#### On a Discontinuous Galerkin Method for Surface PDEs

#### Pravin Madhavan

(joint work with Andreas Dedner and Björn Stinner)

Mathematics and Statistics Centre for Doctoral Training University of Warwick

Applied PDEs Seminar University of Warwick, Coventry, 22nd January 2013







## Motivation - PDEs on Surfaces

PDEs on surfaces arise in various areas, for instance

- materials science: enhanced species diffusion along grain boundaries,
- cell biology: phase separation on biomembranes, diffusion processes on plasma membranes,
- fluid dynamics: surface active agents.



Numerical methods are based on:

parametrisation of the surface (eg graph),

Numerical methods are based on:

- parametrisation of the surface (eg graph),
- level set representation,

Numerical methods are based on:

- parametrisation of the surface (eg graph),
- level set representation,
- diffuse interface representation (phase field methods),

Numerical methods are based on:

- parametrisation of the surface (eg graph),
- level set representation,
- diffuse interface representation (phase field methods),
- this talk: intrinsic approach, approximation of the surface by triangulated surfaces

Numerical methods are based on:

- parametrisation of the surface (eg graph),
- level set representation,
- diffuse interface representation (phase field methods),
- this talk: intrinsic approach, approximation of the surface by triangulated surfaces

#### FEM methods: [ Dziuk 1988 ]: elliptic problem, [ Dziuk, Elliott 2007 ] (2 papers): parabolic problem (stationary/evolving surface).

advection dominated problem / hp-adaptive refinement  $\rightsquigarrow$  DG methods.

Numerical methods are based on:

- parametrisation of the surface (eg graph),
- level set representation,
- diffuse interface representation (phase field methods),
- this talk: intrinsic approach, approximation of the surface by triangulated surfaces

#### FEM methods: [ Dziuk 1988 ]: elliptic problem, [ Dziuk, Elliott 2007 ] (2 papers): parabolic problem (stationary/evolving surface).

advection dominated problem / hp-adaptive refinement

 $\rightsquigarrow$  DG methods.



Numerical methods are based on:

- parametrisation of the surface (eg graph),
- level set representation,
- diffuse interface representation (phase field methods),
- this talk: intrinsic approach, approximation of the surface by triangulated surfaces

```
FEM methods:
[ Dziuk 1988 ]: elliptic problem,
[ Dziuk, Elliott 2007 ] (2 papers): parabolic problem (stationary/evolving surface).
```

advection dominated problem / hp-adaptive refinement  $\rightsquigarrow$  DG methods.



## Outline

1. Notation and Setting

2. DG Approximation

3. Convergence Proof

4. Numerical Tests

## Outline

1. Notation and Setting

2. DG Approximation

3. Convergence Proof

4. Numerical Tests

#### Some Notation

- $\blacktriangleright$  Hypersurface:  $\Gamma \subset \mathbb{R}^3$  compact, smooth, simply connected, oriented, no boundary.
- Signed distance function:  $d: U \to \mathbb{R}$  with U a thin tube around  $\Gamma$ .
- Unit normal:  $\nu(\xi) = \nabla d(\xi), \ \xi \in \Gamma$ .
- *Projection* of  $\mathbb{R}^3$  onto the tangent space  $T_{\xi}\Gamma$ ,  $\xi \in \Gamma$ :

$$P(\xi) := I - \nu(\xi) \otimes \nu(\xi), \ \xi \in \Gamma.$$

• Surface gradient: For any function  $\eta: U \to \mathbb{R}$ ,

$$\nabla_{\Gamma}\eta := \nabla\eta - \nabla\eta \cdot \nu\nu = P\nabla\eta = (D_1\eta, D_2\eta, D_3\eta).$$

#### Strong Problem Formulation

Laplace-Beltrami operator:

$$\Delta_{\Gamma}\eta := 
abla_{\Gamma} \cdot (
abla_{\Gamma}\eta) = \sum_{i=1}^{3} D_i D_i \eta.$$

Strong problem: For a given function  $f : \Gamma \to \mathbb{R}$ , find  $u : \Gamma \to \mathbb{R}$  such that

 $-\Delta_{\Gamma}u + u = f$  in  $\Gamma$ .

#### Strong Problem Formulation

Laplace-Beltrami operator:

$$\Delta_{\Gamma}\eta:=
abla_{\Gamma}\cdot(
abla_{\Gamma}\eta)=\sum_{i=1}^{3}D_{i}D_{i}\eta.$$

Strong problem: For a given function  $f : \Gamma \to \mathbb{R}$ , find  $u : \Gamma \to \mathbb{R}$  such that  $-\Delta_{\Gamma}u + u = f$  in  $\Gamma$ .

For weak formulation: Integration by parts formula on surfaces:

$$\int_{\Gamma} \eta \nabla_{\Gamma} \cdot \mathbf{v} = -\int_{\Gamma} \left( \mathbf{v} \cdot \nabla_{\Gamma} \eta + \eta \mathbf{v} \cdot \kappa \right) + \int_{\partial \Gamma} \eta \mathbf{v} \cdot \mu$$

where  $\mu$ : outer co-normal of  $\Gamma$  on  $\partial \Gamma$ ,  $\kappa$ : mean curvature vector.

## Weak Problem Formulation

Sobolev spaces:

$$H^{m}(\Gamma) := \{ u \in L^{2}(\Gamma) : \nabla^{\alpha}_{\Gamma} u \in L^{2}(\Gamma) \,\,\forall |\alpha| \leq m \}$$

with corresponding norm

$$\|u\|_{H^m(\Gamma)} := \left(\sum_{|\alpha| \le m} \|\nabla^{\alpha}_{\Gamma} u\|_{L^2(\Gamma)}^2\right)^{1/2}.$$

Problem  $(\mathbf{P}_{\Gamma})$ : Find  $u \in V := H^1(\Gamma)$  such that

$$\int_{\Gamma} \nabla_{\Gamma} u \cdot \nabla_{\Gamma} v + uv \ dA = \int_{\Gamma} fv \ dA, \ \forall v \in V.$$

#### Weak Problem Formulation

Sobolev spaces:

$$H^{m}(\Gamma) := \{ u \in L^{2}(\Gamma) : \nabla^{\alpha}_{\Gamma} u \in L^{2}(\Gamma) \,\,\forall |\alpha| \leq m \}$$

with corresponding norm

$$\|u\|_{H^m(\Gamma)} := \left(\sum_{|\alpha| \le m} \|\nabla_{\Gamma}^{\alpha} u\|_{L^2(\Gamma)}^2\right)^{1/2}.$$

Problem ( $\mathbf{P}_{\Gamma}$ ): Find  $u \in V := H^1(\Gamma)$  such that

$$\int_{\Gamma} \nabla_{\Gamma} u \cdot \nabla_{\Gamma} v + uv \ dA = \int_{\Gamma} fv \ dA, \ \forall v \in V.$$

Theorem (Aubin 1982) If  $f \in L^2(\Gamma)$  then there is a unique weak solution  $u \in V$  to  $(\mathbf{P}_{\Gamma})$  which satisfies

$$||u||_{H^2(\Gamma)} \leq C ||f||_{L^2(\Gamma)}$$

# Outline

1. Notation and Setting

#### 2. DG Approximation

3. Convergence Proof

4. Numerical Tests

## **Triangulated Surfaces**

•  $\Gamma$  is approximated by a polyhedral surface  $\Gamma_h$  composed of planar triangles  $K_h$ .



- The vertices sit on  $\Gamma \Rightarrow \Gamma_h$  is its linear interpolation.
- $\mathcal{T}_h$ : Associated regular, conforming triangulation i.e.

$$\Gamma_h = \bigcup_{K_h \in \mathcal{T}_h} K_h.$$



# DG Setting

DG space:

$$V_h := \big\{ v_h \in L^2(\Gamma_h) : v_h \big|_{K_h} \in P^1(K_h) \ \forall K_h \in \mathcal{T}_h \big\}.$$

This space allows for jumps across edges, to be penalised in the DG method.

# DG Setting

DG space:

$$V_h := \big\{ v_h \in L^2(\Gamma_h) \ : \ v_h \big|_{K_h} \in P^1(K_h) \ \forall K_h \in \mathcal{T}_h \big\}.$$

This space allows for jumps across edges, to be penalised in the DG method.

- Set of edges:  $\mathcal{E}_h$ .
- Unit conormals:  $n_h^+$ ,  $n_h^-$  to  $K_h^+$ ,  $K_h^-$  on  $e_h \in \mathcal{E}_h$ .
- Trace values:  $v_h^{\pm} := v_h|_{\partial K_h^{\pm}}$  for  $v_h \in V_h$ .



## DG Setting

DG space:

$$V_h := \big\{ v_h \in L^2(\Gamma_h) \ : \ v_h \big|_{K_h} \in \mathcal{P}^1(K_h) \ \forall K_h \in \mathcal{T}_h \big\}.$$

This space allows for jumps across edges, to be penalised in the DG method.

- Set of edges:  $\mathcal{E}_h$ .
- Unit conormals:  $n_h^+$ ,  $n_h^-$  to  $K_h^+$ ,  $K_h^-$  on  $e_h \in \mathcal{E}_h$ .
- Trace values:  $v_h^{\pm} := v_h|_{\partial K_h^{\pm}}$  for  $v_h \in V_h$ .



DG norm:

$$\begin{split} |u_{h}|_{1,h}^{2} &:= \sum_{K_{h} \in \mathcal{T}_{h}} \|u_{h}\|_{H^{1}(K_{h})}^{2}, \quad |u_{h}|_{*,h}^{2} := \sum_{e_{h} \in \mathcal{E}_{h}} h_{e_{h}}^{-1} \|u_{h}^{+} - u_{h}^{-}\|_{L^{2}(e_{h})}^{2}, \\ \|u_{h}\|_{DG(\Gamma_{h})}^{2} &:= |u_{h}|_{1,h}^{2} + |u_{h}|_{*,h}^{2}. \end{split}$$

DG Problem Problem  $(\mathbf{P}_{\Gamma_h}^{DG})$ : Find  $u_h \in V_h$  such that

$$a_{\Gamma_h}^{DG}(u_h,v_h) = \int_{\Gamma_h} f_h v_h \ dA_h \ \forall v_h \in V_h$$

where  $f_h$  is related to f (later) and

$$\begin{split} a_{\Gamma_h}^{DG}(u_h, v_h) &:= \sum_{K_h \in \mathcal{T}_h} \int_{K_h} \nabla_{\Gamma_h} u_h \cdot \nabla_{\Gamma_h} v_h + u_h v_h \ dA_h \\ &- \sum_{e_h \in \mathcal{E}_h} \int_{e_h} (u_h^+ - u_h^-) \frac{1}{2} (\nabla_{\Gamma_h} v_h^+ \cdot n_h^+ - \nabla_{\Gamma_h} v_h^- \cdot n_h^-) \ ds_h \\ &- \sum_{e_h \in \mathcal{E}_h} \int_{e_h} (v_h^+ - v_h^-) \frac{1}{2} (\nabla_{\Gamma_h} u_h^+ \cdot n_h^+ - \nabla_{\Gamma_h} u_h^- \cdot n_h^-) \ ds_h \\ &+ \sum_{e_h \in \mathcal{E}_h} \int_{e_h} \beta_{e_h} (u_h^+ - u_h^-) (v_h^+ - v_h^-) \ ds_h \end{split}$$

with  $\beta_{e_h} \sim h_{e_h}^{-1}$ .

DG Problem Problem  $(\mathbf{P}_{\Gamma_h}^{DG})$ : Find  $u_h \in V_h$  such that

$$a_{\Gamma_h}^{DG}(u_h,v_h) = \int_{\Gamma_h} f_h v_h \ dA_h \ \forall v_h \in V_h$$

where  $f_h$  is related to f (later) and

$$\begin{split} a_{\Gamma_h}^{DG}(u_h, v_h) &:= \sum_{K_h \in \mathcal{T}_h} \int_{K_h} \nabla_{\Gamma_h} u_h \cdot \nabla_{\Gamma_h} v_h + u_h v_h \ dA_h \\ &- \sum_{e_h \in \mathcal{E}_h} \int_{e_h} (u_h^+ - u_h^-) \frac{1}{2} (\nabla_{\Gamma_h} v_h^+ \cdot n_h^+ - \nabla_{\Gamma_h} v_h^- \cdot n_h^-) \ ds_h \\ &- \sum_{e_h \in \mathcal{E}_h} \int_{e_h} (v_h^+ - v_h^-) \frac{1}{2} (\nabla_{\Gamma_h} u_h^+ \cdot n_h^+ - \nabla_{\Gamma_h} u_h^- \cdot n_h^-) \ ds_h \\ &+ \sum_{e_h \in \mathcal{E}_h} \int_{e_h} \beta_{e_h} (u_h^+ - u_h^-) (v_h^+ - v_h^-) \ ds_h \end{split}$$

with  $\beta_{e_h} \sim h_{e_h}^{-1}$ .

Interior penalty method [Arnold 1982]: If  $\beta_{e_h} = \omega_{e_h} h_{e_h}^{-1}$  and  $\omega_{e_h}$  big enough then  $a_{\Gamma_h}^{DG}$  is coercive, and there is a unique solution  $u_h \in V_h$  to problem  $(\mathbf{P}_{\Gamma_h}^{DG})$  with  $\|u_h\|_{DG(\Gamma_h)} \leq C \|f_h\|_{L^2(\Gamma_h)}.$  DG Problem: Remark

[ Arnold 1982 ] (classical) IP method:

$$\begin{split} a_{\Gamma_h}^{DG}(u_h, \mathbf{v}_h) &:= \sum_{K_h \in \mathcal{T}_h} \int_{K_h} \nabla_{\Gamma_h} u_h \cdot \nabla_{\Gamma_h} \mathbf{v}_h + u_h \mathbf{v}_h \ dA_h \\ &- \sum_{e_h \in \mathcal{E}_h} \int_{e_h} (u_h^+ - u_h^-) \frac{1}{2} (\nabla_{\Gamma_h} \mathbf{v}_h^+ \cdot \mathbf{n}_h^+ - \nabla_{\Gamma_h} \mathbf{v}_h^- \cdot \mathbf{n}_h^-) \ ds_h \\ &- \sum_{e_h \in \mathcal{E}_h} \int_{e_h} (\mathbf{v}_h^+ - \mathbf{v}_h^-) \frac{1}{2} (\nabla_{\Gamma_h} u_h^+ \cdot \mathbf{n}_h^+ - \nabla_{\Gamma_h} u_h^- \cdot \mathbf{n}_h^-) \ ds_h \\ &+ \sum_{e_h \in \mathcal{E}_h} \int_{e_h} \beta_{e_h} (u_h^+ - u_h^-) (\mathbf{v}_h^+ - \mathbf{v}_h^-) \ ds_h \end{split}$$

[Arnold et al. 2002] (standard) IP method:

$$\begin{aligned} \mathsf{a}_{\Gamma_h}^{DG}(u_h, v_h) &:= \sum_{K_h \in \mathcal{T}_h} \int_{K_h} \nabla_{\Gamma_h} u_h \cdot \nabla_{\Gamma_h} v_h + u_h v_h \ dA_h \\ &- \sum_{e_h \in \mathcal{E}_h} \int_{e_h} (u_h^+ n_h^+ + u_h^- n_h^-) \cdot \frac{1}{2} (\nabla_{\Gamma_h} v_h^+ + \nabla_{\Gamma_h} v_h^-) \ ds_h \\ &- \sum_{e_h \in \mathcal{E}_h} \int_{e_h} (v_h^+ n_h^+ - v_h^- n_h^-) \cdot \frac{1}{2} (\nabla_{\Gamma_h} u_h^+ + \nabla_{\Gamma_h} u_h^-) \ ds_h \\ &+ \sum_{e_h \in \mathcal{E}_h} \int_{e_h} \beta_{e_h} (u_h^+ n_h^+ + u_h^- n_h^-) \cdot (v_h^+ n_h^+ + v_h^- n_h^-) \ ds_h \end{aligned}$$

## The Lift

Goal: Compare  $u \in H^2(\Gamma)$  solving  $(\mathbf{P}_{\Gamma})$  with  $u_h \in V_h$  solving  $(\mathbf{P}_{\Gamma_h}^{DG})$ , but  $\Gamma_h \not\subset \Gamma$ .

Lift: For  $\eta: \Gamma_h \to \mathbb{R}$  define

$$\eta'(\xi) := \eta(x)$$

where

$$x = \xi + d(x)\nu(\xi)$$



#### The Lift

Goal: Compare  $u \in H^2(\Gamma)$  solving  $(\mathbf{P}_{\Gamma})$  with  $u_h \in V_h$  solving  $(\mathbf{P}_{\Gamma_h}^{DG})$ , but  $\Gamma_h \not\subset \Gamma$ .



One-to-one relation between  $\Gamma$  and  $\Gamma_h$ , write

$$x = x(\xi)$$
 or  $\xi = \xi(x)$ .

Right hand side:

Define  $f_h$  so that  $f'_h = f$  on  $\Gamma$ .

# Lifted Objects

- Lifted triangles:  $K_h^{l} = \xi(K_h) \subset \Gamma$ .
- Conforming triangulation  $\mathcal{T}_h^l$ ,

$$\Gamma = \bigcup_{K_h^l \in \mathcal{T}_h^l} K_h^l.$$

• Lifted edges: 
$$e'_h := \xi(e_h) \in \mathcal{E}'_h$$
.

## Lifted Objects

- Lifted triangles:  $K_h^l = \xi(K_h) \subset \Gamma$ .
- Conforming triangulation  $\mathcal{T}_h^l$ ,

$$\Gamma = \bigcup_{K_h^l \in \mathcal{T}_h^l} K_h^l.$$



• Lifted edges: 
$$e'_h := \xi(e_h) \in \mathcal{E}'_h$$
.

Lifted DG space:

$$V_h^l := \{v_h^l \in L^2(\Gamma) : v_h^l(\xi) = v_h(x(\xi)) \text{ with some } v_h \in V_h\},$$

norm:

$$\|v_{h}^{l}\|_{DG(\Gamma)}^{2} := \sum_{K_{h}^{l} \in \mathcal{T}_{h}^{l}} \|v_{h}^{l}\|_{H^{1}(K_{h}^{l})}^{2} + \sum_{e_{h}^{l} \in \mathcal{E}_{h}^{l}} h_{e_{h}^{l}}^{-1} \|v_{h}^{l,+} - v_{h}^{l,-}\|_{L^{2}(e_{h}^{l})}^{2}$$

#### DG Bilinear Form on F

Consider

$$\begin{split} \mathsf{a}_{\Gamma}^{DG}(u,v) &:= \sum_{K_h^l \in \mathcal{T}_h^l} \int_{K_h^l} \nabla_{\Gamma} u \cdot \nabla_{\Gamma} v + uv \ dA \\ &- \sum_{e_h^l \in \mathcal{E}_h^l} \int_{e_h^l} (u^+ - u^-) \frac{1}{2} (\nabla_{\Gamma} v^+ \cdot n^+ - \nabla_{\Gamma} v^- \cdot n^-) \ ds \\ &- \sum_{e_h^l \in \mathcal{E}_h^l} \int_{e_h^l} (v^+ - v^-) \frac{1}{2} (\nabla_{\Gamma} u^+ \cdot n^+ - \nabla_{\Gamma} u^- \cdot n^-) \ ds \\ &+ \sum_{e_h^l \in \mathcal{E}_h^l} \int_{e_h^l} \beta_{e_h^l} (u^+ - u^-) (v^+ - v^-) \ ds \end{split}$$

• Unit conormals to  $K_h^{l+}$  and  $K_h^{l-}$  on  $e_h^l \in \mathcal{E}_h^l$ :  $n^+ = -n^- \in T_{\xi}\Gamma$ .

• Penalty parameters  $\beta_{e_h^l} := \frac{\beta_{e_h}}{\delta_{e_h}}$ .



#### Theorem (Dedner, M., Stinner 2012)

Let  $u \in H^2(\Gamma)$  and  $u_h \in V_h$  denote the solutions to  $(\mathbf{P}_{\Gamma})$  and  $(\mathbf{P}_{\Gamma_h}^{DG})$ , respectively. Denote by  $u_h^l \in V_h^l$  the lift of  $u_h$  onto  $\Gamma$ . Then

$$||u - u'_h||_{L^2(\Gamma)} + h||u - u'_h||_{DG(\Gamma)} \le Ch^2 ||f||_{L^2(\Gamma)}.$$

# Outline

1. Notation and Setting

2. DG Approximation

3. Convergence Proof

4. Numerical Tests

1. Starting:

$$\|u-u_h^{\prime}\|_{DG(\Gamma)} \leq \|u-\phi_h^{\prime}\|_{DG(\Gamma)} + \|\phi_h^{\prime}-u_h^{\prime}\|_{DG(\Gamma)}, \quad \phi_h^{\prime} = I_h^{\prime}u \text{ interpolate}.$$

1. Starting:

 $\|u-u_h^{\prime}\|_{DG(\Gamma)} \leq \|u-\phi_h^{\prime}\|_{DG(\Gamma)} + \|\phi_h^{\prime}-u_h^{\prime}\|_{DG(\Gamma)}, \quad \phi_h^{\prime} = I_h^{\prime}u \text{ interpolate}.$ 

2. Interpolation estimate [ Dziuk 1988 ]:

$$\|u - \phi_h^{l}\|_{DG(\Gamma)} = \|u - \phi_h^{l}\|_{H^1(\Gamma)} \le Ch \|u\|_{H^2(\Gamma)} \quad (\le Ch \|f\|_{L^2(\Gamma)}).$$

1. Starting:

$$\|u-u_h^{\prime}\|_{DG(\Gamma)} \leq \|u-\phi_h^{\prime}\|_{DG(\Gamma)} + \|\phi_h^{\prime}-u_h^{\prime}\|_{DG(\Gamma)}, \quad \phi_h^{\prime} = I_h^{\prime}u \text{ interpolate}.$$

2. Interpolation estimate [ Dziuk 1988 ]:

$$\|u - \phi_h^{l}\|_{DG(\Gamma)} = \|u - \phi_h^{l}\|_{H^1(\Gamma)} \le Ch \|u\|_{H^2(\Gamma)} \quad (\le Ch \|f\|_{L^2(\Gamma)}).$$

3. Using coercivity in  $V_h^l$ :

$$\begin{split} C_s^l \|\phi_h^l - u_h^l\|_{DG(\Gamma)}^2 &\leq a_\Gamma^{DG}(\phi_h^l - u_h^l, \phi_h^l - u_h^l) \\ &= a_\Gamma^{DG}(\phi_h^l - u, \phi_h^l - u_h^l) + a_\Gamma^{DG}(u - u_h^l, \phi_h^l - u_h^l). \end{split}$$

1. Starting:

$$\|u-u_h^{\prime}\|_{DG(\Gamma)} \leq \|u-\phi_h^{\prime}\|_{DG(\Gamma)} + \|\phi_h^{\prime}-u_h^{\prime}\|_{DG(\Gamma)}, \quad \phi_h^{\prime} = I_h^{\prime}u \text{ interpolate}.$$

2. Interpolation estimate [ Dziuk 1988 ]:

$$\|u - \phi_h^{l}\|_{DG(\Gamma)} = \|u - \phi_h^{l}\|_{H^1(\Gamma)} \le Ch \|u\|_{H^2(\Gamma)} \quad \big( \le Ch \|f\|_{L^2(\Gamma)} \big).$$

3. Using coercivity in  $V_h^l$ :

$$\begin{split} C_{s}^{l} \|\phi_{h}^{l} - u_{h}^{l}\|_{DG(\Gamma)}^{2} &\leq a_{\Gamma}^{DG}(\phi_{h}^{l} - u_{h}^{l}, \phi_{h}^{l} - u_{h}^{l}) \\ &= a_{\Gamma}^{DG}(\phi_{h}^{l} - u, \phi_{h}^{l} - u_{h}^{l}) + a_{\Gamma}^{DG}(u - u_{h}^{l}, \phi_{h}^{l} - u_{h}^{l}). \end{split}$$

4. Using boundedness in  $H^2(\Gamma) + V'_h$ :

$$a_{\Gamma}^{DG}(\phi'_{h}-u,\phi'_{h}-u'_{h}) \leq C'_{b}(\|\phi'_{h}-u\|_{DG(\Gamma)}+h^{2}\|u\|_{H^{2}(\Gamma)})\|\phi'_{h}-u'_{h}\|_{DG(\Gamma)}.$$

1. Starting:

$$\|u-u_h^l\|_{DG(\Gamma)} \leq \|u-\phi_h^l\|_{DG(\Gamma)} + \|\phi_h^l-u_h^l\|_{DG(\Gamma)}, \quad \phi_h^l = I_h^l u \text{ interpolate.}$$

2. Interpolation estimate [ Dziuk 1988 ]:

$$\|u - \phi_h^{l}\|_{DG(\Gamma)} = \|u - \phi_h^{l}\|_{H^1(\Gamma)} \le Ch \|u\|_{H^2(\Gamma)} \quad \big( \le Ch \|f\|_{L^2(\Gamma)} \big).$$

3. Using coercivity in  $V_h^l$ :

$$\begin{split} C_{s}^{\prime} \|\phi_{h}^{\prime} - u_{h}^{\prime}\|_{DG(\Gamma)}^{2} &\leq a_{\Gamma}^{DG}(\phi_{h}^{\prime} - u_{h}^{\prime}, \phi_{h}^{\prime} - u_{h}^{\prime}) \\ &= a_{\Gamma}^{DG}(\phi_{h}^{\prime} - u, \phi_{h}^{\prime} - u_{h}^{\prime}) + a_{\Gamma}^{DG}(u - u_{h}^{\prime}, \phi_{h}^{\prime} - u_{h}^{\prime}). \end{split}$$

4. Using boundedness in  $H^2(\Gamma) + V'_h$ :

$$a_{\Gamma}^{DG}(\phi_{h}^{\prime}-u,\phi_{h}^{\prime}-u_{h}^{\prime}) \leq C_{b}^{\prime}(\|\phi_{h}^{\prime}-u\|_{DG(\Gamma)}+h^{2}\|u\|_{H^{2}(\Gamma)})\|\phi_{h}^{\prime}-u_{h}^{\prime}\|_{DG(\Gamma)}.$$

5. Estimating variational crime error:

$$a_{\Gamma}^{DG}(u-u_{h}^{\prime},\phi_{h}^{\prime}-u_{h}^{\prime}) \leq Ch^{2}\|f\|_{L^{2}(\Gamma)}\|\phi_{h}^{\prime}-u_{h}^{\prime}\|_{DG(\Gamma)}.$$

1. Starting:

$$\|u-u_h^{\prime}\|_{DG(\Gamma)} \leq \|u-\phi_h^{\prime}\|_{DG(\Gamma)} + \|\phi_h^{\prime}-u_h^{\prime}\|_{DG(\Gamma)}, \quad \phi_h^{\prime} = I_h^{\prime}u \text{ interpolate}.$$

2. Interpolation estimate [ Dziuk 1988 ]:

$$\|u - \phi_h^{l}\|_{DG(\Gamma)} = \|u - \phi_h^{l}\|_{H^1(\Gamma)} \le Ch \|u\|_{H^2(\Gamma)} \quad \big( \le Ch \|f\|_{L^2(\Gamma)} \big).$$

3. Using coercivity in  $V_h^l$ :

$$\begin{split} C_{s}^{\prime} \|\phi_{h}^{\prime} - u_{h}^{\prime}\|_{DG(\Gamma)}^{2} &\leq a_{\Gamma}^{DG}(\phi_{h}^{\prime} - u_{h}^{\prime}, \phi_{h}^{\prime} - u_{h}^{\prime}) \\ &= a_{\Gamma}^{DG}(\phi_{h}^{\prime} - u, \phi_{h}^{\prime} - u_{h}^{\prime}) + a_{\Gamma}^{DG}(u - u_{h}^{\prime}, \phi_{h}^{\prime} - u_{h}^{\prime}). \end{split}$$

4. Using boundedness in  $H^2(\Gamma) + V'_h$ :

$$a_{\Gamma}^{DG}(\phi'_{h}-u,\phi'_{h}-u'_{h}) \leq C'_{b}(\|\phi'_{h}-u\|_{DG(\Gamma)}+h^{2}\|u\|_{H^{2}(\Gamma)})\|\phi'_{h}-u'_{h}\|_{DG(\Gamma)}.$$

5. Estimating variational crime error:

$$a_{\Gamma}^{DG}(u-u'_{h},\phi'_{h}-u'_{h}) \leq Ch^{2}\|f\|_{L^{2}(\Gamma)}\|\phi'_{h}-u'_{h}\|_{DG(\Gamma)}$$

6. Concluding:

$$\|u - u_h^l\|_{DG(\Gamma)} \le (1 + C)\|\phi_h^l - u\|_{H^1(\Gamma)} + Ch^2 \|u\|_{H^2(\Gamma)} + Ch^2 \|f\|_{L^2(\Gamma)} \le Ch\|f\|_{L^2(\Gamma)}.$$

#### Coercivity and Boundedness: Inverse Estimate

3. Using coercivity in  $V_h^l$ :

$$\begin{split} \mathcal{C}'_s \|\phi'_h - u'_h\|^2_{DG(\Gamma)} &\leq \mathsf{a}_{\Gamma}^{DG}(\phi'_h - u'_h, \phi'_h - u'_h) \\ &= \mathsf{a}_{\Gamma}^{DG}(\phi'_h - u, \phi'_h - u'_h) + \mathsf{a}_{\Gamma}^{DG}(u - u'_h, \phi'_h - u'_h) \end{split}$$

4. Using boundedness in  $H^2(\Gamma) + V'_h$ :

$$a_{\Gamma}^{DG}(\phi_{h}^{\prime}-u,\phi_{h}^{\prime}-u_{h}^{\prime}) \leq C_{b}^{\prime}(\|\phi_{h}^{\prime}-u\|_{DG(\Gamma)}+h^{2}\|u\|_{H^{2}(\Gamma)})\|\phi_{h}^{\prime}-u_{h}^{\prime}\|_{DG(\Gamma)}.$$

Lemma (Inverse Estimate) Let  $w \in H^2(\Gamma)$  and  $w_h^l \in V_h^l$ . Let  $K_h^l \in \mathcal{T}_h^l$ . Then for sufficiently small h,

$$\|\nabla_{\Gamma}(w+w_{h}^{l})\|_{L^{2}(\partial K_{h}^{l})}^{2} \leq C\left(\frac{1}{h}\|\nabla_{\Gamma}(w+w_{h}^{l})\|_{L^{2}(K_{h}^{l})}^{2} + h\|w\|_{H^{2}(K_{h}^{l})}^{2}\right)$$

#### Coercivity and Boundedness: Inverse Estimate

3. Using coercivity in  $V_h^l$ :

$$\begin{split} C_s^l \|\phi_h^l - u_h^l\|_{DG(\Gamma)}^2 &\leq a_{\Gamma}^{DG}(\phi_h^l - u_h^l, \phi_h^l - u_h^l) \\ &= a_{\Gamma}^{DG}(\phi_h^l - u, \phi_h^l - u_h^l) + a_{\Gamma}^{DG}(u - u_h^l, \phi_h^l - u_h^l) \end{split}$$

4. Using boundedness in  $H^2(\Gamma) + V'_h$ :

$$a_{\Gamma}^{DG}(\phi'_{h}-u,\phi'_{h}-u'_{h}) \leq C_{b}^{\prime}(\|\phi'_{h}-u\|_{DG(\Gamma)}+h^{2}\|u\|_{H^{2}(\Gamma)})\|\phi'_{h}-u'_{h}\|_{DG(\Gamma)}.$$

# Lemma (Inverse Estimate) Let $w \in H^2(\Gamma)$ and $w'_h \in V'_h$ . Let $K'_h \in \mathcal{T}'_h$ . Then for sufficiently small h,

$$\|\nabla_{\Gamma}(w+w_{h}^{l})\|_{L^{2}(\partial K_{h}^{l})}^{2} \leq C\left(\frac{1}{h}\|\nabla_{\Gamma}(w+w_{h}^{l})\|_{L^{2}(K_{h}^{l})}^{2} + h\|w\|_{H^{2}(K_{h}^{l})}^{2}\right)$$

#### Proof.

Trace theorem and a standard scaling argument on  $K_h \in \mathcal{T}_h$ , lift estimate onto  $K_h^I \in \mathcal{T}_h^I$  using result in [Demlow 2009] and apply geometric estimates.

## Variational Crime Error: Geometric Estimates

5. Estimating variational crime error:

$$a_{\Gamma}^{DG}(u-u_{h}^{l},\phi_{h}^{l}-u_{h}^{l}) \leq Ch^{2}\|f\|_{L^{2}(\Gamma)}\|\phi_{h}^{l}-u_{h}^{l}\|_{DG(\Gamma)}.$$

$$\begin{split} \mathbf{a}_{\Gamma}^{GG}(u-u_{h}^{l},w_{h}^{l}) \\ &= \sum_{K_{h}^{l}\in\mathcal{T}_{h}^{l}}\int_{K_{h}^{l}}(R_{h}-P)\nabla_{\Gamma}u_{h}^{l}\cdot\nabla_{\Gamma}w_{h}^{l} + \left(\frac{1}{\delta_{h}}-1\right)u_{h}^{l}w_{h}^{l} + \left(1-\frac{1}{\delta_{h}}\right)fw_{h}^{l} \, dA \\ &+ \sum_{e_{h}^{l}\in\mathcal{E}_{h}^{l}}\int_{e_{h}^{l}}(u_{h}^{l+}-u_{h}^{l-})\frac{1}{2}\Big(\nabla_{\Gamma}w_{h}^{l+}\cdot\left(n^{+}-\frac{1}{\delta_{e_{h}}}P(I-dH)n_{h}^{l+}\right) \\ &- \nabla_{\Gamma}w_{h}^{l-}\cdot\left(n^{-}-\frac{1}{\delta_{e_{h}}}P(I-dH)n_{h}^{l-}\right)\Big)ds \\ &+ \sum_{e_{h}^{l}\in\mathcal{E}_{h}^{l}}\int_{e_{h}^{l}}(w_{h}^{l+}-w_{h}^{l-})\frac{1}{2}\Big(\nabla_{\Gamma}u_{h}^{l+}\cdot\left(n^{+}-\frac{1}{\delta_{e_{h}}}P(I-dH)n_{h}^{l+}\right) \\ &- \nabla_{\Gamma}u_{h}^{l-}\cdot\left(n^{-}-\frac{1}{\delta_{e_{h}}}P(I-dH)n_{h}^{l-}\right)\Big)ds. \end{split}$$

#### Variational Crime Error: Geometric Estimates

5. Estimating variational crime error:

$$a_{\Gamma}^{DG}(u-u_{h}^{l},\phi_{h}^{l}-u_{h}^{l}) \leq Ch^{2}\|f\|_{L^{2}(\Gamma)}\|\phi_{h}^{l}-u_{h}^{l}\|_{DG(\Gamma)}.$$

Lemma (Dziuk 1988 and Giesselman & Mueller 2012)

$$\begin{split} \|d\|_{L^{\infty}(\Gamma)} &\leq Ch^{2},\\ \|1-\delta_{h}\|_{L^{\infty}(\Gamma)} &\leq Ch^{2},\\ \|\nu-\nu_{h}\|_{L^{\infty}(\Gamma)} &\leq Ch,\\ \|1-\delta_{e_{h}}\|_{L^{\infty}(\mathcal{E}_{h}^{l})}) &\leq Ch^{2},\\ \|n-Pn_{h}^{l}\|_{L^{\infty}(\mathcal{E}_{h}^{l})} &\leq Ch^{2},\\ \|P-R_{h}\|_{L^{\infty}(\Gamma)} &\leq Ch^{2} \end{split}$$

$$\begin{split} \delta_h : \ & \text{local area change, } \delta_h dA_h = dA, \\ \nu, \nu_h : \ & \text{unit normals on } \Gamma \text{ and } \Gamma_h, \\ \delta_{e_h} : \ & \text{local length change, } \delta_{e_h} ds_h = ds, \end{split}$$

where 
$$R_h := \frac{1}{\delta_h} P(I - dH) P_h(I - dH)$$
  
with  $H = \nabla^2 d$  and  $P_h = I - \nu_h \otimes \nu_h$ .

# Outline

1. Notation and Setting

2. DG Approximation

3. Convergence Proof

4. Numerical Tests

## Software



## **Distributed and Unified Numerics Environment**

- All simulations have been performed using the Distributed and Unified Numerics Environment (DUNE).
- Initial mesh generation made use of 3D surface mesh generation module of the Computational Geometry Algorithms Library (CGAL).
- Further information about DUNE and CGAL can be found respectively on http://www.dune-project.org/ and http://www.cgal.org/

## Test Problem on Unit Sphere

Surface Helmholtz equation:

$$-\Delta_{\Gamma} u + u = f$$

on the unit sphere

$$\Gamma = \{ x \in \mathbb{R}^3 : |x| = 1 \}.$$

The right-hand side f is chosen such that

$$u(x_1, x_2, x_3) = \cos(2\pi x_1)\cos(2\pi x_2)\cos(2\pi x_3)$$

is the exact solution.



# EOCs for Sphere Test Problem

| Elements | h          | L <sub>2</sub> -error | L <sub>2</sub> -eoc | DG-error | DG-eoc |
|----------|------------|-----------------------|---------------------|----------|--------|
| 623      | 0.223929   | 0.171459              |                     | 5.07662  |        |
| 2528     | 0.112141   | 0.0528817             | 1.70                | 2.64273  | 0.94   |
| 10112    | 0.0560925  | 0.0146074             | 1.86                | 1.3151   | 1.01   |
| 40448    | 0.028049   | 0.00378277            | 1.95                | 0.653612 | 1.01   |
| 161792   | 0.0140249  | 0.000957472           | 1.98                | 0.325961 | 1.00   |
| 647168   | 0.00701247 | 0.000240483           | 1.99                | 0.162822 | 1.00   |

# Visualisation, Sphere Test Problem

Can easily work with non-conforming grid:





## Test Problem on Dziuk Surface

Solve the Helmholtz equation on the *Dziuk surface* 

$$\Gamma = \{ x \in \mathbb{R}^3 : (x_1 - x_3^2)^2 + x_2^2 + x_3^2 = 1 \}.$$

The right-hand side f is chosen such that

$$u(x) = x_1 x_2$$

is the exact solution.



# EOCs for Dziuk Surface

| Elements | h         | L <sub>2</sub> -error | L <sub>2</sub> -eoc | DG-error  | DG-eoc |
|----------|-----------|-----------------------|---------------------|-----------|--------|
| 92       | 0.704521  | 0.243493              |                     | 0.894504  |        |
| 368      | 0.353599  | 0.0842372             | 1.53                | 0.490805  | 0.87   |
| 1472     | 0.176993  | 0.0268596             | 1.65                | 0.263808  | 0.90   |
| 5888     | 0.0885231 | 0.00637826            | 2.07                | 0.135162  | 0.97   |
| 23552    | 0.0442651 | 0.00171047            | 1.90                | 0.0685366 | 0.98   |
| 94208    | 0.022133  | 0.00041636            | 2.04                | 0.0343677 | 1.00   |
| 376832   | 0.0110666 | 0.00010427            | 2.00                | 0.0171891 | 1.00   |
| 1507328  | 0.0055333 | 2.60734e-05           | 2.00                | 0.0085934 | 1.00   |

#### Test Problem on Enzensberger-Stern Surface

Solve the Helmholtz equation on the *Enzensberger-Stern surface* 

 $\Gamma = \{x \in \mathbb{R}^3 : 400(x^2y^2 + y^2z^2 + x^2z^2) - (1 - x^2 - y^2 - z^2)^3 - 40 = 0.\}$ 

The right-hand side f is again chosen such that  $u(x) = x_1 x_2$  is the exact solution.



## EOCs for Enzensberger-Stern Surface

| Elements | h         | L <sub>2</sub> -error | L <sub>2</sub> -eoc | DG-error  | DG-eoc |
|----------|-----------|-----------------------|---------------------|-----------|--------|
| 2358     | 0.163789  | 0.476777              |                     | 0.998066  |        |
| 9432     | 0.0817973 | 0.175293              | 1.44                | 0.472241  | 1.08   |
| 37728    | 0.040885  | 0.0160606             | 3.45                | 0.150144  | 1.65   |
| 150912   | 0.0204411 | 0.00139698            | 3.52                | 0.0703901 | 1.09   |
| 603648   | 0.0102204 | 0.000338462           | 2.04                | 0.0347345 | 1.02   |
| 2414592  | 0.00511   | 7.86713e-05           | 2.10                | 0.0172348 | 1.01   |

Tricky: The computation of the lifted points  $\xi(x)$  when refining the surface. The EOC rates thus are a bit more volatile.

#### Other Choices for the Conormals

Generalise the bilinear form:

$$\begin{split} \tilde{a}_{\Gamma_h}^{DG}(u_h, v_h) &:= -\sum_{e_h \in \mathcal{E}_h} \int_{e_h} (u_h^+ - u_h^-) \frac{1}{2} (\nabla_{\Gamma_h} v_h^+ \cdot n_{e_h}^+ - \nabla_{\Gamma_h} v_h^- \cdot n_{e_h}^-) \, ds_h \\ &- \sum_{e_h \in \mathcal{E}_h} \int_{e_h} (v_h^+ - v_h^-) \frac{1}{2} (\nabla_{\Gamma_h} u_h^+ \cdot n_{e_h}^+ - \nabla_{\Gamma_h} u_h^- \cdot n_{e_h}^-) \, ds_h + \dots \end{split}$$



#### Comparison of Choices



Ratio of  $L^2$  and DG errors for the test problem on the Enzensberger-Stern surface, benchmark is the analysed choice 2.

## Comparison of Choices



Ratio of  $L^2$  and DG errors for the test problem on the Enzensberger-Stern surface, benchmark is the analysed choice 2.

The [Arnold et al. 2002] (standard) IP method did not converge!

▶ The (classical) IP method from [ Arnold 1982 ] can be 'lifted to surfaces'.

- ▶ The (classical) IP method from [ Arnold 1982 ] can be 'lifted to surfaces'.
- A priori error analysis requires estimation of additional terms in comparison with [Dziuk 1988].

- ▶ The (classical) IP method from [ Arnold 1982 ] can be 'lifted to surfaces'.
- A priori error analysis requires estimation of additional terms in comparison with [Dziuk 1988].
- > The expected order of convergence is obtained and observed.

- ▶ The (classical) IP method from [ Arnold 1982 ] can be 'lifted to surfaces'.
- A priori error analysis requires estimation of additional terms in comparison with [Dziuk 1988].
- The expected order of convergence is obtained and observed.
- Numerics suggest that the (standard) IP method from [Arnold et al. 2002] cannot be 'lifted to surfaces'.

- ▶ The (classical) IP method from [ Arnold 1982 ] can be 'lifted to surfaces'.
- A priori error analysis requires estimation of additional terms in comparison with [Dziuk 1988].
- The expected order of convergence is obtained and observed.
- Numerics suggest that the (standard) IP method from [Arnold et al. 2002] cannot be 'lifted to surfaces'.
- Open: Analysis for nonconforming meshes, higher order methods (extend [ Demlow 2009 ]), hp-adaptive a posteriori error analysis and refinement (extend [ Demlow & Dziuk 2008 ] and [ Houston et al. 2007 ]).

- ▶ The (classical) IP method from [ Arnold 1982 ] can be 'lifted to surfaces'.
- A priori error analysis requires estimation of additional terms in comparison with [Dziuk 1988].
- The expected order of convergence is obtained and observed.
- Numerics suggest that the (standard) IP method from [Arnold et al. 2002] cannot be 'lifted to surfaces'.
- Open: Analysis for nonconforming meshes, higher order methods (extend [ Demlow 2009 ]), hp-adaptive a posteriori error analysis and refinement (extend [ Demlow & Dziuk 2008 ] and [ Houston et al. 2007 ]).

$$\begin{split} \|u - u_h^l\|_{DG(\Gamma)} \leq & C \Big(\sum_{K_h \in \mathcal{T}_h} \|R_h\|_{l^2, L^{\infty}(w_{K_h})} \eta_{K_h}^2 + \|\sqrt{\beta_{e_h}}[u_h]\|_{L^2(\partial K_h)}^2 \\ & + \text{higher order geometric terms}\Big)^{1/2}. \end{split}$$

- ▶ The (classical) IP method from [ Arnold 1982 ] can be 'lifted to surfaces'.
- A priori error analysis requires estimation of additional terms in comparison with [Dziuk 1988].
- The expected order of convergence is obtained and observed.
- Numerics suggest that the (standard) IP method from [Arnold et al. 2002] cannot be 'lifted to surfaces'.
- Open: Analysis for nonconforming meshes, higher order methods (extend [ Demlow 2009 ]), hp-adaptive a posteriori error analysis and refinement (extend [ Demlow & Dziuk 2008 ] and [ Houston et al. 2007 ]).

$$\begin{split} \|u - u_h^{\prime}\|_{DG(\Gamma)} \leq & C \Big(\sum_{K_h \in \mathcal{T}_h} \|R_h\|_{l^2, L^{\infty}(w_{K_h})} \eta_{K_h}^2 + \|\sqrt{\beta_{e_h}}[u_h]\|_{L^2(\partial K_h)}^2 \\ & + \text{higher order geometric terms}\Big)^{1/2}. \end{split}$$

Thanks for your attention!

EPSRC

MAS DOC

Acknowledgement:

Engineering and Physical Sciences Research Council

grant EP/H023364/1