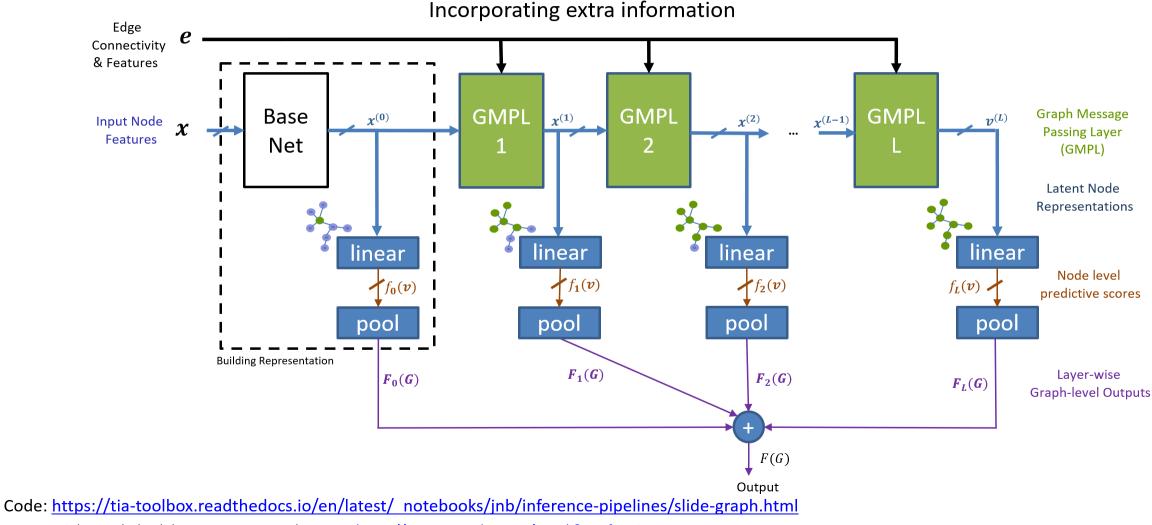


https://github.com/wgrgwrght/Simple-Diffusion/blob/main/SimpleDiffusion.ipynb

# **Other Topics: Transformers**



# Message Passing Based Graph Neural Networks



Fayyaz Minhas, Whole Slide Images Are Graphs, 2020. <u>https://www.youtube.com/watch?v=Of1u0i7roS0</u>.

#### Data Mining

# Exam Philosophy and Types of Questions

- Testing the student's ability to generalize and cross-connect
- Types of questions
  - Solution
    - Solve or Calculate
  - Conceptual
    - Why does ...
  - Book work
    - What is ..
  - Application
    - How to ..

### **Exam Structure**

• Attempt four out of 5 questions

- Past papers (No solutions)
  - <u>https://warwick.ac.uk/services/exampapers?q=cs90</u>
    <u>9&department=&year=</u>
  - <u>https://warwick.ac.uk/services/exampapers?q=cs42</u> <u>9&department=&year=</u>