
Adaptive Refinement for Partial Differential Equations on
Surfaces

Pravin Madhavan

Mathematics and Statistics Centre for Doctoral Training
University of Warwick

CSC Seminar
Center for Scientific Computing, 10th March 2014

Motivation - PDEs on Surfaces

Partial Differential Equations (PDEs) on surfaces arise in various areas, for instance

I materials science: enhanced species diffusion along grain boundaries,

I fluid dynamics: surface active agents,

I cell biology: phase separation on biomembranes, diffusion processes on plasma
membranes, chemotaxis.

Neutrophil

chase.mpg
Media File (video/mpeg)

Motivation - Adaptivity

In practical applications, often want to perform a simulation with guaranteed error
bounds.

Classical error estimates can’t be used for this purpose: let Ω ⊂ R2, u the exact
solution of some PDE and uh its finite element approximation, then

‖u − uh‖H1(Ω) ≤ Ch

where ‖u − uh‖2
H1(Ω)

:=
∫

Ω |u − uh|2 + |∇(u − uh)|2 dx . Here v := v(x , y),

∇v := (∂v
∂x
, ∂v
∂y

).

I C typically depends on derivatives of the exact solution, which are generally not
known.

I Even if C is known, error is usually severely overestimated.

I No information on where errors are produced in domain and how they propagate.

Motivation - Adaptivity

In practical applications, often want to perform a simulation with guaranteed error
bounds.

Classical error estimates can’t be used for this purpose: let Ω ⊂ R2, u the exact
solution of some PDE and uh its finite element approximation, then

‖u − uh‖H1(Ω) ≤ Ch

where ‖u − uh‖2
H1(Ω)

:=
∫

Ω |u − uh|2 + |∇(u − uh)|2 dx . Here v := v(x , y),

∇v := (∂v
∂x
, ∂v
∂y

).

I C typically depends on derivatives of the exact solution, which are generally not
known.

I Even if C is known, error is usually severely overestimated.

I No information on where errors are produced in domain and how they propagate.

Motivation - Adaptivity

In practical applications, often want to perform a simulation with guaranteed error
bounds.

Classical error estimates can’t be used for this purpose: let Ω ⊂ R2, u the exact
solution of some PDE and uh its finite element approximation, then

‖u − uh‖H1(Ω) ≤ Ch

where ‖u − uh‖2
H1(Ω)

:=
∫

Ω |u − uh|2 + |∇(u − uh)|2 dx . Here v := v(x , y),

∇v := (∂v
∂x
, ∂v
∂y

).

I C typically depends on derivatives of the exact solution, which are generally not
known.

I Even if C is known, error is usually severely overestimated.

I No information on where errors are produced in domain and how they propagate.

Motivation - Adaptivity

In practical applications, often want to perform a simulation with guaranteed error
bounds.

Classical error estimates can’t be used for this purpose: let Ω ⊂ R2, u the exact
solution of some PDE and uh its finite element approximation, then

‖u − uh‖H1(Ω) ≤ Ch

where ‖u − uh‖2
H1(Ω)

:=
∫

Ω |u − uh|2 + |∇(u − uh)|2 dx . Here v := v(x , y),

∇v := (∂v
∂x
, ∂v
∂y

).

I C typically depends on derivatives of the exact solution, which are generally not
known.

I Even if C is known, error is usually severely overestimated.

I No information on where errors are produced in domain and how they propagate.

Motivation - Adaptivity

Adaptive Grid Refinement: find optimal grid that reduces some quantity of interest
below a certain user-defined tolerance with lowest computational cost.

Figure: Uniform vs adaptive grid refinement for fluid flow with obstacle

Outline

1. A Posteriori Error Analysis and Adaptive Refinement

2. Adaptive Refinement on Surfaces

3. Geometric Adaptive Refinement

Problem Formulation

Problem: For a given function f : Ω → R, find
u : Ω→ R such that

−∆u = f in Ω

u = 0 on ∂Ω.

Here ∇ · w = ∂w1
∂x

+ ∂w2
∂y

, ∆u := ∇ · ∇u = ∂2u
∂x2 + ∂2u

∂y2 .

Finite Element Approximation - Idea

Triangulate the domain Ω.

Let Nh denote the number of nodes in Th and {φh
i }

Nh
i=1 denote a set of piecewise linear

functions. The the finite element approximation uh of u is given by

uh =

Nh∑
i=1

αiφ
h
i

Finite Element Approximation - Idea

Triangulate the domain Ω.

Let Nh denote the number of nodes in Th and {φh
i }

Nh
i=1 denote a set of piecewise linear

functions. The the finite element approximation uh of u is given by

uh =

Nh∑
i=1

αiφ
h
i

A posteriori error estimation

Adaptive grid refinement is linked to a posteriori error estimation, which typically
takes the form

J(u − uh) ≤
∑

Kh∈Th

ηKh

where J(u − uh) is some quantity of interest depending on error u − uh and
{ηKh
}Kh∈Th

are respectively local estimators of J(u − uh).

Possible functionals J(·) are:

I Energy norm: J(v) = ‖v‖H1 .

I L2 norm: J(v) = ‖v‖L2 .

I Normal flux: J(v) =
∫
∂Ω∇v · ν.

I Point error: J(v) = v(p) for some p in Ω.

I Some derived quantity, e.g., lift, drag or pressure.

One hopes that {ηKh
}Kh∈Th

can be used to adaptively refine grid in such a way that
J(·) is minimised in an optimal way.

A posteriori error estimation

Adaptive grid refinement is linked to a posteriori error estimation, which typically
takes the form

J(u − uh) ≤
∑

Kh∈Th

ηKh

where J(u − uh) is some quantity of interest depending on error u − uh and
{ηKh
}Kh∈Th

are respectively local estimators of J(u − uh).

Possible functionals J(·) are:

I Energy norm: J(v) = ‖v‖H1 .

I L2 norm: J(v) = ‖v‖L2 .

I Normal flux: J(v) =
∫
∂Ω∇v · ν.

I Point error: J(v) = v(p) for some p in Ω.

I Some derived quantity, e.g., lift, drag or pressure.

One hopes that {ηKh
}Kh∈Th

can be used to adaptively refine grid in such a way that
J(·) is minimised in an optimal way.

A posteriori error estimation

J(u − uh) ≤
∑

Kh∈Th

ηKh

For each Kh ∈ Th, local error indicator ηKh
is given by

ηKh
= hKh

RKh
(uh) + h

1/2
Kh
R∂Kh

(uh)

where
RKh

(uh) := ‖f + ∆uh‖L2(Kh) is the element residual.

R∂Kh
(uh) := ‖[∇uh]‖L2(∂Kh\∂Ω) is the jump residual.

ηKh
= “element residual” + “jump residual”

I The exact solution u does not appear in our local estimators!

I Local indicators ηKh
can be used to find regions in Ω where error is large and

hence where smaller grid elements should be used!

A posteriori error estimation

J(u − uh) ≤
∑

Kh∈Th

ηKh

For each Kh ∈ Th, local error indicator ηKh
is given by

ηKh
= hKh

RKh
(uh) + h

1/2
Kh
R∂Kh

(uh)

where
RKh

(uh) := ‖f + ∆uh‖L2(Kh) is the element residual.

R∂Kh
(uh) := ‖[∇uh]‖L2(∂Kh\∂Ω) is the jump residual.

ηKh
= “element residual” + “jump residual”

I The exact solution u does not appear in our local estimators!

I Local indicators ηKh
can be used to find regions in Ω where error is large and

hence where smaller grid elements should be used!

A posteriori error estimation

J(u − uh) ≤
∑

Kh∈Th

ηKh

For each Kh ∈ Th, local error indicator ηKh
is given by

ηKh
= hKh

RKh
(uh) + h

1/2
Kh
R∂Kh

(uh)

where
RKh

(uh) := ‖f + ∆uh‖L2(Kh) is the element residual.

R∂Kh
(uh) := ‖[∇uh]‖L2(∂Kh\∂Ω) is the jump residual.

ηKh
= “element residual” + “jump residual”

I The exact solution u does not appear in our local estimators!

I Local indicators ηKh
can be used to find regions in Ω where error is large and

hence where smaller grid elements should be used!

A posteriori error estimation

J(u − uh) ≤
∑

Kh∈Th

ηKh

For each Kh ∈ Th, local error indicator ηKh
is given by

ηKh
= hKh

RKh
(uh) + h

1/2
Kh
R∂Kh

(uh)

where
RKh

(uh) := ‖f + ∆uh‖L2(Kh) is the element residual.

R∂Kh
(uh) := ‖[∇uh]‖L2(∂Kh\∂Ω) is the jump residual.

ηKh
= “element residual” + “jump residual”

I The exact solution u does not appear in our local estimators!

I Local indicators ηKh
can be used to find regions in Ω where error is large and

hence where smaller grid elements should be used!

Adaptive Refinement Algorithm

REFINE

SOLVE

ESTIMATE

MARK

Start with an intitial grid T 0
h . Then for n ≥ 0:

I SOLVE: compute a finite element
approximation uh of u.

I ESTIMATE: use uh to compute local
indicators {ηKh

}Kh∈Th
. If∑

Kh∈Th
ηKh

< TOL, break.

I MARK: depending on value of local
indicator ηKh

, mark corresponding element
Kh for refinement or not.

I REFINE: Refine marked elements Kh ∈ T n
h

to construct new grid T n+1
h .

Adaptive Refinement Algorithm

REFINE

SOLVE

ESTIMATE

MARK

Start with an intitial grid T 0
h . Then for n ≥ 0:

I SOLVE: compute a finite element
approximation uh of u.

I ESTIMATE: use uh to compute local
indicators {ηKh

}Kh∈Th
. If∑

Kh∈Th
ηKh

< TOL, break.

I MARK: depending on value of local
indicator ηKh

, mark corresponding element
Kh for refinement or not.

I REFINE: Refine marked elements Kh ∈ T n
h

to construct new grid T n+1
h .

Adaptive Refinement Algorithm

REFINE

SOLVE

ESTIMATE

MARK

Start with an intitial grid T 0
h . Then for n ≥ 0:

I SOLVE: compute a finite element
approximation uh of u.

I ESTIMATE: use uh to compute local
indicators {ηKh

}Kh∈Th
. If∑

Kh∈Th
ηKh

< TOL, break.

I MARK: depending on value of local
indicator ηKh

, mark corresponding element
Kh for refinement or not.

I REFINE: Refine marked elements Kh ∈ T n
h

to construct new grid T n+1
h .

Adaptive Refinement Algorithm

REFINE

SOLVE

ESTIMATE

MARK

Start with an intitial grid T 0
h . Then for n ≥ 0:

I SOLVE: compute a finite element
approximation uh of u.

I ESTIMATE: use uh to compute local
indicators {ηKh

}Kh∈Th
. If∑

Kh∈Th
ηKh

< TOL, break.

I MARK: depending on value of local
indicator ηKh

, mark corresponding element
Kh for refinement or not.

I REFINE: Refine marked elements Kh ∈ T n
h

to construct new grid T n+1
h .

Outline

1. A Posteriori Error Analysis and Adaptive Refinement

2. Adaptive Refinement on Surfaces

3. Geometric Adaptive Refinement

Problem Formulation

Problem: For a given function f : Γ → R, find
u : Γ→ R such that

−∆Γu + u = f in Γ

where ∆Γ is the Laplace-Beltrami operator.

Triangulated Surfaces

I Γ is approximated by a polyhedral surface Γh composed of planar triangles Kh.

I The vertices sit on Γ ⇒ Γh is its linear interpolation.

I Triangulate Γh as we have done for Ω in the flat case.

Γ Γh =
⋃

Kh∈Th
Kh

A Posteriori Error Estimates on Surfaces

J(u − uh) ≤
∑

Kh∈Th

ηKh

For each Kh ∈ Th, local error indicator ηKh
is given by

ηKh
= hKh

RKh
(uh) + h

1/2
Kh
R∂Kh

(uh) + GKh
(uh)

where
RKh

(uh) := ‖fhδh + ∆Γh
uh − uhδh‖L2(Kh) is the element residual.

R∂Kh
(uh) := ‖[∇Γh

uh]‖L2(∂Kh) is the jump residual.
GKh

is the geometric residual encompassing the error caused by approximating smooth
surface Γ.

ηKh
= “element residual” + “jump residual” + “geometric residual”

A Posteriori Error Estimates on Surfaces

J(u − uh) ≤
∑

Kh∈Th

ηKh

For each Kh ∈ Th, local error indicator ηKh
is given by

ηKh
= hKh

RKh
(uh) + h

1/2
Kh
R∂Kh

(uh) + GKh
(uh)

where
RKh

(uh) := ‖fhδh + ∆Γh
uh − uhδh‖L2(Kh) is the element residual.

R∂Kh
(uh) := ‖[∇Γh

uh]‖L2(∂Kh) is the jump residual.
GKh

is the geometric residual encompassing the error caused by approximating smooth
surface Γ.

ηKh
= “element residual” + “jump residual” + “geometric residual”

A Posteriori Error Estimates on Surfaces

J(u − uh) ≤
∑

Kh∈Th

ηKh

For each Kh ∈ Th, local error indicator ηKh
is given by

ηKh
= hKh

RKh
(uh) + h

1/2
Kh
R∂Kh

(uh) + GKh
(uh)

where
RKh

(uh) := ‖fhδh + ∆Γh
uh − uhδh‖L2(Kh) is the element residual.

R∂Kh
(uh) := ‖[∇Γh

uh]‖L2(∂Kh) is the jump residual.
GKh

is the geometric residual encompassing the error caused by approximating smooth
surface Γ.

ηKh
= “element residual” + “jump residual” + “geometric residual”

Outline

1. A Posteriori Error Analysis and Adaptive Refinement

2. Adaptive Refinement on Surfaces

3. Geometric Adaptive Refinement

Software

I All simulations have been performed using the Distributed and Unified Numerics
Environment (DUNE).

I Initial mesh generation made use of 3D surface mesh generation module of the
Computational Geometry Algorithms Library (CGAL).

I Further information about DUNE and CGAL can be found respectively on
http://www.dune-project.org/ and http://www.cgal.org/

Test Problem 1

Model problem:

−∆Γu + u = f

on the torus

Γ = {x ∈ R3 : x2
3 +

(
1−

√
x2

1 + x2
2

)2

−0.0625 = 0}.

The right-hand side f is chosen such that

u(x1, x2, x3) = e
1

1.85−x2
1 sin(x2).

is the exact solution.

Adaptive Refinement Algorithm for Test Problem 1

(a) Refinement level: 0 (b) Refinement level: 1

(c) Refinement level: 2 (d) Refinement level: 3

Test Problem 2

Model problem on the Enzensberger-Stern surface

Γ = {x ∈ R3 : 400(x2
1 x2

2 + x2
2 x2

3 + x2
1 x2

3)− (1− x2
1 − x2

2 − x2
3)3 − 40 = 0.}

The right-hand side f is chosen such that

u(x) = x1x2

is the exact solution.

I Notice that solution is smooth but initial
mesh poorly resolves areas of high
curvature.

I Geometric residual in estimator very large
in those areas and drives adaptive grid
refinement algorithm.

I Recomputation of uh in adaptive grid
refinement algorithm (SOLVE) is costly
and does not significantly reduce overall
residual when geometric residual
dominates.

Test Problem 2

Model problem on the Enzensberger-Stern surface

Γ = {x ∈ R3 : 400(x2
1 x2

2 + x2
2 x2

3 + x2
1 x2

3)− (1− x2
1 − x2

2 − x2
3)3 − 40 = 0.}

The right-hand side f is chosen such that

u(x) = x1x2

is the exact solution.

I Notice that solution is smooth but initial
mesh poorly resolves areas of high
curvature.

I Geometric residual in estimator very large
in those areas and drives adaptive grid
refinement algorithm.

I Recomputation of uh in adaptive grid
refinement algorithm (SOLVE) is costly
and does not significantly reduce overall
residual when geometric residual
dominates.

Test Problem 2

Model problem on the Enzensberger-Stern surface

Γ = {x ∈ R3 : 400(x2
1 x2

2 + x2
2 x2

3 + x2
1 x2

3)− (1− x2
1 − x2

2 − x2
3)3 − 40 = 0.}

The right-hand side f is chosen such that

u(x) = x1x2

is the exact solution.

I Notice that solution is smooth but initial
mesh poorly resolves areas of high
curvature.

I Geometric residual in estimator very large
in those areas and drives adaptive grid
refinement algorithm.

I Recomputation of uh in adaptive grid
refinement algorithm (SOLVE) is costly
and does not significantly reduce overall
residual when geometric residual
dominates.

Test Problem 2

Model problem on the Enzensberger-Stern surface

Γ = {x ∈ R3 : 400(x2
1 x2

2 + x2
2 x2

3 + x2
1 x2

3)− (1− x2
1 − x2

2 − x2
3)3 − 40 = 0.}

The right-hand side f is chosen such that

u(x) = x1x2

is the exact solution.

I Notice that solution is smooth but initial
mesh poorly resolves areas of high
curvature.

I Geometric residual in estimator very large
in those areas and drives adaptive grid
refinement algorithm.

I Recomputation of uh in adaptive grid
refinement algorithm (SOLVE) is costly
and does not significantly reduce overall
residual when geometric residual
dominates.

Geometric Adaptive Refinement Algorithm

REFINE

SOLVE

ESTIMATE

MARK

geometric criteria

≥ TOLgeometric

Start with an intitial grid T 0
h .

I SOLVE: compute a finite element
approximation uh of u.

Then for n ≥ 0:

I ESTIMATE: use uh to compute local
indicators {ηKh

}Kh∈Th
. If∑

Kh∈Th
ηKh

< TOL, break.

I MARK: depending on value of local
indicator ηKh

, mark corresponding element
Kh for refinement or not.

I REFINE: Refine marked elements Kh ∈ T n
h

to construct new grid T n+1
h .

I While∑
Kh∈Th

GKh∑
Kh∈Th

ηKh

≥ TOLgeometric

go to ESTIMATE else SOLVE.

Geometric Adaptive Refinement Algorithm

REFINE

SOLVE

ESTIMATE

MARK

geometric criteria

≥ TOLgeometric

Start with an intitial grid T 0
h .

I SOLVE: compute a finite element
approximation uh of u.

Then for n ≥ 0:

I ESTIMATE: use uh to compute local
indicators {ηKh

}Kh∈Th
. If∑

Kh∈Th
ηKh

< TOL, break.

I MARK: depending on value of local
indicator ηKh

, mark corresponding element
Kh for refinement or not.

I REFINE: Refine marked elements Kh ∈ T n
h

to construct new grid T n+1
h .

I While∑
Kh∈Th

GKh∑
Kh∈Th

ηKh

≥ TOLgeometric

go to ESTIMATE else SOLVE.

Geometric Adaptive Refinement Algorithm for Test Problem 2

Geometric Adaptive Refinement Algorithm for Test Problem 2

(e) Refinement level: 0 (f) Refinement level: 1

(g) Refinement level: 2 (h) Refinement level: 3

Thanks for your attention!

Acknowledgement: grant EP/H023364/1

	1. A Posteriori Error Analysis and Adaptive Refinement
	2. Adaptive Refinement on Surfaces
	3. Geometric Adaptive Refinement

