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Abstract Computer simulation offers a fresh approach to traditional medical research that is
particularly well suited to investigating issues related to mechanical ventilation.
Patients receiving mechanical ventilation are routinely monitored in great detail,
providing extensive high-quality data-streams for model design and configuration.
Models based on such data can incorporate very complex system dynamics that can be
validated against patient responses for use as investigational surrogates. Crucially,
simulation offers the potential to “look inside” the patient, allowing unimpeded access
to all variables of interest. In contrast to trials on both animal models and human
patients, in silico models are completely configurable and reproducible; for example,
different ventilator settings can be applied to an identical virtual patient, or the same
settings applied to different patients, to understand their mode of action and
quantitatively compare their effectiveness. Here, we review progress on the mathe-
matical modeling and computer simulation of human anatomy, physiology, and
pathophysiology in the context of mechanical ventilation, with an emphasis on the
clinical applications of this approach in various disease states. We present new results
highlighting the link between model complexity and predictive capability, using data
on the responses of individual patients with acute respiratory distress syndrome to
changes in multiple ventilator settings. The current limitations and potential of in silico
modeling are discussed from a clinical perspective, and future challenges and research
directions highlighted.
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“All models are wrong, some are useful”—George Box1

A model can be most generally defined as any simplified
version of reality2 resulting in a representation of real-life
form and function.3 Models can take many forms—physical,
conceptual, verbal, mathematical, etc.—and they are often
implicitly used in standard medical research; for example,
studies that examine a relationship between surrogate and
clinical outcomes rely on an underlying model that relates
the two. For the purpose of this article, a “model”will refer to
a mathematical or geometric description of physiological
processes and anatomical organization.4

A detailed discussion of the possible approaches to the
development and implementation of mathematical models
is beyond the scope of this article, but in the most general
sense, twodifferent approaches can be taken.2 Thefirst, often
described as a “black box” approach, derives a quantitative
description of a physiological system based solely on data
(typically inputs applied to the system and outputs collected
from measurements). These data-driven models are gener-
ally most appropriate where there is a lack of knowledge
concerning the underlying physiology. The second approach,
which we focus on here, involves mechanistically modeling
the system by explicitly describing the underlying physiolo-
gy usingmathematical equations.5 Amajor advantage of this
approach is that the resultingmodel can providemechanistic
insights6 into why, and how, a particular intervention or
treatment can provide benefit.7

Seeking to gain new understanding of a system as com-
plex as the respiratory system using traditional experimen-
tal approaches is extremely challenging.8 An ideal approach
would allow for the simplification of some confounding
heterogeneity, while retaining an ability tomonitor clinically
meaningful outcomes, or their surrogate markers. Mathe-
matical models that can be implemented on computers to
produce virtual replicas of individual patients9 could provide
an important new tool for clinical research, allowing the
possibility of rapid hypothesis testing,10 without any ethical
or patient-safety concerns.

However, the respiratory system represents a substantial
challenge for physiological modeling, due to its inherent
complexity, and to the continuing difficulty in “looking
inside” the lung. During the process of breathing, there are
numerous mechanical and physical forces acting on the
organ system at several levels of complexity and resolu-
tion.11 The earliest attempts at a simple mathematical de-
scription of the respiratory system are over 70 years old.12,13

The earliest in silico implementations of respiratory system
models on digital computers date to over 50 years ago14,15

and work in this area has continued to expand in scope and
complexity,16,17 with recent efforts focusing on developing
highly integrated representations of the respiratory and
cardiovascular systems.18–20 Although the term in silico is
not rigorously defined, it can be placed within the context in
which experimentation and research into the human body
take place within a triad of in vivo (within or utilizing the
living organism), in vitro (outside the organism), or in silico
(using computer simulations).21 Thus, in silico refers to the

use of computer software to simulate, monitor, and experi-
ment with physiological processes for the purposes of medi-
cal research.

In Silico Modeling in the Context of
Mechanical Ventilation

Mechanical ventilation (MV) is used extensively in critical
illness, and recent epidemiological work has indicated that
the incidence of MV for non-surgical reasons in the United
States was over 300 persons per million of the adult popula-
tion.22 The need for MV increased dramatically beyond this
level during the COVID-19 pandemic.23 One challenge in
conducting research among critically ill patients
receiving MV is the heterogeneous nature and severity of
their pathologies. Whether due to the syndromic nature of
critical illness,24 or the interaction between therapy and
context within an individual patient,25 the results and
meaning of randomized controlled trials (RCTs) are often
unclear.26 Relatively few RCTs into novel MV strategies have
shown beneficial impact of the intervention on the survival
of patients.27 Many methodological problems compound
research in this setting, and the majority of important
achievements that have improved mortality are the results
of improvements in recognizing deteriorations in patients
and avoiding iatrogenic harm.28

A significant body of research exists in which various
approaches have been applied tomodeling the geometry and
physiological behavior of the respiratory system under MV,
especially within the engineering literature.13,29 The precise
details of these approaches vary widely in terms of approach
and complexity, and results exhibit varying degrees of clini-
cal relevance. In the following, we focus on work which has
demonstrated direct clinical applicability and insight, iden-
tifying key themes and areas of relevance.

Acute Respiratory Distress Syndrome

One of the most important areas for the clinical application
of MV is for respiratory support in patients with acute
respiratory distress syndrome (ARDS), which affects around
10% of patients admitted to intensive care units (ICUs), and
25% of patients who require MV.30 In silico modeling has
yielded important insights into several areas relating to the
pathophysiology and ventilatory management of this
condition.

Modeling ARDS Pathophysiology
There have been several attempts to accurately model key
pathophysiology involved in ARDS. One successful approach
has resulted in the ability to recreate not just the behavior of
the respiratory system under MV but also interactions with
the cardiovascular system, to successfully replicate individ-
ual patients with ARDS.31 A contrasting, more simplified,
approach is the development and validation of a physiologi-
cally relevant respiratory model that captures compliance
and resistance within a single compartment lung model.32

Another study utilized a hybrid approach combining
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computational modeling with real-time electrical imped-
ance tomography to predict global and local ventilatory
quantities for a given patient with ARDS.33 Another model
investigated the effect of severe injury on how compliance
changes with more severe injury, giving mechanistic insight
into how the “volume history” of the injured lung affects the
tendency for de-recruitment in ARDS.34 Other integrated
models of cardiopulmonary physiology have been devel-
oped, but focus was on their ability to replicate and respond
to hypoxia and hypercapnia data in healthy patients, rather
than the ability to simulate individual ARDS patients.19

Computational fluid dynamics has also been a promising
approach to simulate pulmonary pathophysiology.35,36

Diagnosing ARDS
The utility of modeling to assist with the diagnosis of ARDS
has also been examined. It is known that ARDS is under-
recognized based on standard diagnostic criteria,30 and
recent expert opinion has added to the debate around
whether the current diagnostic criteria for ARDS is indeed
sufficient to encompass such a heterogeneous range of
pathophysiology.37 One study found that using a simple
ARDS model led to reclassification of disease in approxi-
mately 30% of cases.38 There is clearly a large potential for in
silico modeling to contribute to deeper phenotypic and
mechanistic insight in this complex and heterogeneous
condition.

Optimizing Mechanical Ventilation
Research into optimization of MV in ARDS has been a
particularly fruitful area for in silico modeling. This includes
insight into the titration of positive end-expiratory pressure
(PEEP), the avoidance of ventilator-induced lung injury
(VILI), evaluation of recruitment maneuvers, and the calcu-
lation and integration of patient factors (such as spontaneous
breathing effort and age) when considering MV settings.

The titration of PEEP is traditionally performed using
standardized protocols based on previous RCTs,39 often
incorporating a mix of clinician experience. Mathematical
modeling has yielded important insights regarding the opti-
mization of PEEP. For example, modeling work in which
optimal PEEP was determined using a detailed interrogation
of elastance suggested that PEEP was often set at a level
below the optimum for patients.40 In contrast with this, the
potential for an inappropriately high PEEP to paradoxically
lead to decreased oxygen delivery to tissues has also been
elucidated usingmodeling.41Detailedmodels have also been
developed that can predict mechanical responses to altered
PEEP,42 and a desktop application named CURE Soft has been
developed which can be used for real-time optimization
of MV (in particular PEEP).43 A single center RCT comparing
the use of this systemwith the standard therapy is currently
underway.44

VILI refers to the phenomenonwhereby lung tissue can be
injured when the ventilator delivers breaths that are too
large (volutrauma), pressures that are too great (barotrau-
ma), or repeated cycles of alveolar collapse and reopening
(atelectasis). The primary goal of MV is now recognized as

managing the balance between achieving effective oxygen-
ation of the patient while avoiding VILI in heterogeneous,
injured lung tissue.45 It is not possible to measure the
occurrence of VILI directly, but surrogate markers such as
the driving pressure and mechanical power delivered to the
lung, and thresholds of elastance have been proposed.
Modeling has provided insights into the mechanistic basis
of RCT-derived associations between VILI indicators such as
driving pressure and mortality,46 and allowed different VILI
indicators to be compared in terms of their suitability as
“targets” for maximally protective ventilation.47 Stochastic
modeling has been used to create patient-specific models to
predict future elastance ranges for a patient, yielding a range
for minute volume that will minimize VILI,48 though further
clinical testing is needed toverify this approach. The problem
of minimizing VILI while adequately oxygenating a patient
can be framed as an “optimization problem,” in which values
known to represent harm are given to the computational
model as clear boundaries within which a solution repre-
senting safe ventilation is found. Using this approach, it is
indeed possible to simulate individual patient physiology
and determine safe limits.29,49 In silico modeling has also
been used to examine the molecular level changes that take
place during the poorly understood mechanisms that under-
lie VILI,50 opening up the possibility for new avenues to
treatment and prevention.

Recruitment maneuvers (RMs), in which various ventila-
tion protocols are used to re-inflate lung tissue that has
collapsed (or has become “derecruited”) constitute another
important area for the application of modeling in ARDS
research, with much debate still surrounding best clinical
practice in this area.51 In silico work has allowed direct
quantitative comparisons of RMs on the virtual patients
with differing severities of ARDS, suggesting that patients
with severe ARDS are likely to gain greater benefit from RMs
than patients with mild or moderate disease,52 indicating
that short-term protective changes in cardiac output may be
warranted pre-emptively, and identifying thresholds of PEEP
to achieve and sustain recruitment.53 Other studies have
predicted lung mechanics during RMs in volume and pres-
sure control modes,54,55 suggesting that RMs can behave
unpredictably due to multiple stability states within the
injured lung,56 and showing how titration of airway pres-
sures based on variations in intra-tidal mechanics may
mitigate processes associated with injury due to derecruit-
ment.57 Airway network models has allowed the examina-
tion of stresses within different portions of lung tissue,
identifying areas most at risk of injury during RMs.58

Another important aspect of optimizing MV in ARDS
involves taking account of patient specific factors and how
they can alter what constitutes ideal therapy. For example, a
detailedmodel of the geometry of the respiratory system has
been designed to reflect known changes consistent with
aging.59 Simulation of respiratory mechanics and lung func-
tion under different aging conditions outlined the dynamic
deterioration of lung function due to aging, illustrating the
importance of taking account of the effects of aging when
subjecting older patients to MV. Considering the
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spontaneous effort of breathing that can be executed by the
ventilated patient is another critical issue in ensuring pro-
tective ventilation. Simulations using a “Gaussian Effort
Model” have been used successfully to illuminate the inter-
actions between a ventilator and the breathing patient.60

Taking into account patient resistance and elastance with
each breath has also been shown to be possible, improving
the estimation of respiratorymechanics, providing clinicians
with measurements that can assist therapeutic optimisa-
tion.61 Other work in this area has shown clear potential to
improve fully and partially assisted modes of MV.62,63

In silico modeling offers a safe environment in which to
compare the effects and potential of novel and different
modes of ventilation. For example, work has shown that
moderately high-frequency ventilation could allow safe re-
duction of tidal volumes and airway pressures in ARDS
patients,64 but also illustrates mechanisms by which injury
can be induced when these frequencies become too high and
interact with innate physical properties of lung tissue.65

Pediatric and Neonatal Mechanical Ventilation
Research into the use of modeling to investigate MV strate-
gies in pediatric and neonatal ARDS patients is significantly
lesswell advanced than in adults. A simple simulator that can
represent pediatric patients was presented in Flechelles
et al,66 but this model has not yet been validated against
patient data and is restricted to patients greater than 7 years
old. A detailed simulator of cardiopulmonary ARDS patho-
physiology has been adapted to match data from a large
cohort of pediatric ARDS patients aged between 1month and
18 years of age,67 and was used to analyze potential strate-
gies for achieving more protective ventilation.47

The extremely small volumes of neonates’ lungs, aswell as
their large respiratory and vascular resistances make simu-
lating the neonatal respiratory system challenging. Physio-
logical features such as lung volume, cardiac output, oxygen
consumption, and airway resistance areweight dependent in
neonates, and some parameters such as pulmonary vascular
resistance are highly variable during the first hours of life.
Initial work on the development of the first simulator for
mechanically ventilated neonates was presented in.68

Weaning from Mechanical Ventilation
The way in which ARDS patients are weaned from MV is
increasingly being recognized as a crucial part of their
treatment. Research seems to support the use of standard-
ized protocols, but the heterogeneity of patientswithin some
studies highlights the need for cautionwhen considering any
particular example,69 and multiple metanalyses of the con-
duct of spontaneous breathing trials show that neither the
use of a method involving a T-piece nor pressure support
demonstrates a clear benefit.70,71

This marks an important area where in silico simulation
may be able to offer insight. A single-center RCT is currently
underway inwhich amodel-based decision support tool will
be used to guide weaning compared with standard care (the
iCareWean trial). The system used is based on a set of
physiological models including models of pulmonary gas

exchange, acid–base chemistry, lung mechanics, and respi-
ratory drive.72

COVID-19 ARDS
The debate about apparent phenotypes of COVID-19 patients
during the global pandemic offered an opportunity for in
silico testing to investigate the pathophysiology of this
disease. This work involved adapting a previously validated
computational simulator of standard ARDS to develop quan-
titative insights into the key pathophysiologic differences
between the COVID-19ARDS against conventional ARDS, and
to assess the impact of different PEEP, fraction of inhaled
oxygen (FiO2), and tidal volume settings.73 This work found
that introducing disruption of alveolar gas-exchange due to
the effects of pneumonitis and increased microthrombi-
related vascular resistance, produced levels of ventilation
perfusion mismatch and hypoxemia consistent with data
from COVID-19 ARDS patients. In addition, the model sug-
gested that the use of standard PEEP/FiO2 tables39 and high
PEEP strategies could be harmful in some early-stage COVID-
19 ARDS patients.

In response to equipment shortages, many institutions
explored the development of a shared ventilation strategy in
which a single ventilator could be used to ventilate multiple
patients simultaneously.74 Given the enormous ethical com-
plexity involved in testing or implementing such an ap-
proach, in silico testing offered an ideal environment in
which to explore the approach. A group was able to use
simulation to provide proof-of-concept for an algorithm to
better match patients in different hypothetical scenarios of a
single shared ventilator using ARDSNet protocols and analy-
sis of lung mechanics.75

Other Mechanical Ventilation Contexts

MV is employed in a variety of other contexts, many of which
are amenable to research using mathematical modeling.
Research has shown that the pathophysiology of mechani-
cally ventilated patientswith chronic obstructive pulmonary
disease (COPD) can be simulated with accuracy and indeed
replicas of individual patients can be created using optimi-
zation algorithms and high-performance computation.76

Using this approach, MV settings that successfully managed
the trade-off between ensuring adequate gas exchange and
minimizing the risk of VILI for COPD patients were investi-
gated. A different large-scale collaborative project is also
seeking to address the complexity involved in accurately
modeling the multiscale challenges associated with obstruc-
tive pathologies such as asthma and COPD.8

An innovative use for mathematical modeling has been in
the realm of simulating MV strategies for patients with
injury to the lung secondary to explosive blast forces.
Primary blast lung injury (PBLI) caused by exposure to
high-intensity pressure waves is associated with injury to
parenchymal tissue and marked ventilation-perfusion mis-
match. A mathematical model of PBLI was used to examine
how the heterogeneity of resultant damaged tissue affects
gas flow and forces within the parenchyma.77 Another
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study has been able to accurately simulate the pathophysi-
ology involved in PBLI,78 and used this approach to test
different MV strategies, concluding that airway pressure
release ventilation represented a potentially useful ap-
proach in this patient group.79

Other work has used integrated cardiopulmonary model-
ing to assess how therapies that mechanically support the
cardiovascular system interact with MV, and the implica-
tions of these interactions. One study analyzed the effect of
the interaction between MV and cardiac output when a
biventricular pacemaker is used, and gives insight into the
clinical implications of this interaction.80 Other work has
explored the effects of similar interactions when an intra-
aortic balloon pump is used.81

Finally, models that incorporate virtual geometries de-
rived from computed tomography (CT) images of patients
have been used to investigate “noisy ventilation,” in which
the patient receives variable tidal volumes, opening up the
possibility of optimizing ventilation for patients who are not
critically ill, but are being ventilated as an adjunct to other
therapies such as surgical intervention.82

Education and Training

Education to enable understanding of the principles and
practice of safe MV is an important area for providers and
professionals in training. Unfortunately, best principles and
evidence-based practice are often not provided,30 for a
variety of reasons.83 The potential for computational models
to illustrate physiological principles and act as educational
tools has been apparent for at least 50 years.84 In silico
simulation offers an effective alternative to didactic and
passive teaching strategies, as complex physiological simu-
lations offer the chance to demonstrate the physiological
response of a virtual patient, or an isolated portion of their
physiology, to a variety of interventions.85 This can be done
rapidly, repeatedly, remotely, and at no risk to real patients.
As such, it is unsurprising to see the increasing deployment
of in silicomodels in this area.86 For example, a recent study
proposed the use of a lumped parameter model, CARDIOSIM,
for educational purposes87 in which the system can demon-
strate the physiology involved in MV88 and simulate the
interaction between MV and devices that support the func-
tioning of the cardiovascular system.89 Systems that can
illustrate the safe principles of MV have been proposed to
help enable understanding of the effects of pre-existing
disease on therapeutic management.90 Attempts have been
made to create open online resources,91 though not all these
are functional.92One system that is functional and is in use in
various contexts is the Pulse Physiology Engine, an open-
source software application designed to enable accurate and
consistent real-time simulations for improvedmedical train-
ing and clinical decision-making.93 Its open-source nature
allows for ease of expansion94 into many areas. This mathe-
matical model can also be deployed in high fidelitymanikins,
and small trials comparing the use of manikins versus
screen-based simulation have suggested the former ap-
proach produces superior outcomes.95

Challenges for In Silico Modeling of
Mechanical Ventilation

Despite the many innovations and potential applications of
this approach, the integration of mathematical modeling, in
all its various forms, into clinical practice still presents some
serious challenges. Clearly, one of the main challenges mov-
ing forward ismoving in silicomodeling froma placewhere it
can describe events towhere it can inform interventions that
shape events. At an institutional level, there exists a discon-
nect or unfamiliarity between engineering-focused model-
ers and patient-facing clinicians, which can hinder the
integration of complex models into clinical practice.10

The search for clinically meaningful outcomes is not
straightforward, especially within the realm of critically ill
patients, and traditional clinical research in the ICU environ-
ment is fraught with challenges. In silico modeling offers a
potential way to sidestep some of these challenges and
provide an alternative pathway to clinical innovation. How-
ever, the cornerstone and gold standard of evidence-based
medicine remains the randomized control trial. This
presents an apparent “Catch-22” situation, in which in silico
modeling is used to work around inevitable challenges to
performing RCTs, yet confirmation of the predictions of the in
silico model in a RCT is ultimately necessary to convince
clinicians of the benefit of the approach.69,96 One way to
resolve this paradox is to conceptualizemodeling as a tool for
designing “better” (i.e., more likely to be successful) RCTs, via
for example patient stratification in highly heterogeneous
cohorts, rapid initial comparison of different potential inter-
ventions on in silico patient cohorts, “screening,” and remov-
al of interventions that are unlikely to be successful, etc.

An inescapable reality of any modeling approach is that
some amount of simplification is involved in the representa-
tion of the underlying reality. This emphasizes the importance
of asking models the right question in the right context, but
also highlights a limitation; studies performed using mathe-
matical and computational modeling cannot be configured to
match real human subjects exactly.97–99 The challenge is
therefore to find models which are complex enough to ade-
quately describe and predict the pathophysiological aspects of
the patient’s condition in which the clinician is interested. In
the context of MV, a key requirement for clinically applicable
models is obviously that theycan accurately predict the effects
of changing ventilator settings on the patient.

To illustrate the link between model complexity and
predictive capability, we present here some new results
validating the capability of the cardiopulmonary simulator
described in previous publications18,31,41,46,47,52,53,64,100 to
match and predict the responses of individual ARDS patients
to changes in MV settings (►Fig. 1) for a schematic of this
model. Data previously collected from six mechanically
ventilated patients (Draeger Evita, BiPAP) from the ICU at
the Royal Hallamshire Hospital in the United Kingdom were
used for this study.35All the patients had a primary diagnosis
of ARDS, characterized by reduced functional residual capac-
ity, reduced arterial oxygen, and reduced lung compliance,
and had no history of asthma or other chronic lung disorders.
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All patients were fully sedated, were stable on the ventilator,
and were undergoing the standard invasive monitoring
procedures for that ICU. Four ventilator parameters were
available for changes: inspiratory pressure (Pinsp), end expi-
ratory pressure (PEEP), the ratio of inspiratory to expiratory
time (Ti:Te), and the fraction of inspired oxygen (FiO2).
Ventilator settingswere changed one at a time, andmeasure-
ments of the patient’s hemodynamic, respiratory, and blood
gas variables were taken before and after each change. This
yielded a database of 26 pairs of data points (initial ventilator
settings and patient measurements at time T0 and subse-
quent ventilator settings and patient measurements at time
T1), collated from six patients (►Table 1).

To test the capability of the simulator to predict the
patients’ responses to changes in ventilator settings, for
each pair of data points the simulator was first matched to
the data at time T0, using advanced global optimization
algorithms. In this process, ventilator settings in the simula-
tor were fixed to match those recorded at T0. The optimiza-
tion algorithm then tries tominimize the difference between
the patient measurementsmade at T0 and the corresponding
outputs of the simulator. This is achieved by iteratively
adjusting, within physiologically reasonable ranges, the fol-
lowing model parameters: extrinsic pressure, alveolar stiff-
ness, threshold opening pressures, pulmonary vascular
resistance, and bronchial resistance, for each of the 100
independent alveolar compartments in the model, as well
as values for respiratory quotient, oxygen consumption,
hemoglobin concentration, volume of anatomical dead

space, upper airway resistance, and anatomical shunt.
Once the simulator parameters that give the closest match
to the patient data at time T0 are found, all model parameters
are fixed, and the relevant ventilator setting in the simulator
is changed to that recorded in the data at time T1. Predicted
values of PaO2 and PaCO2 produced by the simulator are then
compared with those from the patient measurements made
at time T1.

As shown in►Table 1, for the vast majority of the 26 pairs
of data points the simulator can both accurately match the
patient data at time T0 and predict the patient’s responses to
the change in ventilator setting recorded at time T1, with low
mean absolute percentage errors between simulator outputs
and patient data being recorded for both PaO2 and PaCO2. To
investigate the link between model complexity and predic-
tive capability, we repeated the matching process whilst
reducing the number of independent alveolar compartments
in the model from 100 to 50, 25 and 10. The impact on the
accuracy of the model’s predictions is shown in ►Fig. 2—

reducing the complexity of the model produces a steep
decline in its predictive capability. To quote a famous scien-
tist, “It can scarcely be denied that the supreme goal of all
theory is to make the irreducible basic elements as simple
and as few as possible without having to surrender the
adequate representation of a single datum of experience.101”

Future Research Directions

Sir Cyril Chantler stated that “Medicine used to be simple,
ineffective, and relatively safe. Now it is complex, effective,
and potentially dangerous.”102 The intensive care environ-
ment is an especially notable example of a highly complex
environment, wherein many systems (from the cellular to
the institutional) react and interact across multiple hierar-
chies. This complexity makes in silico approaches particular-
ly useful to evaluate new treatment strategies, inform
decision making, monitor responses, and aid training. In
the context of MV, two distinct directions for future clinical
applications can be identified—models to guide real-time
decision support (or to assist in the development of fully
automated) systems, and models for use as research tools.

In Silico Models for Patient Management
Currently, management of patients on MVs is largely based
on protocols derived from large-scale clinical trials, with
ventilator settings periodically adjusted by clinicians whose
workloads are increasingly unsustainable. Truly personal-
ized treatment requires rapid and frequent interventions
based on changes in the patient’s state that are often not
achievable within current ICU constraints—a recent study
found that important targets for oxygen saturation in me-
chanically ventilated neonates were being achieved only 40%
of the time.103 Computerized decision support systems, or
fully automated “closed-loop” ventilation systems, could
potentially reduce clinician workload while providing
patients with more rapid personalized interventions—in
silico models will form the core of both.

Fig. 1 Diagrammatic representation of the ICSM cardiopulmonary
simulator.
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Early proposals for decision support systems (DSS) relied
heavily on rule-based clinical heuristics,104,105 but more
modern systems have begun to integrate in silico models to
drive decisions.72,98,106 In a recent study, a DSS retrospec-
tively evaluated treatment in 16 intensive care patient cases,
with physiological models fitted to the retrospective data
and then used to simulate patient response to changes in
therapy.107 Compared with the baseline ventilator settings
set as part of routine clinical care, the system suggested
lower tidal volumes and inspired oxygen fraction, but higher
frequency. Another study retrospectively examined the abil-
ity of a model driven DSS to advise on pressure support (PS)
levels in a critically ill patient. The system advised on low
values of PS while acting to preserve respiratory muscle
function and preventing passive lung inflation. It also mini-
mized FIO2maintaining SpO2 at safe and beneficial values.108

A protocol has recently been published for a multicenter RCT
to compare MV in ARDS patients following use of this DSS to
that of standard routine care, with the primary outcome
defined as a reduction in driving pressure across all severities
and phases of ARDS.109 A key requirement for the models
employed in all such systems is the ability to run in real-time
on standard low-cost computing platforms. Managing the
trade-off between the resulting limitations on model com-
plexity and its predictive capability will be a key challenge
for future development of such systems. It also seems likely
that such systemswill increasingly be challenged byartificial
intelligence-based algorithms leveraging large-scale data
analytics rather than mechanistic models.110

Although both DSS and fully automated ventilator control
systems have clear potential for improving the care of
critically ill patients, an under-researched question concerns
how they should be best deployed in the ICU environment.
For example, should they be deployed using standalone
“apps” that can even run on a standard tablet, or remotely
access high-performance computing platforms via a bedside

laptop, or be integrated into next-generation ventilators? A
related question concerns how their outputs can be most
effectively communicated to clinicians, to avoid generating
yet more numbers in an already crowded sea of information,
or more alarms or guidance notifications that risk being
ignored in favor of familiarity.

In Silico Models as Research Tools
Within the realm of medical research, in silico models are
now increasingly recognized as having huge potential to
facilitate the difficult, time-consuming and costly work of
designing large real-world RCTs in critical care.21 Themodels
available nowenable us to create replicas of real patients that
have been proven to behave as expected, raising the inter-
esting possibility of generating a “biobank” of virtual
patients who can be utilized for virtual trials. Data-only
systems like this exist,111 although they are not tied to any
specific model. Biobanks of in silico patients based on
validated models100 could radically improve the design of
RCTs by allowing for more exact patient stratification, and
providing initial results on the likely effects of novel treat-
ments that could be used to optimize trial protocols and
reduce the likelihood of negative outcomes. The potential for
studies based on in silico models to inform treatment is also
being increasingly recognized in areas of medicine where it
is essentially impossible to carry out RCTs, such as emergen-
cy medicine and responses to mass casualty events.112

Beyond the realm of RCTs, the use of in silico models in
preclinical research intoMVwill continue to expand, as such
models begin to match or surpass the clinical relevance of
animal or in vitro models. An important factor to consider
here is the inevitable continuous improvement in thefidelity
and predictive capability of in silico models, as more and
better data become available for model construction and
validation, and as the availability of low-cost computing
power continues to increase.

Fig. 2 Average percentage error between 26 sets of patient data and corresponding simulator outputs for (A) PaO2 and (B) PaCO2 at time T0
(matched) and T1 (predicted) as the number of independent alveolar compartments in the model is varied.
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