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Introduction

I Partial differential equations (PDEs) on hypersurfaces have
become an active area of research in recent years.

I Ubiquitous in fluid dynamics and material science, but have
arised more recently in areas as diverse as image inpainting.

Figure: Image inpainting on a surface [Macdonald, 2009].

I Finite element methods (FEM) have been succesfully extended
to surfaces from both a theoretical and numerical point of view.

I However, it is well-known that there are a number of situations
where FEM may not be the appropriate numerical method.

I Comparatively little done to investigate alternative numerical
methods that solve such issues on hypersurfaces.

Discontinuous Galerkin Methods

I Discontinuous Galerkin (DG) methods are a class of numerical
methods that have been succesfully applied to hyperbolic,
elliptic and parabolic PDEs arising from a wide range of
applications. See Arnold et al. [2002].

Some of its main advantages compared to ‘standard’ finite
element methods include:
I Capturing solution discontinuities (namely those arising in

advection driven equations) sharply in a given mesh.
I Less restriction on grid structure and refinement (i.e. works with

non-conforming grids).
I Less restriction on choice of basis functions.
I Easily parallelisable.

Figure: Linear finite element basis function.

The main idea of DG methods is to lift the requirement of
continuity of the solution accross elements, in contrast to standard
FEM.

Problem Formulation

I Let Γ be a compact smooth connected and oriented
hypersurface in R3 with outward unit normal ν, to which we
assign a signed distance function d which is well-defined in a
sufficiently thin open tube U around Γ.

I We also assume that the map a(x) : U → Γ given by

a(x) = x − d(x)ν(a(x))

is bijective.
I We are interested in approximating solutions to the Helmholtz

equation on a hypersurface, whose variational formulation is
given by:
(PΓ) Find u ∈ V := H1(Γ) such that

aΓ(u, v) =

∫
Γ

fv dA, ∀v ∈ V

where

aΓ(u, v) :=

∫
Γ

(∇Γu · ∇Γv + uv) dA, u, v ∈ V .

I This involves deriving a-priori error estimates for the
approximation.

Surface Finite Elements

I The theory for surface FEM, including a-priori error estimates,
was first introduced in Dziuk [1988].

I The smooth surface Γ and its associated triangulation Th
composed of curved triangles K is approximated by a
polyhedral surface Γh ⊂ U whose associated triangulation T̃h is
composed of planar triangles Kh.

I The vertices of the planar triangles are taken to sit on Γ so that
Γh is a linear interpolation of Γ.

Figure: Linear interpolation of curved triangular element K ⊂ Γ by planar
triangular element Kh ⊂ Γh.

I Note that the triangulation T̃h is well-defined by the bijection
property of the map a(x).

Surface FEM Approximation

I For FEM approximations we consider the finite-dimensional space

Vh := {ξ ∈ C0(Γh) : ξ|Kh
∈ P1(Kh) ∀Kh ∈ T̃h}.

I (PΓh) Find uh ∈ Vh such that

aΓh(uh, vh) =

∫
Γh

f lvh dAh ∀vh ∈ Vh

where

aΓh(uh, vh) :=

∫
Γh

(∇Γhuh · ∇Γhvh + uhvh) dAh, uh, vh ∈ Vh.

I Want to compare u satisfying (PΓ) with uh satisfying (PΓh) but they
do not live on the same space.

I For any function ξ defined on Γh we define the lift onto Γ by

ξ l(a) := ξ(x(a)), a ∈ Γ, x ∈ Γh.

I This lift allows us to define the lifted approximation ul
h on Γ.

I The lifted finite element space is

V l
h := {ξ l

h ∈ C0(Γ) : ξ l
h(a) = ξh(x(a)) with some ξh ∈ Vh} ⊂ V .

Theorem (Surface FEM A-priori Error Estimate)

Let u ∈ V and uh ∈ Vh denote the solutions to (PΓ) and (PΓh),
respectively. Denote by ul

h ∈ V l
h the lift of uh onto Γ. Then

‖u − ul
h‖L2(Γ) + h‖u − ul

h‖V ≤ Ch2‖f‖L2(Γ).

I Would like to derive error estimates for the surface DG
approximation on hypersurfaces in a similar way.

Surface DG Approximation I

I For DG approximations we consider the finite-dimensional space

Vh := {ξ ∈ L2(Γh) : ξ|Kh
∈ P1(Kh) ∀Kh ∈ T̃h}.

I DG space has no continuity requirement accross elements.
I Let eh ∈ Eh be an edge shared by neighbouring elements K +

h and
K−h , with n+

h and n−h the corresponding conormals. In addition,
v+/−

h := vh|∂K+/−
h

for every vh ∈ Vh.

Figure: Conormals on K−h and K+
h .

Surface DG Approximation II

I (PDG
Γh

) Find uh ∈ Vh such that

aDG
Γh

(uh, vh) =

∫
Γh

f lvh dAh ∀vh ∈ Vh

where

aDG
Γh

(uh, vh) :=
∑

Kh∈T̃h

∫
Kh

∇Γhuh · ∇Γhvh + uhvh dAh

−
∑

eh∈Ẽh

∫
eh

(u+
h − u−h )

1
2

(∇Γhv
+
h · n

+
h −∇Γhv

−
h · n

−
h )

+ (v+
h − v−h )

1
2

(∇Γhu
+
h · n

+
h −∇Γhu

−
h · n

−
h ) dsh

+
∑

eh∈Ẽh

∫
eh

βeh(u+
h − u−h )(v+

h − v−h ) dsh.

with βeh being a penalty parameter which imposes continuity in a
weak sense as the mesh size h tends to zero.

I Want to compare u ∈ H2(Th) satisfying the DG formulation of (PΓ),
call it (PDG

Γ ), with uh ∈ Vh satisfying (PDG
Γh

).
I The lifted DG space is given by

V l
h : = {v l

h ∈ L2(Γ) : v l
h(a) = vh(x(a)) with some vh ∈ Vh} ⊂ H2(Th).

Theorem (Surface DG A-priori Error Estimate)

Let u ∈ H2(Th) and uh ∈ Vh denote the solutions to (PDG
Γ ) and (PDG

Γh
),

respectively. Denote by ul
h ∈ V l

h the lift of uh onto Γ. Then

‖u − ul
h‖L2(Γ) + h‖u − ul

h‖DG ≤ Ch2‖f‖L2(Γ)

where ‖ · ‖DG is the DG norm.
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Test Problem on Sphere

I All simulations have been perform using the Distributed and
Unified Numerics Environment (DUNE). Further information
about DUNE can be found in Bastian et al. [2011].

I We solve the Helmholtz equation

−∆Γu + u = f (1)

on the unit sphere

Γ = {x ∈ R3 : |x | = 1}.

I Choose right-hand side f such that

u(x) = cos(2πx1) cos(2πx2) cos(2πx3)

is the exact solution.
I Confirm theoretical error estimates numerically for both

conforming and non-conforming grids.

EOC for DG Approximation on Unit Sphere

h L2-error L2-eoc DG-error DG-eoc
0.112141 0.0528817 2.64273

0.0560925 0.0146074 1.86 1.3151 1.01
0.028049 0.00378277 1.95 0.653612 1.01

0.0140249 0.000957472 1.98 0.325961 1.00
0.00701247 0.000240483 1.99 0.162822 1.00

Table: Errors and orders of convergence using conforming grid.

h L2-error L2-eoc DG-error DG-eoc
0.112141 0.146369 4.24728

0.0560925 0.0402358 1.86 2.11183 1.01
0.028049 0.0104518 1.94 1.04316 1.02

0.0140249 0.0026346 1.99 0.516816 1.01
0.00701247 0.000658561 2.00 0.25718 1.01

Table: Errors and orders of convergence using non-conforming grid.

Sphere Problem Visualisation

Figure: DG approximation to (1) on the unit sphere for respectively a conforming
grid and a non-conforming grid.

Test Problem on Dziuk Surface

I We now solve (1) on the Dziuk surface, given by

Γ = {x ∈ R3 : (x1 − x2
3 )2 + x2

2 + x2
3 = 1}.

I Choose right-hand side f such that

u(x) = x1x2

is the exact solution.
I Aim to confirm numerically that the a-priori error estimates hold

for more complicated hypersurfaces.

EOC for DG Approximation on Dziuk Surface

h L2-error L2-eoc DG-error DG-eoc
0.27298 0.37683 0.841075
0.136976 0.102478 1.88 0.26595 1.66
0.068555 0.0276256 1.89 0.096890 1.46

0.0342854 0.00709917 1.96 0.041448 1.22
0.0171432 0.00178764 1.99 0.019655 1.07
0.0085714 0.0004477 2.00 0.0096852 1.02
Table: Errors and orders of convergence using conforming grid.

h L2-error L2-eoc DG-error DG-eoc
0.27298 1.04311 1.96926
0.136976 0.331642 1.65 0.640044 1.62
0.068555 0.0945755 1.81 0.210186 1.60

0.0342854 0.0251866 1.91 0.0782745 1.42
0.0171432 0.00644021 1.97 0.0339022 1.21
0.0085714 0.00162702 1.98 0.0161914 1.06

Table: Errors and orders of convergence using non-conforming grid.

Dziuk Surface Problem Visualisation

Figure: DG approximation to (1) on the Dziuk surface for respectively a
conforming grid and a non-conforming grid.
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