
Automatica 119 (2020) 109103

Contents lists available at ScienceDirect

Automatica
journal homepage: www.elsevier.com/locate/automatica

On the stability of nucleic acid feedback control systemsI

Nuno Miguel Gomes Paulino a,⇤, Mathias Foo b, Jongmin Kim c, Declan G. Bates a

a Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry CV4 7AL, UK
b School of Mechanical, Aerospace and Automotive Engineering, Coventry University, Coventry CV1 5FB, UK
c Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology
(POSTECH), Pohang, Gyeongbuk, 37673, South Korea

a r t i c l e i n f o

Article history:
Received 23 July 2019
Received in revised form 21 February 2020
Accepted 22 May 2020
Available online xxxx

Keywords:
Synthetic biology
Chemical reaction networks
Nucleic acids
Strand displacement circuits
Feedback control
Nonlinear systems

a b s t r a c t

Recent work has shown how chemical reaction network theory may be used to design dynamical
systems that can be implemented biologically in nucleic acid-based chemistry. While this has allowed
the construction of advanced open-loop circuitry based on cascaded DNA strand displacement (DSD)
reactions, little progress has so far been made in developing the requisite theoretical machinery to
inform the systematic design of feedback controllers in this context. Here, we develop a number of
foundational theoretical results on the equilibria, stability, and dynamics of nucleic acid controllers. In
particular, we show that the implementation of feedback controllers using DSD reactions introduces
additional nonlinear dynamics, even in the case of purely linear designs, e.g. PI controllers. By
decomposing the effects of these non-observable nonlinear dynamics, we show that, in general, the
stability of the linear system design does not necessarily imply the stability of the underlying chemical
reaction network, which can be lost under experimental variability when feedback interconnections
are introduced. We provide an in-depth theoretical analysis, and present an example to illustrate when
the linear design does not capture the instability of the full nonlinear system implemented as a DSD
reaction network, and we further confirm these results using Visual DSD, a bespoke software tool
for simulating nucleic acid-based circuits. Our analysis highlights the many interesting and unique
characteristics of this important new class of feedback control systems.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Recent advances in synthetic biology have seen the incorpo-
ration of many control engineering design principles into the
construction of biomolecular circuits (Blanchini, El-Samad, Gior-
dano, & Sontag, 2018; Hancock & Ang, 2019; Siami et al., 2020).
One of the current urgent needs of this field is the development
of bespoke feedback control theory that can be used to systemat-
ically design synthetic controllers for biomolecular processes. A
promising direction for this work is to integrate control theory
with chemical reaction network (CRN) theory within the overall
context of deterministic mass action kinetics (MAK) (Tóth & Érdi,
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1989), which have traditionally been used to model biochem-
ical processes (Daniel, Rubens, Sarpeshkar, & Lu, 2013; Jeong
et al., 2019; Koch, Faulon, & Borkowski, 2018). Computations
using MAK implementations of polynomial Ordinary Differential
Equations (ODEs) make CRNs Turing universal (Bournez, Graça, &
Pouly, 2017; Fages, Le Guludec, Bournez, & Pouly, 2017) and suit-
able for use as an abstract programming language with which to
perform biomolecular computations and design synthetic circuits
and controllers (Chiu, Chiang, Huang, Jiang, & Fages, 2015; Vasi¢,
Soloveichik, & Khurshid, 2020).

For implementation, the CRN programs can be translated into
DNA strand displacement (DSD) reactions (Cardelli, 2013; Solove-
ichik, Seelig, & Winfree, 2010) in a systematic manner (Badelt
et al., 2017). Predictable mechanistic models for DNA hybridis-
ation and the law of mass action provide nucleic acid nanocon-
trollers with kinetics equivalent to the regimes of the CRN (Chen
et al., 2013), and a systematic pipeline for engineering dynamical
systems with DSD cascades (Srinivas, Parkin, Seelig, Winfree,
& Soloveichik, 2017). Programmability, versatility and biological
compatibility (Chatterjee, Chen, & Seelig, 2018; Groves et al.,
2016) make nucleic acids the current molecules of choice for

https://doi.org/10.1016/j.automatica.2020.109103
0005-1098/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2020.109103
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2020.109103&domain=pdf
mailto:N.Paulino@warwick.ac.uk
mailto:Mathias.Foo@coventry.ac.uk
mailto:jongmin.kim@postech.ac.kr
mailto:D.Bates@warwick.ac.uk
https://doi.org/10.1016/j.automatica.2020.109103


2 N.M.G. Paulino, M. Foo, J. Kim et al. / Automatica 119 (2020) 109103

molecular programming (Dalchau et al., 2018) and strong can-
didates for implementing future computing and control applica-
tions in synthetic biology.

In the context of feedback control, however, a key challenge
with employing CRNs is their inability to directly represent neg-
ative signals, since concentrations of chemical species are always
positive. For example, CRNs generally can only compute a positive
difference between two positive inputs, i.e. ‘‘one-sided’’ subtrac-
tion (Song, Garg, Mokhtar, Bui, & Reif, 2016). The use of the so-
called dual-rail representation with nucleic acids (Oishi & Klavins,
2011) circumvents this problem by representing each signal as
the difference of concentrations of two different species. Although
it increases the number of required reactions, the dual-rail rep-
resentation enables the computation of a two-sided subtraction
with the steady state of a CRN (Zou et al., 2017). In general,
it provides an Internally Positive Representation (IPR), where a
positive state–space system, together with input, state and output
transformations, can realise arbitrary input/output dynamics (Ca-
cace, Farina, Germani, & Manes, 2012). We have then a systematic
process to translate control theory to implementable biochem-
istry with synthetic DNA oligonucleotides, where DSD networks
can be assembled to represent transfer functions (Chiu et al.,
2015), linear feedback systems (Oishi & Klavins, 2011; Paulino,
Foo, Kim, & Bates, 2019a; Yordanov et al., 2014), and nonlinear
controllers (Sawlekar, Montefusco, Kulkarni, & Bates, 2016).

In all these systems, bimolecular annihilation reactions are
essential, in order to ensure that species concentrations remain
within the bounds of experimental feasibility. However, as noted
in Paulino, Foo, Kim, and Bates (2019b), these reactions result in a
nonlinear IPR, since they introduce additional internal nonlinear
dynamics that are not observable in the represented input/output
linear dynamics, but become important in the presence of in-
evitable experimental variability in the biomolecular implemen-
tations. Here, we formally characterise the effects of the nonlinear
dynamics introduced through these annihilation reactions on the
equilibria and the stability of closed-loop nucleic acid systems.
These results provide many useful insights that can guide the
design and construction of these circuits, and also highlight some
of the associated technical challenges and limitations.

1.1. Notation and preliminaries

We represent the elements of vectors and matrices x = Mv

with xj = [Mv]j = P
i mjivi. 1 is a vector with elements 1, and

I is the identity matrix. The element-wise product is represented
with x = v � u ) xj = vjuj. For a vector v � 0, kvk1 = 1

T
v

and kvk2
2 = 1

T (v � v). In the system dynamics, for brevity, time
dependency is implicit, i.e. xj ⌘ xj(t), x⇤

j ⌘ xj(1) represents
steady state conditions, and Xj(s) is the Laplace transform of xj.
⇢ {

M

} denotes the set of the eigenvalues �i of the matrix M. We
represent the set of Hurwitz matrices with H. Given the spectral
abscissa ↵ {

M

} = maxi < {�i}, ifM 2 H, then ↵ {
M

} < 0. Given the
set of lower triangular matrices L, then for M 2 L we have that
mji = 0, i > j, and �i {M} = mii. Given the set I of irreducible
matrices (Farina & Rinaldi, 2000), if M 2 I, then there is no
permutation such that M 2 L. Also, M 2 L ) M /2 I.

R+
0 is the positive orthant, where all the coordinates of a vector

vj � 0. M � 0 means all elements mji � 0, and M 2 R+
0 . The

operator D {
v

} is defined as a diagonal matrix where djj = vj and
dji = 0, j 6= i. If m is the diagonal of M, the matrix of off-diagonal
elements M

⌧ is defined as M

⌧ = M � D

{
m

}. Defining M as
the group of Metzler matrices, if M 2 M, then M

⌧ � 0 and if
M 2 M,H then m < 0.

A CRN is composed of a set of reactions between chemical
species Xj. The dynamics of the species concentrations xj can be
approximated by ODEs using the law of mass action, assuming

the system is well stirred with large numbers of molecules (Tóth
& Érdi, 1989). We represent a CRN and its MAK with

a1X1 + a2X2
��! bX3 ) ẋ3 = b� xa11 xa22 (1)

The stoichiometric coefficients a1, a2 and b indicate, respectively,
the relative number of molecules consumed and produced during
the reaction at a rate � .

2. Dual-rail chemical representation of feedback control

systems

Here, we illustrate how the dual-rail representation can be
used to represent the simple feedback control system shown in
Fig. 1A. The overall representation considers only three types of
elementary reactions,

catalysis : Xi
��! Xi + Xj (2a)

degradation : Xj
��! ; (2b)

annihilation : Xi + Xj
⌘�! ; (2c)

The dynamics of (1) in their natural coordinates, the concen-
trations, results in non-negative state variables, not suitable for
circuits involving negative signals such as the computation of the
control error for linear feedback. To circumvent this problem, it is
now a standard practice to represent both positive and negative
signals with a dual-rail representation (Oishi & Klavins, 2011; Zou
et al., 2017).

Definition 1. Consider two chemical species X+
j and X�

j , and
respective concentrations x+

j � 0 and x�
j � 0. A dual-rail signal

pj 2 R is represented by pj = x+
j � x�

j , with dynamics given by
ṗj = ẋ+

j � ẋ�
j .

Example 1 (Subtraction Representation). Let p1 = (r � y) with
positive or negative outcomes p1, r, y 2 R. With the chemical
species

�
X+
1 , X�

1 , R+, R�, Y+, Y� and respective concentrations�
x+
1 , x�

1 , r+, r�, y+, y� (M), define r = r+ � r�, y = y+ � y�,
and p1 = x+

1 � x�
1 . From the following CRNs

R+ ��! R+ + X+
1 , Y� ��! Y� + X+

1

, X+
1

��! ; (3a)

R� ��! R� + X�
1 , Y+ ��! Y+ + X�

1

, X�
1

��! ; (3b)

X+
1 + X�

1
⌘�! ; (3c)

we obtain the nonlinear MAK

ẋ+
1 = �� x+

1 + � r+ + � y� � ⌘x+
1 x

�
1 (4a)

ẋ�
1 = �� x�

1 + � r� + � y+ � ⌘x+
1 x

�
1 (4b)

where the notations in bold highlight the crossed contributions
from the components of y to the result p1. Expressing the dynam-
ics from the inputs r and y to the output p1, under steady state
conditions, we obtain the linear operation of subtraction

� �1 �ẋ+
1 � ẋ�

1
�

= �x+
1 + x�

1 + r+ � r� � y+ + y� (5)

)
�
x+⇤
1 � x�⇤

1
�

=
�
r+⇤ � r�⇤� �

�
y+⇤ � y�⇤� (6)

) p⇤
1 = r⇤ � y⇤ (7)

Since the dual-rail representation admits infinite combina-
tions of the pair of concentrations x+

1 and x�
1 for the same differ-

ence p1 = x+
1 � x�

1 , in practice, the annihilation reaction in (3c)
is used to keep the concentrations of all molecular species low
(i.e. experimentally feasible) even in the presence of transients.
The cost to pay for this representation is the duplication of the
catalysis and degradation reactions required. Following Oishi and
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Fig. 1. Chemical representation of Example 3: (A) Frequency-domain representation of controller and plant; (B) Each signal pj = x+
j � x�

j results from representing
a linear operator with chemical reactions, using unimolecular catalysis and degradation reactions, and bimolecular annihilation reactions between the pairs X±

j ,
resulting in a CRN where the negative feedback is introduced by the catalysis from X±

5 to X⌥
1 (in red); (C) Simulation of the MAK to a sequence of steps on the

reference concentrations r± , where x±
j � 0; (D) Respective dual-rail signals, showing the reference tracking response of the output signal y = p5 = x+

5 � x�
5 to the

reference r = r+ � r� .

Klavins (2011), we compact the notation so that X±
1 represents

simultaneously both species X+
1 and X�

1 , and x±
1 the respective

concentrations x+
1 and x�

1 . We also abbreviate the pair of dupli-

cated reactions Y+ � +
�! Y+ + X�

1 and Y� � �
�! Y� + X+

1 with

Y± � ±
�! Y± + X⌥

1 .

Assumption 1. The nominal parameterisation and nominal
implementation assume perfectly designed reaction rates in the
absence of variability, and a symmetrical parameterisation where
the reaction rates are the same for each pair of duplicated reac-
tions with � + = � � = � .

Assumption 1 is used in the duplicated reactions to represent
linear systems (e.g., the derivation of (5) from (4)), and it is
implicit in the methodology that the ideal CRNs have perfect or
closely matched reaction rates, or mechanisms for fine tuning of
the reaction rates (Chiu et al., 2015; Oishi & Klavins, 2011).

Definition 2. The Input–Output (I/O) system is the response
Y (s) = G(s)U(s), from an input u =

�
u+ � u�� to an output

y =
�
y+ � y��. The states are also dual-rail pj = x+

j � x�
j , where

u, y, pj 2 R and u±, y±, x±
j 2 R+

0 .

Example 2 (Plant Representation). To chemically represent the
transfer function Y (s) = k1

s+k2
U(s) with u, y 2 R, we take the pairs

of chemical species
�
U±, Y± and the I/O dynamics of the CRN

given by

U± k1�! U± + Y±, Y± k2�! ;, Y+ + Y� ⌘�! ; (8)
) ẏ± = �k2y± + k1u± � ⌘y+y� (9)
) ẏ+ � ẏ� = �k2

�
y+ � y�� + k1

�
u+ � u��

, ẏ = �k2y + k1u (10)

Definition 2 results in linear systems because the nonlinear
terms in the MAK cancel out in the ODEs of the I/O dynamics. The
use of bimolecular reactions results in an IPR of a linear system
based on nonlinear internal positive dynamics, in contrast to IPRs
based on linear positive dynamics (Cacace et al., 2012).

Using the dual-rail CRNs to compute gains, sums, subtractions,
or any proper transfer-function (Chiu et al., 2015; Oishi & Klavins,
2011), we can take a prescribed frequency-domain description of
a control system, which we wish to represent chemically, and as-
semble a CRN representation using only the elementary reactions
in (2). We now illustrate the construction of a simple example
feedback system (for more complex examples see Paulino et al.,
2019a; Sawlekar et al., 2016).

Example 3 (Simple Feedback Control System). Consider the feed-
back control system in Fig. 1A, which we wish to represent
chemically. According to Chiu et al. (2015) and Oishi and Klavins
(2011), we define the dual-rail signals pj = x+

j � x�
j as the output

of linear operators in the loop, each represented with reactions
of the types in (2). The complete CRN in Fig. 1B gives

R± � ±
1�! R± + X±

1 , X⌥
5

� ⌥
2�! X⌥

5 + X±
1

, (11a)

X±
1

� ±
3�! ;, X+

1 + X�
1

⌘�! ; (11b)

X±
1

k±0�! X±
1 + X±

3 , X+
3 + X�

3
⌘�! ; (11c)

X±
1

� ±
4�! X±

1 + X±
2 , X±

2
� ±
5�! ;, X+

2 + X�
2

⌘�! ; (11d)

X±
2

� ±
6�! X±

2 + X±
4 , X±

3
� ±
7�! X±

3 + X±
4 , (11e)

X±
4

� ±
8�! ;, X+

4 + X�
4

⌘�! ; (11f)

X±
4

k±1�! X±
4 + X±

5 , X±
5

k±2�! ;, X+
5 + X�

5
⌘�! ; (11g)

The control error is computed in (11a)–(11b), and the inte-
gral gain is represented in (11c). The gain kP results from the
steady state conditions of (11d), where k±

P = � ±
4 /� ±

5 , and
(11e)–(11f) sum the contributions of the control inputs to the
plant represented in (11g). The resulting ODEs using MAK are
given by

ẋ±
1 = �� ±

3 x±
1 + � ⌥

2 x⌥
5 + � ±

1 r± � ⌘x+
1 x

�
1 (12a)

ẋ±
2 = � ±

4 x±
1 � � ±

5 x±
2 � ⌘x+

2 x
�
2 (12b)
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Table 1

Nominal parameters for Example 3.
k±
1 = 0.0008/s, k±

2 = 0.001/s, k±
0 = 0.001/s

� ±
4 = 0.0025/s, � ±

j6=4 = 0.005/s, ⌘ = 5 ⇥ 105/M/s

ẋ±
3 = k±

0 x
±
1 � ⌘x+

3 x
�
3 (12c)

ẋ±
4 = � ±

6 x±
2 + � ±

7 x±
3 � � ±

8 x±
4 � ⌘x+

4 x
�
4 (12d)

ẋ±
5 = k±

1 x
±
4 � k±

2 x
±
5 � ⌘x+

5 x
�
5 (12e)

Within Assumption 1, and assuming also that � ±
5 = ✏2, � ±

1 =
� ±
2 = � ±

3 = ✏1 and � ±
6 = � ±

7 = � ±
8 = ✏4, we obtain the linear

I/O dynamics ṗj = ẋ+
j � ẋ�

j , where
2

6664

✏�1
1 ṗ1

✏�1
2 ṗ2
ṗ3

✏�1
4 ṗ4
ṗ5

3

7775
=

2

6664

�1 0 0 0 �1
kP �1 0 0 0
k0 0 0 0 0
0 1 1 �1 0
0 0 0 k1 �k2

3

7775

2

6664

p1
p2
p3
p4
p5

3

7775
+

2

6664

r
0
0
0
0

3

7775
(13)

The crossed contributions X⌥
5

� ⌥
2�! X⌥

5 + X±
1 in (11a) result in

the crossed contribution � ⌥
2 x⌥

5 in (12a), and from ẋ+
1 � ẋ�

1 we
get p⇤

1 = r⇤ � p⇤
5 = r⇤ � y⇤. The contributions to the actuation

u = x+
4 � x�

4 add up in the steady state results of (12d) and
p⇤
4 = p⇤

2 + p⇤
3 in (13).

Remark 1. The computation of the subtraction, sum and gain
with CRNs are exact only at steady state. However, part of (13)
can be expressed as a singular perturbation model (Kokotovic,
Khalil, & O’Reilly, 1999), where by increasing ✏i, we get timescale
separation and a quasi steady state approximation for the fast
variables. The impact of the additional transient dynamics for
subtraction, gain and summation can then be mitigated by setting
reaction rates �i faster than the dynamics of the controller and
plant.

For simulation of the MAK, we set the reference signal as a
sequence of steps, where only one of the concentrations r+ > 0
or r� > 0 at any given time, with the nominal parameterisation
in Table 1. For timescale separation, the rates �i, i = 1 . . . 8 are
set faster than the dynamics of the controller and plant. In Fig. 1C
we have the positive dynamics in the natural coordinates x±

j from
(12). In Fig. 1D, the I/O linear dynamics are recovered from the
MAK with pj = x+

j �x�
j , and the linear control system’s output y =

p5 successfully tracks the reference r . The CRN in (11) can then
be systematically translated to DSD reactions. The equivalences
between each elementary reaction in (2) and the sets of these
DSD reactions are detailed in Section 7.

3. Dynamics of the chemical reaction network

The construction methodology in Section 2 rests on mapping
ODE’s to deterministic MAK, constraining the representation to
the assumptions of the latter. We now define the determin-
istic dynamics for the class of systems analysed in this work,
which includes the dual-rail representation of linear negative
feedback (Oishi & Klavins, 2011; Paulino et al., 2019a; Yordanov
et al., 2014). We retain the natural non-negative coordinates,
where states are the concentrations x±

j , and the input vector
contains both positive and negative components for the reference
r =

⇥
r+, r�⇤T , r± 2 R+

0 .

Definition 3. Defining the state x 2 R+
0 as the vector of species

concentrations, the MAK of the constructed CRN result in

x =
h�

x

+�T �
x

��T
iT

=
⇥
x+
1 . . . x+

N x�
1 . . . x�

N
⇤T (14)

) ẋ =
�
A

⌧ � D

{|
a

|}
�
x + Br � ⌘ (Px) � x (15)

P =

0 I

I 0

�
) (Px) � x =


x

+ � x

�

x

+ � x

�

�
(16)

The dynamics of the unimolecular reactions depend linearly
on the state with Ax, where A = A

⌧ � D

{|
a

|}. By construction
A 2 M, since the catalysis rates end up on the off-diagonal
elements A⌧ � 0 and the degradation rates result in non-positive
elements in the diagonal of D {

a

} (a  0). The contributions from
the bimolecular reactions result in the terms �⌘x+ � x

� in (16).
Furthermore, we can decompose the dynamics into non-negative
and non-positive contributions where D

{
a

} � ⌘ (Px) � x  0, and
A

⌧
x + Br � 0.
Rewriting (15) according to the partition in (14) yields

⇢
ẋ

+ = A

+
1 x

+ + A

�
2 x

� + B

+
1 r

+ � ⌘x+ � x

�

ẋ

� = A

+
2 x

+ + A

�
1 x

� + B

�
1 r

� � ⌘x+ � x

� (17)

, ẋ

± = A

±
1 x

± + A

⌥
2 x

⌥ + B

±
1 r

± � ⌘x+ � x

� (18)

and we have matrices A and B structured into

A =

A

+
1 A

�
2

A

+
2 A

�
1

�
, B =


B

+
1 0

0 B

�
1

�
(19a)

A

±
1 =

�
A

±
1
�⌧ + D

�
a

±
1
 
, a

±
1  0, A

±
2 =

�
A

±
2
�⌧ (19b)

From Definition 3 we have that A

±
j 2 M and the degradation

rates are in the diagonal of A±
1 . For the catalysis reaction rates,

we have � : X±
i

��! X±
i + X±

j , j 6= i ) � =
h�

A

±
1
�⌧

i

ji
, except

for the crossed catalysis representing negative signs, as in the
feedback subtraction, where we have � : X±

i
��! X±

i + X⌥
j , j 6=

i ) � =
⇥
A

±
2
⇤
ji. Because the catalysis and degradation reactions

are duplicated, both matrices A

±
i retain the same structure, but

not necessarily the same parameterisation (similarly for the pair
B

±
1 ). Matrices A

+
i and B

+
1 are populated with the reaction rates

� +
j , and their counterparts A

�
i and B

�
1 with � �

j .

3.1. The dynamics in the natural coordinates are positive and non-
linear

The structure of the dynamics in (15) emerges for any network
built according to Section 2, and several structural properties can
be derived for the class of systems in Definition 3. With v =
Br � 0, and g

{
x

} = �⌘ (Px), the following Lemma 1 shows that
the nonlinear dynamics in their natural coordinates in (15) are
non-negative.

Lemma 1. For a vector function g

{
x

}, if M 2 M, v � 0, and
x (0) > 0, the dynamics ẋ = Mx + x � g

{
x

} + v are non-negative.

Proof. For each component ẋj = [Mx]j + xj [g {
x

}]j + vj. If xj = 0
and 9i6=j : xi > 0, then ẋj = [Mx]j + v � 0 and the trajectory
remains in R+

0 . ⇤

3.2. The positive nonlinear dynamics are unobservable in the I/O
dynamics of the linear representation

The construction of the CRN for the dual-rail representation in
Section 2 relies on Assumption 1 to have an equivalency between
the resulting I/O system of Definition 2 and a linear control
system we wish to represent. The consequences of Assumption 1
on the designed dynamics (15) become clearer in the new rotated
coordinates.
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Definition 4. The rotated coordinates pj = x+
j � x�

j 2 R and
qj = x+

j + x�
j 2 R+

0 result from the similarity transformation W,
where

p

q

�
=


I �I

I I

�
x =


Wp
Wq

�
x = Wx (20)

We also have that W

�1 = 1
2W

T , Wp ((Px) � x) = 0 and
Wq ((Px) � x) = 2

�
x

+ � x

��. The rotated dynamics are then given
by

ṗ

q̇

�
=

R11 R12
R21 R22

�
p

q

�
+


Wp
Wq

�
Br

� ⌘

2


0

q � q � p � p

� (21)

Remark 2. From the structures in Definition 3 and (19) (recall
that a±

1  0), we have that

R22 =
�
A

+
1 + A

�
1 + A

+
2 + A

�
2
�⌧

2
� D

���
a

+
1

�� +
��
a

�
1

�� 

2

R11 =
�
A

+
1 + A

�
1 � A

+
2 � A

�
2
�⌧

2
� D

���
a

+
1

�� +
��
a

�
1

�� 

2

R12 =
�
A

+
1 � A

�
1 � A

+
2 + A

�
2
�⌧

2
� D

���
a

+
1

�� �
��
a

�
1

�� 

2

R21 =
�
A

+
1 � A

�
1 + A

+
2 � A

�
2
�⌧

2
� D

���
a

+
1

�� �
��
a

�
1

�� 

2
The diagonal of R22 is non-positive, given by the average of the
diagonals of A±

1 . Also A

±
j 2 M ) R22 2 M.

Definition 5. Consider the condition of perfectly identical reac-
tion rates from Assumption 1. The nominal matrices (represented
with an upper bar) are defined as A

±
1 = Ā1, A±

2 = Ā2, B±
1 = B̄1.

Proposition 1. For the nominal symmetrical parameterisation in
Definition 5, the nonlinear dynamics are unobservable in the I/O
system, due to the serial structure of the nominal rotated dynamics
given by

ṗ = R̄11p + WpB̄r (22a)

q̇ = R̄22q + WqB̄r + ⌘

2
p � p � ⌘

2
q � q (22b)

Proof. Applying Definition 5 to the matrices in Remark 2, it
follows immediately that R̄12 = R̄21 = 0, R̄11 = Ā1 � Ā2,
R̄22 = Ā1 + Ā2, and thus the serial structure of (22a)–(22b)
(illustrated in Fig. 2) means that p evolves independently of q,
making q unobservable in any output of the I/O dynamics. ⇤

Noting that (22a) corresponds to the dynamics of the I/O
system from Definition 2, we can use W to analyse the inter-
actions between the linear I/O dynamics ṗ and the remaining
internal dynamics q̇, which are nonlinear and non-negative (by
Definition 4, x±

j � 0 ) qj � 0).

Assumption 2. Assume hereafter that the dynamics we wish to
represent result in stable I/O dynamics, and therefore R̄11 2 H
and R̄

�1
11 exists.

4. Equilibria of the chemical reaction network

We now compare the equilibria of the CRN with and with-
out feedback, to analyse how feedback changes the fundamental
properties of the system.

Fig. 2. Interconnection between the I/O dynamics and the underlying positive
dynamics in the rotated coordinates. The dashed connection is absent with the
nominal symmetric parameterisation from Definition 5.

Definition 6. We define a cascaded system as a set of DSD
reactions without feedback, where the catalysis reactions do not
depend directly or indirectly on the chemical species down-
stream.

Cascaded strand displacement reactions are well suited to
systematically build large computational and logic gate circuitry
(Song et al., 2016; Zou et al., 2017). The cascaded structure of the
represented linear system results in a state matrix that can be
permuted such that R̄11 2 L. Under Assumptions 1 and 2, and
from Remark 2, we have R̄11 2 L ) Ā1, Ā2 2 L, and R̄11 2
L,H ) R̄22 2 L,H. For example, representing the open loop of
Fig. 1A without feedback (removing X±

5 ! X±
5 + X⌥

1 in Fig. 1B)
results in a cascade of serial and parallel unimolecular reactions.
In this particular case, it also results in Ā2 = 0, but in general,
we can have Ā2 � 0 if there are subtractions in the cascaded
I/O dynamics. The feedback reactions X±

5 ! X±
5 + X⌥

1 connect
the output to the input of the cascade, and mass is transferred
back into the input of the cascade. Including feedback in the I/O
dynamics leads to feedback within the network, and the cascaded
structure is lost.

Due to the triangular structure, the equilibrium of the un-
forced dynamics can be easily computed sequentially for each
coordinate to show that there is a unique equilibrium at q = 0
for the cascaded systems. In the presence of feedback this is
no longer possible since the states will depend on the output,
and it follows that 9i>j :

⇥
R̄11

⇤
ji > 0. Consequently, all the

states involved in the closed loop become interdependent, and
R̄11 cannot be a lower triangular matrix.

Remark 3. The interdependent evolution of all the states is
reflected in the irreducibility of the state matrix R̄22. If R̄22 2
I,M, for each coordinate j, 9i6=j :

⇥
R̄22

⇤
ji > 0. Therefore the

trajectory of qj always depends on another coordinate qi, making
the network irreducible.

Proposition 2. Consider M 2 I,M such that M = M

⌧ + D

{
m

},
m  0, a scalar k > 0, and the dynamics q̇ = Mq � kq � q

with equilibrium q

⇤. Then we have the following: (i) 9jq⇤
j = 0 )

q⇤
i6=j = 0; (ii) the unforced dynamics may admit a second positive

equilibrium q

⇤ > 0, proportional to k�1.

Proof. From the equilibrium condition for each coordinate j we
take the non-negative roots

kq2j + |mjj|qj �
X

i6=j

mjiqi = 0 (23)

) qj = 1
2k

0

@�|mjj| +
s
m2

jj + 4k
X

i6=j

mjiqi

1

A � 0 (24)

(i) If
P

i6=j mjiqi = 0, then qj = 0, and we disregard the negative
solution qj = �|mjj|/k. Since M 2 I, for every coordinate j,
9l6=j : mjl > 0, and qj = 0 , ql = 0. We also have that for any
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i 6= j : mij > 0, qi = 0 , qj = 0. Hence, if qj = 0 ) 8i6=j, qi = 0,
and we cannot have an equilibrium where only some of the states
are at zero.
(ii) If 9i6=j : mji > 0 and the coordinate i is at a positive
equilibrium q⇤

i6=j > 0, then
P

i6=j mjiq⇤
i > 0. The non-negative

roots for each coordinate j result from solving the system (24).
Note that even if mjj = 0, then q⇤

j > 0. Combining (i) and (ii), if
M 2 I, the system may have a positive equilibrium q

⇤ > 0, which
can be scaled down with k, since limk!1 q⇤

j = 0. ⇤

Example 4. Consider the CRN representation of a linear system
with a single input u and negative feedback between its states x
and y (c2 > 0)

ẋ = �d1x � c
2

y + u, ẏ = �d2y + c1x (25)

with the CRN representation given by
8
>><

>>:

U± 1�! U± + X±, X± d1�! ;, X+ + X� k�! ;
X± c1�! X± + Y±, Y± d2�! ;, Y+ + Y� k�! ;

Y± c2�! Y± + X⌥, U+ + U� k�! ;

(26)

) R̄11 =

�d1 �c2
c1 �d2

�
, R̄22 =


�d1 c2
c1 �d2

�
(27)

Without feedback, c2 = 0, then the system simplifies to a
reducible serial cascade where R̄11 = R̄22 = Ā1 2 L, and the
unforced dynamics q̇ = R̄22q� kq � q have a single non-negative
equilibrium at q = 0. With feedback, c2 > 0 and we can replace
q2 = c�1

2 (kq1 + d1) q1 in the equilibrium conditions for q1 and
obtain the polynomial

k3q41 + 2k2d1q31 +
�
d21 + c2d2

�
kq21

+ c2 (d2d1 � c2c1) q1 = 0
(28)

Using Descartes’ rule of signs, if c2 > d2d1c�1
1 , we have one

positive root and the equilibrium q⇤
1 > 0 exists.

Remark 4. Note that the use of Ā2 to represent negative feedback
in the I/O dynamics in (22a) with R̄11 = Ā1�Ā2, results in positive
feedback in the nonlinear dynamics in (22b) with R̄22 = Ā1 + Ā2

In (27) of Example 4, c2 impacts the spectral radius of R̄11 and
R̄22 differently. From their characteristic polynomials, we have
stable I/O dynamics (R̄11 2 H) for any c2 > 0, but for a sufficiently
high gain c2 > d2d1c�1

1 , we get R̄22 /2 H. Not coincidentally, it is
the same domain for which q

⇤ > 0 exists.

Remark 5. The existence of positive equilibrium conditions for
linear feedback systems has direct consequences for the experi-
mental construction of these circuits. Operating at an equilibrium
corresponding to high concentrations aggravates leaky reactions,
where undesired triggering of strand displacement leads to un-
wanted outputs in the absence of inputs. Furthermore, if q⇤ � 0
with input r = 0, then the reactions persist even if the I/O
dynamics are at rest p = 0, leading to unnecessary, irreversible,
and costly consumption of fuel species. This is in direct contrast
to cascaded systems, where without input to the I/O dynamics,
the CRN is at equilibrium at x = 0, and no reactions occur.

5. Stability

We begin by proving the following lemma, which is applicable
to the unforced dynamics of (15) and (22b).

Lemma 2. If M 2 M,H, and g

{
x

} < 0 for x > 0, then the system
ẋ = Mx+ x � g

{
x

} is globally asymptotically stable (GAS) at x = 0.

Fig. 3. Representing negative feedback with A

±
2 � 0, introduces positive

feedback between positive dynamics A

±
1 2 M.

Proof. From the stability of Metzler matrices (Farina & Rinaldi,
2000), M 2 M,H ) 9

d>0 : M

T
D{d} + D{d}M = �I. We

take the Lyapunov function Vd {
x

} = x

T
D

{
d

}
x > 0, and since

D{d} (x � g

{
x

}) = d � x � g

{
x

} < 0, 8
x>0, we have that V̇d (x) =

�I + 2g {
x

}T (d � x � x) < 0 ⇤

With g

{
x

} = �Px, Lemma 2 ensures that if the network
of catalysis and degradation reactions is stable, A 2 H, the
bimolecular reactions cannot destabilise (15). A stable CRN with
A 2 H can occur if the degradation of each species is faster
than their overall production, and A has a dominant diagonal.
However, this is not the general case. The dynamics without
the bimolecular reactions result in the positive feedback loop
between two positive systems (see Fig. 3). Since we cannot sta-
bilise the non-negative dynamics A

±
1 2 M with non-negative

matrices A±
2 � 0 (De Leenheer & Aeyels, 2001; Roszak & Davison,

2009), it is sufficient to have A

±
1 /2 H to give A /2 H. Even

for the nominal symmetrical parameterisation, the representation
has modes that are not present in the original linear system
⇢
�
R̄

 
= ⇢

�
R̄11

 
[ ⇢

�
R̄22

 
. While this is a problem for IPR with

linear positive systems (Cacace et al., 2012), the presence of the
bimolecular reactions are sometimes sufficient for stabilisation,
even if R̄22 /2 H.

5.1. The I/O dynamics determine the stability for the nominal sym-
metrical case

While at first glance it seems precarious to have unobservable
nonlinear dynamics, for the designed nominal symmetrical case
in Definition 5, it is possible to provide guarantees for stability
and boundedness.

Proposition 3. The cascaded systems from Definition 6 represent-
ing stable I/O dynamics, have GAS unforced nonlinear dynamics, for
x > 0.

Proof. From Remark 2, in cascaded systems R̄11, R̄22 2 L, and
⇢
�
R̄11

 
= ⇢

�
R̄22

 
. If the I/O system is stable, then ↵

�
R̄11

 
=

↵
�
R̄22

 
< 0 and Lemma 2 ensures q̇ = R̄22q � ⌘

2q � q is GAS at
q = 0. ⇤

Remark 6. We can apply Proposition 3 to the representation of
individual linear operations, which by themselves are cascaded
reactions. It results directly that the CRNs for summation, gain,
and subtraction by themselves, have GAS unforced dynamics, and
are bounded for bounded inputs. More importantly, applying it to
CRNs assembled from cascading those linear operations, results in
a single stable equilibrium for the complete circuit.

With the introduction of feedback, we lose the cascaded struc-
ture and create an irreducible system, even for the representation
of stable I/O linear dynamics (R̄11 2 H). If feedback leads to R̄22 /2
H, then the following lemma states that unforced trajectories
diverge away from the origin due to a diverging mode of R̄22.
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Lemma 3. For the dynamics q̇ = Mq� kq � q, with a scalar k > 0,
and M 2 M, I but M /2 H, the equilibrium at the origin q = 0 is
unstable.

Proof. From applying the Frobenius–Perron theorem to Metzler
matrices (Farina & Rinaldi, 2000), M 2 M, I ) 9

wF>0 : wT
FM =

�Fw
T
F and �F = ↵ {

M

}. Defining the Lyapunov function VF (q) =
w

T
Fq, we have that q > 0 ) VF (q) > 0 and V̇F (q) = w

T
F q̇ =

w

T
F (q � (�F1 � kq)). Since M /2 H ) �F > 0, hence 8j, qj < �F

k
gives that V̇F {

q

} > 0, and the system is divergent close to the
origin. ⇤

The IPR of a stable system using only linear positive systems
is therefore not guaranteed to be stable (Cacace et al., 2012).
However, for the nonlinear positive dynamics (22), we can still
ensure boundedness with the following result.

Lemma 4. For M 2 M, q (0) > 0, and a bounded input
v � 0, if g

{
q

}  �kq (scalar k > 0) then the non-negative
trajectories of q̇ = Mq + q � g

{
q

} + v are bounded by kqk2 <

k�1
⇣p

NkMk2 + kvk1kqk�1
2

⌘
.

Proof. Lemma 1 guarantees that the trajectories are non-negative
for q (0) > 0. If M 2 H, Lemma 2 guarantees that the system
is asymptotically stable in R+

0 with equilibrium at q = 0. If
M /2 H, we can still show boundedness, using the linear Lyapunov
function V1 {

q

} = 1

T
q = P

j qj > 0, in the domain q > 0. We then
have

V̇1 {
q

} = 1

T
Mq + 1

T
v + 1

T
D

{
q

}
g

{
q

}
= 1

T
Mq + kvk1 + q

T
g

{
q

}
 kMqk1 + kvk1 � kqT

q


p
NkMk2kqk2 + kvk1 � kkqk2

2

We can always find large enough values of q such that kqk2 >p
N
k kMk2 + 1

k
kvk1
kqk2 where we have V̇1 {

q

} < 0. ⇤

Applying Lemma 4 with g

{
q

} = � ⌘
2q to the unforced dy-

namics in (22b) we have kqk2 < 2⌘�1
p
NkR̄22k2. In general,

Lemma 4 is not applicable to the nonlinear dynamics (15), due
to the matrix P.

Proposition 4. Consider the nominal dynamics in (22a)–(22b),
with the symmetrical parameterisation from Assumption 1. Under
Assumption 2, the I/O dynamics (22a) are stable, and the concentra-
tions in the complete CRN are bounded and can be scaled down with
a faster annihilation reaction rate ⌘.

Proof. Assumption 2 ensures the trajectories of p are bounded.
We can treat p as an additional input to the system (22b) and
apply Lemma 4 with v = WqB̄r+ ⌘

2p�p. The unobserved dynamics
are then bounded for bounded inputs r, p > 0, and are scaled
down by increasing ⌘. ⇤

The same feedback responsible for a stable I/O linear dynamics
can result in R̄22 /2 H (see Remark 4). Designing feedback to
ensure that R̄11, R̄22 2 H is impractical since it would put
constraints on which I/O systems could be represented. It is one of
the challenges of representing stable linear systems relying only
on linear positive systems (Cacace et al., 2012), where we would
need Ā 2 H for the IPR to be stable. Lemma 4 lifts this constraint,
albeit at the cost of a positive equilibrium.

Remark 7. With the introduction of feedback, the concentrations
involved in the irreducible parts of the CRN will have positive

equilibria, and 9j qj(t) > 0 even if r = 0 and the I/O dynamics are
stable ↵

�
R̄11

 
< 0. In experimental practice, this result motivates

setting the annihilation rate ⌘ as high as possible, to minimise the
concentrations in the circuit during operation or at equilibrium.

Remark 8. With Ā1 2 M but Ā1 /2 H, there is no Ā2 � 0 such
that Ā1 + Ā2 2 H (De Leenheer & Aeyels, 2001; Roszak & Davison,
2009). Starting from a marginally stable state matrix ↵

�
Ā1

 
= 0,

the introduction of feedback leads to ↵
�
R̄22

 
� 0. This raises

an interesting tradeoff, where the controllers that introduce in-
tegrators in the loop transfer function (e.g. PI controller) lead to a
positive equilibrium, which is inconvenient for implementation.

6. Stability with asymmetrical parameterisation resulting from

experimental variability

The construction of the I/O dynamics in (22a) assumes the
symmetrical parameterisation in Definition 5, and we have shown
some of the properties intrinsic to the design methods, like pos-
itive equilibria and internal stability conditions. A parametric
scattering of the R̄11 in (22a) is still within Assumption 1, and as
long as the I/O linear dynamics are stable R̄11 2 H, Proposition 4
guarantees that the nonlinear dynamics are bounded.

However, when verifying the implementation of the CRN,
we must account for experimental error and granularity in
the affinities (Zhang et al., 2018), and analyse robustness to
variations in all the reaction rates (Paulino et al., 2019b). Once
we (realistically) allow the reaction rates in the CRN to vary inde-
pendently, we get an asymmetric parameterisation that deviates
from Assumption 1. The consequences of this asymmetry are
clarified in the rotated coordinates: although the I/O dynamics
ṗ are still linear in (21) (Wp (Px � x) = 0), they depend on the
nonlinear dynamics through the term R12q (absent in (22a)), with

ṗ = R11p + WpBr + R12q (29)

Remark 9. With experimental variability, we lose the serial
structure from (22). A stable I/O dynamics R11 2 H no longer
provides guarantees of boundedness, since it ignores the feedback
between the I/O linear dynamics and the underlying nonlinear
dynamics (dashed connection in Fig. 2). Therefore, we need to
analyse the stability of the complete nonlinear dynamics of (15).

We investigate the stability of the nonlinear system using Lya-
punov’s indirect method, and the eigenvalues of the linearisation
at the equilibrium of the system. For an equilibrium x

⇤ > 0, r = 0,
and J

{
x

⇤} = �D

{
Px

⇤} � D

{
x

⇤}
P, the linearisation of (15) results

in

ṡ =
�
A + ⌘J

�
x

⇤ �
s + Bre = Ass + Bre (30)

If ↵ {
As} < 0 then the system is locally exponentially stable

around the equilibrium (Khalil, 2015). The equilibrium x

⇤ = 0 is
stable if and only if A 2 H, which is in agreement with Lemma 2.
With the participation of J {x⇤}, even if A /2 H, the linearisation
can still be stable around the equilibrium x

⇤ > 0, showing the
stabilising role of the bimolecular reactions. It is also noteworthy
that WpJ {x⇤} = 0, hence ↵ {

R11} and the stability of the linear I/O
dynamics does not depend on the equilibrium.

6.1. Stability analysis of an example nucleic acid feedback control
system

We now illustrate the above results for the simplest feedback
control system configuration in Example 3. With the nominal
parameters in Table 1, we have in Table 2 that R̄22 /2 H, and
the origin is unstable (Lemma 3). This is confirmed in Fig. 1C,
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Table 2

Poles with maximum real part, for the I/O and linearised dynamics, for the
nominal and asymmetrical parametrisations.
Matrix M Poles corresponding to ↵ {M} Stability

R̄11 (�6.3741 ± i8.0364) ⇥ 10�4
R̄11 2 H

R̄22 +5.2991 ⇥ 10�4
R̄22 /2 H

Ās �5.1614 ⇥ 10�4
Ās 2 H

R11 (�0.21874 ± i15.031) ⇥ 10�4
R11 2 H

As (+0.27197 ± 15.325i) ⇥ 10�4
As /2 H

Table 3

An asymmetrical parameterisation of Example 3 which results in unstable
dynamics of the CRN.
k±
1 = 0.001064/s, k±

2 = 0.00067/s, k±
0 = 0.00133/s,

� ±
4 = 0.001675/s, � ±

5 = 0.00665/s (k±
P = 0.25188)

� ±
1 = � ±

2 = � �
3 = 0.00665/s, � +

3 = 0.00335/s
� �
6 = � ±

7 = � �
8 = 0.00665/s, � +

6 = � +
8 = 0.00335/s

⌘ = 5 ⇥ 105/M/s

Fig. 4. Trajectories of the concentrations x±
j for the MAK parameterised with

the rates from Table 3 (r = 0).

Fig. 5. Simulation of the rotated dynamics of ṗ and q̇ with decoupled matrix R

where R21 = R12 = 0, for the parameters in Table 3.

where at t > 7 ⇥ 104 s the reference returns to r± = 0 and
the state converges to a positive equilibrium x̄

+⇤ = x̄

�⇤ > 0.
Table 2 shows that the nominal I/O dynamics R̄11 2 H and the
linearisation around the nominal equilibrium Ās 2 H.

Considering experimental variability in the reaction rates leads
to asymmetric parameterisations, and the stability of I/O dynam-
ics does not guarantee stability of the CRN. To account for realistic
levels of experimental variability, we introduce an uncertainty
of ±33% in the reaction rates, which includes the asymmetrical
parameterisation from Table 3. This level of variability reflects
what should be achievable experimentally, since models based on
toehold sequence can predict hybridisation rates within factors
of 2 and 3, and the uncertainty can be further reduced with
experimental parameter fitting and iterative designs of toeholds
and auxiliary species concentrations (Srinivas et al., 2017; Zhang
et al., 2018).

Perturbing the unforced nonlinear dynamics for this case
around its equilibrium (x⇤ > 0, r = 0), results in the unstable

response of Fig. 4. The poles in Table 2 show that the linearisation
with the asymmetrical parameterisation As captures the instabil-
ity in a pair of conjugated poles on the right-half plane, despite
the stability of the I/O linear system R11 2 H. Indeed, integrating
the rotated dynamics with a decoupled matrix R, where we force
R21 = R12 = 0, we obtain the response of Fig. 5, where both p

and q have bounded trajectories. This shows that the source of
the instability of the complete nonlinear system is neither ṗ nor
q̇ individually, and stability must be analysed for the complete
interconnected dynamics.

7. Stability of the controller implementation with DSD reac-

tions

It remains to verify whether the stability properties predicted
from analysing the system’s CRNs are observed when the closed-
loop system is implemented with nucleic acids. The DSD circuitry
is verified in Visual DSD (Lakin, Youssef, Polo, Emmott, & Phillips,
2011), a rapid prototyping tool for precise analysis of reactions
with nucleic acids, via both deterministic and stochastic simu-
lations. Each reaction in (2) is translated to the DSD networks
according to Fig. 8 of Yordanov et al. (2014). For the catalysis (2a),
we use Join/Fork templates (Chen et al., 2013) where

Xi + JoinXi
ci�*)�
cM

JoinX�1
i + Oii (31a)

JoinX�1
i + Ti

cM�*)�
cM

JoinX�2
i + Oij (31b)

JoinX�2
i + Ji

cM�! ; (31c)

Oii + ForkXi
cM�*)�
cM

ForkX�1
i + Xi (31d)

Oij + ForkXj
cM�*)�
cM

ForkX�1
j + Xj (31e)

ForkX�1
i + Fij

cM�! ;, ForkX�1
j + Fij

cM�! ; (31f)

The degradation reaction from (2b) is set with

Xj + Gj
cj�! ; (32)

The annihilation reaction (2c) is translated into

Xi + Li
ci�*)�
cM

Hi + Bi, Xj + Hi
cM�! ; (33a)

Xj + Lj
cM�*)�
cM

Hj + Bj, Xi + Hj
cM�! ; (33b)

The auxiliary species JoinXi, Ti, Ji, ForkXi, ForkXj, Fij, Gj, Li, Bi, Lj
and Bj are all initialised at a large concentration Cmax, to prevent
their consumption from impacting the dynamics significantly
(Soloveichik et al., 2010). With the large Cmax approximation
and buffering cancellation discussed in Soloveichik et al. (2010),
the unimolecular reaction rates in Example 3 are translated into
toehold affinities with: c±

ki = 2k±
i /Cmax, i 2 {0, 1, 2}, and c±

j =
2� ±

j /Cmax, j 2 {1, . . . , 8}. We set Cmax = 104 nM, and with
cM = 2⌘ we get the maximum hybridisation rate for full toehold
binding of cM = 106 (Ms)�1 (Zhang et al., 2018). With the nominal
symmetrical parameterisation we have in Fig. 6 that p5 tracks the
step inputs of r . After 6 ⇥ 104 s, the concentrations converge to
the unforced positive equilibrium (Fig. 6), and Fig. 7 shows that
concentrations of the auxiliary strands Lj in (33) remain around
Cmax = 104 nM but are still depleted even if r± = pj = 0. With the
destabilising parameterisation from Table 3, Fig. 8 shows that the
equivalent DSD reactions are also unstable around its equilibrium,
emphasising the practical relevance of the stability results.

For a low copy number of molecules, we move away from
the assumption of MAK used to represent ODEs with CRNs. More
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Fig. 6. Simulation in Visual DSD of the DSD reactions (31)–(33) for the
symmetrical nominal system, with x (0) = 0 nM and a sequence of steps on
r.

Fig. 7. Concentrations of the auxiliary strands Lj used in (33) for the simulation
in Fig. 6. The positive equilibrium of the CRN results in persistent and irreversible
consumption, even if the I/O dynamics are at rest for t > 7 ⇥ 104 s.

Fig. 8. Simulation in Visual DSD of the DSD network, for the asymmetrical
destabilising parameterisation, with r = 0.

work is needed to generalise our results to a stochastic interpreta-
tion of the CRN programs, e.g. through analysis using the Linear
Noise Approximation of the chemical master equation (Cardelli,
Kwiatkowska, & Laurenti, 2016), which scales better to large
number of species and reactions. Here, we verify stochastically
the results through simulation of the DSD network with Gille-
spie’s algorithm (Gillespie, Hellander, & Petzold, 2013) in Visual
DSD, where we see in Fig. 9 the reference tracking behaviour of
the nominal system, and in Fig. 10 the unstable departure from
equilibrium with the asymmetrical parameterisation of Table 3.

8. Conclusions

Several recent works have applied the dual-rail representation
of CRN’s to obtain linear I/O models of synthetic feedback control
systems, but have not explicitly considered the potential impact
of the underlying nonlinear annihilation reactions in their analy-
sis. This new class of IPR derived from CRNs relies on internally
nonlinear positive dynamics.

We decomposed the dynamics of the CRN’s involved in a
typical linear controller design, and highlighted the effects of

Fig. 9. Stochastic simulations of the DSD network for the nominal parameter-
isation. With low number of molecules and inherent noise, the I/O dynamics
track the reference.

Fig. 10. Stochastic simulations with the destabilising parameterisation result in
a divergent output of the DSD network.

the non-observable and nonlinear dynamics — in particular, we
showed that the stability of these I/O models does not imply the
stability of the underlying chemical network. Under inevitable
experimental variability, stability can be affected by the looped
interconnection between the nonlinear dynamics arising from
biochemical implementation and the linear I/O dynamics result-
ing from the controller designs. We presented an example of this
phenomenon, where the I/O linear system does not capture the
instability of the full nonlinear system, and verified this result
via simulation of the DSD network that would be implemented
experimentally. Our results confirm that the stability of nucleic
acid–based controllers must be analysed using the linearisation of
the complete nonlinear system, and provide a rigorous theoretical
approach for conducting such an analysis.
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