

Embodied Energy of Rural Houses in Uganda

Nkozi Village Survey

Roberta Mutschler

Introduction

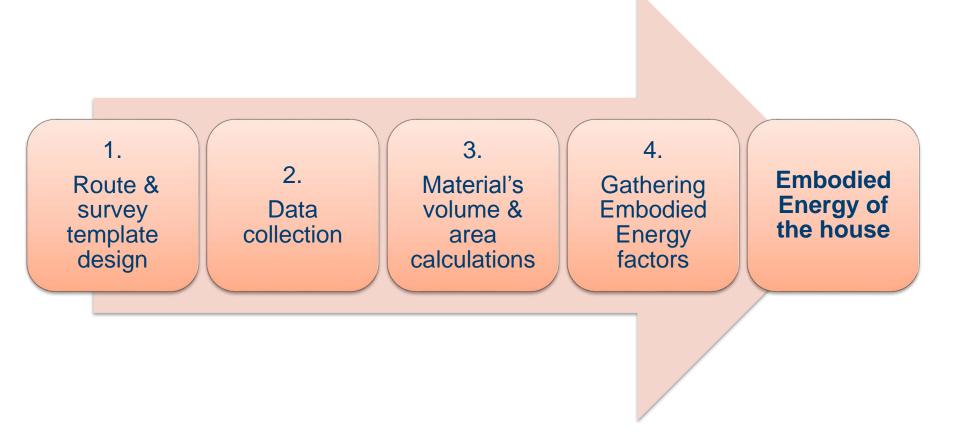
- In East Africa 95% of the population use solid fuels for heating and cooking
- Deforestation in Uganda
 - 44 million tones of wood per annum (equals to 12 toe)
 - Expected to increase up to 135 tones by 2020 in a BAU projection.
 - Burned brick industry accounts of around 6 million tones per annum

Introduction: ELITH Project

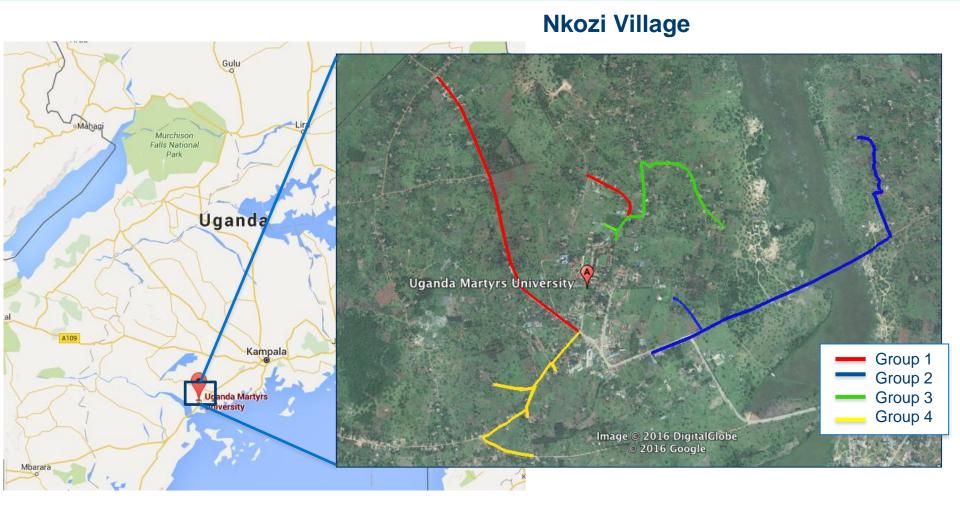
- Energy and Low Income Tropical Housing (ELITH) project
 - Seeks to identify, and then propagate, methods of reducing the energy consumption of low-income houses.

• Partners:

U	IK
	University of WarwickUniversity of Cambridge
С	China
•	University of Nottingham
Т	hailand
•	 King Mongkut's University of Technology Thonburi (KMUTT)
Т	anzania
•	 National Housing and Building Research Agency (NHBRA)
U	Iganda
	Uganda Martyrs University


Introduction: Aims and Objectives

- Mission to Uganda:
 - Visit partners and collaborate in dissemination report.
- Objectives:
 - Identify embodied and operational energy in lowincome houses
 - Identify a low-cost architectural design to minimise energy use
 - Provide support writing the dissemination report



Methodology: Flow chart

Methodology: Route and Survey Template

Methodology: Data Collection

- House measures:
 - Length, width, height and thicknesses
 - Record of materials used: doors, windows, masonry, floor, roof structure
 - Presence of mortar, plaster, paint, roughcast and ring beam.
- Household interview:
 - Ownership
 - Aspirations of refurbishment
 - Energy consumption : wood, charcoal and kerosene
 - Income range

Total sample size = 79 houses

Pollster team

Methodology: Materials' Volume and Area

- Variables
 - Volume of bricks [m³]
 - Volume of mortar [m³]
 - Volume of plaster [m³]
 - Area painted [m²]
 - Area roughcast [m²]
 - Volume of ring beam [m³]

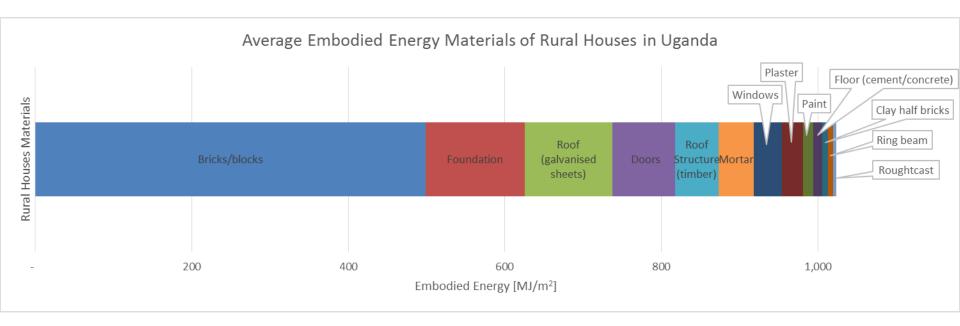
- Volume of roof structure [m³]
- Area roof covering [m²]
- \circ Volume of floor [m³]
- Foundation [m³]
- Number and type of doors and windows

Methodology: Embodied Energy Factors

- Embodied Energy of Burned Bricks
 - Produced locally

Kiln	Specimen Number	Moisture Content [%]	Wood Calorific Value [MJ/kg]	Wood Consumption [kg]	No Bricks Produced	Brick Embodied Energy [MJ/brick]	Brick Embodied Energy [MJ/m ³]
1	2	41%	10,2	8116,2	16180	5,13	2039
2	8	60%	6,0	3869,2	5600	4,15	1650
3	8	41%	10,1	4837,0	5600	8,70	3460
4	6	15%	15,7	9264,9	16000	9,08	3610
5	1	15%	15,7	4916,3	10000	7,71	3065
					Average	6,95	2765

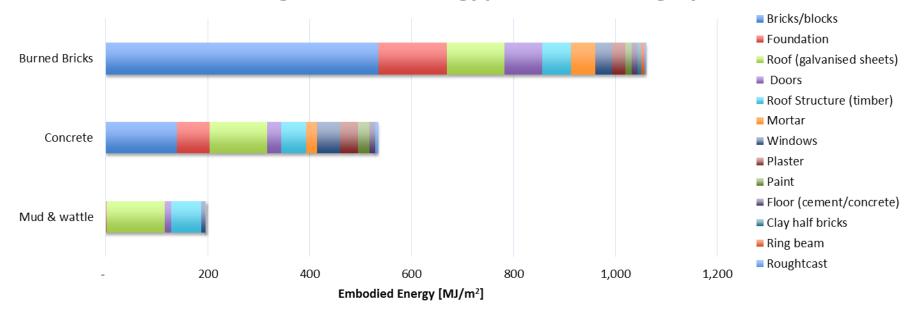
Benchmarks	Embodied Energy [MJ/brick]	Source		
Source 1	39	Hashemi et al. (2015)		
Source 2	16	Montgomery & Thomas (2001)		
Source 3	6,95	This Research		
Source 4	4,25	Esteban & Buccellato (2011)		



Methodology: Embodied Energy Factors

			Cradle-to-Gate						
Material	Description	Material	Energy Factor	Unit	Source	Density	Density units	Embodied Energy	Embodied Energy Units
	Concrete Blocks	Block	0,243	[MJ/kg]	Praseeda et al. (2015)	2320	[kg/m3]	564	[MJ/m3]
	Half Clay bricks	Half brick	1,270	[MJ/kg]	Praseeda et al. (2015)	1435	[kg/m3]	1822	[MJ/m3]
Bricks/Blocks	Charles informed annuals	Concrete	0,243	[MJ/kg]	Praseeda et al. (2015)	2320	[kg/m3]	564	[MJ/m3]
	Steel reinforced concrete	Steel	25,3	[MJ/kg]	ICE 2.0	7800	[kg/m3]	197340	[MJ/m3]
	Burned Clay Brick	Clay Brick	2765	[MJ/m ³]	Own research	1441	[kg/m3]	2765	[MJ/m3]
A	Frithersheim and and an external	Sand	0,0081	[MJ/kg]	ICE 2.0	1602	[kg/m3]	411	[0.41/2]
Mortar	5:1 volumetric, sand and cement	Cement CEM II/B-V	4,065	[MJ/kg]	ICE 2.0	1506	[kg/m3]		[MJ/m3]
		Sand	0,0081	[MJ/kg]	ICE 2.0	1602	[kg/m3]		[a.u./]
Plaster	3:1 volumetric, sand and cement	Cement CEM II/B-V	4,065	[MJ/kg]	ICE 2.0	1506	[kg/m3]	409	[MJ/m3]
aint	Single coat paint	General Paint	10,5	[MJ/m ²]	ICE 2.1			10,5	[MJ/m2]
		Sand	0,97	[MJ/kg]	ICE 2.0	1602	[kg/m3]		[MJ/m3]
oughtcast	2:1 volumetric, sand and cement	Cement CEM II/B-V	4,065	[MJ/kg]	ICE 2.0	1506	[kg/m3]	613	
	2:4:1 volumetric. Sand, aggregates and cement	Sand	0,0081	[MJ/kg]	ICE 2.0	1602	[kg/m3]		[MJ/m3]
ing beam		Aggregates	0,083	[MJ/kg]	ICE 2.0		[kg/m3]	444	
		Cement CEM II/B-V	4,065	[MJ/kg]	ICE 2.0		[kg/m3]	1	
oof timber	Swan softwood	Sawn Softwood	7,4	[MJ/kg]	ICE 2.0		[kg/m3]	3574	[MJ/m3]
oof steel sheet	Galvanised corrugated steel sheets	Steel Sheet	28,5	[MJ/kg]	ICE 2.0		[kg/m2]	89	[MJ/m2]
	3:4:1 volumetric. Sand, aggregate and cement	Sand	0,0081	[MJ/kg]	ICE 2.0		[kg/m3]	108	[MJ/m3]
oundation concrete		Aggregates	0,083	[MJ/kg]	ICE 2.0		[kg/m3]		
		Cement CEM II/B-V	0,7	[MJ/kg]	ICE 2.0		[kg/m3]		
	3:1 volumetric mortar and bricks. Sand and cement.		0,0081	[MJ/kg]	ICE 2.0		[kg/m3]	409	[MJ/m3]
oundation wall		Mortar: sand and Cement CEM II/B-V	4,065	[MJ/kg]	ICE 2.0		[kg/m3]		
		Brick	2765	[MJ/m ³]	Own research		[MJ/m3]	2765	[MJ/m3]
		Sand	0,0081	[MJ/kg]	ICE 2.0		[kg/m3]	2705	[MJ/m3]
loor	4:1 volumetric, sand and cement	Cement CEM II/B-V	4,065	[MJ/kg]	ICE 2.0		[kg/m3]	410	
oor Timber		Sawn Softwood	154	Door	ICE 2.0 & Own R.	1500	[[[6]/113]	154	[MJ/door]
oor Steel		Steel	3755	Door	ICE 2.0 & Own R.			3755	[MJ/door]
		Timber	103	Door	ICE 2.0 & Own R.			0,00	[1113/0001]
oor Timber+Glass		Glass	46,8	Door	ICE 2.0 & Own R.			150	[MJ/door]
		Steel	2524	Door	ICE 2.0 & Own R.				
Door Steel+Glass		Glass	46,8	Door	ICE 2.0 & Own R.			2570	[MJ/door]
Vindow Timber		Timber	81,4	Window	ICE 2.0 & Own R.			81	[MJ/window]
Vindow Steel		Steel	1973	Window	ICE 2.0 & Own R.			1973	[MJ/window]
/indow Steel		Window	1973	Window	ICE 2.0 & OWN R. ICE 2.0 (or 77.1MJ own R.)			1973	[MJ/window]
indow filliber (0lass		Steel	631	Window	ICE 2.0 (or 77.100 own R.)			199	[wb/window]
Window Steel+Glass		Glass	51	Window	ICE 2.0 & OWN R.			682	[MJ/window]

Results



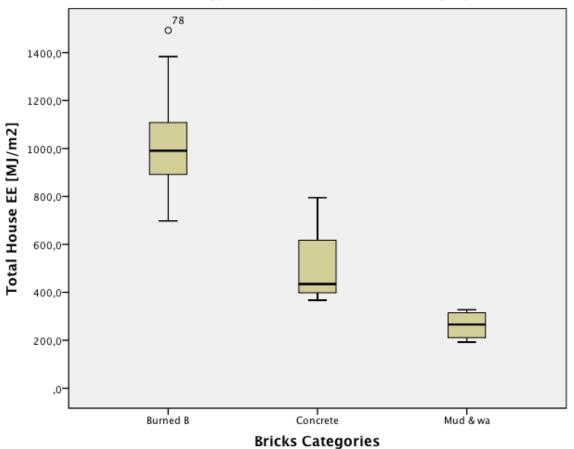
Results: Embodied Energy Material Category

Average Embodied Energy per material category

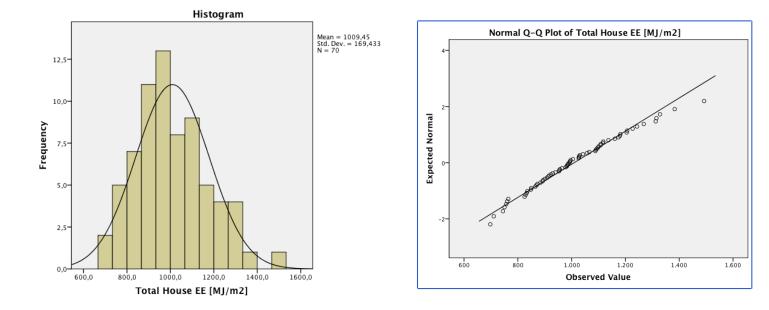
Results: Embodied Energy Burned Bricks

Average, minimum and maximum of burned bricks houses

Results: Embodied Energy Burned Bricks


House 310b

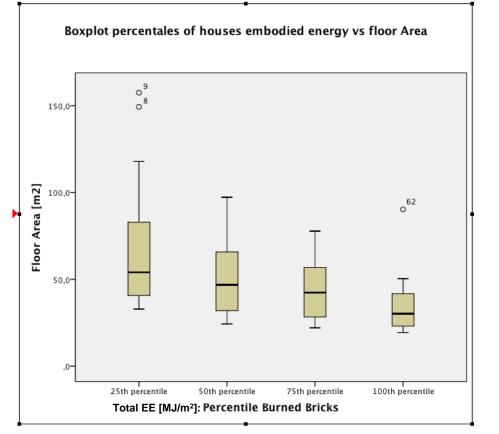
House 412


Results: Statistics

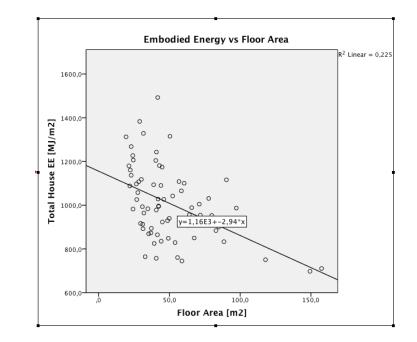
Embodied Energy of houses per material category

Results: Burned Bricks Statistics

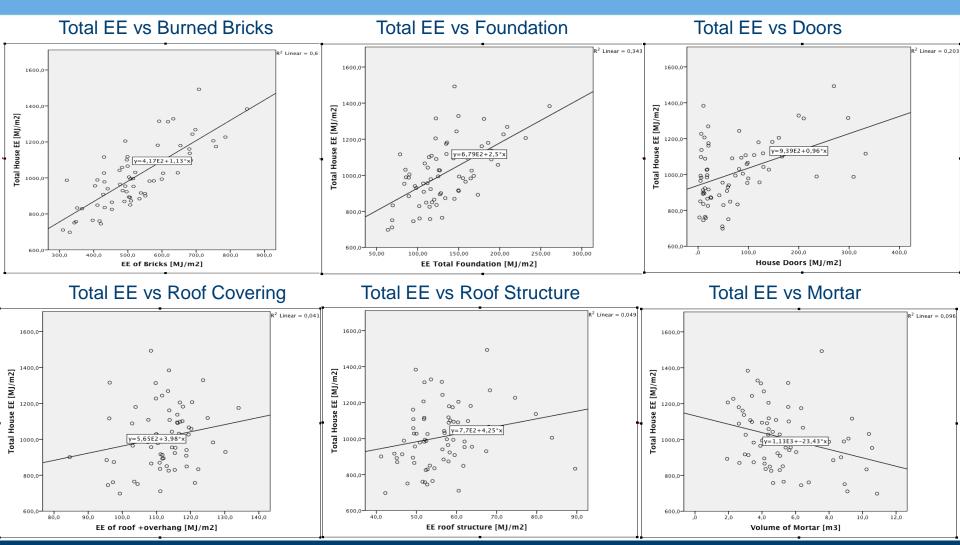
Tests	of	Nor	mal	lity
-------	----	-----	-----	------


	Kolmogorov–Smirnov ^a			Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
Total House EE [MJ/m2]	,074	70	,200*	,982	70	,396	

*. This is a lower bound of the true significance.


a. Lilliefors Significance Correction

Results: Burned Bricks Statistics



	House 412	House 310b
Floor Area [m ²]	149	41,8

Results: Burned Bricks Statistics

Results: Evaluating ISSB instead Burned Bricks

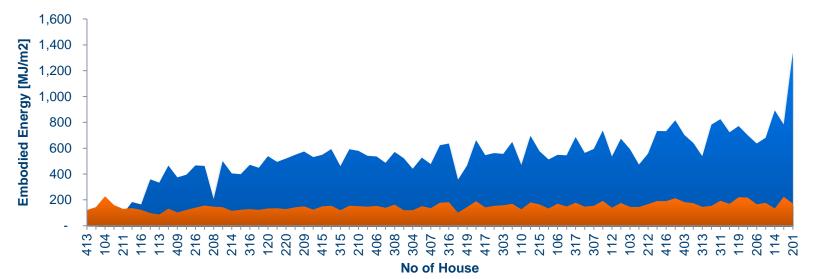
Interlocking Stabilised Soil Blocks (ISSB)

Characteristics	ISSB	Burned Bricks
Size [mm]	266x140x95 ¹	221x121x94**
Compression Strength [N/mm ²]	2.5 - 6.7 ²	5.9 – 7**
Price [UGX]	300 ¹	120**
Density [kg/m ³]	1700 ¹	1441**

Source: M. M. Nambatya (2015)

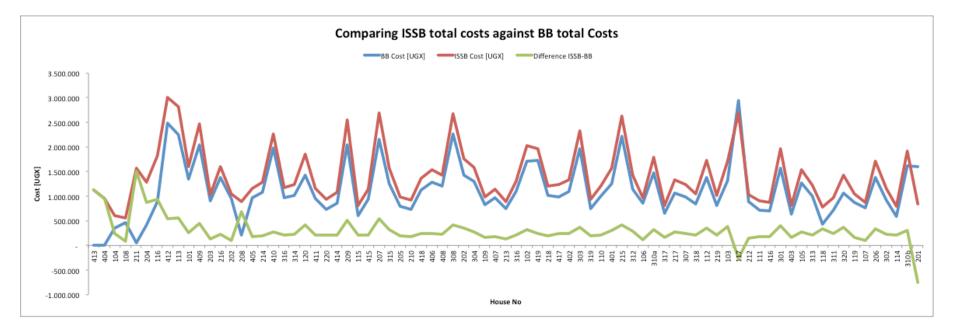
** This research

¹ Perez-Peña (2009)


² Walker (2007) and Odongo (2008)

Results: Evaluating ISSB vs Burned Bricks

Embodied energy savings changing Burned Bricks by ISSB


BB+Mortar [MJ/m2] ISSB + Mortar [MJ/m2]

Results: Evaluating ISSB vs Burned Bricks

• Material costs

Limitations

- No permission to enter to houses:
 - Estimation of roof structure
 - Estimation of interior layout
- Lack of embodied energy factors for African/Ugandan building materials
- Errors on measures taken
- Foundations cannot be seen

Conclusions

- Change burned bricks by ISSB means high energy savings per slightly higher investment. However, by using ISSB plaster, paint and roughcast are not necessary.
- As expected, correlation was found between Burned Bricks and the total embodied energy of houses, but no clear correlation was shown for the other variables.
- Deeper statistic analysis is needed to know the influence of each variable on embodied energy results

Acknowledgements

- Peter Guthrie (University of Cambridge)
- Terence Thomas (University of Warwick)
- Chris Butters (University of Warwick)
- Alex Ndibwami (Uganda Martyrs University)
- Thomas More (Uganda Martyrs University)

- Esteban, W. & Buccellato, A.P.C., 2011. Building tomorrow : A sustainable future starts in the classroom. University of Notre Dame.
- Hammond, G. & Jones, C., 2011. Embodied Carbon: The Inventory of Carbon and Energy (ICE). BSRIA, Bracknell,.
- Hashemi, A., Cruickshank, H. & Cheshmehzangi, A., 2015. Environmental Impacts and Embodied Energy of Construction Methods and Materials in Low-Income Tropical Housing. *Sustainability*, 7(6), pp.7866–7883. Available at: http://www.mdpi.com/2071-1050/7/6/7866/.
- Montgomery, D.E. & Thomas, T.H., 2001. Minimising the cement requirement of stabilised soil block walling. University
 of Warwick.
- Pérez-Peña, A. (2009) Human Settlements in Crisis, Interlocking Stabilised Soil Blocks, Appropriate Earth Technologies in Uganda. United Nations Human Settlements Programme: Nairobi, Kenya
- Praseeda, K.I., Reddy, B.V.V. & Mani, M., 2015. Embodied energy assessment of building materials in India using process and input-output analysis. *Energy and Buildings*, 86, pp.677–686. Available at: http://dx.doi.org/10.1016/j.enbuild.2014.10.042.
- Walker, P. J. (2007) Tests on Compressed Earth Blocks and Fired Clay Brick Specimens from Kenya. University of Bath.

Thank you!!

