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Motivation - PDEs on Surfaces

Partial Differential Equations (PDEs) on surfaces arise in various areas, for instance

I materials science: enhanced species diffusion along grain boundaries,

I fluid dynamics: surface active agents,

I cell biology: phase separation on biomembranes, diffusion processes on plasma
membranes, chemotaxis.
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Motivation - Adaptivity

In practical applications, often want to perform a simulation with guaranteed error
bounds.

Classical error estimates can’t be used for this purpose: let Ω ⊂ R2, u the exact
solution of some PDE and uh its finite element approximation, then

‖u − uh‖H1(Ω) ≤ Ch

where ‖u − uh‖2
H1(Ω)

:=
∫

Ω |u − uh|2 + |∇(u − uh)|2 dx . Here v := v(x , y),

∇v := ( ∂v
∂x
, ∂v
∂y

).

I C typically depends on derivatives of the exact solution, which are generally not
known.

I Even if C is known, error is usually severely overestimated.

I No information on where errors are produced in domain and how they propagate.
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Motivation - Adaptivity

Adaptive Grid Refinement: find optimal grid that reduces some quantity of interest
below a certain user-defined tolerance with lowest computational cost.

Figure: Uniform vs adaptive grid refinement for fluid flow with obstacle
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1. A Posteriori Error Analysis and Adaptive Refinement

2. Adaptive Refinement on Surfaces

3. Geometric Adaptive Refinement



Problem Formulation

Problem: For a given function f : Ω → R, find
u : Ω→ R such that

−∆u = f in Ω

u = 0 on ∂Ω.

Here ∇ · w = ∂w1
∂x

+ ∂w2
∂y

, ∆u := ∇ · ∇u = ∂2u
∂x2 + ∂2u

∂y2 .



Finite Element Approximation - Idea

Triangulate the domain Ω.

Let Nh denote the number of nodes in Th and {φh
i }

Nh
i=1 denote a set of piecewise linear

functions. The the finite element approximation uh of u is given by

uh =

Nh∑
i=1

αiφ
h
i
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A posteriori error estimation

Adaptive grid refinement is linked to a posteriori error estimation, which typically
takes the form

J(u − uh) ≤
∑

Kh∈Th

ηKh

where J(u − uh) is some quantity of interest depending on error u − uh and
{ηKh
}Kh∈Th

are respectively local estimators of J(u − uh).

Possible functionals J(·) are:

I Energy norm: J(v) = ‖v‖H1 .

I L2 norm: J(v) = ‖v‖L2 .

I Normal flux: J(v) =
∫
∂Ω∇v · ν.

I Point error: J(v) = v(p) for some p in Ω.

I Some derived quantity, e.g., lift, drag or pressure.

One hopes that {ηKh
}Kh∈Th

can be used to adaptively refine grid in such a way that
J(·) is minimised in an optimal way.
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A posteriori error estimation

J(u − uh) ≤
∑

Kh∈Th

ηKh

For each Kh ∈ Th, local error indicator ηKh
is given by

ηKh
= hKh

RKh
(uh) + h

1/2
Kh
R∂Kh

(uh)

where
RKh

(uh) := ‖f + ∆uh‖L2(Kh) is the element residual.

R∂Kh
(uh) := ‖[∇uh]‖L2(∂Kh\∂Ω) is the jump residual.

ηKh
= “element residual” + “jump residual”

I The exact solution u does not appear in our local estimators!

I Local indicators ηKh
can be used to find regions in Ω where error is large and

hence where smaller grid elements should be used!
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Adaptive Refinement Algorithm

REFINE

SOLVE

ESTIMATE

MARK

Start with an intitial grid T 0
h . Then for n ≥ 0:

I SOLVE: compute a finite element
approximation uh of u.

I ESTIMATE: use uh to compute local
indicators {ηKh

}Kh∈Th
. If∑

Kh∈Th
ηKh

< TOL, break.

I MARK: depending on value of local
indicator ηKh

, mark corresponding element
Kh for refinement or not.

I REFINE: Refine marked elements Kh ∈ T n
h

to construct new grid T n+1
h .
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Problem Formulation

Problem: For a given function f : Γ → R, find
u : Γ→ R such that

−∆Γu + u = f in Γ

where ∆Γ is the Laplace-Beltrami operator.



Triangulated Surfaces

I Γ is approximated by a polyhedral surface Γh composed of planar triangles Kh.

I The vertices sit on Γ ⇒ Γh is its linear interpolation.

I Triangulate Γh as we have done for Ω in the flat case.

Γ Γh =
⋃

Kh∈Th
Kh



A Posteriori Error Estimates on Surfaces

J(u − uh) ≤
∑

Kh∈Th

ηKh

For each Kh ∈ Th, local error indicator ηKh
is given by

ηKh
= hKh

RKh
(uh) + h

1/2
Kh
R∂Kh

(uh) + GKh
(uh)

where
RKh

(uh) := ‖fhδh + ∆Γh
uh − uhδh‖L2(Kh) is the element residual.

R∂Kh
(uh) := ‖[∇Γh

uh]‖L2(∂Kh) is the jump residual.
GKh

is the geometric residual encompassing the error caused by approximating smooth
surface Γ.

ηKh
= “element residual” + “jump residual” + “geometric residual”
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Software

I All simulations have been performed using the Distributed and Unified Numerics
Environment (DUNE).

I Initial mesh generation made use of 3D surface mesh generation module of the
Computational Geometry Algorithms Library (CGAL).

I Further information about DUNE and CGAL can be found respectively on
http://www.dune-project.org/ and http://www.cgal.org/



Test Problem 1

Model problem:

−∆Γu + u = f

on the torus

Γ = {x ∈ R3 : x2
3 +

(
1−

√
x2

1 + x2
2

)2

−0.0625 = 0}.

The right-hand side f is chosen such that

u(x1, x2, x3) = e
1

1.85−x2
1 sin(x2).

is the exact solution.



Adaptive Refinement Algorithm for Test Problem 1

(a) Refinement level: 0 (b) Refinement level: 1

(c) Refinement level: 2 (d) Refinement level: 3



Test Problem 2

Model problem on the Enzensberger-Stern surface

Γ = {x ∈ R3 : 400(x2
1 x2

2 + x2
2 x2

3 + x2
1 x2

3 )− (1− x2
1 − x2

2 − x2
3 )3 − 40 = 0.}

The right-hand side f is chosen such that

u(x) = x1x2

is the exact solution.

I Notice that solution is smooth but initial
mesh poorly resolves areas of high
curvature.

I Geometric residual in estimator very large
in those areas and drives adaptive grid
refinement algorithm.

I Recomputation of uh in adaptive grid
refinement algorithm (SOLVE) is costly
and does not significantly reduce overall
residual when geometric residual
dominates.
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Geometric Adaptive Refinement Algorithm

REFINE

SOLVE

ESTIMATE

MARK

geometric criteria

≥ TOLgeometric

Start with an intitial grid T 0
h .

I SOLVE: compute a finite element
approximation uh of u.

Then for n ≥ 0:

I ESTIMATE: use uh to compute local
indicators {ηKh

}Kh∈Th
. If∑

Kh∈Th
ηKh

< TOL, break.

I MARK: depending on value of local
indicator ηKh

, mark corresponding element
Kh for refinement or not.

I REFINE: Refine marked elements Kh ∈ T n
h

to construct new grid T n+1
h .

I While∑
Kh∈Th

GKh∑
Kh∈Th

ηKh

≥ TOLgeometric

go to ESTIMATE else SOLVE.
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Geometric Adaptive Refinement Algorithm for Test Problem 2



Geometric Adaptive Refinement Algorithm for Test Problem 2

(e) Refinement level: 0 (f) Refinement level: 1

(g) Refinement level: 2 (h) Refinement level: 3



Thanks for your attention!
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