Analysis and extension of a biochemical network model using robust control theory

J.-S. Kim¹, N. V. Valeev², I. Postlethwaite², P. Heslop-Harrison²,³, K.-H. Cho⁴,*† and D. G. Bates²,‡,§

¹Department of Control and Instrumentation Engineering, Seoul National University of Technology, 172 Gongneung 2-dong, Nowon-gu, Seoul 139-743, Korea
²Systems Biology Lab, Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH, U.K.
³Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, U.K.
⁴Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea

SUMMARY

Mathematical models of biological processes which have been observed in vivo to be highly robust to intracellular and environmental variations should themselves display appropriate levels of robustness when analysed in silico. This paper uses techniques from robust control theory to analyse and extend a mathematical model of the interacting proteins underlying adenosine 3′, 5′-cyclic monophosphate (cAMP) oscillations in aggregating Dictyostelium cells. Starting with a previously proposed ‘minimal’ model, we show how robustness analysis using the structured singular value can identify points of structural fragility in the network. By combining these results with insights from recent results from the experimental literature, we show how the original model can be augmented with some important additional modules, comprising networks involving IP₃ and Ca²⁺. By analysing the robustness of our new extended model, we are able to show that dynamic interactions between the different modules play a pivotal role in generating robust cAMP oscillations; thus, significantly improving our understanding of the design principles underlying this complex biological system. Copyright © 2009 John Wiley & Sons, Ltd.

Received 31 March 2009; Revised 10 July 2009; Accepted 20 September 2009

KEY WORDS: robustness analysis; structured singular value; Dictyostelium; systems biology

1. **INTRODUCTION**

Over the last decade of research in the field of Systems Biology, the concept of robustness has emerged as a
key organizing principle of biological systems. One of
the main ways in which many organisms ensure robust
functionality under various chemical, biophysical, and
environmental variations is via feedback control [1–7].
It is thus not surprising that such systems have recently
attracted a great deal of attention from control engineers,
who since the emergence of robust control theory have
developed many powerful techniques for analysing the
robustness of complex systems [8–10]. An important
application of such techniques is to address the problem
of model validation [11, 12]—if a proposed model of a
biological system can be shown to lack the type or level
of robustness demonstrated by the organism in vivo,
then this can indicate that the model requires modifica-
tion or further development to adequately explain the
underlying biological phenomena.

Dictyostelium discoideum are social amoebae that
normally live in forest soil, where they feed on bacteria
[13]. Under conditions of starvation, Dictyostelium
cells begin a programme of development during which
they aggregate to eventually form spores atop a stalk
of vacuolated cells. At the beginning of this process
the amoebae become chemotactically sensitive to
adenosine 3', 5'-cyclic monophosphate (cAMP), and
after about 6 h they acquire competence to relay cAMP
signals. After 8 h, a few pacemaker cells start to emit
cAMP periodically. Surrounding cells move towards
the cAMP source and relay the cAMP signal to more
distant cells. Eventually, the entire population collects
into mound-shaped aggregates containing up to 10^5
cells. The processes involved in cAMP signalling
in Dictyostelium are mediated by a family of cell
surface cAMP receptors (cARs) that act on a specific
heterotrimeric guanine nucleotide-binding proteins
(G protein) to stimulate actin polymerization, activa-
tion of adenylyl cyclase (ACA) and guanylyl cyclase,
and a number of other responses. Most of the compo-
nents of these pathways have mammalian counterparts,
and much effort has been devoted in recent years
to the study of signal transduction mechanisms in
these simple microorganisms, with the eventual aim of
improving understanding of defects in these pathways
which may lead to disease in humans [13–15].

In [13], a mathematical model was proposed for
the network of interacting proteins involved in generating
cAMP oscillations during the early development stage
of Dictyostelium aggregation, and the dynamics of the
model were claimed to be highly robust when subjected
to trial-and-error variations of one kinetic parameter
at a time. More systematic robustness analyses of
this model published in [3, 16], however, revealed a
surprising lack of robustness in the model’s dynamics
to a set of extremely small perturbations in its param-
eter space. Since the cAMP oscillations observed
in vivo are clearly very robust to wide variations in
these parameters, this result could be interpreted as
casting some doubt on the validity of the model. On
the other hand, there is strong experimental evidence to
support each of the stages and interconnections in the
proposed network, and the ‘nominal’ model’s dynamics
show an excellent match to the data. Subsequent
studies showed that both intracellular stochastic noise
and extracellular cell-to-cell synchronization acted to
improve the robustness of the proposed model [17], but
still failed to generate the levels of robustness which
would be expected based on the reported experimental
data. In this paper, we show how an analysis of the
structural robustness of the model, using the approach
of [12], allows us to pinpoint the parts of the network
exhibiting extreme fragility. Informed by recent results
from the experimental literature, we are then able
to extend the model to include additional modules
that interact with the original model at exactly these
fragile points in the network. The resulting dramatic
improvement in robustness of the extended model
clearly reveals the crucial role played by dynamic
interactions between (apparently redundant) calcium
(Ca^{2+}), inositol trisphosphate (IP_3) and G protein-
dependent modules in allowing the maintenance of
stable cAMP oscillations for an individual cell even
in the absence of strong extracellular cAMP waves.

2. STRUCTURAL ROBUSTNESS ANALYSIS OF
A MODEL OF cAMP OSCILLATIONS IN
DICTYOSTELIUM

In this section, we briefly introduce the ‘minimal’ math-
ematical model for the network of proteins underlying
cAMP oscillations in aggregating Dictyostelium cells.
We then show how fragile points in the network may
be identified using tools from robust control theory.
2.1. A mathematical model of cAMP oscillations in Dictyostelium

In [13], a network of interacting proteins was proposed to explain the generation of stable oscillations in cAMP (and a number of other molecular species) during the early stages of Dictyostelium aggregation. The dynamics of this network can be represented using the following set of nonlinear differential equations [13]:

\[
\begin{align*}
\dot{x}_1 &= k_1 x_7 - k_2 x_1 x_2 \\
\dot{x}_2 &= k_3 x_5 - k_4 x_2 \\
\dot{x}_3 &= k_5 x_7 - k_6 x_2 x_3 \\
\dot{x}_4 &= k_7 - k_8 x_3 x_4 \\
\dot{x}_5 &= k_9 x_1 - k_{10} x_4 x_5 \\
\dot{x}_6 &= k_{11} x_1 - k_{12} x_6 \\
\dot{x}_7 &= k_{13} x_6 - k_{14} x_7
\end{align*}
\]

(1)

where \(x_1 \) is ACA, \(x_2 \) is PKA (protein kinase A), \(x_3 \) is ERK2 (mitogen-activated protein kinase), \(x_4 \) is intracellular cAMP phosphodiesterase, \(x_5 \) is internal cAMP, \(x_6 \) is external cAMP, \(x_7 \) is the high-affinity cell surface cAMP receptor CAR1, and \(k_i \) are the kinetic parameters. In the model, pulses of cAMP are produced when ACA is activated after the binding of extracellular cAMP to the surface receptor CAR1. When cAMP accumulates internally, it activates the protein kinase PKA. Ligand-bound CAR1 also activates the MAP kinase ERK2. ERK2 is then inactivated by PKA and no longer inhibits the cAMP phosphodiesterase REG A. A protein phosphatase activates REG A such that REG A can hydrolyse internal cAMP. When REG A hydrolyses the internal cAMP, PKA activity is inhibited by its regulatory subunit, and the activities of both ACA and ERK2 go up. Secreted cAMP diffuses between cells before being degraded by the secreted phosphodiesterase PDE [13, 16].

Details of the kinetic parameters are given in Table I. Figure 1(a) depicts the interactions between the various proteins involved in the network. In the figure, the arrow \(\rightarrow \) indicates activation and \(\rightarrow \) indicates deactivation. As can be seen from the figure, the proposed network comprises a number of interacting positive and negative feedback control loops, which together give rise to stable oscillations, as shown in Figure 1(b). Note that, as discussed in [13], the amplitudes, periods, and phase relations between the different oscillating states of the model match well with the available experimental data.

2.2. Structured singular value \(\mu \)

In this paper, the structured singular value, denoted by \(\mu \), is used to analyse the robustness of the network model described above. The structured singular value [8, 10, 16] is defined as follows:

\[
\frac{1}{\mu} := \min_{\Delta \in B_\Delta} \{ \bar{\sigma}(\Delta) | \det(I - M(j\omega)\Delta) = 0 \}
\]

where \(\bar{\sigma}(\cdot) \) denotes the maximum singular value, \(M(j\omega) \) the transfer function of a linear time invariant system, and \(B_\Delta \) is a set of admissible norm-bounded uncertainties. In standard robust control theory, the structured singular value is usually understood as the smallest possible uncertainty, which makes the system unstable. In this paper, however, the nominal oscillating system has an unstable steady state, and thus \(\mu \) can be interpreted as the smallest perturbation that makes the system stable, i.e. which destroys the oscillation [18].

The unstable steady state of the model (1) is computed as follows:

\[
x^* = (2.4325, 1.6226, 0.8210, 0.9370, 0.9735, 0.3475, 1.7761)
\]

Using this equilibrium point, we can linearize the model as follows:

\[
\Delta \dot{x} = A \Delta x
\]

(2)
Figure 1. Original biochemical network model for cAMP oscillations in *Dictyostelium*. (a) Schematic diagram of the original network model and (b) internal and external cAMP oscillations (arbitrary units).

where $\Delta x = x - x^*$ and the matrix A is the Jacobian of the model (1) computed at the equilibrium x^*. Thus, the linearized model (2) is given as follows:

$$
\Delta \dot{x} =
\begin{bmatrix}
-k_2x_2 & -k_2x_1 & 0 & 0 & 0 & 0 & k_1 \\
0 & -k_4 & 0 & 0 & k_3 & 0 & 0 \\
0 & -k_6x_3 & -k_6x_2 & 0 & 0 & 0 & k_5 \\
0 & 0 & -k_8x_4 & -k_8x_3 & 0 & 0 & 0 \\
k_9 & 0 & 0 & -k_{10}x_5 & -k_{10}x_4 & 0 & 0 \\
k_{11} & 0 & 0 & 0 & 0 & -k_{12} & 0 \\
0 & 0 & 0 & 0 & k_{13} & -k_{14} & 0
\end{bmatrix}
$$

Note that it can be seen easily that the equilibrium is unstable in light of the eigenvalues of the A matrix,
2.3. Identifying fragile channels in the model

In this subsection, we apply the approach proposed in [12] to the model (1) in order to identify the most fragile parts of the model, as described in the next subsection.

where \tilde{A} is a diagonal matrix whose diagonal elements are those of the matrix A. Then, the transfer function of the linearized model (3) from Δu to Δx is given by

$$L(j\omega) = (j\omega I - \tilde{A})^{-1}(A - \tilde{A})$$

Note that the transfer function $L(j\omega)$ is a 7×7 transfer function matrix and that the original interactions are recovered with $\Delta u = \Delta x$ as in Figure 2(a). Figure 3 shows the eigenlocus of the transfer function $L(j\omega)$ with respect to the frequency ω. We can see that the eigenlocus is quite close to the critical point +1. In view of the generalized Nyquist stability criterion and Figure 3, it is clear that a small perturbation could make the eigenlocus move towards and finally encircle the critical point +1, which would correspond to the disappearance of the oscillation. In order to study robustness against such perturbations in a quantitative manner, we consider the perturbed network as shown in Figure 2(b). By looking into the smallest δ_{ij} which changes the stability of the equilibrium from unstable to stable, we can see how the model is robust against dynamic perturbations in the interaction between different components in the network. In particular, we are interested in perturbing interactions between two components in the network for the purpose of finding structurally fragile channels. To this end, we consider a perturbation $\delta_{ij}(j\omega)$ for an element L_{ij} of the transfer function $L(j\omega)$, where $L_{ij}(j\omega)$ denotes the element in the ith row and jth column of the transfer function matrix $L(j\omega)$. Then, the perturbed form of the element $L_{ij}(j\omega)$ in the transfer function $L(j\omega)$ can be written as:

$$L_{p,ij}(j\omega) = L_{ij}(j\omega)(1 + \delta_{ij}(j\omega))$$ (4)

Figure 4 shows the smallest δ_{ij} for each network channel which makes the network stable. Note that we take only existing interactions from Figure 1 into account. In Figure 4, δ_{ij} denotes the influence of the jth component on the ith component. Note in particular the value of δ_{17}, which is extremely small compared with the others. This extremely small stabilizing perturbation indicates a fragile point in the structure of the network [11, 12], and motivates us to investigate whether there are other modules that could be added to the original model between x_1 (ACA) and x_7 (CAR1) to improve the structural robustness of the network.
model at this point. In fact, an analysis of the available data from the experimental literature confirms that the original model neglects important interactions between certain of the proteins in the network and Ca$^{2+}$ and IP$_3$, and that these interactions occur at the most fragile part of the original network, as discussed in the following section.

3. EXTENSION OF THE MODEL

In this section, we briefly describe the extension of the original model based on the robustness analysis results of the previous section and an analysis of the available experimental data on Dictyostelium signalling mechanisms. It has been shown experimentally that the levels of intracellular Ca$^{2+}$ and cAMP in Dictyostelium are tightly interconnected ([19] and references therein). Based on these experimental results, we have considered cAMP production and degradation to be dependent on the level of intracellular Ca$^{2+}$, which in turn is determined by a balance of fluxes into the cytoplasm from extracellular medium and endoplasmic reticulum (ER) and fluxes mostly generated by the membrane pumps compensating Ca$^{2+}$ leaks across the plasma and ER membranes. IP$_3$ is synthesized by the Ca$^{2+}$-dependent and G protein-dependent phospholipase C (PLC). IP$_3$ concentration also has a major impact on the Ca$^{2+}$-dependent IP$_3$ receptor (IP$_3$R) located on the ER membrane. To take account of the above effects, the molecular circuit regulating the production of cAMP oscillations in Dictyostelium has been modelled as three interconnected modules involving intracellular Ca$^{2+}$, IP$_3$, and the G protein-coupled receptor cAR1, as shown in Figure 5. When external cAMP binds to cAR1, the G-protein cascade activates intracellular ACA. Transiently activated cAR1 can also lead to the activation of ACAs via the MAP kinase (ERK2). Intracellular cAMP is produced by ACA and degraded by intracellular phosphodiesterase (RegA). ERK2 is inhibited by cAMP-dependent PKA. Inactivated ERK2 loses its ability to phosphorylate RegA, in turn boosting the level of RegA activity. cAMP release creates an extracellular feedback loop for the cell, and also provides a source of additional cAMP signals for other cells in the vicinity. In addition to diffusion, the external cAMP feedback loop is also diminished by the externalPDE.

The network responsible for Ca$^{2+}$ oscillations in Dictyostelium constitutes two feedback mechanisms. The first feedback loop is based on the movement of Ca$^{2+}$ ions between the ER and cytoplasm. Intracellular Ca$^{2+}$ is sequestered into the ER by sarco/ER Ca$^{2+}$-ATPase. It is released from the ER back into the cytoplasm via the IP$_3$R (which has both a Ca$^{2+}$ and IP$_3$ dependence), as well as by a direct leak through the ER membrane. Another feedback mechanism involves the Ca$^{2+}$ release from the intracellular compartment into the extracellular space by a plasma membrane Ca$^{2+}$ pump (PMCA). PMCA compensates for the constant Ca$^{2+}$ leak throughout the surface of the plasma membrane into the intracellular space. Other routes of Ca$^{2+}$ into the cytoplasm include a range of Ca$^{2+}$ channels, including the stretch-activated Ca$^{2+}$ channels that play a particularly important role in Dictyostelium chemotaxis via the directed migration mechanism. IP$_3$ is produced by the only PLC isoform found in Dictyostelium, which is structurally similar to the mammalian isoform and regulated by both Ca$^{2+}$ and IP$_3$ dependence), as well as by a direct leak through the ER membrane. Another feedback mechanism involves the Ca$^{2+}$ release from the intracellular compartment into the extracellular space by a plasma membrane Ca$^{2+}$ pump (PMCA). PMCA compensates for the constant Ca$^{2+}$ leak throughout the surface of the plasma membrane into the intracellular space. Other routes of Ca$^{2+}$ into the cytoplasm include a range of Ca$^{2+}$ channels, including the stretch-activated Ca$^{2+}$ channels that play a particularly important role in Dictyostelium chemotaxis via the directed migration mechanism. IP$_3$ is produced by the only PLC isoform found in Dictyostelium, which is structurally similar to the mammalian isoform and regulated by both Ca$^{2+}$ and G-protein pathways. IP$_3$ is further converted into IP4 by IP$_3$ kinase (IP$_3$K).

The intracellular Ca$^{2+}$ regulation network described above is directly connected in the extended model with the G protein-coupled pathways included in the original model of Laub and Loomis [13]. Figure 6(a) describes
Figure 5. Details of the extended model.

Figure 6. Extended biochemical network model for cAMP oscillations in Dictyostelium. (a) Schematic diagram of the extended network model and (b) internal and external cAMP oscillations in the extended model (arbitrary units).
the structure of the extended model, which comprises
the following set of nonlinear differential equations:
\[
\frac{dx_1}{dt} = j_{PM}^\text{in} \cdot \left(\psi_i - 0.5 \cdot \ln \left(\frac{\text{Ca}^{2+}_\text{out}}{x_1} \right) \right)
\]
\[- j_{PM} \cdot \frac{x_1}{k_a + x_1} \cdot \frac{\text{CaM}x_1}{k_{\text{CaM}} + \text{CaM}x_1}
\]
\[+ j_{ER}^\text{in} \cdot P_{ER}^2 \cdot x_2 - a_4 \cdot P_{ER}^1 \cdot P_{ER}^2
\]
\[
\frac{dx_2}{dt} = \frac{V_i - V_{ER}}{V_{ER}} \cdot \left(-j_{ER}^\text{in} \cdot P_{ER}^2 \cdot x_2 + a_4 \cdot P_{ER}^1 \cdot P_{ER}^2 \right)
\]
\[
\frac{dx_3}{dt} = \frac{\mu_{\text{PLC}}}{(k_{\text{Ca}^{2+}} + x_1)^4} \cdot \frac{x_1^4}{k_G + x_5} + \mu_{\text{PLC}} \cdot \frac{x_5}{k_G + x_5} + \alpha P - \mu_{\text{IP3}} \cdot \frac{x_3}{k_p + ip^3}
\]
\[
\frac{dx_4}{dt} = D_{x_7} \cdot ACA \cdot -\text{RegA} \cdot \frac{x_4}{k_{\text{RegA}} + x_4} \cdot \frac{k_{ER}}{k_{ER} + x_2}
\]
\[\quad - K_{\text{out}} \cdot \frac{x_4^2}{(k_{\text{AMP}} + x_4)^2} - K_{\text{out}}^2 \cdot \frac{x_1}{k_{\text{Ca}^{2+}} + x_1}
\]
\[
\frac{dx_5}{dt} = K_{\text{out}} \cdot \frac{x_4^2}{(k_{\text{AMP}} + x_4)^2} \cdot (x_4 - x_5)
\]
\[\quad + K_{\text{Ca}^{2+}} \cdot \frac{x_1}{k_{\text{Ca}^{2+}} + x_1} - \text{PDE} \cdot \frac{x_5}{k_{\text{PDE}} + x_5}
\]
\[
\frac{dx_6}{dt} = d_1 \cdot \left(\frac{\text{PKA}}{c_1} \cdot (1 - x_6) - x_6 \right)
\]
\[
\frac{dx_7}{dt} = d_2 \cdot \left(\frac{\text{PKA}}{c_2} \cdot (1 - x_7) - x_7 \right)
\]

where \(x_1\) is \(\text{Ca}^{2+}\), \(x_2\) is \(\text{Ca}^{2+}_{\text{ER}}\), \(x_3\) is \(\text{IP}_3\), \(x_4\) is \(\text{cAMP}_i\), \(x_5\) is \(\text{cAMP}_e\), \(x_6\) is \(\text{ERK}_2\), and \(x_7\) is \(\text{ACA}\). Note that, due to their almost linear dependence on other states, the variables \(\text{PKA}, \text{RegA}, \text{and CAR1}\) in the original model have not been included as independent states in the extended model, but appear implicitly in the equations, in order to keep the complexity of the extended model within manageable levels. Owing
to space limitations, we do not present here a full description of the derivation of the extended model equations given above, or of the meaning of all of the model parameters—the interested reader is referred to [20] for full details of the model and the underlying experimental results. The key point to be noticed about the extended model for our purposes is that, as shown in Figure 6(a), the newly added modules in the extended model are connected at the point of interaction between the states \(x_1\) (ACA) and \(x_7\) (CAR1) in the original model, i.e. at the exact point of fragility in the original network revealed by our structural robustness analysis. As shown in Figure 6(b), the nominal responses of the extended model also generate stable oscillations, and match well with the experimental data. The obvious question that now arises is whether the extended model exhibits improved robustness characteristics when compared with the original ‘minimal’ model—this issue is addressed in the following section.

4. COMPARING THE ROBUSTNESS PROPERTIES OF THE EXTENDED AND ORIGINAL MODELS

In this section, we compare the robustness of the oscillations produced by the original and extended models against variations in a set of parameters that are common to both models. In particular, we are interested in the effects of parametric uncertainty on

![Figure 7. Robustness comparison: existence of stable oscillations.](image-url)
Table II. Robustness test.

<table>
<thead>
<tr>
<th></th>
<th>Original model</th>
<th></th>
<th>Extended model</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Period (min)</td>
<td>Amplitude</td>
<td>Period (min)</td>
<td>Amplitude</td>
</tr>
<tr>
<td>20% perturbation</td>
<td>Mean: 11.12</td>
<td>Mean: 0.62</td>
<td>Mean: 9.09</td>
<td>Mean: 0.63</td>
</tr>
<tr>
<td></td>
<td>STD: 0.50</td>
<td>STD: 0.11</td>
<td>STD: 0.02</td>
<td>STD: 0.09</td>
</tr>
<tr>
<td></td>
<td>100% oscillation</td>
<td></td>
<td>100% oscillation</td>
<td></td>
</tr>
<tr>
<td>40% perturbation</td>
<td>Mean: 11.60</td>
<td>Mean: 0.64</td>
<td>Mean: 9.10</td>
<td>Mean: 0.67</td>
</tr>
<tr>
<td></td>
<td>STD: 0.93</td>
<td>STD: 0.12</td>
<td>STD: 0.05</td>
<td>STD: 0.21</td>
</tr>
<tr>
<td></td>
<td>19.8% no oscillation</td>
<td></td>
<td>100% oscillation</td>
<td></td>
</tr>
<tr>
<td>60% perturbation</td>
<td>Mean: 12.12</td>
<td>Mean: 0.62</td>
<td>Mean: 9.12</td>
<td>Mean: 0.72</td>
</tr>
<tr>
<td></td>
<td>STD: 1.42</td>
<td>STD: 0.13</td>
<td>STD: 0.11</td>
<td>STD: 0.34</td>
</tr>
<tr>
<td></td>
<td>35.8% no oscillation</td>
<td></td>
<td>100% oscillation</td>
<td></td>
</tr>
<tr>
<td>80% perturbation</td>
<td>Mean: 12.08</td>
<td>Mean: 0.62</td>
<td>Mean: 9.26</td>
<td>Mean: 0.73</td>
</tr>
<tr>
<td></td>
<td>STD: 1.38</td>
<td>STD: 0.13</td>
<td>STD: 0.94</td>
<td>STD: 0.45</td>
</tr>
<tr>
<td></td>
<td>51.2% no oscillation</td>
<td></td>
<td>100% oscillation</td>
<td></td>
</tr>
</tbody>
</table>

5. CONCLUSIONS

In this paper we showed how techniques from robust control theory could be used to analyse and extend a mathematical model of the interacting proteins underlying cAMP oscillations in aggregating Dictyostelium cells. Starting with a previously proposed ‘minimal’ model, we showed how robustness analysis using the structured singular value can identify points of structural fragility in the network. By combining these uncertainties in a set of parameters that determine the dynamics of the extracellular cAMP positive feedback loop in both models—these are k_9, k_{10}, k_{11}, and k_{12} in the original model and D_{ACA}, RegA_i, $K_{\text{out}}^{\text{cAMP}}$, and PDE_e in the extended model. To compare the robustness of the two models we carry out 1000 Monte Carlo simulations for a number of different uncertainty levels, in which the sample value for each parameter is drawn from the set:

$$p = \bar{p}(1 + \epsilon \cdot \delta)$$

where p denotes the sampled value of the parameter used in the simulation, \bar{p} is the nominal value of the parameter, ϵ is the maximal level of the perturbation (chosen as 0.2, 0.4, 0.6, and 0.8 in the various Monte Carlo simulation campaigns), and δ is a uniformly distributed random number between -1 and 1. Figure 7 shows that the percentage of simulations producing stable oscillations falls dramatically for the original model as the maximum allowable level of uncertainty in the kinetic parameters is increased. For the extended model, however, 100% of the simulations produce stable oscillations even for the highest level of uncertainty, demonstrating a dramatic improvement in the robustness of the model. In Table II, the effect of the uncertainty on the period and amplitude of the oscillations is reported for each model. The standard deviation of the periods for each different level of uncertainty is approximately an order of magnitude smaller in the case of the extended model, even though the standard deviation is calculated only for the cells displaying stable oscillations in each case. Note also that although the standard deviations of the amplitudes appear to be similar for both models, in reality there is a much greater level of variation in the amplitudes of the original model. This is because the standard deviations are calculated only for those cells displaying stable oscillations in each case, and it is precisely those cells that are no longer generating stable cAMP oscillations which have the largest deviation from the nominal amplitude values.
results with insights from recent results from the experimental literature, we showed how the original model can be augmented with some important additional modules, comprising networks involving IP3 and Ca2+, which interact with the original model at precisely the points of fragility identified via our initial robustness analysis. A comparative analysis of the two models revealed dramatic improvements in robustness against uncertainty in a set of parameters common to both networks, thus confirming the key role of dynamic interactions between the different modules in generating robust cAMP oscillations. The results of our study highlight the usefulness of robustness analysis techniques in validating and improving mathematical models of biochemical networks.

ACKNOWLEDGEMENTS

This work was supported by BBSRC research grant BB/D015340/1. This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Ministry of Education, Science & Technology (MEST) through the BRL (Basic Research Laboratory) grant (2009-0086964), the Systems Biology grant (20090065567), the Nuclear Research grant (M20708000001-07B0800-00110), the 21C Frontier Microbial Genomics and Application Center Program (Grant MG08-0205-4-0), and the WCU grant (R32-2008-000-10218-0). This work was also supported by the ‘Systems Biology infrastructure establishment grant’ provided by Gwangju Institute of Science & Technology in 2009.

REFERENCES