Adaptive Refinement for Partial Differential Equations on Surfaces

Pravin Madhavan

Mathematics and Statistics Centre for Doctoral Training University of Warwick

CSC Seminar Center for Scientific Computing, 10th March 2014

Motivation - PDEs on Surfaces

Partial Differential Equations (PDEs) on surfaces arise in various areas, for instance

- materials science: enhanced species diffusion along grain boundaries,
- fluid dynamics: surface active agents,
- cell biology: phase separation on biomembranes, diffusion processes on plasma membranes, chemotaxis.

Neutrophil

In practical applications, often want to perform a simulation with *guaranteed* error bounds.

Classical error estimates can't be used for this purpose: let $\Omega \subset \mathbb{R}^2$, *u* the exact solution of some PDE and u_h its finite element approximation, then

$$\|u-u_h\|_{H^1(\Omega)} \le Ch$$

where $\|u - u_h\|_{H^1(\Omega)}^2 := \int_{\Omega} |u - u_h|^2 + |\nabla(u - u_h)|^2 dx$. Here v := v(x, y), $\nabla v := (\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y})$.

In practical applications, often want to perform a simulation with *guaranteed* error bounds.

Classical error estimates can't be used for this purpose: let $\Omega \subset \mathbb{R}^2$, *u* the exact solution of some PDE and u_h its finite element approximation, then

$$\|u-u_h\|_{H^1(\Omega)} \le Ch$$

where $\|u - u_h\|_{H^1(\Omega)}^2 := \int_{\Omega} |u - u_h|^2 + |\nabla(u - u_h)|^2 dx$. Here v := v(x, y), $\nabla v := (\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y})$.

 C typically depends on derivatives of the exact solution, which are generally not known.

In practical applications, often want to perform a simulation with *guaranteed* error bounds.

Classical error estimates can't be used for this purpose: let $\Omega \subset \mathbb{R}^2$, *u* the exact solution of some PDE and u_h its finite element approximation, then

$$\|u-u_h\|_{H^1(\Omega)} \le Ch$$

where $\|u - u_h\|_{H^1(\Omega)}^2 := \int_{\Omega} |u - u_h|^2 + |\nabla(u - u_h)|^2 dx$. Here v := v(x, y), $\nabla v := (\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y})$.

- C typically depends on derivatives of the exact solution, which are generally not known.
- Even if *C* is known, error is usually severely overestimated.

In practical applications, often want to perform a simulation with *guaranteed* error bounds.

Classical error estimates can't be used for this purpose: let $\Omega \subset \mathbb{R}^2$, *u* the exact solution of some PDE and u_h its finite element approximation, then

$$\|u-u_h\|_{H^1(\Omega)} \le Ch$$

where $\|u - u_h\|_{H^1(\Omega)}^2 := \int_{\Omega} |u - u_h|^2 + |\nabla(u - u_h)|^2 dx$. Here v := v(x, y), $\nabla v := (\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y})$.

- C typically depends on derivatives of the exact solution, which are generally not known.
- Even if *C* is known, error is usually severely overestimated.
- ▶ No information on *where* errors are produced in domain and how they propagate.

Adaptive Grid Refinement: find optimal grid that reduces some quantity of interest below a certain user-defined tolerance with lowest computational cost.

Figure: Uniform vs adaptive grid refinement for fluid flow with obstacle

Outline

1. A Posteriori Error Analysis and Adaptive Refinement

2. Adaptive Refinement on Surfaces

3. Geometric Adaptive Refinement

Problem Formulation

Here $\nabla \cdot \underline{w} = \frac{\partial w_1}{\partial x} + \frac{\partial w_2}{\partial y}$, $\Delta u := \nabla \cdot \nabla u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$.

Finite Element Approximation - Idea

Triangulate the domain Ω .

Finite Element Approximation - Idea

Let N_h denote the number of nodes in \mathcal{T}_h and $\{\phi_i^h\}_{i=1}^{N_h}$ denote a set of piecewise linear functions. The the finite element approximation u_h of u is given by

$$u_h = \sum_{i=1}^{N_h} \alpha_i \phi_i^h$$

Adaptive grid refinement is linked to a posteriori error estimation, which typically takes the form

$$J(u-u_h) \leq \sum_{K_h \in \mathcal{T}_h} \eta_{K_h}$$

where $J(u - u_h)$ is some quantity of interest depending on error $u - u_h$ and $\{\eta_{K_h}\}_{K_h \in \mathcal{T}_h}$ are respectively local estimators of $J(u - u_h)$.

Adaptive grid refinement is linked to a posteriori error estimation, which typically takes the form

$$J(u-u_h) \leq \sum_{K_h \in \mathcal{T}_h} \eta_{K_h}$$

where $J(u - u_h)$ is some quantity of interest depending on error $u - u_h$ and $\{\eta_{K_h}\}_{K_h \in \mathcal{T}_h}$ are respectively local estimators of $J(u - u_h)$.

Possible functionals $J(\cdot)$ are:

- Energy norm: $J(v) = ||v||_{H^1}$.
- L^2 norm: $J(v) = ||v||_{L^2}$.
- Normal flux: $J(v) = \int_{\partial \Omega} \nabla v \cdot v$.
- Point error: J(v) = v(p) for some p in Ω .
- Some derived quantity, e.g., lift, drag or pressure.

One hopes that $\{\eta_{K_h}\}_{K_h \in \mathcal{T}_h}$ can be used to adaptively refine grid in such a way that $J(\cdot)$ is minimised in an optimal way.

$$J(u-u_h) \leq \sum_{K_h \in \mathcal{T}_h} \eta_{K_h}$$

$$J(u-u_h) \leq \sum_{K_h \in \mathcal{T}_h} \eta_{K_h}$$

For each $K_h \in \mathcal{T}_h$, local error indicator η_{K_h} is given by

$$\eta_{K_h} = h_{K_h} \mathcal{R}_{K_h}(u_h) + h_{K_h}^{1/2} \mathcal{R}_{\partial K_h}(u_h)$$

where $\mathcal{R}_{K_h}(u_h) := \|f + \Delta u_h\|_{L^2(K_h)}$ is the element residual. $R_{\partial K_h}(u_h) := \|[\nabla u_h]\|_{L^2(\partial K_h \setminus \partial \Omega)}$ is the jump residual.

$$J(u-u_h) \leq \sum_{K_h \in \mathcal{T}_h} \eta_{K_h}$$

For each $K_h \in \mathcal{T}_h$, local error indicator η_{K_h} is given by

$$\eta_{K_h} = h_{K_h} \mathcal{R}_{K_h}(u_h) + h_{K_h}^{1/2} \mathcal{R}_{\partial K_h}(u_h)$$

where $\mathcal{R}_{K_h}(u_h) := \|f + \Delta u_h\|_{L^2(K_h)}$ is the element residual. $R_{\partial K_h}(u_h) := \|[\nabla u_h]\|_{L^2(\partial K_h \setminus \partial \Omega)}$ is the jump residual.

 $\eta_{K_b} =$ "element residual" + "jump residual"

$$J(u-u_h) \leq \sum_{K_h \in \mathcal{T}_h} \eta_{K_h}$$

For each $K_h \in \mathcal{T}_h$, local error indicator η_{K_h} is given by

$$\eta_{K_h} = h_{K_h} \mathcal{R}_{K_h}(u_h) + h_{K_h}^{1/2} \mathcal{R}_{\partial K_h}(u_h)$$

where $\mathcal{R}_{K_h}(u_h) := \|f + \Delta u_h\|_{L^2(K_h)}$ is the element residual. $R_{\partial K_h}(u_h) := \|[\nabla u_h]\|_{L^2(\partial K_h \setminus \partial \Omega)}$ is the jump residual.

 $\eta_{K_h} =$ "element residual" + "jump residual"

- The exact solution u does not appear in our local estimators!
- Local indicators η_{K_h} can be used to find regions in Ω where error is large and hence where smaller grid elements should be used!

Start with an intitial grid \mathcal{T}_{h}^{0} . Then for $n \geq 0$:

 SOLVE: compute a finite element approximation u_h of u.

Start with an intitial grid \mathcal{T}_h^0 . Then for $n \ge 0$:

- SOLVE: compute a finite element approximation u_h of u.
- ► ESTIMATE: use u_h to compute local indicators $\{\eta_{K_h}\}_{K_h \in \mathcal{T}_h}$. If $\sum_{K_h \in \mathcal{T}_h} \eta_{K_h} < \text{TOL}$, break.

Start with an intitial grid \mathcal{T}_{h}^{0} . Then for $n \geq 0$:

- SOLVE: compute a finite element approximation u_h of u.
- ► ESTIMATE: use u_h to compute local indicators $\{\eta_{K_h}\}_{K_h \in \mathcal{T}_h}$. If $\sum_{K_h \in \mathcal{T}_h} \eta_{K_h} < \text{TOL}$, break.
- MARK: depending on value of local indicator η_{K_h}, mark corresponding element K_h for refinement or not.

Start with an intitial grid \mathcal{T}_h^0 . Then for $n \ge 0$:

- SOLVE: compute a finite element approximation u_h of u.
- ► ESTIMATE: use u_h to compute local indicators $\{\eta_{K_h}\}_{K_h \in \mathcal{T}_h}$. If $\sum_{K_h \in \mathcal{T}_h} \eta_{K_h} < \text{TOL}$, break.
- MARK: depending on value of local indicator η_{K_h}, mark corresponding element K_h for refinement or not.
- ▶ REFINE: Refine marked elements K_h ∈ Tⁿ_h to construct new grid Tⁿ⁺¹_h.

Outline

1. A Posteriori Error Analysis and Adaptive Refinement

2. Adaptive Refinement on Surfaces

3. Geometric Adaptive Refinement

Problem Formulation

Problem: For a given function $f : \Gamma \to \mathbb{R}$, find $u : \Gamma \to \mathbb{R}$ such that

 $-\Delta_{\Gamma}u + u = f$ in Γ

where Δ_{Γ} is the Laplace-Beltrami operator.

Triangulated Surfaces

- Γ is approximated by a polyhedral surface Γ_h composed of planar triangles K_h .
- The vertices sit on $\Gamma \Rightarrow \Gamma_h$ is its linear interpolation.
- Triangulate Γ_h as we have done for Ω in the flat case.

Г

 $\Gamma_h = \bigcup_{K_h \in \mathcal{T}_h} K_h$

A Posteriori Error Estimates on Surfaces

$$J(u-u_h) \leq \sum_{K_h \in \mathcal{T}_h} \eta_{K_h}$$

A Posteriori Error Estimates on Surfaces

$$J(u-u_h) \leq \sum_{K_h \in \mathcal{T}_h} \eta_{K_h}$$

For each $K_h \in \mathcal{T}_h$, local error indicator η_{K_h} is given by

$$\eta_{K_h} = h_{K_h} \mathcal{R}_{K_h}(u_h) + h_{K_h}^{1/2} \mathcal{R}_{\partial K_h}(u_h) + \mathcal{G}_{K_h}(u_h)$$

where

$$\begin{split} \mathcal{R}_{K_h}(u_h) &:= \|f_h \delta_h + \Delta_{\Gamma_h} u_h - u_h \delta_h\|_{L^2(K_h)} \text{ is the element residual.} \\ \mathcal{R}_{\partial K_h}(u_h) &:= \|[\nabla_{\Gamma_h} u_h]\|_{L^2(\partial K_h)} \text{ is the jump residual.} \\ \mathcal{G}_{K_h} \text{ is the geometric residual encompassing the error caused by approximating smooth surface } \Gamma. \end{split}$$

A Posteriori Error Estimates on Surfaces

$$J(u-u_h) \leq \sum_{K_h \in \mathcal{T}_h} \eta_{K_h}$$

For each $K_h \in \mathcal{T}_h$, local error indicator η_{K_h} is given by

$$\eta_{K_h} = h_{K_h} \mathcal{R}_{K_h}(u_h) + h_{K_h}^{1/2} \mathcal{R}_{\partial K_h}(u_h) + \mathcal{G}_{K_h}(u_h)$$

where

$$\begin{split} \mathcal{R}_{\mathcal{K}_h}(u_h) &:= \|f_h \delta_h + \Delta_{\Gamma_h} u_h - u_h \delta_h\|_{L^2(\mathcal{K}_h)} \text{ is the element residual.} \\ \mathcal{R}_{\partial \mathcal{K}_h}(u_h) &:= \|[\nabla_{\Gamma_h} u_h]\|_{L^2(\partial \mathcal{K}_h)} \text{ is the jump residual.} \\ \mathcal{G}_{\mathcal{K}_h} \text{ is the geometric residual encompassing the error caused by approximating smooth surface } \Gamma. \end{split}$$

 $\eta_{K_h} =$ "element residual" + "jump residual" + "geometric residual"

Outline

1. A Posteriori Error Analysis and Adaptive Refinement

2. Adaptive Refinement on Surfaces

3. Geometric Adaptive Refinement

Software

Distributed and Unified Numerics Environment

- All simulations have been performed using the Distributed and Unified Numerics Environment (DUNE).
- Initial mesh generation made use of 3D surface mesh generation module of the Computational Geometry Algorithms Library (CGAL).
- Further information about DUNE and CGAL can be found respectively on http://www.dune-project.org/ and http://www.cgal.org/

Model problem:

$$-\Delta_{\Gamma}u + u = f$$

on the torus

$$\Gamma = \{ x \in \mathbb{R}^3 \ : \ x_3^2 + \left(1 - \sqrt{x_1^2 + x_2^2} \right)^2 - 0.0625 = 0 \}.$$

The right-hand side f is chosen such that

$$u(x_1, x_2, x_3) = e^{\frac{1}{1.85 - x_1^2}} \sin(x_2).$$

is the exact solution.

Adaptive Refinement Algorithm for Test Problem 1

Model problem on the Enzensberger-Stern surface

 $\Gamma = \{ x \in \mathbb{R}^3 \ : \ 400(x_1^2x_2^2 + x_2^2x_3^2 + x_1^2x_3^2) - (1 - x_1^2 - x_2^2 - x_3^2)^3 - 40 = 0. \}$

The right-hand side f is chosen such that

$$u(x) = x_1 x_2$$

is the exact solution.

Model problem on the Enzensberger-Stern surface

 $\Gamma = \{ x \in \mathbb{R}^3 : 400(x_1^2 x_2^2 + x_2^2 x_3^2 + x_1^2 x_3^2) - (1 - x_1^2 - x_2^2 - x_3^2)^3 - 40 = 0. \}$

The right-hand side f is chosen such that

$$u(x) = x_1 x_2$$

is the exact solution.

 Notice that solution is *smooth* but initial mesh *poorly resolves* areas of high curvature.

Model problem on the Enzensberger-Stern surface

 $\Gamma = \{x \in \mathbb{R}^3 : 400(x_1^2x_2^2 + x_2^2x_3^2 + x_1^2x_3^2) - (1 - x_1^2 - x_2^2 - x_3^2)^3 - 40 = 0.\}$

The right-hand side f is chosen such that

$$u(x) = x_1 x_2$$

is the exact solution.

- Notice that solution is *smooth* but initial mesh *poorly resolves* areas of high curvature.
- Geometric residual in estimator very large in those areas and drives adaptive grid refinement algorithm.

Model problem on the Enzensberger-Stern surface

 $\Gamma = \{ x \in \mathbb{R}^3 : 400(x_1^2x_2^2 + x_2^2x_3^2 + x_1^2x_3^2) - (1 - x_1^2 - x_2^2 - x_3^2)^3 - 40 = 0. \}$

The right-hand side f is chosen such that

$$u(x) = x_1 x_2$$

is the exact solution.

- Notice that solution is *smooth* but initial mesh *poorly resolves* areas of high curvature.
- Geometric residual in estimator very large in those areas and drives adaptive grid refinement algorithm.
- Recomputation of u_h in adaptive grid refinement algorithm (SOLVE) is costly and does not significantly reduce overall residual when geometric residual dominates.

Geometric Adaptive Refinement Algorithm

Start with an intitial grid \mathcal{T}_h^0 .

 SOLVE: compute a finite element approximation u_h of u.

Then for $n \ge 0$:

- ► ESTIMATE: use u_h to compute local indicators $\{\eta_{K_h}\}_{K_h \in \mathcal{T}_h}$. If $\sum_{K_h \in \mathcal{T}_h} \eta_{K_h} < \text{TOL}$, break.
- MARK: depending on value of local indicator η_{K_h}, mark corresponding element K_h for refinement or not.
- ► REFINE: Refine marked elements K_h ∈ Tⁿ_h to construct new grid Tⁿ⁺¹_h.

Geometric Adaptive Refinement Algorithm

Start with an intitial grid \mathcal{T}_h^0 .

 SOLVE: compute a finite element approximation u_h of u.

Then for $n \ge 0$:

- ► ESTIMATE: use u_h to compute local indicators $\{\eta_{K_h}\}_{K_h \in \mathcal{T}_h}$. If $\sum_{K_h \in \mathcal{T}_h} \eta_{K_h} < \text{TOL}$, break.
- MARK: depending on value of local indicator η_{K_h}, mark corresponding element K_h for refinement or not.
- ► REFINE: Refine marked elements K_h ∈ Tⁿ_h to construct new grid Tⁿ⁺¹_h.

While

$$\frac{\sum_{\kappa_h \in \mathcal{T}_h} \mathcal{G}_{\kappa_h}}{\sum_{\kappa_h \in \mathcal{T}_h} \eta_{\kappa_h}} \geq TOL_{\text{geometric}}$$

go to ESTIMATE else SOLVE.

Geometric Adaptive Refinement Algorithm for Test Problem 2

Geometric Adaptive Refinement Algorithm for Test Problem 2

Thanks for your attention!

Engineering and Physical Sciences Research Council

Acknowledgement:

grant EP/H023364/1