

Introduction

- ► Partial differential equations (PDEs) on hypersurfaces have become an active area of research in recent years.
- ▶ Ubiquitous in fluid dynamics and material science, but have arised more recently in areas as diverse as image inpainting.

Figure: Image inpainting on a surface [Macdonald, 2009].

- ► Finite element methods (FEM) have been succesfully extended to surfaces from both a theoretical and numerical point of view.
- ► However, it is well-known that there are a number of situations where FEM may not be the appropriate numerical method.
- Comparatively little done to investigate alternative numerical methods that solve such issues on hypersurfaces.

Discontinuous Galerkin Methods

▶ Discontinuous Galerkin (DG) methods are a class of numerical methods that have been successfully applied to hyperbolic, elliptic and parabolic PDEs arising from a wide range of applications. See Arnold et al. [2002].

Some of its main advantages compared to 'standard' finite element methods include:

- Capturing solution discontinuities (namely those arising in advection driven equations) sharply in a given mesh.
- Less restriction on grid structure and refinement (i.e. works with non-conforming grids).
- Less restriction on choice of basis functions.
- ► Easily parallelisable.

Figure: Linear finite element basis function.

The main idea of DG methods is to lift the requirement of continuity of the solution accross elements, in contrast to standard FEM.

Problem Formulation

- Let Γ be a compact smooth connected and oriented hypersurface in \mathbb{R}^3 with outward unit normal ν , to which we assign a signed distance function d which is well-defined in a sufficiently thin open tube U around Γ.
- ▶ We also assume that the map $a(x) : U \to \Gamma$ given by

$$a(x) = x - d(x)\nu(a(x))$$

is bijective.

- We are interested in approximating solutions to the Helmholtz equation on a hypersurface, whose variational formulation is given by:
 (P) Find the No. (1/1/5) and that
 - (\mathbf{P}_{Γ}) Find $u \in V := H^1(\Gamma)$ such that

$$a_{\Gamma}(u,v)=\int_{\Gamma}fv\;dA,\;\forall v\in V$$

where

$$a_{\Gamma}(u,v) := \int_{\Gamma} (\nabla_{\Gamma} u \cdot \nabla_{\Gamma} v + uv) \ dA, \ \ u,v \in V.$$

► This involves deriving a-priori error estimates for the approximation.

Surface Finite Elements

- ► The theory for surface FEM, including a-priori error estimates, was first introduced in Dziuk [1988].
- ► The smooth surface Γ and its associated triangulation T_h composed of curved triangles K is approximated by a polyhedral surface $\Gamma_h \subset U$ whose associated triangulation \tilde{T}_h is composed of planar triangles K_h .
- The vertices of the planar triangles are taken to sit on Γ so that Γ_h is a linear interpolation of Γ.

Figure: Linear interpolation of curved triangular element $K \subset \Gamma$ by planar triangular element $K_h \subset \Gamma_h$.

Note that the triangulation \tilde{T}_h is well-defined by the bijection property of the map a(x).

Surface FEM Approximation

▶ For FEM approximations we consider the finite-dimensional space

$$V_h := \{ \xi \in C^0(\Gamma_h) : \xi|_{K_h} \in P^1(K_h) \ \forall K_h \in \tilde{T}_h \}.$$

▶ (\mathbf{P}_{Γ_h}) Find $u_h \in V_h$ such that

$$a_{\Gamma_h}(u_h,v_h)=\int_{\Gamma_h}f^lv_h\;dA_h\;orall v_h\in V_h$$

where

$$a_{\Gamma_h}(u_h,v_h):=\int_{\Gamma_h}(
abla_{\Gamma_h}u_h\cdot
abla_{\Gamma_h}v_h+u_hv_h)\;dA_h,\;\;u_h,v_h\in V_h.$$

- ▶ Want to compare u satisfying (\mathbf{P}_{Γ}) with u_h satisfying (\mathbf{P}_{Γ_h}) but they do not live on the same space.
- ▶ For any function ξ defined on Γ_h we define the lift onto Γ by

$$\xi'(a) := \xi(x(a)), \ a \in \Gamma, x \in \Gamma_h.$$

- rightarrow This lift allows us to define the lifted approximation u_h^l on Γ.
- ► The lifted finite element space is

$$V_h^I := \{ \xi_h^I \in C^0(\Gamma) : \xi_h^I(a) = \xi_h(x(a)) \text{ with some } \xi_h \in V_h \} \subset V.$$

Theorem (Surface FEM A-priori Error Estimate)

Let $u \in V$ and $u_h \in V_h$ denote the solutions to (\mathbf{P}_{Γ}) and (\mathbf{P}_{Γ_h}) , respectively. Denote by $u_h^l \in V_h^l$ the lift of u_h onto Γ . Then

$$||u-u'_h||_{L^2(\Gamma)}+h||u-u'_h||_V\leq Ch^2||f||_{L^2(\Gamma)}.$$

Would like to derive error estimates for the surface DG approximation on hypersurfaces in a similar way.

Surface DG Approximation I

▶ For DG approximations we consider the finite-dimensional space

$$V_h := \{ \xi \in L^2(\Gamma_h) : \xi|_{K_h} \in P^1(K_h) \ \forall K_h \in \tilde{T}_h \}.$$

- ▶ DG space has no continuity requirement accross elements.
- Let $e_h \in \mathcal{E}_h$ be an edge shared by neighbouring elements K_h^+ and K_h^- , with n_h^+ and n_h^- the corresponding conormals. In addition, $v_h^{+/-} := v_h|_{\partial K_h^{+/-}}$ for every $v_h \in V_h$.

Figure: Conormals on K_h^- and K_h^+ .

Surface DG Approximation II

▶ $(\mathbf{P}_{\Gamma_h}^{DG})$ Find $u_h \in V_h$ such that

$$a^{DG}_{\Gamma_h}(u_h,v_h)=\int_{\Gamma_h}f^lv_h\;dA_h\;orall v_h\in V_h$$

where

$$egin{aligned} a^{DG}_{\Gamma_h}(u_h,v_h) &:= \sum_{K_h \in ilde{\mathcal{T}}_h} \int_{K_h}
abla_{\Gamma_h} u_h \cdot
abla_{\Gamma_h} v_h + u_h v_h \, dA_h \ &- \sum_{e_h \in ilde{\mathcal{E}}_h} \int_{e_h} (u_h^+ - u_h^-) rac{1}{2} (
abla_{\Gamma_h} v_h^+ \cdot n_h^+ -
abla_{\Gamma_h} v_h^- \cdot n_h^-) \ &+ (v_h^+ - v_h^-) rac{1}{2} (
abla_{\Gamma_h} u_h^+ \cdot n_h^+ -
abla_{\Gamma_h} v_h^- \cdot n_h^-) \, ds_h \ &+ \sum_{e_h \in ilde{\mathcal{E}}_h} \int_{e_h} eta_{e_h} (u_h^+ - u_h^-) (v_h^+ - v_h^-) \, ds_h. \end{aligned}$$

with β_{e_h} being a penalty parameter which imposes continuity in a weak sense as the mesh size h tends to zero.

- ▶ Want to compare $u \in H^2(T_h)$ satisfying the DG formulation of (\mathbf{P}_{Γ}) , call it $(\mathbf{P}_{\Gamma}^{DG})$, with $u_h \in V_h$ satisfying $(\mathbf{P}_{\Gamma_h}^{DG})$.
- ► The lifted DG space is given by

$$V_h^I := \{ v_h^I \in L^2(\Gamma) : v_h^I(a) = v_h(x(a)) \text{ with some } v_h \in V_h \} \subset H^2(T_h).$$

Theorem (Surface DG A-priori Error Estimate)

Let $u \in H^2(T_h)$ and $u_h \in V_h$ denote the solutions to $(\mathbf{P}_{\Gamma}^{DG})$ and $(\mathbf{P}_{\Gamma_h}^{DG})$, respectively. Denote by $u_h^I \in V_h^I$ the lift of u_h onto Γ . Then

$$||u - u_h^I||_{L^2(\Gamma)} + h||u - u_h^I||_{DG} \le Ch^2||f||_{L^2(\Gamma)}$$

where $\|\cdot\|_{DG}$ is the DG norm.

References

- D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini. Unified analysis of discontinuous galerkin methods for elliptic problems. *SIAM journal on numerical analysis*, pages 1749–1779, 2002.
- P. Bastian, M. Blatt, A. Dedner, Ch. Engwer, J. Fahlke, C. Gräser, R. Klöfkorn, M. Nolte, M. Ohlberger, and O. Sander. DUNE Webpage, 2011. http://www.dune-project.org.
- G. Dziuk. Finite elements for the beltrami operator on arbitrary surfaces. *Partial differential equations and calculus of variations*, pages 142–155, 1988.

Test Problem on Sphere

- ▶ All simulations have been perform using the Distributed and Unified Numerics Environment (DUNE). Further information about DUNE can be found in Bastian et al. [2011].
- ► We solve the Helmholtz equation

$$-\Delta_{\Gamma}u+u=f\tag{1}$$

on the unit sphere

$$\Gamma = \{x \in \mathbb{R}^3 : |x| = 1\}.$$

Choose right-hand side f such that

$$u(x) = \cos(2\pi x_1)\cos(2\pi x_2)\cos(2\pi x_3)$$

is the exact solution.

► Confirm theoretical error estimates numerically for both conforming and non-conforming grids.

EOC for DG Approximation on Unit Sphere

h	L ₂ -error	L ₂ -eoc	<i>DG</i> -error	DG-eoc
0.112141	0.0528817		2.64273	
0.0560925	0.0146074	1.86	1.3151	1.01
0.028049	0.00378277	1.95	0.653612	1.01
0.0140249	0.000957472	1.98	0.325961	1.00
0.00701247	0.000240483	1.99	0.162822	1.00

Table: Errors and orders of convergence using conforming grid.

h	L ₂ -error	L_2 -eoc	DG-error	DG-eoc
0.112141	0.146369		4.24728	
0.0560925	0.0402358	1.86	2.11183	1.01
0.028049	0.0104518	1.94	1.04316	1.02
0.0140249	0.0026346	1.99	0.516816	1.01
0.00701247	0.000658561	2.00	0.25718	1.01

Table: Errors and orders of convergence using non-conforming grid.

Sphere Problem Visualisation

Figure: DG approximation to (1) on the unit sphere for respectively a conforming grid and a non-conforming grid.

Test Problem on Dziuk Surface

► We now solve (1) on the Dziuk surface, given by

$$\Gamma = \{x \in \mathbb{R}^3 : (x_1 - x_3^2)^2 + x_2^2 + x_3^2 = 1\}.$$

► Choose right-hand side *f* such that

$$u(x)=x_1x_2$$

is the exact solution.

► Aim to confirm numerically that the a-priori error estimates hold for more complicated hypersurfaces.

EOC for DG Approximation on Dziuk Surface

h	L ₂ -error	L ₂ -eoc	<i>DG</i> -error	DG-eoc
0.27298	0.37683		0.841075	
0.136976	0.102478	1.88	0.26595	1.66
0.068555	0.0276256	1.89	0.096890	1.46
0.0342854	0.00709917	1.96	0.041448	1.22
0.0171432	0.00178764	1.99	0.019655	1.07
0.0085714	0.0004477	2.00	0.0096852	1.02

Table: Errors and orders of convergence using conforming grid.

h	L ₂ -error	L ₂ -eoc	<i>DG</i> -error	DG-eoc
0.27298	1.04311		1.96926	
0.136976	0.331642	1.65	0.640044	1.62
0.068555	0.0945755	1.81	0.210186	1.60
0.0342854	0.0251866	1.91	0.0782745	1.42
0.0171432	0.00644021	1.97	0.0339022	1.21
0.0085714	0.00162702	1.98	0.0161914	1.06
	0.27298 0.136976 0.068555 0.0342854 0.0171432	0.272981.043110.1369760.3316420.0685550.09457550.03428540.02518660.01714320.00644021	0.27298 1.04311 0.136976 0.331642 1.65 0.068555 0.0945755 1.81 0.0342854 0.0251866 1.91 0.0171432 0.00644021 1.97	0.27298 1.04311 1.96926 0.136976 0.331642 1.65 0.640044 0.068555 0.0945755 1.81 0.210186 0.0342854 0.0251866 1.91 0.0782745 0.0171432 0.00644021 1.97 0.0339022

Table: Errors and orders of convergence using non-conforming grid.

Dziuk Surface Problem Visualisation

Figure: DG approximation to (1) on the Dziuk surface for respectively a conforming grid and a non-conforming grid.