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Abstract The longitudinal dispersion coefficient is used to describe the change in
characteristics of a solute cloud, as it travels along the longitudinal axis of a pipe.
Taylor [1954] proposed a now classical expression to predict the longitudinal disper-
sion coefficient within turbulent pipe flow. However, experimental work has shown
significant deviation from his prediction for Re < 20000. This paper presents exper-
imental results from tracer studies conducted within the range 2000 < Re < 50000,
from which longitudinal dispersion coefficients have been determined. Initial re-
sults are also presented for a numerical model that aims to predict the longitudinal
dispersion coefficient over the same range of Reynolds numbers.

1 Introduction

Longitudinal dispersion can be defined as the spreading of a solute along the flow’s
longitudinal axis. This process leads to a change in characteristics of a contamina-
tion cloud from an initial state of high concentration and low spatial variance, to a
downstream state of lower concentration and higher spatial variance.

Within potable water networks it is important to quantify the changing character-
istics of solutes as they travel through the network.

Current water quality models for distribution networks assume steady, highly
turbulent flow [Tzatchkov et al. 2009]. These assumptions are valid for the majority
of the flow conditions experienced in the main network. However, one part of the
network for which these assumptions are not valid is the network’s periphery, where
water leaves the main network and travels to the point of consumption. Here, in
the so called ‘dead end’ regions of the network, discharge is contingent upon the
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intermittent demand of the consumer, hence the flow is unsteady, and can assume
any flow rate from the relatively high main network rate, through to zero in times
of no demand [Lee 2004]. In addition, pressure transients caused by any change in
the flow conditions (closed valve, leaking pipe, network maintenance etc) can result
in periods of both unsteady and low flow in the main network. This scenario is of
particular interest in water quality modeling, as negative pressure created in such
pressure transients can lead to contaminant intrusion into the network through any
leaks in the system [LeChevallier et al. 2003]. Thus, contaminant can be released
into a low and unsteady flow.

Taylor [1953, 1954] developed two equations to predict the longitudinal dis-
persion coefficient within steady laminar and turbulent pipe flow respectively. His
equations are still widely used. However, experimental data has shown a signifi-
cant divergence between predictions made by Taylor’s equation for turbulent flow,
and experimentally determined longitudinal dispersion coefficients within turbulent
flow for Re < 20000.

This paper presents experimentally determined longitudinal dispersion coeffi-
cients for steady pipe flow in the range of Reynolds Numbers 2000 < Re < 50000, a
range set to highlight conditions under which Taylor’s model does not describe ex-
perimental data. Furthermore, a simple numerical model is developed for the same
range of Reynolds Numbers.

2 Background and Previous Work

Longitudinal dispersion is primarily caused by differential advection associated with
the flow’s longitudinal velocity profile. When fluid flows through a pipe, the velocity
varies with radial position from the maximum velocity obtained at the pipe’s cen-
treline, to zero at the pipe’s boundary. When a cross-sectionally well-mixed tracer
is introduced across a pipe, tracer will be advected in accordance with the veloc-
ity at its corresponding radial position. Hence, tracer at the centre of the pipe will
travel further in a given period of time than tracer at the boundary of the pipe, and
thus the tracer disperses. The tracer is further spread in all directions by the effects
of molecular and turbulent diffusion. The degree to which these diffusion mech-
anisms act to spread the tracer directly in the longitudinal direction is negligible
when compared to the effects of the differential advection. However, the two diffu-
sion mechanisms are significant with regard to longitudinal dispersion because of
their ability to spread the tracer radially. As radial diffusion increases, each particle
of tracer experiences a larger number of radial positions and corresponding veloci-
ties, thus reducing the effects of the differential advection. Hence, there is an inverse
relationship between molecular and turbulent diffusion and longitudinal dispersion.

Taylor [1953,1954] showed that, after some initial development period, the spa-
tial distribution of the cross sectional mean concentration of a solute is Gaussian,
with a variance that increases linearly with distance. Through this, Taylor showed
that the cross-sectional average concentration distribution can be described by Fick’s
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second law of diffusion, such that:

∂c
∂ t

= Dxx
∂ 2c
∂x2 − ū

∂c
∂x

(1)

where c is the cross-sectional mean concentration, t is time, Dxx is the longitudinal
dispersion coefficient, x is the distance along the longitudinal axis and ū is the cross-
sectional mean velocity.

For turbulent flow, Taylor [1954] considered the radial distribution of a concen-
tration in terms of the following partial differential equation:

∂

∂ r

(
Dr(r)r

∂c(x,r)
∂ r

)
= r
(

u(r)
∂c(x,r)

∂x
+

∂c(x,r)
∂ t

)
(2)

where r is the radial position from the centreline, c(x,r) is the concentration at
position (x,r), and Dr(r) and u(r) are the radial diffusion coefficient and velocity at
position r, respectively.

Taylor assumed the radial diffusion coefficient was equivalent to the turbulent
diffusion coefficient Dt , such that Dr = Dt , and defined the turbulent diffusion co-
efficient by considering it in terms of Reynolds analogy, i.e. the assumption that the
transfer of matter, heat and momentum are analogous, such that:

Dr(r) = Dt(r) =
τt(r)

ρ(∂u(r)/∂ r)
(3)

where τt(r) is the turbulent stress at position r, τt(r) = τ · p, where τ is the wall
shear stress and p is dimensionless position p = r/a, where a is the pipe’s radius.

Taylor assumed a ‘universal’ velocity distribution, of the form:

uc−u(r)
u∗

= f (p) (4)

where uc is the maximum velocity, u∗ is the frictional velocity u∗ = ū
√

f/8, where
f is the friction factor. f (p) is a geometric relationship for the velocity distribution
as a function of dimensionless position p. Taylor derived the values of f (p) as the
mean value of the data of Stanton and Pannell [1914] and Nikuradse [1932]. In
addition, Taylor proposed an empirical relationship for the maximum velocity, uc =
ū+(4.25u∗).

Taylor used this definition of the radial diffusion coefficient (Equation 3) and ve-
locity profile (Equation 4) to solve Equation 2, which gave the following expression
for the longitudinal dispersion coefficient within turbulent pipe flow:

Dxx = 10.1au∗ (5)

The Reynolds number, Re = ūd/ν , where d is the pipe diameter and ν is kinematic
viscosity, effectively quantifies how turbulent a flow is. Figure 1 shows the results
of previous experimental investigations into the relationship between the longitudi-
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nal dispersion coefficient and Reynolds number for the range 2000 < Re < 50000,
compared to Taylor’s theory (Equation 5). From Figure 1 it can be seen that for
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Fig. 1 Comparison between the experimental data of Fowler and Brown [1943], as presented by
Levenspiel [1958], Taylor [1954], Keyes [1955] and Flint and Eisenklam [1969] and the theorys
of Taylor [1954] (Equation 5), Tichacek et al. [1957], Flint and Eisenklam [1969] and Ekambara
and Joshi [2003].

Re > 20000, the longitudinal dispersion coefficient is relatively small and indepen-
dent of Reynolds number. For Re < 20000, it increases significantly to a point that
at Re ≈ 2000, its value is approximately 25 times larger at than the value for Re >
20000. Furthermore, at approximately the same point that the longitudinal disper-
sion coefficient begins to increase, it also begins to diverge from Taylor’s prediction.
Some insight into this phenomenon can be gained by considering the relationship
between the Reynolds number and the velocity profile throughout this range.

When the flow is laminar, at Re≈ 2000, the velocity profile is parabolic and thus
there is a high degree of spreading due to differential advection. When the flow
is turbulent, at Re > 4000, the velocity is more uniform than the laminar profile
leading to a decrease in differential advection. From 2000 < Re < 4000 the flow is
transitional, and thus the profile transitions from the parabolic profile at Re≈ 2000,
to the more uniform profile at Re≈ 4000. Figure 2 shows a comparison between an
analytically predicted laminar velocity profile and two theoretical turbulent velocity
profiles [Nikuradse 1932]. From Figure 2 it can also be seen that the is a significant
difference in the velocity distribution between 2000 < Re < 4000, whereas there is
only slight difference between 4000 < Re < 100000.

For laminar flow the velocity profile can be determined analytically as [White
2008]:

u(p)
uc

= 1− p2 (6)
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Fig. 2 Comparison between a laminar velocity profile at Re = 2000, (Equation 6), and the theo-
retical turbulent velocity profile of Nikuradse [1932], at Re = 4000 and Re = 100000.

where u(p) is the velocity at position p.
For turbulent flow, the velocity profile cannot be determined analytically, and

thus turbulent velocity profiles are generally proposed as empirical expressions.
Conventionally turbulent velocity profiles are defined in terms of the dimensionless
velocity and distance terms u+ = u(p)/u∗ and y+ = u∗y/ν , where y is the actual
distance from the wall.

Figure 3 shows the experimentally obtained velocity profile of Durst et al. [1995]
for a turbulent flow at Re = 7442. From Figure 3 it can be seen that there are three
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Fig. 3 Comparison between the experimental data Durst et al. [1995], a laminar velocity profile
(Equation 6), Taylor’s turbulent velocity profile (Equation 4) and turbulent velocity profile of Flint
[1967].

parts to a turbulent velocity profile. The main part of the profile is the ‘turbulent
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core’, which occurs at y+ > 30. In this part of the flow, the profile is fully turbulent.
Here, the profile is logarithmic besides a small portion near the centreline where
the profile plateaus, deemed the ‘wake’ region. For y+ < 5, even in fully developed
turbulent flow, the flow remains laminar. This portion of the flow is deemed the
‘laminar sub-layer’. From 5 < y+ < 30, the flow transitions from being laminar to
fully turbulent, a portion of the flow deemed the ‘buffer zone’. The region of the
flow corresponding to the non-turbulent portion, i.e. the length corresponding to
y+ < 30, grows as Reynolds number decreases. At Re > 20000, the laminar sub-
layer and buffer zone constitute less that 5% of the flow whereas at Re = 4000, the
laminar sub-layer and buffer zone constitute around 20% of the flow. As Reynolds
number reduces from Re = 4000, the laminar sub-layer grows further to the point
that the entire flow is laminar, at around Re = 2000.

Figure 3 shows a comparison between Taylor’s velocity profile (Equation 4), and
the data of Durst et al. [1995]. Taylor’s profile was derived from highly turbulent
data, and thus neglects a laminar sub-layer and buffer zone. Due to this, Taylor’s
equation for the longitudinal dispersion coefficient is only valid for Re > 20000, the
portion of the flow where the size of the laminar sub-layer and buffer zone are small
enough to be considered negligible with regards to longitudinal dispersion.

Several authors have used improved velocity profiles to build upon Taylors orig-
inal analysis for the longitudinal dispersion coefficient.

Tichacek et al. [1957] solved Equation 2 using experimental velocity profiles to
produce a model for the longitudinal dispersion coefficient for 2200 < Re < 50000.

Flint [1967] proposed an expression for the velocity profile for turbulent flow
which included a laminar sub-layer and buffer zone. Figure 3 shows a comparison
between Flints turbulent velocity profile and the data of Durst et al. [1995]. In addi-
tion, Flint [1967] proposed a further expression for the velocity profile within tran-
sitional and low turbulent flow, covering 2500 < Re < 6000. Flint and Eisenklam
[1969] solved Equation 2 using the theoretical velocity profile of Flint [1967] to pro-
duce a model for the longitudinal dispersion coefficient for 2500 < Re < 100000.

Ekambara and Joshi [2003] solved equation Equation 2 using a low Reynolds
number κ− ε CFD code to provide a prediction for the longitudinal dispersion co-
efficient for 2500 < Re < 10000.

Figure 1 shows a comparison between these models for the longitudinal disper-
sion coefficient and experimental data.

None of the models discussed cover the whole range 2000 < Re < 20000, the
range over which Taylors equation do not describe experimental data. Furthermore,
all of the models discussed involve solving the problems governing differential
equation, and thus are mathematically complex.

The aim of the present work is to experimentally determine the longitudinal dis-
persion coefficient over the range 2000 <Re< 50000, and proposes a relatively sim-
ple numerical model for the same range, with particular emphasis on 2000 < Re <
3000, the range not previously fully described.

A suitable model for this objective is the ‘zonal’ model of Chikwendu [1986],
which provides an analytical solution for the longitudinal dispersion coefficient for
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a given velocity profile and radial diffusion coefficient by dividing the flow into N
number of zones (See Section 5 for more detailed explanation of model).

Thus, the numerical model proposed in this paper will consider the most suitable
definition of the velocity profile for 2000 < Re < 50000, in conjunction with the
model of Chikwendu [1986].

3 Experimental Setup and Method

A series of experiments was conducted to determine the longitudinal dispersion
coefficient for a range of flow rates corresponding to the range of Reynolds numbers
2000 < Re < 50000. The tests were conducted using a re-circulating system where
the main test pipe was 16.6 metres long, with an internal diameter of 24 mm.

The flow rate was obtained by measuring a volume of water collected over a set
period of time. For each set of tests at a fixed flow rate, the flow rate was measured
three times both before and after each set of injections. Thus, the flow rate for each
run was the mean value of six repeats.

Dye injections of Rhodamine WT were made using a computer controlled peri-
staltic pump. For each injection, Rhodamine WT at a concentration ranging from
700 - 1500 ppb was injected for a one second period. Injections were made at a
distance 3.5 metres downstream from the start of the test section, a length sufficient
to allow for the flow to become fully developed [White 2008].

The response of the dye to the flow was recorded as cross-sectional average con-
centration vs. time profiles using two Turner Designs series 10 fluorometers, which
were 6 metres apart and 7.1 and 13.1 metres downstream of the injection point re-
spectively. The instruments were calibrated before and after the full series of dye
injections to confirm the calibration relationship held throughout the tests.

For each flow rate, three injections were made. Thus the longitudinal dispersion
coefficients discussed in the Section 4 represent the mean value of 3 repeats.

4 Experimental Results and Analysis

An initial estimate of the longitudinal dispersion coefficient was made through the
‘method of moments’ [Rutherford 1994].

These estimates were optimised through the following routing procedure [Ruther-
ford 1994]:

c(x2, t) =
∞∫
−∞

c(x1,γ)ū√
4πDxxT̄

exp
[
− ū2(T̄ − t + γ)2

4DxxT̄

]
dγ (7)

where T̄ is the travel time, the difference between the centroid of two profiles, and
γ is an integration variable, or pseudo time.
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A routing procedure, such as Equation 7, takes the experimentally obtained up-
stream profile, routes it to a downstream position on the basis of the travel time, and
spreads it on the basis of the longitudinal dispersion coefficient. Thus, initially the
upstream data was routed onto the downstream data using the travel time and longi-
tudinal dispersion coefficient obtained through the method of moments. The routed
downstream profile could then be compared to the downstream profile through some
criteria of fit, namely R2

t [Young et al. 1980]. The longitudinal dispersion coefficient
and travel time were then optimised to give the best fit to the downstream data on
the basis of the value of R2

t . Figure 4 shows a sample of the results for the down-
stream concentration profiles, compared to the optimised profiles from Equation 7
for several representative flow rates covering approximately 2000 < Re < 50000.
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Fig. 4 Comparison between experimental downstream concentration profiles, and concentration
profiles routed from upstream data and optimised to best fit downstream data through Equation 7.

Table 1 summaries the experimental results for each flow rate considered. From
Figure 4 and Table 1 it can be seen that for fully turbulent flow, for 4000 < Re <
50000, the routing procedure fits the data well. For transitional flow, for 2000 <
Re < 4000, as the profiles begin to deviate from the Gaussian assumption in a non-
trivial manner, the goodness of the fit of the model decreases.
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From Table 1 it can also be seen that for the majority of the tests for fully tur-
bulent flow, for 4000 < Re < 50000, mass balance is around 100 %. However, for
transitional flow, for 2000 < Re < 4000, mass balance drops to around 90 %. These
results could be either a due to tracer being caught in the laminar sub-layer, or
experimental error at low flow rates due to the tracer not being cross-sectionally
well mixed. Figure 5 shows a comparison between the longitudinal dispersion co-

Table 1 Summary of experimental results. Each value represent the mean value of three repeats.

Re Mass balance [%] Dxx/ūd R2
t

50892 ± 814 102.3 ± 0.7 0.326 ± 0.042 0.998 ± 0.000
32363 ± 359 101.0 ± 1.2 0.351 ± 0.020 0.998 ± 0.000
20380 ± 168 101.0 ± 1.2 0.347 ± 0.020 0.999 ± 0.000
14815 ± 96 101.6 ± 1.7 0.396 ± 0.003 0.998 ± 0.000
10365 ± 57 102.6 ± 0.4 0.494 ± 0.005 0.996 ± 0.000
5994 ± 66 99.037 ± 3.4 0.626 ± 0.009 0.994 ± 0.001
5148 ± 291 91.4 ± 1.2 0.828 ± 0.033 0.993 ± 0.001
3784 ± 29 104.7 ± 8.1 1.525 ± 0.076 0.989 ± 0.002
2670 ± 13 89.3 ± 1.9 2.682 ± 0.596 0.949 ± 0.008
2185 ± 21 88.4 ± 5.1 4.603 ± 0.383 0.946 ± 0.029

± Represents 1 Stand Deviation.

efficient determined experimentally in the present work and previous experimental
data, from which it can be seen that the results of the present work fall favorably
within previous experimental investigation.

5 Proposed Numerical Model

The model of Chikwendu [1986] provides a longitudinal dispersion coefficient on
the basis of a velocity profile and a radial diffusion coefficient, such that:

D(N)xx =
N−1

∑
j=1

a2 p4
j(1− p2

j)
2[u f ,1→ j−us, j→N ]

2

4Dr, j,( j+1)
(Wj +Wj+1)+

N

∑
j=1

q jDx, j (8)

where Dx is diffusion in the longitudinal direction, Wj = p j− p j−1 and u f ,1→ j and
us, j→N are the fast and slow zone velocities:

u f ,1→ j =
1
p2

j

j

∑
k=1

qkuk (9)

us, j→N =
1

1− p2
j

N

∑
k= j+1

qkuk (10)
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where q j = (r2
j − r2

j−1)/a2.
Chikwendu’s model provides an analytical solution for the longitudinal disper-

sion coefficient by dividing the flow into a discrete number of zones N. Each zone
has its own mean velocity and radial exchange between adjacent zones. Differential
advection is accounted for by considering the mean velocity of every zone above
each point j, the ‘fast zone’, less the mean velocity of every zone below each point
j, the ‘slow zone’. Through this, a dispersion term is calculated for each zone, which
is summed to give the longitudinal dispersion coefficient.

Initially, Chikwendu’s model was used to reproduce the Taylor’s result for turbu-
lent flow, to demonstrate the applicability of the model and to determine an approx-
imate value for the number of zones required. Taylor’s velocity profile (Equation 4),
proposes the velocity profiles as a function of the geometric function f (p). Taylor
gives an expression for the function f (p) for 0.9 < p < 1, but between 0 < p < 0.9
only gives 14 experimentally derived values for the function. Thus, in order to use
his profile at a higher resolution, an expression was fit to Taylor’s values for 0 < p <
0.9. The radial diffusion coefficient, friction factor and the maximum velocity were
used as defined by Taylor [1954]. In addition, the diffusion term in the longitudinal
direction, Dx, was also neglected in accordance with Taylor’s analysis. At N=3000,
the model reproduced Taylor’s results to within ∼ 0.5 % over the whole range.

The laminar sub-layer and buffer zone of the turbulent profile of Flint [1967] was
added to Taylor’s velocity profile for y+ < 30, to better describe experimental data
for 4000 < Re < 50000.

For transitional flow, the transitional velocity profile of Flint [1967] was used
for 3000 < Re < 4000, a range over which it conforms to the experimental data
of Senecal and Rothfus [1953]. For 2000 < Re < 3000, Flint’s expression diverges
from the experimental data of Senecal and Rothfus [1953], and fails to converge
upon the analytical prediction of the velocity profile at Re= 2000. Within this range,
Flint’s expression predicts a distribution that appears more turbulent than the major-
ity of the data, whereas the analytical laminar profile predicts a distribution which
appears more laminar than the majority of the data. Therefore, to predict the veloc-
ity profile within this range, an expression was suggested that postulates a velocity
profile as a combination of the distribution of Flint’s profile at Re = 3000, and the
analytical laminar profile at Re = 2000. The relative proportion of each distribution
used is governed through a transition factor α , such that:

f (p)T = α f (p)L(2000)+(1−α) f (p)F(3000) (11)

where f (p) is a dimensionless velocity distribution, f (p) = u(p)/uc, f (p)T is
the transitional dimensionless velocity distribution between 2000 < Re < 3000,
f (p)L(2000) is the dimensionless velocity distribution from the analytically lami-
nar profile at Re = 2000 (Equation 6), and f (p)F(3000) is the dimensionless velocity
distribution from Flint’s profile at Re = 3000.

Values for α were obtained by fitting Equation 11 to the 8 profiles of Senecal and
Rothfus [1953] between 2000 < Re < 3000. The trend for α was found to conform
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to an ‘S’ trend, which could be described through a sigmoidal function of the form
α = 0.306/(0.2981+ e9.747γ), where γ = (Re−2000/1000)−0.5.

For transitional flow, values for the maximum velocity were obtained by fitting to
the data of Senecal and Rothfus [1953], and the friction factor was assumed to vary
linearly from the turbulent value at Re = 3000, to the laminar value at Re = 2000.

Figure 5 shows the results using Chikwendus model, with the velocity profiles
described in the present work for the range 2000 < Re < 100000.
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Fig. 5 Comparison between the the optimised experimental data of the present work, the experi-
mental data of Fowler and Brown [1943], Taylor [1954], Keyes [1955] and Flint and Eisenklam
[1969], Taylor’s theory (Equation 5), and the model of the present work.

6 Conclusions

Experimental data has been presented by optimising the longitudinal dispersion co-
efficient through a Fickian type model. Fits to downstream data are good for tur-
bulent flow for 4000 < Re < 50000, but it fails to fully predict the downstream
distributions for transitional flow for 2000 < Re < 4000. The results for the longi-
tudinal dispersion coefficient compare favorably with previous experimental work
and show a deviation from Taylor’s result at Re < 20000.

A simple numerical model is proposed that builds upon Taylor’s prediction for
turbulent flow by adding a laminar sub-layer and buffer zone to Taylor’s velocity
profile. The use of this velocity profile within Chikwendu’s model predicts the gen-
eral trend in the data for the longitudinal dispersion coefficient of increasing from
Taylor’s prediction for 4000 < Re< 20000. The model presented here was extended
to transitional flow by considering two further velocity profiles, that of Flint [1967]
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for 3000 < Re < 4000, and the profile derived in the present work on the basis of
the data of Senecal and Rothfus [1953] for 2000 < Re < 3000. The use of these
expressions within Chikwendu’s model predicts the large increases in the longitu-
dinal dispersion coefficient within the transitional region in a manner reasonably
consistent with experimental data.

References

1. Chikwendu S C (1986). Caculation of longitudinal shear dispersivity using an N-zone model
as N→ ∞. Journal of Fluid Mechanics, 167: 19–30.

2. Durst F, Jovanovic and Sender J. (1995). LDA measurments in the near-wall region of a
turbulent pipe flow. Journal of Fluid Mechanics, 295:305–335.

3. Ekambara K and Joshi J B (2003). Axial mixing in pipe fows: Turbulent and transitional
regions Chemical Engineering Science, 58:2715–2724.

4. Flint L F (1967). On the velocity profile for turbulent flow in straight a pipe. Chemical Engi-
neering Science, 22:1127–1131.

5. Flint L F and Eisenklam P (1969). Longitudinal gas dispersion in transitional and turbulent
flow through a straight tube. The Canadian Journal of Chemical Engineering, 47:101–106.

6. Fowler F C and Brown G G (1943). Contamination by successice flow in pipe lines. American
Institute of Chemical Engineers, 39:491–516.

7. Keyes J J (1955). Diffusion film characteristics in turbulent flow: Dynamic response method.
American Institute of Chemical Engineers, 1:305–311.

8. LeChevallier M W, Gullick R W, Mohammad R K, Friedman M and Funk J E (2003). The
potential for health risks from intrusion of contaminats into the disstribution system from
pressure transients. Journal of Water and Health, 1:3–14.

9. Lee Y (2004). Mass dispersion in intermittent laminar flow. PhD thesis. University of Cincin-
nati.

10. Levenspiel O (1958). Longitudinal mixing of fuids flowing in circular pipes. Industrial and
Engineering Chemistry, 50(3):343–346.

11. Nikuradse J (1932). Laws of turbulent flow in smooth pipes. NACA Techncal Memorandum,
359.

12. Rutherford J (1994). River mixing. John Wiley and Sons.
13. Senecal V E and Rothfus R R (1953). Transitional flow of fluids in smooth tubes. Chemcial

Engineering Progress, 49:533–538.
14. Stanton T E and Pannell J (1914). Similarity of Motion in Relation to the Surface Friction of

Fluids. Philosophical Transactions of The Royal Society, 214:199–224.
15. Taylor G I (1953). Dispersion of soluble matter in solvent flowing slowly through a tube.

Proceedings of the Royal Society, 219(1137):186–203.
16. Taylor G I (1954). The dispersion of matter in turblent flow through a pipe. Proceedings of

the Royal Society, 223(1155):446–468.
17. Tichacek L J, Barkelew C H and Baron T (1957). Axial mixing in pipes. American Institute

of Chemical Engineers, 3(4):439–442.
18. Tzatchkov V G, Buchberger S G, Li Z, Romero-Gomez P and Choi C (2009). Axial dispersion

in pressurized water distribution networks - A review. International Symposium on Water
Management and Hydraulic Engineering, 581–592.

19. White F M (2008). Fluid Mechanics. McGraw-Hill International.
20. Young P, Jakeman A and McMurtrie R (1980). An instrumental variable method for odel

order identification. Automatica, 16:281–294.


