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Abstract:

The mathematical analysis of hydraulic ram-pumps began soon after their invention in the late 18th
century. However simple models of adequate accuracy for use by system designers, pump
manufacturers, installers and operators are still not available. This paper describes algebraic models
of varying complexity for use by system and pump designers and by those involved in training
installers and users. It argues that a pump plus drivepipe, rather than pump alone is the natural unit
for modelling and for characterising performance in applications literature. Behaviour is shown to
depend primarily upon three parameters. The first is A, the ratio of peak drive flow (which depends
upon tuning) to the pump’'s maximum flow with its impulse valve locked open. The second is y, the
ratio of peak drive flow to the Joukowski' flow just sufficient to achieve the system delivery head.
The third is R, the ratio of delivery head to drive head. The analysis shows some of the trade-offs
entailed in tuning, indicates the optimum choice of drivepipe and explains certain forms of
malfunction observable in the field. Several ‘rules of thumb' are derived. The paper also indicates
areas where the greater precision of computer simulation over algebraic modelling is desirable.
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1. INTRODUCTION

This paper describes a number of analytic models, of varying degrees of complexity, for representing
hydraulic ram pumps. It examines how such models can be used 10 optimise tuning, explain
anomalous behaviour, aid system design and help in the design of betier pumps.

The hydraulic ram pump, a water-powered water-lifting device, is of some antiquity, having been
developed by Whitchurst, Montgolfier and others during the eighieenth century. Although its heyday
was the late 19th century, there are over twenty manufacturers worldwide still producing machines.
The ram pump performs the same role as a fow-head high-flow turbine driving a high-head low-flow
pump; it 1s however much simpler than a turbine-pump set as it contains only two moving parts, each
a type of valve. The ram pump is mainly used to Lift drinking water from small sireams in locations
where electricity is not avanlable and engine-driven pumps would be costly 1o operate. The ram pump
operates contimuousty but usually ar a low power level (typically 50 to 200 watts), higher-powered
pumping being more easily achieved by other means.

There 13 currently a revival of interest in ram pumps in developing countries and (due 1o changing
tanift structures tollowing privatisaion of water supplies) in some industrialised countries too.
Renewable energy devices in general are experiencing a come-back usually accompanied by design
improvements resulting from new materials or new understanding.  Ram pumps, not withstanding
their simple construction, have also undergone some design changes affecting their cost and
performance.  More important to their wider use have been organisational changes (reducing the
communication difficuluies between manufacturers, installers and potential users).  In developing
countries population growth is causing expansion of rural seiflements located higher than spring lines
and 1ntensification of agriculture through urigation. Both of these increase the demand for water-
powered pumping. The revival ol interest has been reflected in several new publications (SKAT,
Jeffery 1992, Knol 1992) and some transfer of manufacture to §. America and Africa from other
continents.

The modelling of ram pump behaviour also has a considerable history (e.g. Eytelwein 1805, Lorenz
1910, O'Brien & Gosting 1933, Krol 1951, Rennie & Bunt 1981, Glover & Boldy 1990), although
there is littte evidence of such improvements in understanding affecting pump design or installation
practice in the past. Two fairly recent developments have facilitated the devising of berer models -
improvements I instrumentation have made it easier 1o observe the complex movement of shock
waves i actual systems, and the dramatic drop in computation costs have permitted the use of
simulation models using short time steps (e.g. (.1 millisec).

This paper arises from the work of the Development Technology Unit at Warwick University over
nearly ten years on the identification of social and technical constraints to ram pump use, on the
development of low-cost pumps for local manufacture in areas of use and on the transfer of system-
installation skills into ten developing countries. Out of that work the need for, and the limitations of,
modelling have become clearer.

2. REPRESENTING SYSTEM PERFORMANCE

The key components of a ram-pump system are shown in Figure 1. All of these have properties that
affect system performance. There are some complex interactions between these components, so that
little meaning that can be attached to the "performance” of the pump in isolation. When analysing the
operation of & more conventional motorised pump it is possible to characterise the pump and the rest
of the hydrauhic circuit separately and 1o then combine these characterisations.  The behaviour of a
ram-pump is so strongly influenced by the nature of its drive pipe that this sort of analytic separation
of system parts is not heipful.
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Fig. 1 Components of a ram-pump system

The components of the svstem have the following gencral characteristics that influence overall
performance.

Feed pipe .. this has & fiead loss (dependent upon its length, diameter, roughness and the mean flow
(2,3 which can be readily calculated independently of other sysiem components.

Drive tank .. this is usually of sufficiently large surface area that it has negligible effect on system
output and once sized can be left out of any turther analysis.

Drive pipe ... this has a drop (/1) that enters into even the crudest of performance equations, a slope
(S) that primarily determines the water acceleration during the acceleration phase of pumping, an
overall friction factor (relaung tocuon head loss to instantancous water flowrate) and an area (A) that
relates velocity o flowrale.

Pump ... this has a tuning control that determines the drivetlow @ at the onset of impulse valve
closure, an impulse valve whose inertia and uid drag determines speed of closure once initiated and
whose aperture when open determines friction and kinetic energy losses during the acceleration phase,
a delivery valve whose friction when open and whose inertia when opening and closing help determine
pumping efficiency and finally a flow-smoothing device (e.g. pressure vessel) which if adequately
sized has little effect on system performance.

Delivery ...... this comprises a defivery pipe carrving a steady flow (¢) whose friction head loss is
readily and separarely calculable using standard formulae, and a storage tank which once sized (e.g.
for 12 hours storage) has little effcet on mean system performance. The defivery height (hy of course
determines the outlet pressure at the pump.

When we come 1o characterise the performance of a system having a given site, pump, drive pipe etc.
we normilly treat the following as output {(dependent) variables:
(1) delivery flow ¢
(1) mean drivellow (. taken as an average over many cycles
2



(i1} beatrate/(cadence) b, pump cycles per second

(iv)  efficiency 1, of the pump alone {not an easily defined entity), of the pump plus drive pipe or
of the whole system. Efficiency is treated as a known constant (independent variable) in crude
models and as a dependent variable in more elaborate models.

The normally determinable independent variables are

(i) delivery head /i, or a higher head A that includes friction head loss in the delivery pipe

(i) drive head H, usually measured from the drive 1ank and hence already allowing for feedpipe
tfriction head loss

{1i1)  drive pipe effective slope S, defined as drive head H divided by drive pipe length L (S has a
somewhat more direct influence on performance than L)

{iv)  pump setung Q ., the tlow at which the impulse valve has been tuned to commence closing;
this In combination with other variables determines the peak dnveflow 0, occurring during
each cycle (a key variable in most analytic models)

(v) drive pipe arca A

{vi)  drive pipe type, and hence firsdy its friction coefficient and secondly iis wall stiffness that
determines the velocity of sound in the water within it

(vil)  pump type, and hence its internal frictions. exhaust velocity for a given drivefiow and impulse
valve-closure speed.

We have thus a plethora of independent variables whose number is tolerable for entry 0 a
computerised model but is intolerably high it we intend 1o prepare graphs or tables to be used by a
system designer 1n the field. (Indeed tor a designer even the heads H and A are iterative variables
since system design includes selecting between alternative water sources and pumphouse sites).

The list of variables above does not include feed pipe or delivery pipe characteristics and for the rest
of the paper these will be assumed 1o be reflecied in the values used for drive head H and effective
delivery head /. In practice these pipes will be sized, taking into account their probably large
contribution 1o system cost, to give hydraulic “ctficiencies’ of around 959 or even 90% for each: thus
H might only be 90% of the drop from source to pumphouse and &' = #/0.90. [n all our models we
will be representing only that part of the system between the entry to the drive pipe and the entry to
the delivery pipe.

Of the seven independent variables listed earlier, we might combine the last three for purposes of
display output characteristics, producing graphs or tables for a particular combination of pump and
drive pipe type {e.g. pump XYZ when used with 2 110 mm OD, 10 bar, PVC drive pipe). This leaves
for independent vartables, two more than can be handled by a single readily readable graph or table.
[t 15 useful therefore to wdentify the degree of influence of these input variables upon the main output
vartables. Table T shows such an influence chart. The entries in the chart are based on experienced
estimates of (the modulus of) sensitivity |£]

|0y / 0x]

where |E | =
¥x
yix
with y being regarded as the dependent variable. To emphasise the sensitivities, delivery head #' and
head ratio R = A'/H are used rather than /' and H.

Sensitivities ’ny of each output variable o cach input vanable (acting alone) are allocated into four

categories:
H = high sensitivity |E1> 0.8 over most of both variables’ ranges
M = medium sensitivity 0.3 < |E]<0.8 " " - "
L = low sensitivity 0.1< |E]<0.3 . ; .
VL = very fow sensitivity |El < ().] " . " "



Table 1:

Of these output variables, beatrate & is of no fundamental importance but may be used as a tuning
Mean dniveflow J, may be constrained by the available source flow Q. and
hence should be known. Delivery flow is of primary interest to the system designer and knowledge of

mdicator by operators.

Influence of Independent Variables on Performance
Output Variable (y)
Delivery flow Driveflow Beatrate Efficiency

q Q, b 7
Input variable (x)
Pump setting @, H H H M
Head ratio R H VL L L
Delivery head #' M L VL M
Drivepipe slope S VL L H VL

efficiency is useful when choosing between models of pumps.

inputs .. and R and the outputs g and Q..
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Of the independent variables, pump
setting ¢ and head ratio R are the main determinants of behaviour, with delivery head 4' having a
strong influence near the top of its range. Figure 2 illustrates the form of the relationship between

Characteristic for pump type M8 with 50 mm drive pipe when tuning (Q_,) is varied

(delivery head of &’ = 80m, drive pipe slope 8§ = 0.4, drive head H = 2,4 or 8 m)




3. MODELS
3.1 Algebraic and Simulation Models Compared

Algebraic models, invariable entailing the use of approximations to keep them manageable, are suited
to application by ‘hand’ or by small computer to & range of activities - education, system design, pump
selection and pump design. Becuuse it is difficult to solve some of the equations, such models are
often employed iteratively to indicate the performance, for example of & guessed-at system design,
and how it might be improved by i change in parameters.

Users of ram-pumps are not, generally specialist engineers. Some installers have little education and
cannot understand any algebraic notation. A major use of models therefore is to prepare design
information even at the level of "rules of thumb™ In fact three levels of model complexity can
usefully be distinguished. Simple models are those operable by (some) water technicians. Standard
models are usable by machine or system design engineers, by manufacturers to prepare charts and
tables and for training demonstrations. Research models are primarily tor pump designers. The Third
World bias i ram-pump usage makes it parncularly difticult to communicate and support models in
the form of computer sofiware.

Time-step {or-event-step) simulation models, usually based on the method of characteristics to
represent transient flows in the drive pipe, have been developed for ram pumps (Glover). They are
powerful but so costly of computing power that they are primarily useful for aiding pump design or
explaining system phenomena rather than cudeulating routine performance graphs.  Like all numerical
techniques, these simulations deal with the particular - the influence of a particular variable can only
be explored by repeated simulation runs’ in which difterent values of that variable are used. With
small computers, even with 486 processors, time-step simulations of ram-pump systems run at only a
small fraction (e.g. 1% of real ume,

This paper restricts iself 1o simple” and ‘standard” algebraic models and their use.
32  Simple Models
The simplest model of a ram-pump employs the concepl of power balance and efficiency to give:
outpul power = mpul power X efficiency
pgg i =pg, Hxn
g=MQJ/R where head-ratio R = h'/H 1]

The efficiency 1 so detined varies widely with operating conditions, falling o zero if @, is too small
or R is too large. Manutacturers tables are however usually based on an assumed constant efficiency
and users are often advised of constraints outside which they should not stray, Equation [1] probably
represents the highest level of mathematical complexity one can expect any field worker or water
technician to handle,

A model that can be employed In the teaching of field staft is the Tumped-system’ one whereby the
pump cycle is broken into two phases. During an acceleration phase the water in the drive pipe
accelerates under the drive head //, that is at rate @ = gH/l. = gS. During the deceleration phase the
water decelerates under a reverse head of it = H giving « = g (H — I/L = gS(1 — R). This model
neglects friction or the kinetic energy in the exhaust water: it also treats the water in the drive pipe as
incompressible and hence fails to predict the negative pressures during end-of-cycle rebound that are



important for pump operation. However this lumped-system model has several simple virtues that are
not seriously affected by the rather drastuc approximations inherent in it

The velocity profile that the model generates is shown in Figure 3 superimposed upon a more realistic
one.

A velocity {v) in drivepipe at pump entry

ta Yt
A AT TTT
[ i
7 !_l | [
7 I Il !
i ; [ |
74 ! Loy I
} Loy ;
} L 4
! ! [
tg i 1d } e’ time
R >
c 1”7 ¢

Fig. 3 Velocity profile predicted by frictionless lnmped-system model
{Actual profile shown dashed)

The approximations result In predictions of acceleration phase time , a little shorter than reahity ¢,
a delivery phase of about the right duration (r, =¢,) and no rebound time (r, =0). However in
normal operation the drivepipe friction causing £, to exceed ¢, will be fairly small and the rebound
phasc may be short. Within about 10% accuracy this model correctly indicates the following.

(i) The cycle time 15 dominated by the acceleration phase.
(1) For high head ratios (R > 10so1 =1 ),

peak velocity v, = g S 7. (7. 1s cycle ime) P2}
mean drive flowrate @, =05 A ¥,

(i) The shape of the driveflow-versus-time plot, Fig. 4 will be roughly a sawtooth (since @ = A v)
for which the friction correction factor s

average head loss with sawtooth flow pattern

CI-

=2 3]

head loss at same (0, but flowing steadily
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Adrive flowrate

Area equals drivetiow
volume per cycle

@ Area equals delivery flow

volume per cycle

» time

Fig. 4 Flowrate versus time predicted by frictionless lumped-system model

Thus drive pipe and exhaust kinetic energy losses can be first calculated assuming @, flows constantly
and then doubled to allow for the waveform. Derived from this and the assumption that neither pipe
friction loss nor waterflow kinetic energy should exceed, say, 10% of input energy gives two rules-of-
thumb:

ROT.1 "Drive pipe size should be such that its headloss when carrying steady flow Q, does not exceed
5% of H".

ROT 2 “The maximum height to which exhaust water sprays above the impulse valve (just before the
latter closes) should not exceed 20% of H” (Height assumed proportional to KE, maximum
flow rate Q, assumed 1o be twice ().

For any specific tuning, the pump manufacturer could describe the pump's friction and kinetic losses
by specifying an equivalent length of (standard diameter) drive pipe L .. Drivepipe plus pump can be
replaced by a simple but longer drivepipe {(length L + L), enabling a designer with access to pipe
friction tables to apply:

ROT.3 "The headloss through drivepipe and pump together when carrying steady flow O, should not
exceed 10% of H”.

3.3 Acceleration Phase Models

The acceleration phase model above neglects various important effects, most noticeably factors which
retard the gravitational acceleration. More accurate models were developed long ago but are not
usually of a form convenient for a system designer.

The acceleration phase can be deemed to start when the water in the drive pipe starts to move
downwards again (following its upwards recoil movement at the end of the previous cycle). Although
shock waves may still be travelling up and down the water in the drive pipe, their amplitude should be
small enough that the whole water column can be treated as having a single, initially zero, velocity.



It can readily be shown that the instantaneous acceleration of the drive pipe water satisfies

ﬁ:gsu—faﬂ 4]
dt

So that acceleration terminates when
1

v=v, =k ? (5]

The retardation factor & reflects the headloss at drive pipe entry, plus that due to drive pipe friction,
that caused by friction within the pump and the velocity head 'thrown away' in the waste water. The

head loss due to ali these factors can be expressed as a multiple of the velocity head in the pipe
2

H_ =Cx— ({whereC=2gH xk) [6]
2g
and C=C +C,+C, +C, (7]

where C, is pipe inlet loss coefficient, typically 0.2 10 (1.5
C, 1s pipe friction coefficient fL/D and fis typically 0.02
C, 15 pump loss coefficient, typically 1.5 but may be much higher
C, = AYA! where A is the pipe's cross-sectional area and A, is the effective area of the
discharge aperture of the impulse valve.

The first of these coefficients is usually negligible compared to the others, especially if the drive pipe
inlet has a bell mouth. For practical purposes:
k=k,+k, [8]

where k, (representing the drive pipe} equals C,/2gH and &, (representing the pump) equals
(G5 + Coi2gH.

For the pump designer the minimisation of &, is an objective, especially by maximising A, to keep C,
small and having large intemal channels to keep C, small. &, varies with pump tuning. For the system
designer maximum economy comes from matching drive pipe to pump so that k, is neither much
greater than &, nor much less. This fixing a pump (with impulse valve jammed open) onto a
previously open-ended drive pipe should not reduce the flow through it by a factor more than 1.7
(implying k£, < 2 k,) or less than 1.22 (implying £, > k/2}. A rule-of-thumb that arises out of this
analysts is:

ROT 4 "The area of the impulse valve's exhaust aperture should nor be much smaller than the drive
pipe’s cross-sectional area”,

Returning to equations {4] and {5}, solving and relating all velocities to the maximum velocity

attainable, gives
ad
. ) e -1
normalised velocity, A = v/v_ = — [9]
e + 1

where normalised time, t=1/¢ (and where A = kp t=t, =t /1)

and reference time, ¢, = v, /gS (time to reach the velocity v, were there no retarding influences)



The relationship 1s plotted in Figure 5 where the normalisation is also illustrated.

velocitx

0.6 1
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0
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Fig. 5 Variation of water velocity during the acceleration phase
(A = v/v_and 1= /T, are normalised values)

This model is helpful discussing pump tuning. Tuning indirectly determines the peak velocity v, at
which acceleration terminates. As the purpose of the acceleration phase is to convert potential energy
(height) into Kinetic energy, we are interested in efficiency and power (rate of forming KE). Both of
these are functions of v,.

Figure 6 shows the efficiency and the normalised power of the acceleration phase as a whole, as
functions of the normalised peak velocity at impulse valve closure (KP =v /v, =0/0.). The relevant
algebraic expressions are:

n, = =& /n(i-2)

H Al
P = pAL. £2 . x 22 [10]
pa T.
T+ A
1, =1,1,=%/n l” v, /gS
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Fig. 6 Efficiency and power of the acceleration phase
{vp is velocity at the end of the phase)

During the acceleration period the average velocity is about half the peak (final) velocity. The
average and peak flows are similarly related. The acceleration time is close to v /g S being actually:

Y In{(1+X,)/(1-2,)}
© g8 2%

P

and the average velocity during acceleration is given by:

ve G, -ln(-2%)
v, @, A, In{(1+X,)/(1-4,}

Which tabulates as Table 2

Table 2 Mean leration flowr n leration tim

3 0 0.1 62 03 04 05 06 07 08 09 Q0

L+ gSh, .00 1.00 101 103 106 LI0 116 124 137 1.64 ()

=]

L0, 1000 100 101 102 103 105 107 111 LI16 125 ()

T, 1.00 099 098 095 092 087 081 072 062 049 (0
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From Figure 6 it is obvious there is no purpose in setting A higher than (.8 (i.e. peak drivepipe flow
equal to 80% of its maximum possible value). Maximum acceleration power occurs at A = 0.8 but the
efficiency is then low, 1 = 63%. A much lower flow setting is usually preferable, for example A =
0.47 will give 75% of maximum power but raise acceleration efficiency 1o n = 90%. Although there
are other factors to be discussed in the next section, Figure 6 illustrates the main trade-off between
throughput and efficiency involved in tuning. It can also be used in reverse, in the sense that a
designer could work back from a desired mean drive flow Q, and desired acceleration efficiency to
estimate the necessary limiting flow (O, = A4 v_}). From that the value of k in equations [4] to [8] is
implied for which a suitable pipe and pump can be selected.

Refinements to this model are possible but do not greatly affect Figure 6. For example the previous
recoil phase may have left the lower part of the drive pipe empty at the instant that forward motion of
water recommences. This will have the effect of reducing the coefficients in equation [7] (e.g. C, =0,
C, = 1) until the water-air interface has passed back through the pump again. With normal recoils this
lessening of friction at low velocities has negligible effect.

Representing, in fine detail, the flow behaviour during the last milliseconds of impulse valve closure
is beyond the practical scope of algebraic models and is an area where simulation models give better
insight. There is little evidence that the assumption of instantaneous valve closure will seriousty
falsify conclusions drawn from the acceleration model described above.

The acceleration phase model developed above does not readily yield a rule of thumb for pump tuning
other than

ROT.5 "Pumps tuned to have very long cycle times (e.g. 1 over 3 seconds) will be very inefficient”.

This rule is illustrated by Fig. 7: 7, is typically 0.5 10 1.5 seconds and ¢, is typically 90% of measured
cycle time 1.

A Mg
1.0 4
0 ' + »ta
0 i 2

Fig. 7 Variation of acceleration efficiency with normalised acceleration time

1



34  Delivery Phase Model

During the acceleration phase the water in the drive pipe is building up its kinetic energy. It is
accelerating because the impulse valve at the bottom of the pipe is open to atmosphere. During the
delivery phase this impulse valve is closed and the flow is diverted through the delivery valve which it
has forced open against a back head of #' (delivery head plus delivery-pipe headloss). The large net
retarding force on the column of water in the drive pipe {A x pg{h'—H)) causes it to decelerate rapidly.
The detailed mechanism of this retardation is more complex than that assumed in Fig. 5 and comprises
a sequence of shock waves travelling up and down the pipe. The overall effect of the delivery phase
1s to consume the kinetic energy formed during the preceding acceleration phase, using it 1o pump
water. At the end of the delivery phase there is a small residue of kinetic energy that has not been
used: this drives a water-recoil process namely the ‘recoil phase’.

The transition between acceleration and delivery phases is very complex and must be idealised if
algebraic models of tolerable complexity are to result. The sequence is as follows. Once the drive
flow O has exceeded the set threshold @, the impulse valve starts to close {conveniently visualised as
a piston moving towards a hole smaller than itself). The flow continues increasing, beyond Q. , while
the piston of the valve accelerates. As the piston gathers significant speed the fraction of the flow
pressing round the piston decreases while the fraction following the piston increases (the latter is equal
10 piston area times piston velocity). The velocity of the former however increases, since the annulus
through which it has to pass is rapidly getting thinner, causing the back pressure behind the piston to
rise. The acceleration of the drivepipe water therefore diminishes and finally goes negative. By this
time the piston is close to striking its stop and the first (anpulus passing) fraction has a very high
velocity manifest as a visible spurt of water above the valve. In the last millisecond of valve closure
the exhaust flow falls to zero, the piston hits its stop and the pressure in the pump body rises
precipitately to the Joukowski (or water-hammer) head #;. Provided this is higher than the delivery
head #', the delivery valve will be pushed open and the head will then fall back to /' + i where A, is
the friction headloss through the delivery valve. The Joukowski head is thus maintained for a very
short ume whose duration depends on the velocity of sound, the distance from the impuise valve to
the air-water interface above the delivery valve and the inertia of the delivery valve.

This sequence is portrayed in Figure 8 which represents approximately ten milliseconds of the change
over between acceleration and delivery phases. The idealised model in Figure 8(b) is suitable for
performance predictions but not for estimating the fatigue life of components. The boundary between
acceleration and delivery phases has been taken as the instant the pump body pressure head has risen
to the drive head /. Modemn instrumentation provides ready confirmation of the "actual' pressure
transient but not of the flow transient: velocity sampling every (0.1 milliseconds is too expensive.

In Figure 8(b) the net effect of energy losses (e.g. lost piston KE) during the last instants of valve
closure are replaced by a step reduction @ in the drive pipe flow. The further drop Q, comresponds
to Joukowski velocity drop in a shock wave whose pressure differential is pg x (4" — H)

0,=4v, and v,=& (- (11}
.

where ¢ 1s the effective velocity of sound in the drive pipe and A" = &' + average delivery valve head
loss. The quantities ¢ and 4" will be discussed later. In our idealised model, which draws upon the
work of O'Brien 1933 and Rennie 1980, the delivery phase starts with flow out of the drive pipe (i.e.
into the pump body) dropping suddenly from Q," 10 Q,"~ §; and the head rising suddenly from H to
A". This initiates a shock wave that travels up the drive pipe, at speed c¢ to arrive at the drive tank after
transit time

T=Lic [12]
12



The pressure distribution along the drive pipe is further assumed to have been the static distribution
corresponding to steady conditions of no flow, 1.e. head equal's zero at the drive tank surface and H at
the pump entry. Effectively we are neglecting the effect of drive pipe friction during the delivery
phase.

Drivepipe tlow

Yo I Ao

) i
Nk l 1= *QCL
. ) i B
i 1
t i Q
' ;
) ]
P M '
flow thrd  ; flow thro ,
impulse T V*delivery i
valve : A valve ) | .
7\ time I time
Y - /! . .
ta
I
h i
)
3 |
}
!
hn i
hl
H time
0 .
0 ta
(a) probable actual behaviour _'('b} idealised behaviour

Fig. 8 Transition from acceleration phase to delivery phase
{over a few milliseconds around time £,)

In the acceleration-phase model of section 3.2, behaviour depended on the peak drivepipe water
velocity normalised with respect to its maximum possible value; lp =v /v, =0QJ0. . Inthe delivery-

phase model behaviour depends on the velocity (and flow) normalised with respect to the Joukowski
velocity defined in equation [ 11]. We therefore need to define another normalised flow

w=g/Q, and its initial value i, =Q/Q,

Consider now the flow and pressure at a point in the drive pipe very close to the pump. Its form will
be as in Figure 9.

In Figure 9 the shaded area is proportional to the water pumped per cycle. The dashed curve (A) is
the behaviour we should expect if the delivery valve were to remain open; however to avoid reverse
flow it is designed to close almost instantly. The dashed curve (B) is the projected behaviour

13



following delivery valve closure. However the negative pressures so generated will usually take the
absolute pressure below atmospheric, causing air to be drawn through the (high friction) snifter valve
and shortly afterwards through the (low friction) impulse valve when it has reopened a little.

Consequently trajectory (C) will be followed.

Figure 9(a) was drawn for g, = 3.3 whose integer part is odd. Figure 9(b) shows the different
behaviour when the integer part of L, is even.

0 () ‘ ' ) A
4
u;—ll//'7 p=4-ujH/Ah
(Uc=uj-4+HIAh) ~ =-~A)

Normatised flow

(B)

¢£—>iime

—» time

AHecd in pump A Head in pump
hﬁ . r- . (A) hll \
1
1
'
Ah X H+{u;-4)Ah
/
Hoer }L <y
0 p——t——t time O — time
T 2T 3T A T 2T 3T 4T STV .
’ AR 47, \ 6T (B)
| Heleath— o - Heluislth—
Fig. 9 Pressure and normalised flow at pump entrance
(A) delivery valve remains open (B} delivery valve closes but impulse
(Cy actual: delivery closes and valve does not reopen

impulse reopens
Shaded area indicates normalised volume delivered per cycle

The discussions so far have emphasised the complexity of the delivery phase and the many
approximations necessary to achieve a manageable algebraic model. The model developed - one of
several possible - does however allow us to answer the following questions:

- how long 1, will the delivery phase last?
- what fraction of the Kinetic energy developed during the acceleration phase is used in

14



pumping (and what remaining fraction is therefore passed on to the recoil phase)?
- what therefore are the bounds within which p, should be tuned to lie?
- what efficiency has the delivery phase?

From the graphs we can see that the duration of the delivery phase is an integer number of
reflections’, where each reflection lasting 27 is the passage of a shock wave up the delivery pipe and
back. By inspection

t,=2T (1+Int{p, )) where Int( ) denotes ‘integer part of and u, > 1 [14]

A fraction f4e1 Of kenetic energy used for pumping

{a) Fraction of available kinetic energy used during delivery phase and recoil time ¢,
(z;is acceleration time if no friction)

Initial Rebound
{ Pressure)Head

H -
Hro |
0

2H-h ;

{b) Head in pump body at start of recoil phase
(h,, = head below which the impulse valve reopens)
Fig. 10 Effect of peak flowrate on energy utilisation and rebound

(; = Qp/Qy is normalised peak ﬂowrate, where @ is the Joukowski flow rate
corresponding to effective delivery head n'« His drive head)
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It can be shown that the fraction of kinetic energy, £, . applied to pumping is the shaded area (the 1 -
time integral) of Fig. 9 divided by (0.5 u, T). (For various reasons it is correct with this model to
exclude potential energy released by the water flowing down the drive pipe during the delivery phase).

The graph 1s of interest for several reasons. A low fraction (e.g. f,,, < 0.9) indicates a reduced
throughput and a reduced efficiency. The throughput is lowered not only because some of the kinetic
energy 1s not used but also because the unused part contributes to a long rebound time {discussed
later) which lengthens the cycle of operation and hence reduces the effective power. The efficiency is
lowered because any losses while accelerating the water cannot be recovered even though the rebound
water returns to the drive tank. The delivered fraction £, is generally acceptable for y, > 1.5 but falls
sharply as u, drops below 1.5.

From{11]and [13] 4y, = L [15]

Ag{h"-H)

Low values of i, arise when delivering to very high heads (k" large), setting the pump flow too low
(@, low), or using too large a drive pipe (A large) in combination with a low velocity of sound (c is
low in plastic feed pipes). Clearly , should not fall below 1 {no output) and it would be unwise to
drop below [, = 1.5 (at which use-fraction is only f, , = (1.89).

Lastly there is the matter of delivery phase inefficiency. This has been represented by an additional
friction head during delivery, increasing effective delivery height 4" to A",

We can therefore define
delivery valve efficiency n, = #A/k" [16]

where delivery valve headloss is

C, =

h'=h = q4 [17a]

- 2g Ai

The delivery valve water-flow area A, can be measured. The loss coefficient C,, will lie between 0.8
and 1.2. The mean square value of g, is not easy to estimate. The instantaneous delivery flow g,, has

the staircase waveform shown in Figure 9, and therefore magnitude Q; X/, The flow-weighted

mean-value of {(U/iL)? rises from zero (at ), = 1) to 0.45 (at u, = 3) and then stays approximately
constant for |, > 3. In practice friction losses in the delivery valve are significant only at relatively

low delivery heads and hence at large values of p. For this condition and via a series of
approximations we can come to

0.4 02 2
h'—h = 2 = de which is accurate within £ 30% [17b]
2gA, 124,

A pump designer can use equations {16}, {17b] in combination with the maximum value of Q, and
mintmum value of /' to decide whether the valve area A, is sufficient.
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35 Recoil-phase Model

Water velocities during recoil are small so do not result in significant friction losses. Qur interest in
the recoil phase therefore centres on (i) whether the recoil suction is sufficient to reopen the impulse
valve, and (11} how long the recoil phase lasts.

From inspection of Figure 9 it can be seen that the initial rebound pressure satisfies Figure 11.
However there exists a head H,, above which the impulse valve will not reopen and the pumping cycle
will not continue. In Figure 11 the zones of width 20 indicate values of i, for which the rebound is
inadequate. In an operational pump with a weighted impulse valve H_ is never greater than the drive
head H, and is usually much less. As a first approximation we can take H _ as zero in which case:

d=H/(h"-Hy=1/(R-1) [18]

As § = 1 represents the valve not reopening at any value of U, (any flow setting), R should never drop
below 2 and 1t would be risky to use values of R below say 5 (25% chance of impulse valve failing to
reopen). In practice the approximation behind [18] is a drastic one; however the observed phenomena
of pumps being difficult to run at low head ratios and very high drive heads is confirmed. A pump
with a sprung rather than weighted impulse valve will have a much higher value for H_, usually

higher than H in fact. Such pumps are therefore much less liable to failure of the impulse valve to
TEOpEN.

The simplest moedel of the rebound process is an energy one. An acceleration phase of duration ¢,
results in the drive pipe water having a certain kinetic energy. At the end of the delivery phase a
fraction approximately (1 — £, ) of this energy remains which should cause a rebound of duration

L =1, X‘\j]_fdcl {19]

This data is also plotted in Figure 10.

This analysis assumes constant acceleration/deceleration for a given pipe slope: it thus neglects
friction effects which if included would reduce 1/, by typically several percent. It also assumes
instantaneous reopening of the impulse valve, whereas in practice this is so delayed by inertia that
some of the rebound energy is expended in sucking air through the tiny snifter valve hole. More
fundamentally, the model assumes that during rebound the water column recedes, unbroken, back up
the drive pipe. In reality water and air mix and their interface is geometrically very complex.
Equation [19] may be taken to give a crude estimate of the rebound time 7. It shows that under many
operating conditions ¢, is not negligible and is especially large when [t is close to 1 (i.e. when the
necessary delivery head can only just be achieved).

3.6  Combining Acceleration, Delivery and Recoil Models

In the previous sections three models have been discussed. For the acceleration phase a lumped-
system model has been used, for the delivery phase a distributed-system model {with reverberating
shock waves), and for the rebound phase again a lumped system model. In practice shock waves
continue to roam the drive pipe water column during rebound and die away during the subsequent
acceleration phase. An algebraic model to represent these would be intolerably complex and add little
to accuracy. The transition from phase to phase is complex and could only be fully modelled if the
dynamics (drag, mass etc.) of valves were included. The transition from acceleration to delivery and
from delivery to recoil entail irreversibilities that cause loss of work energy. The first is represented
by the drop O in delivery flowrate shown in Figure 8, which reduces both efficiency and throughput.
The second energy loss, at the start of the rebound phase, arises from any backflow through the
17



delivery valve, any air or water friction in the snifter, or cavitation. It affects efficiency unfavourable
but throughput favourably (since rebound time will be reduced).

During acceleration and rebound the impulse valve is open to atmosphere, and pressures at the bottom
of the drive pipe have been related to atmospheric. During delivery, however, the impulse valve is
closed and the model used has related pressures (heads) to a datum at the surface of the drive tank
height A higher. The change in datum has hidden certain minor energy transactions (kinetic energy to
strain energy). The acceleration, delivery and rebound models ¢an be combines as follows:

cycle time [=1,+ 0+, [20]

where the constituent times are defined by equations [9] , [ 14]) and [19] and Table 2.

efficiency N=N,=MN, - Ny - Nu in the absence of recoil
ne— Mot if recoil is significant 21
1 - 71(1 - fdd )

where 1, and n,, are defined by equations |10] and [17], f,, by Fig. 10 and the acceleration-to-
delivery handover efficiency n,, is typically 0.97.

delivered power P=P, .M, Nu foa- Lt [22]
where acceleration power P_ is given by equation [10].

O _ fu+ 1R

2 1+1/R+ -1,

obtained by dividing drive volume per cycle (allowing for recoil flow) by cycle time {including recoil
time).

drive flow Q,= (23]

Putting the three phases together gives Figure 11.

From this graph it can be seen than mean drive flow @, is usually cousiderably less than the flow @
at which closure commences. ({_/Q, is typically between 1.5 and 2.0). This yields the rule of thumb

Rot 6. "If the source flow falls temporarily below the pump's mean drive flow Q, the pump will stop,
usually with its impulse vailve open. To restart the pump without human intervention the

source flow must increase to a level 1Y to 2 times Q"

This rule mmplies that after a drive flow interruption pumps usually fail to restart without human
intervention. This is a serious inconvenience in practice.
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4. THE APPLICATION OF ALGEBRAIC MODELS

In the introduction to this paper reference was made to the need to explain behaviour, prepare
performance graphs/tables and develop rules for system design, pump tuning and pump design. Six
such 'rules’ were developed in the course of model building (section 3 above). Many more might be
devised. The purpose of this conciuding section is to illustrate the use of algebraic models via some
examples.

‘Q Instantaneous drive flow
Qp

OCC

Qq

valve
closing

Fig. 11 Driveflow over a complete cycle for high and low driveheads
(QP is peak driveflow, Q.. is driveflow to start valve closure, Q4 is mean driveflow)

4.1  Explaining Phenomena and Improving Pump Design

Ram-pumps, for all their mechanical simplicity, display complex and sometimes ‘temperamental
behaviour. Reasons for the latter include operation too close to some limit, and blockages and
leakages in pipes. Two major causes of erratic operation are the presence of excess air in the drive
system (often due to excessive recoil at the end of the delivery phase) and the failure of the impulse
valve to reopen (insufficient recoil). Algebraic models help us understand both phenomena.

The recoil can be expressed as an energy fraction (1 — £, where £, is illustrated in Fig. 10(a)), a time
fraction (Fig. 13) or a distance:

Ik
rebound distance L =(1-f,) —> (24]
2¢ S

where £, is determined by the ratio g, of Joukowski head to delivery head. The term v: /288 is

rarely greater than 100 ¢m, and 1 - £, is less than .11 for all y, greater than 1.5 (see Fig. 10a). SoZ,
rarely exceeds 10 cm.

Excessive recoil is that which draws so much air back into the drive pipe that it is not swept out
during the ensuing acceleration phase. Whether this occurs depends on L, and the pump design. It is
least likely to do so if the pump discharges under water or rises more than 10 cm from its drive pipe
entry to its delivery valve. Conversely, air entrainment is most likely when the delivery head is near
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the maximum possible for the drive flow chosen (U, < 1.5), or when a high-flow pump has a low-set
impulse valve.

Failure to reopen due to lack of recoil occurs when the pump is most efficient: f,, =1.0aty, =2 or4
or 6 etc.. This is illustrated in Fig. 10(b), where a zone of width Ay = 28 is shown around each even
value of |, Within this zone the pump may fail to reopen. Equation {18] indicates a relationship
between & and the head-ratio R, suggesting serious probability of failure to reopen at low head-ratios.
However any such failure is inconvenient. During start-up, when a pump generally fills up a delivery
pipe from the bottom, the Joukowski ratio y, falls with each pump stroke. Such start-up requires the
continuous attention of an operator if the pump may stop whenever y. is close to an even number.
Even worse the final full delivery head may correspond to |, = 2 so that reliable operation is

impossible until the pump is slightly retuned to change @, and (via the Joukowski head 4) u.
Equation [18] is a special case of the more general relation:

width of failure zone 26 = 2(H — H_)/(h' — H) (24}

So ideally we should like the head against which the impulse valve will just reopen (H ) to exceed the
drive head H. The advantages and costs of raising H_ may be observed from the following graph of
impulse valve closure. Note that H A may be re-expressed as a force F, keeping the valve closed (F
=H - pg - valve area) which a spring force or the valve's weight must just equal and oppose.

A Force * Force

large smatl

F acceleration acceleration
£ force force
i 1 Fo> Fro
Fa=F
0~ 'ro - >
time time
A Valve position A Yalve position
closed |- — — — — - —~— = oniiadedidll i L Gt
/ 7
7 P
” P
~”~ -
- - - - -
Open e =" > = -
time time
(a) Weighted valve (b}  Sprung valve

Fig. 12 Forces and position variation during impulse valve closure

(F = closure force due to water drag; F, = opposing force; time is measured from start
of valve closure)
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Thus the use of a sprung impulse valve whose ‘opposing force' rises as the valve closes {Fig 12(b) can
give a much higher figure for F, and hence H  than a merely weighted impulse valve will (Fig.
15(a)). A pump with the former is therefore less likely to stop, provided the valve's much slower
closure doesn't cause other problems.

For the pump designer many issues - and desirable proportions - have been raised in the course of the
analysis. Impulse valve and delivery valve losses should be tolerable at maximum drive flow. The
last stage of impulse valve closure should take less time than that for a shock wave to traverse up and
down the drive pipe. An impulse valve that will reopen against full drive head should reduce the
chance of maverick operation. Certain design details cannot however be decided using the algebraic
models of section 3. In particular the dynamics of the opening and closing of the two main valves
require more specialised models to predict velocities and accelerations, peak stresses, back leakages
and so on. Time step simulations have application to these tasks.

4.2  Calculating Pump Characteristics

It was argued in Section 2 that the pump and its drive pipe should be treated as an inseparable system
for performance characterisation. The many equations of section 3 can be combined to obtain
performance predictions of varying degrees of accuracy. 1t is difficult to avoid iterative calculations
since the equations are numerous and complex. However an approach of adequate accuracy for
practical purposes is as follows:

A peak flow O is selected.

The maximum possible flow Q_ is calculated from #, §, 4’ A, k,and &,

The normalised peak flow A = /0, is obtained and used to predict acceleration efficiency 1,
and mean acceleration flow @a. The Joukowski flow is obtained (Q;) and used to obtain the
Joukowski ratio y, = O /- A modified value Q' may be used if the acceleration-to-delivery
transition efficiency 1, can be estimated. From this ratio |, the energy delivery fraction f,,
can be derived and any possibility of malfunction can be identified (j,= 2, 4, 6 ete. 1, < 1.5).

From (), and delivery valve geometry, the delivery vaive efficiency 1,, is estimated. The
efficiencies and energy fraction are combined using equation {21] to give an overall efficiency
M. The drive flow Q, is obtained to varying levels of accuracy using , or better equation
{23]. Delivery flow g can now be calculated using equation {1].

Using a sequence of values for peak flow 2, a table or graph of delivery flow ¢ versus drive flow Q,
is thus obtained. Other equations can be used to obtain cycle time, although this is rarely tabulated.

4.3  System Design

System design can be undertaken using performance charts or graphs for a range of pump/drive pipe
combinations: the lowest-cost option capable of meeting a specification should be chosen. This
approach requires many such graphs and the ability to interpolate reliably between them.
Alternatively, likely candidate systems can be evaluated using a computer programme 0 generate
delivery flow versus driveflow loci. Unfortumnately neither of these approaches fits the situation
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frequently met with in the field, where computers are remote and water technicians not very numerate.
Rules of thumb also have their place.

Consider the difficult task of choosing drivepipe diameter and slope. The drivepipe pressure rating
needs, incidentally, to be about twice the delivery pressure to limit fatigue failure and the drive pipe

should be able to withstand negative heads down to —H.

Slope S is usually site-constrained: it is difficult to lay a pipe steeper than the valley side. Low slopes
are expensive (the drive pipe 1s long) and inefficient. Very high slopes give a high operating cadence
{and thus high noise and a short pump life), low efficiency through increased frequency with which
valve closure losses occur, and possibility of impulse valve malfunction due to too short a drive pipe.

Too large a drivepipe diameter D result in excessive drivepipe cost and peak velocities too low to
generate the required delivery pressure. Too small a diameter results, for a given drive flow, in
gxcessive acceleration phase losses and low overall efficiency.

It has already been argued that for reliable operation the Joukowski ratio should not fall below 1.5.
This can be expressed as a upper limit on pipe size. Noting thatat ;= 1.5, @ =3¢, and

A =0.67 ¢ 0 /g (h-H), we need 1o know the effective wave speed ¢ to derive any specific rules. For
steel pipes we should use ¢ = 1400 m/s and for PVC pipes (of wall thickness one-tenth of their
diameter) ¢ = 400 my/s. These lead to the rough rule of thumb.

ROT.7 "For steel pipes, drive pipe diamerer in mm should not exceed
600 \/drive flow in litres [ sec + delivery head in meters ;
for PVC pipes replace 600 by 300"

A lower limit for pipe diameter in combination with pipe slope can be obtained by ensuring g/0.
does not exceed 0.8, yielding @_/0, > 2.5. However {_ is the maximum flow obtained when drive

pipe and pump together are left to run with an open impulse valve. The flow through an open-ended
drive pipe alone, laid down the stope, would be higher. By a series of assumptions one can arrive at a
rule:

ROT .8 "The drive pipe diameter and siope must be sufficient thar its flow open-ended, the pump
having been removed, is at least 3.5 times the intended drive flow".

4.4  Tuning

The contribution of algebraic models to achieving good pump tuning is not very great. Tuning of
ram-pumps on site is not essential, as a pump set for a mid-range drive flow will operate on most
sites. Indeed with some operators the provision of a means of wning may be unwise: the pump is
then vulnerable to gross maladjustment. Where the pump is tuneable, by variation of the flow Q__ at
which impulse valve closure begins, heuristic methods are often adequate: the operator finds by
experiment the setting that maximises delivery flow within the limits of available source flow, Only
when several pumps are operated in parallel is this trial-and-error approach likely to prove difficult.

An operator usually has little data with which to work. On many sites the pump cycle time is the only
easily measured variable; drive flow and waste flow may be inconvenient to gauge, delivery flow is
measurable but only at the delivery tank sited many minutes ¢limb away from the pump house.
Unfortunately cycle-time is not simply related to the flow variables of interest. Figure 13 shows cycle
time, drive flow and delivery flow as functions of Joukowski ratio u; itself a measure of peak flow
and hence of tuning. The plot is for a representative system and displays considerable complexity.
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No simple tuning rule for finding a high efficiency point {such as u = 2) by observing cycle time
suggests itself.

With knowledge of site parameters and in particutar of drivepipe diameter, an installer or
manufacturer can pre-set a pump's tuning @ to a suitable value, or can constrain it to lie within a
particular range of flows. A suitable range might be that which makes . lie in the narrow band 1.25 <
B < 2, or the wider band 1.5 < i, < 4. The lower limit prevents the pump being tuned to give
negligible delivery or to entrain air. The upper limit prevents use of unnecessarily high drive flow
and also protects the pump for excessive over-pressures should its delivery become blocked. The
optimum range wiil depend on the ratio of open-pump flow Q_ to Joukowski flow O,

A time,t,
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Fig. 13 Driveflow, delivery flow and cycle time variation with tuning

(Q; is flow just sufficient to attain delivery head, ¢ is cycle time, @, is driveflow,
g is delivery flow, assuming Q.. =35, R=20 71, =09)

5. CONCLUSIONS

The three main phases - acceleration, delivery and recoil - of a ram-pump cycle have been modelled
using equations of manageable simplicity. Several rules of thumb have been derived. The paper has
throughout stressed the application of algebraic modeliing to solve common problems in system
design and tuning.

Equation [1] in section 3.2 represents the level of modelling usually employed by manufacturers in the
preparation of data sheets. This paper has shown that its assumption of constant efficiency is
unreasonable and its objective of describing the performance of a pump in isolation (from its drive
pipe)} 1s unrealistic. Such simple models are incapable of explaining many phenomena important to
pump users. Through the use of two ratios (A = Q,,/Qm and Y, = Q /Q;) much more can be explained,
even though the peak flow () itself can not be readily measured. The several approximations and
omissions in the model developed make it inadequate for some aspects of pump design optimisation,
for which complex simulation models are preferable.
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