
Performance and robustness analysis of control strategies for
ameliorating cellular host-circuit interactions

Alexander P. S. Darlington and Declan G. Bates

Abstract— Recent work on engineering synthetic cellular
circuitry has shown that non-regulatory interactions brought
about through competition for shared gene expression re-
sources, such as ribosomes, can result in degraded performance
(where circuit behaviour deviates from design specifications) or
even failure (qualitatively different functionality). Numerous
feedback control strategies have been proposed to decouple
co-expressed genes in simple genetic circuits; ranging from
feedback within the circuit, resource allocation schemes and
growth-based feedback. In this work, we utilise a whole cell
mathematical model, which captures key gene expression trade-
offs, to compare these control strategies for their ability to ame-
liorate the impact of resource limitations, maintain growth and
assess their robustness to host uncertainty and environmental
variation.

I. INTRODUCTION

A key goal of modern synthetic biology is to efficiently
design and implement novel genetic regulatory networks
within living cells. These small networks (‘circuits’) can
be used to integrate external stimuli and guide microbial
behaviour with numerous potential applications in a range of
sectors [1]. However at present circuits show high levels of
context dependency, with previously characterised modules
showing different behaviours when implemented in different
circuits, or circuit behaviour changing when implemented in
different microbial strains [2].

A key cause of this context dependent failure of complex
circuits composed of multiple genes is the host’s innate
biosynthetic constraints. Several studies have identified trans-
lational capacity as a key limitation; expression of genes
from one module sequesters free ribosomes from other
modules resulting in the emergence of a coupling effect not
apparent from the circuit topology (e.g. [3]). Recent reports
suggest metabolic resources also have significant effects [4],
[5]. In Fig. 1, processes 1 and 2 are linked to each other and
other host processes through common resource pools (either
ribosomes or metabolites or both). As process 1 utilises the
cell’s resources through k1, a corresponding disturbance d1
is applied to the resource pool which impacts the value
of k2 and khost driving process 2 and the host processes.
Perturbation of the resource pool by synthetic circuits also
reduces host gene expression and creates a growth defect
commonly referred to as burden (e.g. [6]).
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Fig. 1. Processes 1 and 2 compete for common pools of resources. This
can be interpreted as a disturbance di which impacts the magnitude of kj
and results in coupling between the modules. Host processes also utilise
the same resource pool; hence the output y1 is determined by both its own
input u1 and indirectly by other system inputs (e.g. u2.) The resource pool
also sets cellular growth rate. The cell has endogenous feedback systems
which are shown in grey (discussed further in [7]).

Feedback control provides a means to reduce these re-
source limitations by modifying the resource usage of each
process in response to resources available or load (e.g.
modifying the input u2 in response to k2 or modifying
k2 in response to the disturbance d1). A number of recent
works have reported designs of synthetic genetic feedback
and feedforward systems to manage these resource limita-
tions and/or host-circuit interactions. Here we review the
biological mechanisms of these controllers before assessing
their performance and robustness.

In [8], Shopera et al. created a proportional negative
feedback controller based on an inhibitory transcription
factor protein which is co-produced with the gene of interest
and inhibits transcription of the genetic module containing
itself and the output gene. Huang et al. created a post-
transcriptional quasi-integral control system where an acti-
vator transcription factor is co-produced with the gene of
interest. This activator enhances the expression of a small
RNA which targets the process’s mRNA for elimination [9].

In addition to these intra-module based systems, cen-
tralised control systems have been produced. In [10], we de-
signed and implemented a control system which acts to divert
ribosomes between host-specific and circuit-specific pools.
A constitutively expressed regulator senses the demands of
the synthetic circuit and increases or decreases production of
circuit-specific quasi-orthogonal ribosomes. In [11], Ceroni
et al. utilise growth burden as an input to a dCas9-based
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control system. Decreases in growth rate are sensed and
result in increased expression of a guide RNA which is taken
up by a dCas9 protein. The guide RNA targets the dCas9
to the circuit promoters and inhibits their activation. Hence
circuit activity is tuned down as cell growth decreases (and
vice versa).

Barajas et al. recently reported a new burden alleviation
feedforward controller based on manipulating global tran-
scription rates in E. coli [12]. The synthetic system co-opts
the endogenous ppGpp-based stringent response system; co-
produced with the circuit genes is a mutant SpoT protein
which only degrades ppGpp (the production domain is re-
moved). This shifts the cell’s physiological state into the
ribosome production/enzyme inhibition regime in response
to circuit expression.

In this paper we compare the performance of these new
control systems in simple two gene circuits. In Section II, we
review the control systems and develop mathematical models
of the proposed control systems which take into account key
host processes. In Section III we investigate the ability of the
controllers to decouple genes in a simple two gene circuit
and identify clear performance trade-offs. We then analyse
the robustness of the controllers to variation in host strains.

II. HOST-AWARE MODELS OF GENETIC CONTROLLERS

In this Section, we develop models of the simple gene
circuits and control systems in a host-aware framework.
This framework accounts for key host constraints, including
those imposed by metabolism, competition for ribosomes and
growth.

A. Summary of the host-aware model

To account for host processes we embed the circuit
and controller models within a previously described coarse
grained model of E. coli [10]. This non-linear model is com-
posed of 16 coupled ordinary differential equations which
track the time evolution of a simple metabolism (consisting
of an imported substrate si and universal energy carrier
e), gene expression of a coarse grained transcriptome and
proteome (consisting of transporters pT , metabolic enzymes
pE , host proteins pH and ribosomal proteins pR), trans-
lational resource biogenesis and cell growth. The simple
model of gene expression accounts for the production of
mRNAs (mx), the formation of mRNA-ribosome translation
complexes (cx) and final protein production (px) for all
species in the proteome (i.e. x ∈ {T, E, H, R}). The rates
of transcription and translation are both energy-dependent,
hence incorporating natural metabolic feedback. Ribosomes
are produced in a multistep resource biogenesis reaction
with the production of ribosomal RNAs and r-proteins (pr)
which react to produce functional free ribosomes (R). All
components are diluted at the cell’s growth rate (λ) which is
dynamically calculated within the model based on the level
of the universal energy carrier and number of translating
ribosomes. For a full description and parametrisation of the
model see [10].

B. A summary of the core gene expression model

We assume that mRNAs are born spontaneoulsy at rate ω,
scaled by the cell’s internal energy e (TX(e) function), and
a regulatory function R(·).

∅ ω·TX(e)·R(·)−−−−−−−−−−−−→ m (1)

Free host ribosomes (R) bind these mRNAs to form trans-
lation complexes c. These translation complexes give rise to
final proteins p.

m+R
b−−−−⇀↽−−−−
u

c
TL(c, e)−−−−−−−−−→ p (2)

All species dilute due to growth (λ) and the mRNAs and
proteins also undergo first-order decay at rates dm and dp
respectively:

m
(λ+dm)−−−−−−−−→ ∅ c

λ−−−−→ ∅ p
(λ+dp)−−−−−−−−→ ∅ (3)

Applying the Law of Mass Action to these reactions results
in the following dynamic model of core gene expression:

dm

dt
= ω · TX(e) · R(·)− b ·m ·R+ u · c− (λ+ δm) ·m

(4)
dc

dt
= b ·m ·R− u · c− TL(c, e)− λ · c (5)

dp

dt
= TL(c, e)− (λ+ δp) · p (6)

TX(·) and TL(·) account for the energy dependence of
transcription and translation:

TX(e) =
e

θ + e
TL(c, e) =

1

n
·
(γmax · e
κγ + e

)
· c (7)

θ and κγ represent the energy thresholds for transcription
and translation. γmax is the maximal rate of translational
elongation in amino acids per min. n is the length of the
protein in amino acids. Note that γmax and κγ are common
to all species, see [10].

C. Open loop model

The circuit model is composed of two unregulated genes.
The genes follow the dynamics of the core gene expression
model (Section II-B). To distinguish between the genes, we
introduce a subscript notation with each variable and constant
of a gene being denoted with an i. That is, mi is the mRNA
of gene i and ωi is the maximal transcription rate of gene i
etc. The unregulated nature of their transcription means that
R(·) is set to 1.

D. Protein-based proportional feedback (fbprot)

To incorporate negative autoregulation developed by Sh-
opera et al. we modify the mRNA birth rate regulation with
a negative Hill function

R1(p1) =
1

1 + (p1/κ1)h1
(8)

To account for the co-translated autoregulator, we increase
the circuit protein length from n1 to n1 + nf , where nf is
the length of the regulator (here 300 amino acids).
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E. sRNA-based integral feedback (fbrna)

To model integral feedback we first introduce a small
RNA species s1 which eliminates the circuit mRNA by an
elimination reaction:

m1 + s1
β1−−−−−→ ∅ (9)

s1 is transcribed in a similar manner to m1 but with its birth
regulated by the circuit protein, modelled by an activatory
Hill function. The dynamics of the small RNA are given by:

ds1
dt

= ωs,1 · TX(e) ·

(
(p1/κ1)h1

1 + (p1/κi)h1

)
... (10)

... − β1 · s1 ·m1 − (λ+ δs) · s1

The impact of the elimination of the mRNA means that
circuit mRNA dynamics are updated to:

dm1

dt
= ω1 · TX(e)− b1 ·m1 ·R+ u1 · c1 ... (11)

... − β1 · s1 ·m1 − (λ+ δm) ·m1

The dynamics of the translation complex and protein are
not changed from Eq. 5 and Eq. 6. To account for the co-
translated autoregulator, the circuit protein length n1 is also
increased to n1 + nf .

F. Resource-based feedback (fboribo)

To model translational resource-based feedback, we first
introduce a new ribosomal RNA species ρ and new orthog-
onal ribosome P . Orthogonal ribosomes are produced from
host r-proteins:

ρ+ pR
%f−−−−−⇀↽−−−−−
%r

P (12)

The ribosomal RNAs are born spontaneously at rate ωρ,
scaled by TX(e) and the impact of the inhibition by the
controller protein pf as described above. The dynamics of
the orthogonal rRNA are given by:

dρ

dt
= ωρ · TX(e) ·

(
1

1 + (pf/κf )hf

)
... (13)

... − %f · ρ · pR + %r · P − (λ+ δρ) · ρ

The dynamics of the production of the constitutively ex-
pressed controller protein follow those in Eq. 4 to 6, but
with the host ribosomes R replaced with the orthogonal
ribosomes P . The equations describing the dynamics of the
circuit genes are not changed bar the replacement of R with
P . The dynamics of free orthogonal ribosomes are given by:

dP

dt
= %f · pR · ρ− %r · P − λ · P ... (14)

+
∑
Y

(
TL(cY , e)− bY ·mY · P + uY · cY

)
where the set Y = {1, 2, f}.

G. Growth-based feedback (fbgrow)

We model the growth based input of the new RNA g whose
expression falls in response to growth (i.e. it rises in response
to burden).

∅ ωg·TX ·R(λ)−−−−−−−−−−−→ g (15)

We model the actuator protein, dCas9, in two stages. First
the core protein pk is constitutively expressed with dynamics
of mk and ck the same as depicted in Section II-B. In the
second step the protein binds the new guide RNA species g
to form the functional protein k:

g + pk
bg−−−−−⇀↽−−−−−
ug

K (16)

The dynamics of these species are given by:

dg

dt
= ωg · TX(e) ·

(
1

1 + (λ/κλ)hλ

)
... (17)

... − bg · g · pk + ug ·K − (λ+ δg) · g
dpk
dt

= TL(ck, e)− bg · g · pk + ug ·K ... (18)

... − (λ+ δpK ) · pK
dK

dt
= bg · g · pk − ug ·K − (λ+ δpK ) ·K (19)

The action of the controller is through inhibition of the circuit
birth rate:

Ri(K) =
1

1 + (K/κk)hk
(20)

where i = {1, 2}.

H. ppGpp-based feedforward controller (ffspo)

To model the ppGpp feedforward controller developed
by [12], we introduce equations describing the dynamics of
the new SpoT protein’s mRNA ms, translation complex cs
and protein ps. These follow the same dynamics as circuit
proteins depicted in Eq. 4-6. We assume that ppGpp is
directly proportional to ps concentration and so do not model
its creation and action explicitly, using ps as a proxy. ppGpp
has systemic effects through its action on the host’s RNA
polymerase therefore we model the action of ppGpp through
modification phenomenologically by updating TX from [10]:

TX(e, ps) =
e

θX + e
· φs′ for E, H , S, 1, 2 (21)

TX(e, ps) =
e

θX + e
· φs for r, R (22)

where the regulatory expressions are:

φs′ = 1− vs ·

(
(pS/κs)

hs

1 + (pS/κs)hs

)
(23)

φs = 1 + vs ·

(
(pS/κs)

hs

1 + (pS/κs)hs

)
(24)

We choose this formalism so that ps = 0, φs = φ′s = 1. The
maximal level change in regulation is given by the scaling
factor vs. We also modify the circuit gene transcription rate
TX with Eq. 21.
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III. PERFORMANCE TRADE-OFFS

We assess the performance of each controller with re-
spect to three objectives: (i) decoupling potential (increasing
modularity), (ii) final gene expression level and (iii) growth.
Here we consider how these different strategies improve
the performance of the circuit shown in Fig. 1. Process 1
is constitutively (constantly) active producing protein p1.
Process 2 is induced (activated) at a given time tind. We
allow the system to evolve until t = tmax (here equivalent
to 48 hours). We assess the ability of the control strategy to
improve modularity (i.e. reduce coupling) through the metric
∆:

∆ =
(
p1(t = tmax)− p1(t = tind)

)
/p1(t = tind) (25)

∆ measures the fall in p1 in response to the activation of
p2 (a measure of modularity failure). The second and third
objectives have implications for the use of the system for
real-world applications. Industrial applications often require
high levels of protein production. For example, pathway
enzymes need to be expressed at a sufficiently high level
to ensure good flux to metabolites of interest. High levels
of expression also reduce population heterogeneity due to
reduced noise. Industrial applications often require high
populations to maximise product production. Therefore high
growth rates are desirable to shorten batch culture times. The
optimal controller would drive ∆ to zero while maximising
p1 and maximising λ.

A. Controller design process

The systems of ordinary differential equations describing
the host, a two-gene circuit (producing proteins p1 and p2)
and controller system were implemented in MATLAB 2019a
(The MathWorks Inc., MA, USA) and solved using the
inbuilt stiff-solver ode15s. The dynamics were simulated
by first considering a run-in period ( 106 minutes) with no
circuit activation (i.e. ω1 = ω2 = 0) to allow the host-
controller system to achieve steady state. At t = 0 minutes,
ω1 was raised to 100 mRNAs per minute. The system was
simulated until t = tind (1440 minutes) before ω2 was raised,
also to 100 mRNAs per minute. We parameterised all host,
circuit and controller genes, bar those discussed below, as
described in [10]. We utilised a multi-objective optimisation
approach to identify designs which minimise coupling and
maximise final expression level:

σ1 = ∆2 σ2 = −p1(t = tmax) (26)

Note that we do not specifically select for final growth
rate during the optimisation, using it only as a performance
measure of the designed controllers. We carried out the op-
timisation using the inbuilt MATLAB gamultiobj function
with a population of 100 individuals, a maximum number of
generations of 500 and a stall distance n to 50. We assessed
the convergence of the front using a custom stopping criteria
based on the Average Distance d between the points along
the front. When the absolute difference between d over
n generations was smaller than a threshold value v the

algorithm terminated. For this study we set v to be 0.01. The
parameters optimised for each control system are shown in
Table I with the bounds shown in Table II. Some parameters
were optimised on a log-scale (i.e. the parameter k = 10x is
determined by optimising x).

B. Performance trade-offs

We first assessed the ability of control systems to protect
a constitutively (constantly) expressed gene from the dis-
turbance caused by the induction (activation) of a second
gene. We first stimulated p1 production before increasing p2
produciton at time tind and calculated coupling metrics (as
shown in Eq. 25), p1 and p2 steady states and growth rate.

We first considered design schemes as they appeared in
the original work with the feedback controllers fbprot and
fbrna acting only on p1 and the feedforward controller ffspo
being activated with p2. Note that the centralised controllers
fboribo, fbgrow and ffspo target all circuit genes as proposed
in [10], [11], [12], this is crucial for their own action.

We designed the control systems as described above. We
also re-designed the open loop circuit by varying the ribo-
some binding rates of the two circuit gene mRNAs, b1 and b2.
This demonstrates a hard trade-off between gene expression
coupling and final protein steady state with coupling reducing
(smaller ∆p1) with reducing expression (p1 steady state)
(Fig. 2a). As the protein levels of the re-design circuit fall, the
cell growth rate increases (Fig. 2c). All controller topologies
are capable of showing improved performance over simple
circuit redesign with at least some designs showing reduced
decoupling at higher final protein steady states (Fig. 2a).
Note also that the presence of the feedback systems turns
the convex trade-off to a concave trade-off – addition of the
control systems reduces the hard trade off (where increasing
expression must significantly increase coupling) to a more
concave trade-off where small increases in expression do
not significantly increase coupling. Two of the centralised
control systems break the trade-off (discussed below). The
intra-module feedback control systems (where the circuit
output directly fed back to the controller, such as fbprot
and fbrna) show lowest growth rates for a given level of

TABLE I
DESIGNED PARAMETERS

Controller Parameters
fbprot κi, hi
fbrna ωs,i, κi, hi

fboribo ωρ, ωf , bf , κf , hi
fbgrow ωg , κλ, hλ, ωk, bk, κk, hk
ffspo bs, κs, vs, hs

(Circuit redesign) bi

TABLE II
OPTIMISED PARAMETER BOUNDS

Parameter (function) Bounds Scale
ω (Transcription rate) 10 to 1,000 mRNAs per min log
b (RBS association rate) 10−3 to 1 cell/(min·molecules) log
κ (Hill function threshold) 101 to 108 molecules log
h (Hill coefficient) 1 to 4 linear
κλ (Threshold for growth) 10−4 to 1 (1/min) log
vs (ppGpp scaling factor) 0 to 1 lin
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Figure 2

a

b

c

Fig. 2. Comparison of control systems performance to decouple co-
expressed genes. Results of the multi-objective optimisation described in
the main text. Models were given a run in time t = [0, 106] min with
ω1 = ω2 = 0 mRNAs per min. At t = 0 min., ω1 = 100 mRNAs per
min. At t = 1440 min, ω2 = 100 mRNAs per min. The open loop circuit
is shown as a single point, OL. (a) Protein p1 coupling. Calculated from
Eq. 25. (b) Disturbance size. Number of proteins of p2 produced for the
input ω2 = 100 mRNAs per min. (c) Growth rate at t = tmax.

p1 expression. This is a consequence of the greater level of
p2 expression which they allow (Fig. 2b). Note that as p1
expression increases, p2 expression falls - due to the lack
of control of p2 (Fig. 2b). These controllers also show the
fastest response times with most controllers giving response
times below hours (Fig. 3a).

The centralised controller fboribo, outperforms fbprot in
terms of decoupling ability. The controller also outperforms
both fbprot and fbrna in terms of growth rate due to its
concurrent action on p2 (Fig. 2b). The optimal designs of
this controller show similar rise times to the slowest of
the decentralised controllers (Fig. 3a). This delay is due to
production of the orthogonal ribosomes and can be improved
by designing the orthogonal rRNA decay rate [13]. The
centralised growth-based feedback controller fbgrow breaks
the trade-off in the objectives with some designs showing
both high levels of expression and near perfect decoupling.
However, this decoupling is due to a prolonged rise time; the
disturbance is applied before p1 reaches steady state (Fig.
3c). If the disturbance is applied after p1 reaches steady
state then poor coupling is observed at high p1 steady state
(Fig. 3d). Optimal designs of this controller produce high
p1 and hence show poorer growth. These controllers show
long rise times (Fig. 3a, c). The ribosome-actuation system
ffspo allows increased growth rate for the same levels of p1
expression and decoupling at moderate levels of expression

Fig. 3. Dynamic performance of the control systems. All controllers are
shown in ascending order of p1 steady state. (a) The rise time of p1 from
t = 0 min when ω1 is stepped to 100 mRNAs per min. (b) The p1 overshoot
upon p1 activation. (c) The dynamics of p1 in the fbgrow and ffspo controller
simulations. All controllers from the Pareto front in Fig. 2. p1 concentrations
were normalised to their level at t = 24 h. (d) Controllers from (c) where
re-simulated with tind = 72 h and tmax = 144 h.

compared to all other systems. At these moderate levels
of expression it shows best decoupling of all the schemes
bar fbrna. At p1 > 2 × 104 molecules per cell the system
shows poorer levels of decoupling, although it maintains high
growth rates. As with fboribo, the controllers demonstrate a
longer rise time than the module-specific controllers but this
is still acceptable (< 12 h).

C. Re-assessing the performance of fbprot and fbrna

We re-assessed the performance of the fbprot and fbrna
control schemes by applying these control schemes to p2
in addition to p1 and carrying out the design process
again. For this study we assume that the two controllers
(i.e. one controller for each module, p1 and p2) have the
same parametrisations (e.g. κ1 = κ2). Here we find that
both fbprot and fbrna outperform open loop redesign of
the circuit parameters significantly for moderate levels of
gene expression (Fig. 4a). The fbrna controller outperforms
the fbprot controller. The controllers demonstrate a growth
defect in comparison to circuit design due to the use of a
second controller protein. We find that these control systems,
when applied to each gene within the circuit, outperform the
centralised control system fboribo at low steady state values
of p1.
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Figure 4

a

b

Fig. 4. Decentralised control systems for each circuit gene process. Results
of the multi-objective optimisation described in the main text. Models were
given a run in time t = [0, 106] min with ω1 = ω2 = 0 mRNAs per min.
At t = 0 min., ω1 = 100 mRNAs per min. At t = 1440 min, ω2 = 100
mRNAs per min. The open loop circuit is shown as a single point, OL. The
centralised control system fboribo is shown for comparison. (a) Protein p1
coupling. Calculated from Eq. 25. (b) Growth rate at t = tmax.

IV. ANALYSIS OF CONTROLLER ROBUSTNESS

It is not possible to precisely tune controller parameters
in experimental implementations of synthetic controllers in
vivo. We carried out a Monte Carlo parameter sampling anal-
ysis to assess the robustness of each controller to parameter
uncertainty. For each optimal design of each control strategy,
each of the designable parameters was independently varied
by drawing a random number δ̃ from a uniform distribution
between −δ and +δ. For each parameter k0, the perturbed
parameter k is calculated by:

k = (1 + δ̃) · k0 (27)

For each controller, we assessed 1,000 uncertain parameter
sets. We carried out the analysis for δ = 0.01, 0.05, 0.1, 0.15
and 0.2. The uncertainty causes the points to move off
the optimal Pareto front with poorer p1 steady state and/or
decreased ∆p1 (example shown in Fig. 5a). Few methods are
available in the literature with which to assess the impact
of parametric uncertainty on multiobjective performance
criteria represented as Pareto optimal fronts. To quantify
the impact of the uncertainty, we utilised a geometric ap-
proach by calculating the area bounded by all of the 1,000
controller parametrisations (Fig. 5a). Strategies with Pareto
fronts which are robust to uncertainty will show small areas
as the different controller parametrisations do not cause
performance to move significantly. We estimated the bounded
area by dividing the p1 steady state x-axis into discrete bins.
For each bin we identified the minimum and maximum ∆p1
y-axis values. This determines the upper and lower bound
of the performance of the uncertain controllers. The upper
bound corresponds to the original Pareto front. We estimated
the total bounded area using MATLAB’s trapz function. We
choose 500 bins which is sufficient to bound 90+% of the
points produced by the uncertainty analysis for all controllers

Fig. 5. Sensitivity of the Pareto front to parametric uncertainty. For each
optimal controller, N random parameter sets were created as described in
the main text. Colours of the controllers in panels (b) and (c) correspond
to those used in Fig. 2. (a) Robustness calculation. The points are divided
in bins (grey) and the maximum/minimum points identified (red circles).
The upper bound of this area is shown as a solid red line and is the Pareto
front. The approximate lower edge is shown as a dotted red line. (b) The
robustness of the Pareto front quantified as the area of the performance of
the uncertain controllers. (N = 1,000) (c) The robustness of the growth rates
as measured by the Γ metric described in the main text. (N = 1,000)

(Fig. 5a). To assess the impact of uncertainty on growth, we
defined the metric

Γ = mean
((

(λi − λ0)/λ0

)2)
(28)

This calculates the square of the distance of the perturbed
controller growth rate from the optimal controller growth and
takes the mean change across all controllers on the tested
front. This analysis shows that the fbprot and fbrna control
systems have better robustness across all δ than the global
approaches fboribo, fbgrowth and ffspo (Fig. 5b).

V. ROBUSTNESS TO HOST VARIATION

We also assessed the ability of the control strategies
designed in Section III to confer robustness to variations
in the host parameters. Host parameter variation can result
from changes to physiological state (e.g. stress response
changing cellular resource allocation) or use of different
strains (e.g. industrial strains often have subtle changes in
proteome composition due to adaptation to the industrial
environment). We varied the parameters in the host model as
described in Section IV. We varied key parameters including
host metabolic rates (vT , kT , vE , kE), host transcription rates
(ωT , ωE , ωH , ωR, ωr, oX , oR), peptide elongation rates
(γmax, κγ) endogenous host feedback (κH , hH ). (See [10]
for full definitions of parameters).

All controller topologies, bar fbgrow, increase robustness
of the circuit to host uncertainty when compared to open
loop circuit redesign (dark blue). The fbprot and fbrna
control systems show the best robustness to uncertainty with
a smaller area of uncertain points than other controllers
(Fig. 6a). Uncertainty in the host leads to similar levels of
growth changes for all control systems (Fig. 6b). It has been
demonstrated experimentally that fbgrow maintains function
when transferred between different E. coli strains but that
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Figure 6

a b

Fig. 6. Robustness to host variation conferred by the controllers. For each
optimal controller, N = 1,000 random host parameter sets were created
as described in the main text. (a) The robustness of the Pareto front was
quantified by the area as described in the main text. (b) The robustness of
the growth rates as measured by the Γ metric described in the main text.

there are significant differences in expression of the single
gene of interest [11]. Analysis of our simulations shows that
here poor robustness is due to the emergence of ‘positive’
coupling; that is both p1 and p2 rise upon activation of p2
(i.e. ∆p1 > 0).

VI. ROBUSTNESS TO ENVIRONMENTAL CONDITIONS

Metabolic status in the model is determined by nutrient
efficiency parameter, φe (see [10]) which determines the
production rate of the anabolic driver e. In Section III, the
controllers were designed assuming φe = 0.5, equivalent to
growth of E. coli on rich glucose and amino acid medium
[10], [14]. However, in industrial fermentation cost limita-
tions may require poorer quality/heterogeneous culture media
to be used (equivalent to φe < 0.5). We assessed the change
in performance of the control strategies to poor nutrients by
simulating the optimal controllers with φe < 0.5 (Fig. 7).
The fbrna strategy shows most robustness to changes in φe
with the performance changing negligibly. The global fboribo
shows good robustness at high levels of decoupling/low
levels of expression (∆p1 > −0.25) but is sensitive to change
in φe at higher levels of expression. The global controllers
fbgrow and ffspo show good robustness to changes in φe, but
these effects are nonlinear. For fbgrow, at high p1 increasing
φe decreases p1 but at low p1 increasing φe leads to ‘positive’
coupling (i.e. ∆p1 > 0). For ffspo, decreasing φe shifts the
front to steepen the association betwen ∆p1 and p1 steady
state.

VII. CONCLUSIONS

Our analysis shows that all control systems show a trade-
off between decoupling ability and protein output with both
decentralised and global control systems showing similar
performance at low to moderate protein outputs. Our anal-
ysis shows that global control systems (fboribo or ffspo)
enable systems to reach higher growth rates. At high protein
production all systems show poor performance. Our initial
robustness analysis suggests that the distributed systems
show better robustness to uncertainty in the host and en-
vironmental variation, whilst also being easier to build (i.e.
high robustness to circuit uncertainty). Future work needs
to consider these objectives (of maximising growth while
minimising coupling) concurrently.

Figure 7

𝟎. 𝟎𝟖 𝟎. 𝟓

Fig. 7. Performance change upon nutrient variation. The performance of the
optimal controllers designed in Section III was reassessed by re-simulating
the model with a range of nutrient values φe = [0.08...0.5]. Note the
different x-axis scales.
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