
Numerical Integration

in Meshfree Methods

�
Pravin Madhavan

New College

University of Oxford

A thesis submitted for the degree of

Master of Science in

Mathematical Modelling and Scientific Computing

Trinity 2010

Dedicated to Henry Lo

Acknowledgements

I would like to thank my supervisor Professor Holger Wendland for all

his help and guidance during the writing of this dissertation. I am also

very grateful to Dr. Kathryn Gillow for the useful advice she gave me to

improve my dissertation. Last but not least I would like to thank all the

students of the MSc Mathematical Modelling and Scientific Computing

course who have made this past year such a great experience.

Abstract

The issue of finding efficient numerical integration schemes for integrals

arising in the Galerkin approximation of partial differential equations us-

ing compactly supported radial basis functions is studied. In this disserta-

tion, the model problem of the Helmholtz equation with natural boundary

conditions will be considered. Different quadrature rules will be discussed

and studied as well as their influence on the convergence and stability of

the approximation process.

Contents

1 Introduction 1

1.1 Meshfree Methods . 1

1.2 Model Problem . 2

1.2.1 Weak Formulation . 2

1.3 Radial Basis Functions . 3

1.4 Galerkin Formulation . 6

2 Numerical Integration 10

2.1 Motivation . 10

2.2 Background . 11

2.2.1 Some Basic Geometry . 11

2.2.2 Numerical Integration in 1-D 13

2.2.2.1 Newton-Cotes Quadrature 13

2.2.2.2 Gauss Quadrature 15

2.3 Numerical Integration Schemes on the Lens 17

2.3.1 First Approach . 17

2.3.2 Comparison of Quadrature Rules 19

2.3.2.1 Newton-Cotes for y-direction and Gauss for x-direction 19

2.3.2.2 Gauss for Both x- and y-directions 21

2.3.2.3 Quadrature using Fekete Points 21

2.3.2.4 Remarks on Quadrature in Polar Coordinates 23

2.3.2.5 Problems with Quadrature on Lens 23

2.4 Numerical Integration Schemes on the Circle 27

2.4.1 First Approach . 27

2.4.2 Comparison of Quadrature Rules 28

2.4.2.1 Gauss for Both x- and y-directions 28

2.4.2.2 Quadrature in Polar Coordinates 29

2.5 Quadrature for Boundary Supports 31

i

2.6 Comparison with Quadrature on Whole Domain 33

2.6.1 Interior Supports . 34

2.6.2 Boundary Supports . 36

3 Convergence 39

3.1 Least-Squares Problem . 39

3.1.1 Theoretical Aspects . 39

3.1.2 Numerical Aspects . 41

3.2 Sobolev Problem . 47

3.2.1 Theoretical Aspects . 47

3.2.2 Numerical Aspects . 48

4 Multilevel Algorithms 51

5 Conclusions 56

ii

List of Figures

1.1 C2 Wendland basis function . 6

2.1 Integration on whole domain. 10

2.2 Integration on subdomains. 11

2.3 Lens-shaped domain of integration. 12

2.4 Plot of points a(y∗yj) and b(y∗yj). 19

2.5 Numerical integration of test function on lens using composite trapez-

ium + Gauss. 20

2.6 Numerical integration of test function on lens using Gauss + Gauss. . 22

2.7 Numerical integration of test function on lens using Gauss-Lobatto +

Gauss-Lobatto (Fekete points on square). 23

2.8 Numerical integration of test function on lens using Gauss + Gauss for

small d > 0. 24

2.9 Numerical integration of test function on lens using Gauss + Gauss for

respectively d = 5, 7 and 7.9995. 26

2.10 Circular-shaped domain of integration. 28

2.11 Numerical integration of x2y2 on circle using Gauss + Gauss. 29

2.12 Numerical integration in polar coordinates of x2y2 on circle using com-

posite trapezium rule for θ and Gauss for r. 30

2.13 Example of supports not fully contained in boundary (i.e. boundary

supports). 31

2.14 Problem set-up to test numerical integration of integrals with boundary

supports. Area of square is 2 ∗ 2 = 4. 32

2.15 Numerical integration in polar coordinates of f(x, y)·χΩ where f(x, y) ≡
1 on circle using composite trapezium rule for θ and Gauss for r. Exact

value of integral is 4. 33

2.16 Comparison between quadrature on interior lens (blue) and quadrature

on whole domain (red) forR = 1 and respectively d = 0.1, 0.25, 1.5 and 1.75. 35

iii

2.17 Comparison between quadrature on interior circle (blue) and quadra-

ture on whole domain (red) for R = 1. 36

2.18 Comparison between quadrature on boundary lens (blue) and quadra-

ture on whole domain (red) for R = 2 and d = 1. 37

2.19 Comparison between quadrature on boundary circle (blue) and quadra-

ture on whole domain (red) for R = 2. 37

2.20 Continuous approximation of the characteristic function with k = 7. . 38

3.1 Sparsity of matrix associated with least-squares problem for R = 0.33

and N = 81 equally spaced nodes in [−1, 1]2. 45

3.2 Approximate solution (left) and maximum error (right) for Galerkin

solution of Helmholtz equation with C2 Wendland functions using 25

equally spaced points in [−1, 1]2. 50

4.1 Asymmetric lens-shaped domain of integration. 53

4.2 Asymmetric lens with R = 3, r = 2 and d = 1.5. 54

iv

Chapter 1

Introduction

1.1 Meshfree Methods

During the past few years the idea of using meshfree methods as a modern tool for

the numerical solution of partial differential equations has received a lot of attention

within the scientific and engineering communities. As described in [12], the growing

interest in these methods is in part due to the fact that they are very flexible, particu-

larly when it comes to problems with moving boundaries or that are high dimensional.

Conventional grid-based methods such as finite difference (FDM) and finite element

(FEM) methods suffer from some inherent difficulties, namely the requirement of gen-

erating a mesh. This is not an easy task, especially for domains with irregular and

complex geometries which require additional mathematical transformations that can

be as expensive as solving the problem itself. Furthermore, using such methods to

model time-dependent physical systems involving large deformations requires a costly

remeshing process at each time step, making them impractical to solve such prob-

lems. Meshfree methods overcome such issues by not requiring a meshing process in

the traditional sense of the term. Namely, no knowledge of the connectivity between

the nodes is required when implementing the meshfree method: this means that the

nodes can be arbitrarily distributed within the domain without any constraints, mak-

ing them ideal for understanding the behaviour of complex solids, structures and fluid

flows. For a survey of various meshfree methods and underlying results we refer the

reader to [1] and [2].

1

1.2 Model Problem

In this dissertation we will focus our attention on the Helmholtz equation with natural

boundary conditions:

−∇2u+ u = f in Ω, (1.1)

∂

∂n
u = 0 on ∂Ω (1.2)

where Ω ⊂ R2 is a bounded domain with a sufficiently smooth boundary ∂Ω and

f ∈ L2(Ω) is a given Lebesgue integrable function. The outer unit normal vector of

Ω is denoted by n. For simplicity we will choose our domain to be Ω = [−1, 1]2 but

much of the work done in this dissertation can be applied to more general 2D domains.

Due to its connection with the wave equation, the Helmholtz equation arises in many

physical problems involving electromagnetism, seismology or accoustics.

1.2.1 Weak Formulation

The weak formulation of the boundary value problem (BVP) (1.1)—(1.2) can be

stated as follows: find u ∈ H1(Ω) =
{
g : Ω→ R | g, ∂g

∂x
, ∂g
∂y
∈ L2(Ω)

}
such that

a(u, v) = l(v) ∀v ∈ H1(Ω), (1.3)

where the bilinear form a : H1(Ω)×H1(Ω)→ R is given by

a(u, v) =

∫
Ω

(∇u · ∇v + uv) dx

and the linear form l : H1(Ω)→ R by

l(v) =

∫
Ω

fv dx.

The following theorem taken from [4] guarantees uniqueness of the BVP.

Theorem 1.2.1 (Lax-Milgram) If a(·, ·) is coercive and continuous and l(·) is con-

tinuous on a real Hilbert space V then there is a unique u ∈ V for which

a(u, v) = l(v) ∀v ∈ V.

It can be easily shown that the bilinear form of (1.3) is coercive and continuous on

the Hilbert space V = H1(Ω) (in fact it is an inner product), and that the linear form

is continuous on this space. Hence the weak formulation (1.3) has a unique solution.

2

Before we attempt to solve the BVP numerically by considering a finite-dimensional

subspace of H1(Ω), we need some background on the basis functions we will be using

to span the subspace.

1.3 Radial Basis Functions

Amongst meshfree methods, one of the most popular techniques is given by radial

basis functions (RBF). An excellent reference for much of the theory and proofs

described in this section can be found in [20] as well as [19], whilst implementation

aspects are found extensively in [10]. The following is a formal definition of a radial

function.

Definition A function Φ : Rd × Rd → R is called radial provided there exists a

univariate function ϕ : [0,∞]→ R such that

Φ(x− y) = ϕ(r), where r = ‖x− y‖

where we choose ‖ · ‖ to be the Euclidean norm on Rd.

Furthermore, we require these functions to be compactly supported and to have

the following property:

Definition A real-valued continuous function Φ : Rd × Rd → R is said to be

positive semi-definite on Rd if for all N ≥ 1 and for all pairwise distinct centres

X = {x1, ...,xN}, the matrix (Φ(xi,xj))i,j is positive semi-definite i.e.

N∑
j=1

N∑
k=1

cjckΦ(xj,xk) ≥ 0 (1.4)

for all c = [c1, ..., cN]T ∈ RN .

The function Φ is called positive definite on Rd if the matrix in (1.4) is zero if and

only if c ≡ 0.

An important property of dealing with positive definite functions on Rd is their in-

variance under translation, in which case we have Φ(x,y) = Φ(x− y, 0) := Φ̃(x− y)

i.e. it can be written as a function with only one variable component. Furthermore,

if the function is radial then it is also invariant under rotation and reflection.

3

Now that we have defined the sort of functions we will be using, it would be

interesting to find the natural function spaces that arise when using them. Consider

the following:

Definition Let H be a real Hilbert space of functions f : Ω(⊂ Rd) → R with inner

product < ·, · >H. Then H is called a reproducing kernel Hilbert space (RKHS) with

reproducing kernel K : Ω× Ω→ R if

• K(·,x) ∈ H for all x ∈ Ω.

• f(x) =< f,K(·,x) >H for all f ∈ H and all x ∈ Ω.

One important property of a RKHS is that its associated reproducing kernel K is

known to be positive semi-definite, as stated in the following theorem.

Theorem 1.3.1 Suppose H is a RKHS with reproducing kernel K : Ω × Ω → R.

Then K is positive semi-definite. Moreover, K is positive definite if and only if point

evaluations are linearly independent.

This theorem provides one direction of the connection between positive definite func-

tions and reproducing kernels. However, we are also interested in the other direction:

we would like to know how to construct a RKHS when given positive definite func-

tions. This is of obvious interest to us because we would like to construct a RKHS

using, in particular, the compactly supported positive definite radial basis functions

mentioned before.

We will now show that every positive definite function is associated with a RKHS,

which is called its native space. Firstly, we define the space spanned by the positive

definite functions Φ(·,x) given by

FΦ = span{Φ(·,x) : x ∈ Rd}.

Note that by choosing such a space we have already satisfied the first property of the

definition of a RKHS. Furthermore let

f =
N∑
j=1

αjΦ(·,xj) , g =
M∑
k=1

βkΦ(·,yk)

and define the inner product

< f, g >Φ:=
N∑
j=1

M∑
k=1

αjβkΦ(xj,yk).

4

Then

< f,Φ(·,x) >K=
N∑
j=1

αjΦ(xj,x) = f(x)

and so Φ is in fact a reproducing kernel. To construct a RKHS all we need now is for

the space FΦ to be complete.

Definition The completion of FΦ with respect to || · ||Φ is the associated RKHS

(native space) to Φ, call it HΦ.

The following theorem states that every RKHS is the completion of the space FΦ.

Theorem 1.3.2 If G is a RKHS with kernel Φ, then G = HΦ i.e. the native space.

Using this theorem it can be shown what space can be “generated” by a given positive

definite reproducing kernel Φ.

Theorem 1.3.3 Let Φ be given as before. Consider the space

G = {f ∈ L2(Rd) ∩ C(Rd) : ||f ||G <∞}

where the norm || · ||G is given by

||f ||2G := (2π)−
d
2

∫
Rd

|f̂(w)|2

Φ̂(w)
dw

where f̂ denotes the Fourier transform of f . Then G is a RKHS with reproducing

kernel Φ.

By Theorem 1.3.2, it follows that we have G = HΦ.

One of the most popular classes of compactly supported RBFs is the one introduced

Wendland in [17]. The Wendland functions Φl,k(r) where l = bd
2
c+ k + 1 are strictly

positive definite in Rd and have the property of being constructed to have any desired

amount of smoothness 2k. For example, the functions

Φ2,0(r) = (1− r)2
+,

Φ3,1(r) = (1− r)4
+(4r + 1), (1.5)

Φ4,2(r) = (1− r)6
+(35r2 + 18r + 3),

Φ5,3(r) = (1− r)8
+(32r3 + 25r2 + 8r + 1)

5

are respectively in C0, C2, C4 and C6, and strictly positive definite in R3. Using the

compactly supported Wendland functions Φ = Φl,k as the spanning set for the space

FΦ, it can be shown by Theorem 1.3.3 that the space “generated” by these functions

is the Sobolev space i.e.

Φl,k “generates” Hτwhere τ =
d

2
+ k +

1

2
.

As discussed in the previous section, this is exactly the space in which we seek to

find a weak solution to the Helmholtz equation. The compactly supported Wendland

functions thus provide a natural choice of basis functions to use for its numerical

solution.

In this dissertation we will focus our attention on the C2 compactly supported

Wendland function (1.5) which has been plotted in Figure 1.1. As shown in this figure,

Figure 1.1: C2 Wendland basis function

the support of these functions are circles with radius R = 1 i.e. supp Φ ⊆ B(0, 1).

The support can be scaled appropriately by defining Φδ(·) := Φ(·
δ
), in which case we

have supp Φδ = B(0, δ).

1.4 Galerkin Formulation

We can now refer back to the weak formulation (1.3) of the Helmholtz PDE with nat-

ural boundary conditions. To solve this problem numerically we replace the infinite-

dimensional space H1(Ω) by some finite-dimensional subspace VN ⊆ H1(Ω) and solve

6

the Galerkin problem,

find uN ∈ VN such that a(uN , v) = l(v) ∀v ∈ VN . (1.6)

So far this process has not been any different to how we would compute the finite

element solution of the Helmholtz PDE, for which we would now choose a tessellation

(say, a triangulation) of the domain Ω and take VN as the space of piecewise polyno-

mials induced by the tessellation, the details of which can be found in [8]. We move

away from this usual approach by requiring the space VN to now be spanned by the

compactly supported radial basis functions described in the previous section i.e.

VN = span{Φ(· − xj) : 1 ≤ j ≤ N}

where as before X = {x1, ...,xN} ⊆ Ω is a set of pairwise distinct centres in Ω. Note

that from now on, Φ will always denote a scaled version of (1.5) chosen so that the

support radius is R (unless otherwise stated). The Galerkin approximation uN can

thus be written as

uN =
N∑
j=1

cjΦ(· − xj) (1.7)

and the Galerkin problem (1.6) is given by∫
Ω

[∇uN(x) · ∇Φ(x− xi) + uNΦ(x− xi)]dx =

∫
Ω

f(x)Φ(x− xi)dx, i = 1, ..., N.

Using linearity and expression (1.7) for uN we obtain

N∑
j=1

cj

(∫
Ω

[∇Φ(x− xj) · ∇Φ(x− xi) + Φ(x− xj)Φ(x− xi)]dx

)

=

∫
Ω

f(x)Φ(x− xi)dx, i = 1, ..., N. (1.8)

Expression (1.8) is a system of equations which can be written in the more compact

and suggestive form

Ac = f, (1.9)

with the entries of the N -by-N stiffness matrix A = {aij} given by

aij =

∫
Ω

[∇Φ(x− xj) · ∇Φ(x− xi) + Φ(x− xj)Φ(x− xi)]dx,

the entries of the N -by-1 load vector f by

fi =

∫
Ω

f(x)Φ(x− xi)dx

7

and the solution vector c by

c = (c1, c2, ..., cN)T .

Theorem 1.4.1 (Céa) Suppose that V is a real Hilbert space and that the bilinear

form a(·, ·) and linear functional l(·) satisfy

a(u, u) ≥ γ||u||2V for all u ∈ V,

a(u, v) ≤ Γ||u||V ||v||V for all u, v ∈ V,

l(v) ≤ Λ||v||V for all v ∈ V.

If VN ⊂ V is a vector subspace with uN ∈ VN satisfying

a(uN , v) = l(v) for all v ∈ VN

then

||u− uN ||V ≤
Γ

γ
||u− s||V for all s ∈ VN .

By Céa’s lemma and the fact that V = H1(Ω) is a Hilbert space, solving system (1.9)

is equivalent to solving the following Sobolev minimisation problem: find s ∈ VN that

satisfies

min
s∈VN
||u− s||2H1(Ω).

Proposition 1.4.2 The stiffness matrix A is symmetric and positive definite.

Proof The matrix is clearly symmetric since

aij =

∫
Ω

[∇Φ(x− xj) · ∇Φ(x− xi) + Φ(x− xj)Φ(x− xi)]dx

=

∫
Ω

[∇Φ(x− xi) · ∇Φ(x− xj) + Φ(x− xi)Φ(x− xj)]dx = aji.

Furthermore, for all w ∈ RN we have

wTAw =
∑
i

wi
∑
j

aijwj =
∑
i

∑
j

wiwjaij

=
∑
i

∑
j

wiwj

∫
Ω

[∇Φ(x− xj) · ∇Φ(x− xi) + Φ(x− xj)Φ(x− xi)]dx. (1.10)

Now letting w =
∑N

j=1wjΦ(· − xj) and substituting it into (1.10) we get

wTAw =

∫
Ω

|∇w|2 + w2dx ≥ 0

8

with ∫
Ω

|∇w|2 + w2dx = 0⇔ w ≡ 0

since a(w, v) =
∫

Ω
∇w·∇v+wv dx is an inner product overH1(Ω) for all w, v ∈ H1(Ω).

But if w ≡ 0 then w = 0 where 0 denotes the zero vector in RN .

Hence the stiffness matrix A is certainly invertible and the matrix problem (1.9) has

a solution which is unique.

Now that we have described in detail the setting for the problem, the remainder

of this dissertation will discuss various issues related to the numerical solution of the

Galerkin problem (1.6). This will be structured as follows: in Chapter 2, numerical

integration schemes required to approximate the entries of the stiffness matrix will

be analysed and compared to one another. Part of Chapter 2 is based on work done

in a relevant Special Topic but substantial improvements have been made to consider

other numerical integration schemes and discuss problems arising when using some

of them. In Chapter 3, these schemes will be used to verify numerically known

theoretical convergence bounds. We hope that this will be a good indicator of how

efficient they are. In the process, we will solve the Helmholtz equation numerically

for a particular right-hand side function f which yields a known, closed-form solution

u. Finally in Chapter 4, a multilevel Galerkin algorithm required to resolve certain

convergence issues will be briefly described.

9

Chapter 2

Numerical Integration

2.1 Motivation

The evaluation of the integrals in the previous chapter is the most time-consuming

process in the RBF Galerkin approach to solving PDEs. Finding efficient quadrature

rules for accurately approximating these integrals is thus one of the major problems

with this approach. The classical way of approximating these integrals is to apply

a quadrature rule over the entire square domain Ω = [−1, 1]2 as shown in Figure

2.1. However, integrating over the entire domain does not exploit the fact that the

Figure 2.1: Integration on whole domain.

RBFs only have their compact support over a cicular domain: it would be pointless to

integrate over regions on which we know that the RBF is zero, moreso for the product

of RBFs (and their gradients) whose support is even “smaller” and corresponds to

10

the intersection of two circles i.e. a lens-shaped region. This is shown in Figure 2.2.

Furthermore, integrating over the whole domain is generally one of the main sources

Figure 2.2: Integration on subdomains.

of error created by the corresponding quadrature rule. This chapter seeks to discuss

alternative quadrature rules that exploit the properties of the RBF mentioned above

in order to compute the entries of the stiffness matrix and load vector more accurately.

We will analyse and compare different numerical integration schemes for the circle and

the lens-shaped domain. Once this is done these quadrature rules can then be used

in the calculation of the entries of the stiffness matrix and load vector. For details of

numerical integration schemes associated with the use of compactly supported basis

functions which have square/rectangular supports we refer the reader to [7].

2.2 Background

We will now outline some of the basic tools and properties required for what will

follow. These will then be used to develop the required numerical integration schemes.

2.2.1 Some Basic Geometry

In this subsection we will mainly be concerned with some geometric properties of the

lens, as those of the circle are well understood. Consider the lens-shaped intersection

of two circles of equal radii R in the (x, y)-plane as shown in Figure 2.3. Without

loss of generality we assume that one of the circles is centred at the origin (0, 0) and

11

Figure 2.3: Lens-shaped domain of integration.

the other at (d, 0) where d > 0, assuming so will significantly simplify our analysis.

The equations of these circles are thus respectively

x2 + y2 = R2, (2.1)

(x− d)2 + y2 = R2. (2.2)

We are interested in finding the intersection points (x∗,±y∗) between these two circles,

which exist if d ≤ 2R. To do so, we substitute (2.1) into (2.2) to get

(x− d)2 + (R− x2) = R2

⇒ −2dx+ d2 = 0.

And so the x-component of the intersection points is given by

x∗ =
d

2
. (2.3)

Substituting (2.3) back into (2.1) we obtain the y-component of the intersection points

as follows:

y2
∗ = R2 − x2

∗ = R2 −

(
d

2

)2

.

Simplifying this expression we get the y-components of the intersections given by

y∗ = ±
√

4R2 − d2

2
. (2.4)

12

Now if we had to integrate a function f(x, y) over this lens i.e.
∫ ∫

Ω
f(x, y) dxdy

where Ω is the lens-shaped domain, then the above working shows that the bounds

of the double integral will be given by:∫ y∗

−y∗

∫ √R2−y2

d−
√
R2−y2

f(x, y)dxdy. (2.5)

This will be one of the double integrals we will seek to find quadratures for in this

chapter. With such bounds it can now be understood why it is rarely possible to inte-

grate (2.5) exactly. However, in order to compare the numerical integration schemes

on this region we need a test function that yields an exact result. Choosing

χlens(x) =

{
1 if x ∈ lens
0 if x 6∈ lens

(where x=(x, y)) will yield the area of the lens. It can be shown geometrically that

the area of the lens is given by the formula

Area(lens) = 2R2 cos−1

(
d

2R

)
− d

2

√
4R2 − d2.

So we can use this simple function as one of the test functions used to compare the

different numerical integration schemes.

2.2.2 Numerical Integration in 1-D

In this section we will outline some of the important numerical integration rules and

properties in 1-D, much of which has been taken from and extensively discussed in

[14]. Namely, we will briefly describe some of the important results related to two

well-known quadrature rules: the Newton-Cotes formula and the more accurate Gauss

quadrature. Though some of these properties cannot be easily generalised to higher

dimensions it will nevertheless be our starting point for developing quadratures of the

2-D integrals we are interested in approximating.

2.2.2.1 Newton-Cotes Quadrature

For this simple quadrature rule we approximate a real-valued, continuous function

f(x) on the closed interval [a, b] by its Lagrange interpolant pn(x), defined as follows:

Definition For a positive integer n, let xi, i = 0, 1, ..., n, denote the equally spaced

interpolation points in the interval [a, b], that is,

xi = a+ ih , i = 0, 1, ..., n

13

where

h = (b− a)/n.

Then the Lagrange interpolation polynomial of degree n for the function f in

the interval [a, b], with these interpolation points, is of the form

pn(x) =
n∑
k=0

Lk(x)f(xk) where Lk(x) =
n∏

i=0,i 6=k

x− xi
xk − xi

.

Assuming that the function f is sufficiently smooth, we can derive a bound for the

size of the interpolation error between f and its Lagrange interpolant pn(x) as follows:

Theorem 2.2.1 Suppose that n ≥ 0 and that f is a real-valued function, defined and

continuous on the closed real interval [a, b], such that the derivative of order n + 1

exists and is continuous on [a, b]. Then given x ∈ [a, b], there exists ξ ∈ [a, b] such

that

|f(x)− pn(x)| ≤ Mn+1

(n+ 1)!
|πn+1(x)|

where Mn+1 := maxξ∈[a,b] |fn+1(ξ)| and πn+1(x) = (x− x0)(x− x1)...(x− xn).

Given such a property, it is reasonable to believe that∫ b

a

f(x)dx ≈
∫ b

a

pn(x)dx. (2.6)

Inserting the expression above for pn(x) into (2.6) we get,∫ b

a

f(x)dx ≈
n∑
k=0

wkf(xk) (2.7)

where

wk =

∫ b

a

Lk(x)dx , k = 0, 1, ..., n. (2.8)

The values wk, k = 0, 1, ..., n are known as the quadrature weights of the inter-

polation, and the interpolation points xk, k = 0, 1, ..., n, are called the quadrature

points. The numerical integration formula (2.7) with quadrature weights (2.8) and

equally spaced quadrature points is known as the Newton-Cotes formula of order

n.

A special case of this formula arises when we take n = 1, so that x0 = a and

x1 = b. This yields the trapezium rule which gives the quadrature∫ b

a

f(x)dx ≈ b− a
2

[f(a) + f(b)].

14

Let En(f) =
∫ b
a
f(x)dx−

∑n
k=0wkf(xk) be the quadrature error when using n points.

By the previous theorem, for n = 1 (trapezium rule), we have

|E1(f)| ≤ (b− a)3

12
M2.

In order to improve this bound, we can divide the interval [a, b] into an increasing

number of subintervals of decreasing size. We can then apply the trapezium rule on

each of these subintervals. This yields the composite trapezium rule:∫ b

a

f(x)dx ≈ h
[1

2
f(x0) + f(x1) + ...+

1

2
f(xm)

]
(2.9)

where

xi = a+ ih = a+
i

m
(b− a), i = 0, 1, ...,m.

The error Ec
1(f) using the composite trapezium rule can easily be found by applying

the previously derived error bound on each of the subintervals. Doing so we obtain,

|Ec
1(f)| ≤ (b− a)3

12m2
M2

which is a significant improvement from the bound for the classical trapezium rule.

2.2.2.2 Gauss Quadrature

We now consider approximating f by its Hermite interpolant defined as follows.

Definition Suppose f is a real-valued, continuous function defined on the closed

interval [a, b] and f is continuous and differentiable on this interval. Suppose further-

more that xi, i = 0, ..., n are distinct points in [a, b]. Then the polynomial p2n+1

defined by

p2n+1(x) =
n∑
k=0

[Hk(x)f(xk) +Kk(x)f ′(xk)]

where

Hk(x) = [Lk(x)]2(1− 2L′k(xk)(x− xk)) , Kk(x) = [Lk(x)]2(x− xk)

is the Hermite interpolation polynomial of degree 2n+1 for f with interpolation

points xi, i = 0, ..., n.

It can be shown that p2n+1 is the unique polynomial in P2n+1 (space of polynomials

of degree 2n+ 1 or less) such that p2n+1(xi) = f(xi) , p
′
2n+1(xi) = f ′(xi). As before,

given f smooth enough, we can derive bounds for the interpolation error using the

Hermite interpolant:

15

Theorem 2.2.2 Suppose that n ≥ 0 and that f is a real-valued function, defined,

continuous and 2n+ 2 times differentiable on [a, b], such that the derivative of order

2n+ 2 exists and is continuous on this interval. Then for each x ∈ [a, b] there exists

ξ ∈ [a, b] such that

|f(x)− p2n+1(x)| ≤ M2n+2

(2n+ 2)!
[πn+1(x)]2

where M2n+2 := maxξ∈[a,b] |f 2n+2(ξ)| and πn+1(x) = (x− x0)(x− x1)...(x− xn).

Approximating the weighted integral of f with positive weight ω(x) by that of its

Hermite interpolant p2n+1, we get:∫ b

a

ω(x)f(x)dx ≈
∫ b

a

ω(x)p2n+1(x)dx =
n∑
k=0

Wkf(xk) +
n∑
k=0

Vkf
′(xk)

where Wk =
∫ b
a
ω(x)Hk(x) and Vk =

∫ b
a
ω(x)Kk(x)dx. Now we would like to choose

the quadrature points so that Vk = 0 for all k and hence we would not need to

calculate f ′(xk). After some algebraic manipulation we obtain,

Vk =

∫ b

a

ω(x)[Lk(x)]2(x− xk)dx

= Cn

∫ b

a

ω(x)πn+1(x)Lk(x)dx.

for some constant Cn. Given that πn+1 is a polynomial of degree n + 1 and Lk(x)

has degree n for each k, we can choose the quadrature points xk, k = 0, ..., n to be

the zeros of a polynomial of degree n + 1 from a system of (weighted) orthogonal

polynomials over (a, b) and this would get rid of the Vk coefficients. Additionally, by

choosing the quadrature points in such a way, we also have

Wk =

∫ b

a

ω(x)Hk(x)dx

=

∫ b

a

ω(x)[Lk(x)]2dx− 2L′k(xk)Vk

=

∫ b

a

ω(x)[Lk(x)]2dx

Hence we obtain the Gauss quadrature rule given by∫ b

a

ω(x)f(x)dx ≈
n∑
k=0

Wkf(xk)

16

where Wk =
∫ b
a
ω(x)[Lk(x)]2dx. For the case when ω(x) ≡ 1 we obtain the Gauss-

Legendre quadrature rule with the quadrature points xk, k = 0, ..., n being the zeros

of the Legendre polynomial of degree n+ 1 over the interval [−1, 1].

As for the Newton-Cotes formula it can be shown using Theorem 2.2.2 that for

sufficiently smooth f we have∫ b

a

ω(x)f(x)dx−
n∑
k=0

Wkf(xk) = Knf
(2n+2)(ξ)

where ξ ∈ (a, b) and Kn = 1
(2n+2)!

∫ b
a
ω(x)[πn+1(x)]2dx. This is clearly a significant

improvement from Newton-Cotes since this rule is now exact for polynomial of degree

2n+ 1 with n quadrature points.

2.3 Numerical Integration Schemes on the Lens

We can now apply some of the theory and results discussed in the previous section

to find an adequate quadrature rule for integrals over the lens. As before, we will

assume that both circles have radius R, and without loss of generality that the lens

is formed by the intersection of one circle centred at the origin (0, 0) and of another

circle centred at (d, 0) where d > 0. Indeed, an adequate mapping (translation and

rotation) can always be found to reduce our analysis to this simpler case.

2.3.1 First Approach

We now wish to find a suitable way of choosing the quadrature points and weights for

our 2-dimensional domain. To do so, we apply the quadrature rules described above

to each one of the integrals of ∫ ∫
Ω

f(x, y)dxdy

where Ω is the lens-shaped domain i.e. apply the quadrature on a line integral depen-

dent only on y and then apply a quadrature rule along each line integral dependent

only on x, passing through each of the quadrature points yj as shown in Figure 2.3.

Mathemtically, this can be done as follows:∫ y∗

−y∗

∫ √R2−y2

d−
√
R2−y2

f(x, y)dxdy =

∫ y∗

−y∗

∫ b(y)

a(y)

f(x, y)dxdy (2.10)

17

where a(y) := d −
√
R2 − y2 and b(y) :=

√
R2 − y2. We now consider the following

substitution of variables,

y = y∗ỹ

and

x =
b(y)− a(y)

2
x̃+

a(y) + b(y)

2
.

Substituting these expressions into (2.10) maps the lens-shaped domain Ω to the

square [−1, 1]2. Such a mapping is required in order to apply the Gauss-Legendre

quadrature rule described previously (having chosen ω(x) ≡ 1). We obtain∫ y∗

−y∗

∫ 1

−1

f
(b(y)− a(y)

2
x̃+

a(y) + b(y)

2
, y
)b(y)− a(y)

2
dx̃dy

=

∫ 1

−1

∫ 1

−1

f
(b(y∗ỹ)− a(y∗ỹ)

2
x̃+

a(y∗ỹ) + b(y∗ỹ)

2
, y∗ỹ

)
× y∗(b(y∗ỹ)− a(y∗ỹ))

2
dx̃dỹ. (2.11)

Now we can approximate the first of the integrals in (2.11) by applying a quadrature

rule described in the previous section:∫ ∫
Ω

f dxdy ≈
N∑
j=1

wj

∫ 1

−1

f
(b(y∗yj)− a(y∗yj)

2
x̃+

a(y∗yj) + b(y∗yj)

2
, y∗yj

)
× y∗(b(y∗yj)− a(y∗yj))

2
dx̃

where wj denotes the quadrature weights in the y-direction. We can now do the same

for the other integral to obtain a quadrature rule for the double integral, and hence

obtain∫ ∫
Ω

dxdy ≈
N∑
j=1

M∑
k=1

wjw̃kf
(b(y∗yj)− a(y∗yj)

2
xk +

a(y∗yj) + b(y∗yj)

2
, y∗yj

)
× y∗(b(y∗yj)− a(y∗yj))

2
(2.12)

where w̃k denotes the quadrature weights in the x-direction. In Figure 2.4 we plot the

points a(y∗yj) and b(y∗yj) when using a Newton-Cotes quadrature in the y-direction.

Expression (2.12) will be the starting point for our study of simple quadrature rules

for the lens, given by the tensor product of 1-dimensional quadrature rules such

as Newton-Cotes and Gauss. We can now compare these numerical schemes and

deduce which one would be the best to use by balancing accuracy with the number

of quadrature points required to attain such accuracy.

18

Figure 2.4: Plot of points a(y∗yj) and b(y∗yj).

2.3.2 Comparison of Quadrature Rules

As described earlier, we can now compare the numerical integration schemes by choos-

ing to integrate the test function

f = χlens(x) =

{
1 if x ∈ lens
0 if x 6∈ lens

which we know integrates exactly to the area of the lens-shaped domain, whose for-

mula was given in Section 2.2.1. Substituting this test function into (2.12) yields the

simpler expression,∫ ∫
Ω

1 dxdy ≈
N∑
j=1

M∑
k=1

wjw̃k
y∗(b(y∗yj)− a(y∗yj))

2
. (2.13)

Notice how this expression only depends on the y-direction quadrature points yj j =

1, ..., N . To analyse different quadrature schemes it would be wise to use a function

for which there will be both a x- and y-direction dependence, but this is a good

starting point.

2.3.2.1 Newton-Cotes for y-direction and Gauss for x-direction

This scheme will involve taking equally spaced points in the y-direction with weights

corresponding to those defined by the Newton-Cotes quadrature rule, and Gauss

points and weights in the x-direction. In the previous section we saw how Gauss

quadrature is more accurate than its Newton-Cotes equivalent so it may seem futile to

19

even consider such a scheme for approximating integrals over more complex domains,

but quadrature properties in 1-dimension do not easily extend to higher dimensions

so it is worth considering this numerical integration scheme.

In particular we will choose to use the composite trapezium rule as our Newton-

Cotes quadrature and increase the number of subintervals N that divide up the in-

terval [a, b]. The reason for not dealing with Newton-Cotes formulas of increasing

order is to avoid finding the corresponding weights, which leads to an ill-conditioned

problem involving the solution of a Vandermonde system whose matrix becomes close

to singular as we increase the order of the Newton-Cotes quadrature.

Figure 2.5 shows the relative error in the l2 norm between the numerical approxi-

mation and the exact solution versus the number of quadrature points taken over the

lens-shaped domain; for which we chose R = 3 and d = 5. It is only worth considering

Figure 2.5: Numerical integration of test function on lens using composite trapezium
+ Gauss.

and increasing the number of y-direction quadrature points since in the x-direction

(for which we are using Gauss quadrature) the test function satisfies

M∑
k=1

wk ≈
∫ 1

−1

1 dx = 2.

But Gauss-Legendre weights always satisfy

M∑
k=1

wk = length of interval [-1,1] = 2. (2.14)

20

So all that is required is that we take one Gauss point and weight in the x-direction,

and so wk=1 = 2 in (2.13) which can thus be reduced to a single sum approximating

a 1-D integral. Notice how it is required to take over 40 quadrature points to attain

a relative error of approximately 1 × 10−3. Clearly such a numerical integration

scheme is far from ideal, especially considering that we are integrating the simplest

non-trivial function. If we were to apply such a scheme to integrate much more

complicated functions such as the product of radial basis functions, which occur

when approximating the entries of the stiffness matrix and load vector to solve the

Galerkin problem, then we should not expect to obtain an accurate approximation

without having to take an unreasonably large number of quadrature points. This

motivates our need to find better schemes.

2.3.2.2 Gauss for Both x- and y-directions

We will now try a quadrature rule which may have been the obvious choice to consider

in the first place: performing Gauss quadrature on both the x-direction line integral

as well as in the y-direction. Indeed as discussed for the 1-D case, Gauss quadrature

provides higher order accuracy than Newton-Cotes for the same number of quadra-

ture points. It is thus reasonable to believe that this scheme will yield higher order

accuracy for the 2-D case, namely for the lens-shaped domain considered so far. As

before, taking only one quadrature point and weight in the x-direction is sufficient

to always satisfy (2.14) so we focus on increasing the number of quadrature points in

the y-direction.

Figure 2.6 now shows the relative error between the numerical approximation

and the exact solution versus the number of quadrature points taken for this new

quadrature rule, with the same parameters as before. Figure 2.6 should be compared

with Figure 2.5: in the former we attain close to machine error precision with only

16 or so quadrature points, a dramatic improvement from the previous scheme which

required double the number of points for a significantly larger relative error. It is

worth noticing that we never actually attain Matlab’s machine error precision of 1×
10−16 due to the dominance of rounding errors, but for most purposes and applications

this will not be a problem.

2.3.2.3 Quadrature using Fekete Points

Fekete points are known to have near-optimal interpolation properties, and for poly-

nomials of degreeN > 10 they are the best interpolation points known for the triangle.

Furthermore it has been shown in [4] that tensor product Gauss-Lobatto points (in

21

Figure 2.6: Numerical integration of test function on lens using Gauss + Gauss.

1-D these correspond to Gauss-type points which include the end-points of the inter-

val) are Fekete points for the square. Given that we map the lens to a tensor product

domain it would be interesting to know how a quadrature based on Fekete points on

the square would fare against those analysed previously.

Figure 2.7 plots the relative error in the l2-norm between the numerical approxi-

mation and the exact solution for the test function versus the number of quadrature

points taken over the lens-shaped domain for which we have taken the same values as

previously, namely R = 3 and d = 5, in order to compare it with the other quadra-

ture rules. It appears that such a scheme is very inefficient, requiring roughly 108

quadrature points 1 to attain a relative error of 10−1. Attempting to find Fekete

points directly for the lens-shaped domain would certainly yield better results than

those shown in Figure 2.7, but finding such points for arbitrary 2-D domains is a

complicated problem. Approaches for doing so have been suggested in [13] and [3].

Such approaches are hard to implement when one is faced with domains that have

different dimensions and areas, which is the case for our circular and lens-shaped

domains, so we will not pursue this approach any further.

1In Figure 2.7 and all other figures where this notation is present, “(x9)” denotes the fact that
we have fixed the number of ”y”-quadrature points to N = 9, so the number of quadrature points
is 9M where M denotes, as usual, the number of quadrature points in the x-direction.

22

Figure 2.7: Numerical integration of test function on lens using Gauss-Lobatto +
Gauss-Lobatto (Fekete points on square).

2.3.2.4 Remarks on Quadrature in Polar Coordinates

Given that the lens-shaped domain is the intersection of two circular supports, it

would be interesting to apply quadrature schemes once we converted the variables x

and y into polar coordinates. One possible set-up would be to map the lens-shaped

domain onto the unit disc and perform a quadrature rule on this new domain (we

will be analysing quadrature rules on circles in the next section). Such a mapping is

given by the substitution,

y = y∗ sin(θ)

and

x =
b
(
y∗ sin(θ)

)
− a
(
y∗ sin(θ)

)
2b
(
y∗ sin(θ)

) R cos(θ) +
a
(
y∗ sin(θ)

)
+ a
(
y∗ sin(θ)

)
2

.

However, as reported in [5], the Jacobian resulting from such a transformation yields

a complicated function which makes this approach inefficient.

2.3.2.5 Problems with Quadrature on Lens

One major problem with the above quadrature rule is that convergence becomes

dramatically slower as we let d→ 0 for fixed radii i.e. for circles getting progressively

closer to one another, or if we increase the radii of the circles whilst keeping d fixed.

One simple reason for this behaviour is that the area of the lens increases as d is

decreased or as both radii are increased (all else remaining fixed), and we thus require

23

an increasing number of quadrature points to attain the sort of accuracy mentioned

before. In Figure 2.8 we show how this slow convergence arises for R = 3 and d = 0.25,

having still taken Gauss points and weights in both the x- and y-directions as before.

Another reason for the occurence of such a problem is the inherent discontinuity of the

Figure 2.8: Numerical integration of test function on lens using Gauss + Gauss for
small d > 0.

derivative of the integrand once the lens has been mapped to a square. Consider, as

before, the integration of the test function for the lens-shaped domain. As mentioned

previously this reduces to the computation of a 1-D integral as follows:

∫ y∗

−y∗

∫ √R2−y2

d−
√
R2−y2

1 dxdy =

∫ y∗

−y∗

(
2
√
R2 − y2 − d

)
dy

= y∗

∫ 1

−1

(
2
√
R2 − (y∗ỹ)2 − d

)
dỹ.

Letting f(ỹ) = y∗

(
2
√
R2 − (y∗ỹ)2 − d

)
, we get the 1-D quadrature

∫ 1

−1

f(ỹ) dỹ ≈
N∑
j=1

wjf(yj).

We now consider the following theorem, taken from [16].

Theorem 2.3.1 Let Gauss quadrature be applied to a function f ∈ C[−1, 1]. If

f, f ′, ..., f (k−1) are absolutely continous on [−1, 1] and ||f (k)||T = V < ∞ for some

24

k ≥ 1, where || · ||T denotes the Chebyshev weighted 1-norm given by

||u||T =

∣∣∣∣∣
∣∣∣∣∣ u′(x)√

1− x2

∣∣∣∣∣
∣∣∣∣∣
1

.

Then for each n ≥ k
2
,

|En(f)| ≤ 32V

15πk(2n+ 1− k)k

with En(f) as before. If f is analytic with |f(z)| ≤ M in the region bounded by the

ellipse with foci ±1 and major and minor semiaxis lengths summing to ρ > 1, then

for each n ≥ 0,

|En(f)| ≤ 64M

15(1− ρ−2)ρ2n+2
.

This theorem gives an upper bound for the difference between the intergral over

the lens-shaped domain and its approximation. The first inequality of Theorem 2.3.1

suggests that integrals whose integrands have higher derivatives that are discontinuous

in [−1, 1] would converge more slowly. The parameter ρ in the second inequality is a

good indicator of how fast the approximation will converge to the exact integral. To

find its value, we need to find the semiaxis lengths a and b such that f(z) is analytic

in the ellipse x2

a2 + y2

b2
= 1. Differentiating f , we get

f ′(ỹ) = −y3
∗ ỹ

(
1√

R2 − y2
∗ ỹ

2
+

1√
R2 − y2

∗ ỹ
2

)
. (2.15)

Expression (2.15) (and in fact all the higher order derivatives of f) is discontinuous

when

R2 − y2
∗ ỹ

2 = 0⇒ ỹ2 =
R2

R2 − x2
∗

since y2
∗ = R2 − x2

∗. So we choose

a =
R√

R2 − x2
∗

=
R√

R2 − d2

4

=
2√

4− (d
R

)2

as x∗ = d
2
. Given that the foci are centred at ±1 we require that b2 = a2 − 1 and so

we must have

b =
√
a2 − 1 =

d
R√

4− (d
R

)2

.

Hence we obtain

ρ = a+ b =
2 + d

R√
4− (d

R
)2

.

25

This expression for ρ gives us two important results, namely:

• As d
R
→ 2 (i.e. the area of the lens shrinks to zero as the circles cease to

intersect), ρ→∞⇒ faster convergence.

• As d
R
→ 0 (i.e. the circles get closer together and the lens tends to the circle),

ρ→ 1⇒ slower convergence.

This explains the sort of behaviour we observed in Figure 2.8 for the lens quadra-

ture applied to the test function. We back-up these theoretical results numerically

by plotting the quadrature error for R = 3 and d = 5, 7, 7.9995. which are shown in

Figures 2.9(a)–(c) respectively. Notice that a, b → ∞ as d
R
→ 2, in which case the

(a) (b)

(c)

Figure 2.9: Numerical integration of test function on lens using Gauss + Gauss for
respectively d = 5, 7 and 7.9995.

integrand is analytic over the infinitely large ellipse. Whereas when d
R
→ 0, we have

b → 1 and a → 0 so discontinuities of the higher order derivatives of the integrand

26

“approach” the integration domain [−1, 1] and will be a cause for slower convergence

by Theorem 2.3.1.

Though these results only apply for the simple case of a constant integrand it does

give us some insight as to why this quadrature rule may not be so efficient for 2-D

integrals of more complex integrands, namely the integration of (products of) radial

basis functions which is our main application of interest.

2.4 Numerical Integration Schemes on the Circle

We will now focus our attention on developing efficient quadrature rules for the circle.

These will be required to approximate the entries of the load vector b as well as the

diagonal entries of the stiffness matrix A. As before we will assume without loss

of generality that the circle is centred at the origin, as a straightforward translation

would always map it to this simpler case.

2.4.1 First Approach

As was done in the previous section for the lens, a first approach at approximating

the double integral could be done by contructing quadrature rules in the (x, y)-plane.

We first apply a 1-dimensional quadrature rule on a line integral dependent only on

y and then apply a quadrature rule along the line integrals dependent only on x,

making the overall quadrature rule a tensor product of the simple 1-d rules as before.

This scheme is illustrated in Figure 2.10. In more mathematical terms we have∫ R

−R

∫ √R2−y2

−
√
R2−y2

f(x, y)dxdy =

∫ R

−R

∫ a(y)

−a(y)

f(x, y)dxdy (2.16)

where R is the radius of the circle and a(y) :=
√
R2 − y2. We now map the circular

domain onto the square [−1, 1]2 by making the substitutions:

y = Rỹ and x = a(y)x̃

which enables us to apply the Gauss-Legendre quadrature rule as before. Substituting

these into (2.16) we get∫ R

−R

∫ a(y)

−a(y)

f(x, y) dxdy =

∫ 1

−1

∫ 1

−1

f(a(Rỹ)x̃, Rỹ) · a(Rỹ)R dx̃dỹ

27

Figure 2.10: Circular-shaped domain of integration.

with its corresponding tensor product quadrature rule,∫ R

−R

∫ a(y)

−a(y)

f(x, y) dxdy ≈
N∑
j=1

M∑
k=1

wjw̃kf(a(Ryj)xk, Ryj) · a(Ryj)R. (2.17)

2.4.2 Comparison of Quadrature Rules

For the lens we considered the simplest possible function for which we can find an

exact solution i.e.

f = χlens(x) =

{
1 if x ∈ Ω.
0 if x 6∈ Ω.

As described previously, using such a function does not make full use of quadrature

points in both x- and y-directions. But the complicated integration bounds arising

when integrating over the lens-shaped domain made it hard to consider even slightly

more complex functions as an exact solution would then have been hard to find. For

the simpler circular domain however, exact solutions for such integrands can easily be

found. We will consider the function f(x, y) = x2y2 which can be integrated exactly

over a circle of radius 1 for which we get∫ 1

−1

∫ √1−y2

−
√

1−y2

x2y2 dxdy =
π

24
.

2.4.2.1 Gauss for Both x- and y-directions

We will now consider a numerical integration scheme taking Gauss points and weights

in both the x- and y-directions, in the same way as we did for the lens. We would

28

expect such a scheme to be good given that we no longer have the constraint of

having to keep the centres of two circles far enough from each other in order to

have an efficient quadrature rule. Figure 2.11 plots the relative error in the l2-norm

between the exact solution and the approximation against the number of quadrature

points taken over the circular domain with radius R = 1. Notice how this scheme

Figure 2.11: Numerical integration of x2y2 on circle using Gauss + Gauss.

requires about 200 quadrature points to achieve a relative error of 10−7. Though such

accuracy is satisfactory for most purposes, the large number of quadrature points that

are needed to attain such accuracy suggests the computational cost of this quadrature

rule is expensive and will be moreso for more complex functions.

2.4.2.2 Quadrature in Polar Coordinates

Switching to polar coordinates appears to be the natural way of numerically integrat-

ing a function over a circular domain, especially considering that the Jacobian of such

a transformation is very simple. We make the usual change of variables x = r cos(θ)

and y = r sin(θ) with the integral over the circle Ω now becoming∫ ∫
Ω

f(x, y)dxdy =

∫ 2π

0

∫ R

0

f(r cos(θ), r sin(θ))rdrdθ. (2.18)

We now consider taking equally spaced angles θj j = 1, ...,M in the interval [0, 2π]

using a composite trapezium rule to generate the corresponding quadrature weights.

And for each such angle θj kept fixed we consider the line integral on the interval

0 ≤ r ≤ R, independent of θ, and approximate it using a 1-D Gauss quadrature rule

29

with quadrature points rk k = 1, ..., N . Approximating integral (2.18) using such a

quadrature rule yields∫ ∫
Ω

f(x, y)dxdy ≈
M∑
j=0

N∑
k=0

wjw̃kf(rk cos(θj), rk sin(θj))rk

where wj are the quadrature weights for the θ-dependent integral approximation, and

w̃k those for the r-dependent approximation. In Figure 2.12 we plot the relative error

between the exact solution and the approximation using the quadrature above for

the same function and parameters as before. Clearly such a scheme is a dramatic

Figure 2.12: Numerical integration in polar coordinates of x2y2 on circle using com-
posite trapezium rule for θ and Gauss for r.

improvement over the previous one: indeed, we achieve close to machine-error preci-

sion with only about 24 quadrature points, hence obtaining much greater accuracy

with only a fraction of the number of quadrature points required for the previous

numerical scheme. It is worth mentioning here that our choice of quadrature for the

circle wasn’t completely arbitrary: Reference [15] suggests that the composite trapez-

ium rule often converges very quickly for periodic functions. Given that all of the

integrands considered in this dissertation are inherently 2π-periodic over the circular

domain with respect to θ, it was a natural choice to consider.

For this reason, if we were to instead apply Gauss quadrature for θ we would

actually need significantly more quadrature points to attain the same accuracy. Recall

that for the lens we showed that performing Gauss quadrature for both x and y

variables provides greater accuracy than using a composite trapezium rule for one

30

and Gauss for the other. This suggests that it is not straightforward to generalise

which quadrature rule would be good and which would not be for arbitrary 2-D

domains and coordinate systems.

2.5 Quadrature for Boundary Supports

Until now we have implicitely only discussed numerical integration schemes on lens-

shaped domains and circles that are fully contained inside the solution domain 2

Ω = [−1, 1]2 (call them interior supports). However, many of the integrands whose

integrals we seek to approximate will not have their supports fully contained inside

the solution domain (call them boundary supports) as shown in Figure 2.13. One

Figure 2.13: Example of supports not fully contained in boundary (i.e. boundary
supports).

question worth asking is: how troublesome will these boundary supports be when

approximating the corresponding integral and how efficienct would the quadrature

rules described in the previous section be for these? To answer this question, we

consider the problem of integrating f(x, y) ≡ 1 over a circular domain whose radius

is large enough that it contains the entire solution domain Ω = [−1, 1]2. The problem

set-up is shown in Figure 2.14. We accommodate for integrals with boundary supports

by multiplying the integrand by the characteristic function for the solution domain,

χΩ(x) =

{
1 if x ∈ Ω
0 if x 6∈ Ω.

2Recall that the solution domain is the one in which we seek to numerically solve the Helmholtz
equation

31

Figure 2.14: Problem set-up to test numerical integration of integrals with boundary
supports. Area of square is 2 ∗ 2 = 4.

Integrating f · χΩ over the circular domain of the set-up above should yield an ap-

proximation of the area of the square solution domain Ω that it contains. Figure 2.15

shows the relative error between the exact area and its approximation, plotted against

the number of quadrature points, when choosing the radius of the circle containing

the domain to be R = 2. As before, we use the circle quadrature in polar coordinates

described in the previous section to compute the approximation. Notice how the con-

vergence is now extremely slow, requiring more than 4900 quadrature points to attain

a relative error of 1 × 10−2. It appears that the efficiency of the circle quadrature

in polar coordinates (and in fact the lens quadrature) discussed in the previous sec-

tion for supports fully contained inside the solution domain vanishes completely for

supports that are not fully contained in it. The discontinuous nature of an integrand

having been multiplied by the characteristic function may well play a part in explain-

ing such poor results. But the non-optimality of the choice of quadrature points for

supports that are not fully contained in the domain would be the main reason for the

reduced accuracy of the quadrature rules. They were in some way “designed” for a

particular 2-D domain, so changing the latter would clearly have a huge effect.

Given that a potentially significant number of entries of the stiffness matrix and

load vector (1.9) will involve the approximation of integrals over boundary supports,

we should expect these to create a significant source of error in the numerical solution

of the Helmholtz equation.

32

Figure 2.15: Numerical integration in polar coordinates of f(x, y) ·χΩ where f(x, y) ≡
1 on circle using composite trapezium rule for θ and Gauss for r. Exact value of
integral is 4.

2.6 Comparison with Quadrature on Whole Do-

main

Now that we have discussed numerical integration schemes on the circle and lens-

shaped domains as well as the multiple problems associated with their use, it would be

interesting to now compare them with corresponding numerical integration schemes

over the entire solution domain Ω = [−1, 1]2. The integrands that we will use to

perform these comparisons are the ones required to evaluate the entries of the stiffness

matrix and load vector in (1.9), these are given by∫
[−1,1]2

[∇Φ(x− xj) · ∇Φ(x− xi) + Φ(x− xj)Φ(x− xi)]dx (2.19)

and ∫
lens

[∇Φ(x− xj) · ∇Φ(x− xi) + Φ(x− xj)Φ(x− xi)]dx (2.20)

which are equal for interior supports since products and gradients of RBFs have their

support in lens-shaped domains, but different for supports that intersect with the

boundary since the integrand of (2.20) will have to be multiplied by the characteristic

function χΩ. Similarly, we will compare the schemes associated with the integrals∫
[−1,1]2

f(x)Φ(x− xi)dx (2.21)

33

and ∫
circle

f(x)Φ(x− xi)dx (2.22)

which, again, are equal for interior supports but different for boundary supports as

the integrand of (2.22) will be multiplied by χΩ. We choose f(x, y) = cos(πx) cos(πy)

when approximating these integrals.

2.6.1 Interior Supports

In Figures 2.16(a)–(d) we plot the approximations of (2.19) and (2.20) versus the

number of quadrature points using respectively the numerical integration scheme

over the whole solution domain (in red) and the one over the lens-shaped domain (in

blue). We have chosen R = 1 and respectively d = 0.1, 0.25, 1.5 and 1.75. Notice that

the radii of the circles making up the lens are such that the lens-shaped domain is

fully contained in Ω. As expected, when we increase the number of quadrature points

the approximations generated by the different quadratures appear to get arbitrarily

close to one another. In Figures 2.16(a) and 2.16(b), notice how for small values of

d the numerical integration over the lens does not provide any significant advantage

over the one for the whole domain, both requiring a similar number of quadrature

points to attain a certain accuracy (we will say that it “converges” 3). Part of the

reason why approximating (2.20) for small d requires so many quadrature points is

that the area of integration is increasing in size and thus requires more quadrature

points. But there is also another reason: recall from Theorem 2.3.1 that we were

able to determine the convergence rate of a 1-D quadrature rule by considering the

ellipse in which the integrand was analytic and bounded. We were able to do so for a

constant integrand, for which the 2-D integral could be reduced to the 1-D case. We

must now consider the 2-D function g(x, y) given by the integrand of (2.19), we then

have ∫
lens

g(x, y) dxdy =
y∗
2

∫ 1

−1

∫ 1

−1

(
2
√
R2 − y2

∗ ỹ
2 − d

)
ĝ(x̃, ỹ) dx̃dỹ

where

ĝ(x̃, ỹ) = g

(
d−

√
R2 − y2

∗ ỹ
2, y∗ỹ

)
.

If we now define

F (ỹ) =
(

2
√
R2 − y2

∗ ỹ
2 − d

)∫ 1

−1

ĝ(x̃, ỹ) dx̃

3The exact values of the integrals aren’t known but we assume that as we increase the number
of quadrature points the approximation get arbitrarily close to the exact value

34

(a) (b)

(c) (d)

Figure 2.16: Comparison between quadrature on interior lens (blue) and quadrature
on whole domain (red) for R = 1 and respectively d = 0.1, 0.25, 1.5 and 1.75.

and note that this is the same integrand as before with the addition of the integral∫ 1

−1
ĝ(x̃, ỹ) dx̃ which makes the analysis much more tedious. However, given that the

(higher order) derivative of this integrand will have the same discontinuities as before

in addition to those of the RBF (which occur at the centre of their support as well

as the boundary of their support), it is reasonable to assume this would be another

cause for slower convergence. Namely when the discontinuities are inside the domain

of integration.

For larger values of d (when d > R and the discontinuity is outside of the integration

domain) the lens quadrature requires significantly less points to converge as shown in

Figures 2.16(c) and 2.16(d).

35

In Figure 2.17 we plot the approximations of (2.21) and (2.22) versus the number

of quadrature points using respectively the numerical integration scheme over the

whole solution domain and the one over a circular domain centered at the origin.

The support has been chosen so that it is fully contained in the solution domain.

Again, notice how the circle quadrature requires significantly less points than the

Figure 2.17: Comparison between quadrature on interior circle (blue) and quadrature
on whole domain (red) for R = 1.

scheme over the entire solution domain to converge.

2.6.2 Boundary Supports

We can now compare the numerical integration scheme over the whole domain with

that of the lens and circle in the case when the integrands (2.20) and (2.22) have been

multiplied by the characteristic function χΩ to accommodate for boundary supports.

In Figure 2.18 we plot the approximations of (2.19) and (2.20) as before, but we now

choose R = 2 and d = 1 so that the lens is not fully contained in the solution domain.

As it was observed for simpler integrands, the efficiency of the quadrature rule is

significantly deteriorated and convergence is thus very slow due to the discontinuity

of the integrand, and more importantly the non-optimality of the quadrature points.

Clearly, the quadrature rule over the whole domain is much more efficient and accu-

rate. A similar phenomenon occurs for the approximations of (2.21) and (2.22) when

we choose R = 2 as shown in Figure 2.19.

36

Figure 2.18: Comparison between quadrature on boundary lens (blue) and quadrature
on whole domain (red) for R = 2 and d = 1.

Figure 2.19: Comparison between quadrature on boundary circle (blue) and quadra-
ture on whole domain (red) for R = 2.

Our analysis so far suggests that many problems can arise when using the lens and

circle quadratures. For the lens, small values of d can lead to slower convergence of the

associated quadrature rule. The main issue however is the approximation of integrals

over boundary supports, which affects both the lens and circle quadratures. In such

cases, the numerical integration scheme over the whole domain would in fact produce

more accurate results with less quadrature points. Substituting the (discontinuous)

37

characteristic function by a continuous approximation of the form

c(x, y) =
1

(1 + x2k)(1 + y2k)

(where the parameter k is such that the larger it is, the better it approximates the

characteristic function) only marginally improves accuracy and does not really solve

the problem. A plot of this approximation for k = 7 is shown in Figure 2.20. It was

Figure 2.20: Continuous approximation of the characteristic function with k = 7.

suggested in [5] and [6] to consider boundary elements case by case and apply specific

quadrature rules tailored for each one of these but this seems like a tedious way of

going about solving this problem and hard to implement in practice.

38

Chapter 3

Convergence

Now that we have described the different numerical integrations schemes, compared

them and mentioned problems arising when using them in particular cases we can

now discuss the Helmholtz equation and convergence issues linked to its solution.

Theoretical and practical issues related to convergence of the Galerkin problem for

the Helmholtz equation are discussed in more detail in [10], [18], [19] and [20]. All of

the theorems in this chapter have been taken from and are proved in [19] and [20].

3.1 Least-Squares Problem

3.1.1 Theoretical Aspects

Before moving on to solving the Galerkin problem arising from the Helmholtz equation

and analysing some convergence aspects of its approximate solution, we will solve the

simpler least-squares minimisation problem given by

min
s∈VN
||f − s||L2(Ω)

for a given L2-integrable target function f (though less stringent requirements can be

imposed on this function as we will see in the next theorem) and as before

VN = span{Φ(· − xj) : 1 ≤ j ≤ N}4

where Φ(· − xj) are the Wendland C2 basis functions (1.5). Convergence estimates

in the L2-norm are given by the following theorem and corollary.

4This is obviously not the same “N” as the one used in Chapter 2, which represented the number
of y-direction quadrature points for the numerical integration schemes.

39

Theorem 3.1.1 Suppose Φ is positive definite with RKHS HΦ ⊆ Hτ (Rd), τ > d
2
,

Ω ⊆ Rd bounded, satisfying a cone condition 5 and f ∈ HΦ. Then for sufficiently

small fill distance h = supx∈Ω min1≤j≤N ||x− xj||2 we have

||f − s||L2(Ω) ≤ Chτ ||f ||HΦ

where s ∈ VN is the function that minimises ||f − s||L2(Ω).

Corollary 3.1.2 If Φ generates HΦ = Hτ (Rd) and if Ω has a Lipschitz boundary

then

||f − s||L2(Ω) ≤ Chτ ||f ||Hτ (Ω) for all f ∈ Hτ (Ω).

As we have informally noted in the introductory chapter, the compactly supported

Wendland basis functions do in fact “generate” the Sobolev space as its native space

i.e. HΦ = Hτ (Ω) with τ = d
2

+ k + 1
2
. Hence the convergence estimate given above

applies for our setting. In particular, given that we are working in a 2-dimensional do-

main (d=2) and using C2 Wendland basis functions (k=1), we must have a theoretical

convergence rate of order O(h2.5) for the least-squares problem.

However, hoping to achieve such a convergence rate comes with a number of con-

straints. Firstly, we will have to work in the so-called non-stationary setting: we need

to fix a basis function, namely the size R of its support, and let the fill distance tend

to zero i.e. h → 0. The reasons for doing so come from interpolation theory, which

is relevant to the least-squares problem because the interpolation error provides an

upper-bound for the latter. Indeed, when using basis functions that “generate” the

Sobolev space Hτ we have the following bound in the L2-norm:

||f − sf,X ||L2(Ω) ≤ C
(h
R

)τ
||f ||Hτ (Ω)

where f is the target function as before and sf,X its interpolant. This estimate

suggests that if we choose to work in the non-stationary setting, we will have con-

vergence as h→ 0. But doing so annihilates the advantages of using basis functions

with compact support, namely the associated matrix loses its sparsity and thus we

cannot take advantage of it when solving the system of equations. Furthermore, re-

sults from interpolation theory suggest that the behaviour of the condition number

of the interpolation matrix is given by

cond(A) =
(q
R

)−2τ

5The boundary must not have any cusp-like features.

40

where q = minj 6=k ||xj − xk|| is the separation distance. So it is likely that the matrix

associated with the least-squares problem will behave in a similar way. Hence if we

work in the non-stationary setting and thus keep R fixed, the matrix will have a

rapidly increasing condition number as h→ 0.

If on the other hand we choose to scale the radius to be proportional to the fill

distance i.e. R = ch (this is known as the stationary setting) where c is some constant,

then since R = c̃q 5 where c̃ is some other constant, the condition number will remain

fixed. But from the L2 convergence estimate above, it is clear that convergence no

longer occurs when working in the stationary setting. This is a well-known problem

in scattered data approximation by RBFs and is solved by considering a multilevel

algorithm which we shall briefly describe in Chapter 4.

Secondly, still in the context of interpolation theory, numerics show that it is

necessary to choose a radius R such that a good portion of the underlying domain is

covered in order to obtain accurate results. Otherwise, one would need substantially

smaller h to compensate. This can somewhat be explained by the above inequality

which suggests that if R were small, one would need to take significantly smaller h

to get accurate results.

3.1.2 Numerical Aspects

We now wish to consider whether the theoretical convergence rate for the least-squares

problem is observed in practice when solving the problem numerically. To do so we

define

ej = ||f − sj||L2(Ω). (3.1)

Then by Corollary 3.1.2 we have

ej ≤ Chτj ||f ||Hτ .

Here {hj}∞j=1 is a discrete set of monotonically decreasing fill distance values and

sj the function in the finite dimensional subspace spanned by Wendland RBFs and

corresponding to the particular fill distance hj. In other words, by decreasing hj we

increase the dimension of the subspace. We now have

ej+1

ej
=

(
hj+1

hj

)τ

.

5This is the case since h and q are clearly interlinked in this problem

41

Taking logs on both sides of the expression above we obtain the discrete convergence

rate

τj =
log(ej+1/ej)

log(hj+1/hj)
. (3.2)

Expression (3.2) gives us a way of testing how efficient our numerical integration

schemes are. If they were, what we hope would be achieved numerically is

τj → 2.5 as j →∞.

Indeed if we did not have at least this sort of convergence rate, it could suggest that

the evaluation of the integrals associated with this problem are not done accurately

enough and the numerical integration schemes would have to be reviewed. From now

on we will refer to the discrete fill distance values {hj}∞j=1 as simply “h”.

When verifying this convergence numerically we obviously need to consider the

discrete L2-norm instead of its continuous counterpart, which we denote by l2. Hence

when calculating the least-squares error (3.1) on a computer, we will compute its

l2-norm instead given by

ej =

[
1

L

L∑
k=1

|f(tk)− sj(tk)|2
] 1

2

along a fine mesh consisting of L points inside the domain Ω. We will choose

f(x, y) =
cos(πx) cos(πy)

2π2 + 1

as our target function for the least-squares problem, which is clearly L2-integrable.

We also choose the set of centres X = {x1, ...,xN} ⊆ Ω to make up a finite uniform

grid of N distinct points in [−1, 1]2 as was shown in Figure 2.2. We keep on using

the C2 Wendland basis functions and choose their support radii to all be equal to

the fixed value R. This is then implemented using the scientific computing software

Matlab and we use the software’s matrix inversion operator \ to solve the resulting

matrix problem. Note that for large values of N the system of equations can be

solved iteratively using the conjugate gradient method since the matrix is symmetric

positive-definite.

42

Table 3.1 shows the l2-error as well as the condition number of the associated

matrix as we decrease the fill distance h (i.e. the non-stationary setting) when using

a quadrature rule over the whole solution domain Ω to approximate the integrals. We

use a tensor product of Gauss quadrature rules over the whole domain, for which we

use 20 quadrature points in both the x- and y-directions, so a total of 400 quadrature

points are used for the approximation of each integral of the matrix. The radii of the

supports has been set to R = 1.4, which in some sense covers the whole domain, as

required to obtain accurate results.

N h l2-error rate cond(A)
9 1 1.138067e-003 8.197211e+000
25 1/2 9.527643e-004 0.2564 3.335351e+003
49 1/3 1.048943e-004 5.4412 1.794808e+005
81 1/4 2.156888e-005 5.4977 2.965538e+006
121 1/5 8.247713e-006 4.3088 2.845482e+007
169 1/6 3.935580e-006 4.0587 3.191473e+008
225 1/7 3.646614e-006 0.4950 5.580711e+011
289 1/8 5.685706e-004 -37.8227 6.688194e+014

Table 3.1: Errors and condition numbers in the non-stationary setting with R = 1.4
for least-squares problem using quadrature on whole domain with 400 quadrature
points.

Notice how the convergence is rather erratic at first but thereafter remains rela-

tively stable as h is decreased. The convergence rate averages out to be surprisingly

high for h > 1
7
, moreso than the theoretical convergence rate that we expected. This is

probably due to the smoothness of the target function f(x, y), which is a C∞ function

in both arguments.

As expected, the condition number increases rapidly as h decreases. The higher

the condition number, the more the errors due to the quadrature rules will have an

impact on the least-squares error. In fact, as shown in Table 3.1 for h ≤ 1
8
, convergence

ceases to occur because of this despite working in the non-stationary setting.

Table 3.2 shows the l2-error and the condition number of the associated matrix as

h is decreased for the same parameters as before, but now we use the lens quadrature

rule (2.12) for the integrals of the associated matrix based on taking a Gauss tensor

product in both the x- and y-directions, and the circle quadrature (2.18) for the

integrals of the right-hand side vector based on applying Gauss quadrature for the

43

radius r and a composite trapezium rule for the angles θ. Again, each integral is

approximated using 20 ∗ 20 = 400 quadrature points.

N h l2-error rate cond(A)
9 1 2.134717e-003 8.497649e+000
25 1/2 2.794296e-002 -3.7103 1.446217e+003
49 1/3 3.421768e-002 -0.4997 3.017600e+004
81 1/4 1.065335e+000 -11.9517 1.604743e+006
121 1/5 1.930566e-002 17.9732 5.875189e+004
169 1/6 2.615597e-002 -1.6657 2.359948e+005
225 1/7 1.856221e-002 2.2244 2.363553e+006
289 1/8 4.063846e-002 -5.8696 3.922929e+006

Table 3.2: Errors and condition numbers in the non-stationary setting with R =
1.4 for least-squares problem using circle and lens quadratures with 400 quadrature
points.

It appears that no convergence takes place when using these quadrature rules for

this choice of R, despite the large number of quadrature points taken. The l2-error

fluctuates randomly and appears to stagnate at an error of order O(10−2) without

any improvements as h is decreased. This can be explained by our choice of a large

radii for the supports of the RBFs: with such a choice, the vast majority of the entries

of the associated matrix and right-hand side vector require approximating integrals

with boundary supports. In Chapter 3, we have discussed how approximating these

would create a significant source of error unless we chose a disproportionately large

number of quadrature points, so such poor convergence results were not unexpected.

In Table 3.3 and 3.4 we consider exactly the same problem but using the smaller

radius R = 0.33. Figure 3.1 shows the sparsity of the matrix for this particular

value of R. Table 3.3 shows the l2-errors and condition numbers for the least-squares

problem when using the quadrature over the whole domain. Table 3.4 on the other

hand shows the same but using the circle and lens quadrature rules instead. Both

now use 10 quadrature points in both the x- and y-directions, making it a total of

100 quadrature points per integral approximation.

Notice how we now obtain more accurate results with the circle and lens quadra-

tures than we did with the quadrature on the whole domain for this value of R, in

complete contrast to what we observed before for the much larger radius. Indeed,

a much larger proportion of the entries of the associated matrix are integrals with

interior supports. In Chapter 3 we have seen how in this case, the circle and lens

44

Figure 3.1: Sparsity of matrix associated with least-squares problem for R = 0.33
and N = 81 equally spaced nodes in [−1, 1]2.

N h l2-error rate cond(A)
9 1 4.668942e-002 3.990771e+000
25 1/2 4.510292e-002 0.0499 1.662029e+001
49 1/3 4.154178e-002 0.2027 3.596113e+001
81 1/4 8.694786e+001 -26.5793 6.068565e+010
121 1/5 2.353071e-001 26.4951 1.793855e+018
169 1/6 2.039406e+000 -11.8445 1.391427e+018
225 1/7 3.044862e-001 12.3373 2.271383e+019

Table 3.3: Errors and condition numbers in the non-stationary setting with R = 0.33
for least-squares problem using quadrature on whole domain with 100 quadrature
points.

quadratures generally work well and produce more accurate approximations than the

quadrature on the whole domain.

Furthermore, using the circle/lens quadratures also appears to dramatically reduce

the condition number. This would enable us to decrease h even further and not expect

the former to interfere with convergence. That said, Table 3.4 shows a clear sign that

the convergence rate will deteriorate for h ≤ 1
7

leading to non-convergence. This is

due to the increasing number of integrals with boundary supports that need to be

approximated, which create a significant source of error.

45

N h l2-error rate cond(A)
9 1 2.003157e-002 4.495205e+000
25 1/2 1.974932e-002 0.0205 4.496236e+000
49 1/3 1.253948e-002 1.1202 4.976892e+000
81 1/4 4.845443e-003 3.3050 8.724346e+000
121 1/5 1.479043e-003 5.3177 2.858306e+001
169 1/6 1.371853e-003 0.4125 2.461422e+002
225 1/7 3.260164e-003 -5.6153 3.977739e+003

Table 3.4: Errors and condition numbers in the non-stationary setting with R =
0.33 for least-squares problem using circle and lens quadratures with 100 quadrature
points.

Table 3.5 and 3.6 show the results from exactly the same computations as those

done in respectively Table 3.3 and 3.4, but the quadrature rules now use 20 quadrature

points in both x- and y-directions i.e. 400 quadrature points to approximate each of

the integrals.

N h l2-error rate cond(A)
9 1 2.011313e-002 3.474298e+000
25 1/2 1.981171e-002 0.0218 4.241641e+000
49 1/3 1.265591e-002 1.1052 4.260343e+000
81 1/4 4.991905e-003 3.2338 7.696114e+000
121 1/5 1.447959e-003 5.5467 2.218149e+001
169 1/6 6.027346e-004 4.8069 1.725686e+002
225 1/7 7.353432e-004 -1.2903 1.446568e+005

Table 3.5: Errors and condition numbers in the non-stationary setting with R = 0.33
for least-squares problem using quadrature on whole domain with 400 quadrature
points.

Notice first of all how both schemes produce more accurate results than they

did with lesser quadrature points, as expected. Table 3.5 shows how using more

quadrature points dramatically reduces the condition number of the associated ma-

trix, which again allows us to further decrease h and not expect any errors caused

by a high condition number to interfere with convergence. Comparing Table 3.5 and

3.6, we observe that for h > 1
6

the circle and lens quadratures produce more accurate

results than the quadrature on the whole domain, but for h < 1
6

the opposite occurs.

Such results suggest that the interplay between the condition number, the proportion

of integrals with interior/boundary supports in the matrix (dependent on R and h)

46

N h l2-error rate cond(A)
9 1 2.003158e-002 4.215894e+000
25 1/2 1.974932e-002 0.0205 4.216861e+000
49 1/3 1.253967e-002 1.1202 4.665419e+000
81 1/4 4.828023e-003 3.3179 8.064376e+000
121 1/5 1.225484e-003 6.1445 2.462371e+001
169 1/6 7.658254e-004 2.5784 1.164224e+002
225 1/7 1.437655e-003 -4.0856 8.088218e+004

Table 3.6: Errors and condition numbers in the non-stationary setting with R =
0.33 for least-squares problem using circle and lens quadratures with 400 quadrature
points.

and the number of quadrature points chosen makes valid conclusions hard to infer.

But generally speaking, approximations of the least-squares problem using the circle

and lens quadrature would be increasingly more accurate than the approximation

using the quadrature on the whole domain the more we decrease the support radii R.

Unfortunately there is a problem: as discussed previously, decreasing the size of the

support radii yields lesser accuracy. This can be observed numerically by comparing

Table 3.6 with Table 3.1. So by requiring the radii of the RBFs to be kept relatively

large in order to achieve greater accuracy, it becomes evident that we will have to

use the quadrature rule on the whole domain to attain this. However, the stationary

setting multilevel algorithm may provide a framework in which the lens and circle

quadratures can lead to accurate approximations. This will be discussed in Chapter

4.

3.2 Sobolev Problem

3.2.1 Theoretical Aspects

Having rigorously described the solution of the simpler least-squares problem, we are

now ready to tackle the main issue of this dissertation: the solution of the Helmholtz

equation which translates to a minimisation problem in the Sobolev norm as noted

in Chapter 1. It was shown in [18] that if the radial basis functions Φ(x − xi), i =

1, ..., N spanning the finite dimensional subspace VN are positive definite with Fourier

transforms decaying like (1 + || · ||2)−2β then we have the following.

47

Theorem 3.2.1 Let the bounded domain Ω possess a C1 boundary and let the solu-

tion u of (1.3) satisfy u ∈ Hτ (Ω). As before, we let h denote the fill distance given by

the expression h = supx∈Ω min1≤j≤N ||x − xj||2. If β ≥ τ > d
2

+ 1, the error between

u and the discrete solution uN of (1.6) can be bounded for sufficiently small h by

||u− uN ||H1(Ω) ≤ Chτ−1||u||Hk(Ω).

The inequality in the above theorem reflects the theoretical order of convergence when

using an approximation space spanned by RBFs, and is comparable to that achieved

in classical finite element methods. It can be shown that the compactly supported

Wendland basis functions in Rd (with smoothness 2k) have Fourier transforms that

decay like (1 + || · ||2)−d−2k−1. Hence the above estimate suggests that functions

which are C2k, satisfying k ≥ τ − d+1
2

and strictly positive definite on Rd will have

O(hk+(d−1)/2) convergence order. In particular, the C2 Wendland basis function (1.5)

should yield O(h1.5) convergence in R2. Note that

||u− uN ||L2(Ω) ≤ ||u− uN ||H1(Ω)

so this theoretical convergence rate also applies for the least-squares error between the

exact solution and its approximation, which we will be considering later on. Given

this relationship between the least-squares norm and the Sobolev norm, it is clear

that all the interpolation bounds we derived for the former will affect the latter. As

before we will have to work in the non-stationary setting to hope for convergence,

and keep the radii of the RBFs relatively large to get accurate results. It is also likely

that the stiffness matrix will have a rapidly increasing condition number as h→ 0.

3.2.2 Numerical Aspects

Having described some of the more theoretical aspects associated with the solution

of the Sobolev minimization problem, we will now consider an example for which a

closed-form solution is known in order to find out whether the theoretical conver-

gence applies in practice. Consider the following Helmholtz test problem which was

considered in [10] and [18]:

−∇2u(x, y) + u(x, y) = cos(πx) cos(πy) in Ω, (3.3)

∂

∂n
u(x, y) = 0 on ∂Ω (3.4)

48

where as before x = (x, y), n denotes the outward unit normal vector and Ω = [−1, 1]2.

Notice that f(x, y) = cos(πx) cos(πy) is an L2-integrable function as required. It can

be shown that for the closed-form solution for this problem is given by

u(x, y) =
cos(πx) cos(πy)

2π2 + 1
. (3.5)

We can now solve the Sobolev minimization problem via the solution of the matrix

system (1.9) arising from the Galerkin formulation of (3.3)—(3.4). We continue to

use the C2 Wendland functions (1.5) as our basis functions for the finite-dimensional

subspace. In addition, we choose the support radii of the basis functions to all be

equal to R. As before, we choose the set of centres X = {x1, ...,xN} ⊆ Ω to make

up a finite uniform grid of N distinct points in [−1, 1]2. Given the poor convergence

results observed when using the lens and circle quadrature rules for big R in the

simpler least-squares problem, the entries of the stiffness matrix A and load vector f

associated with (3.3)—(3.4) will be approximated using the quadrature on the entire

solution domain Ω. For this scheme, we use 20 quadrature points in both the x- and

y-directions i.e. a total of 400 quadrature points per integral approximation. Table

3.7 shows the l2-error between the exact solution (3.5) and the approximation, as well

as the condition number of the stiffness matrix for decreasing fill distance h (as usual

we are working in the non-stationary setting).

N h l2-error rate cond(A)
9 1 1.108119e-003 8.159248e+000
25 1/2 9.565087e-004 0.2122 1.408073e+002
49 1/3 1.091387e-004 5.3536 3.302420e+003
81 1/4 7.780432e-005 1.1763 3.295054e+004
121 1/5 8.422028e-005 -0.3549 1.869342e+005
169 1/6 4.030209e-005 4.0423 8.511945e+005
225 1/7 2.403545e-005 3.3532 5.523046e+007
289 1/8 6.470658e-003 -41.9139 1.375148e+010

Table 3.7: Errors and condition numbers in the non-stationary setting with R = 1.4
for the Sobolev problem using quadrature on whole domain with 400 quadrature
points.

As for the least-squares problem, convergence is very erratic. The condition num-

ber also increases rapidly as h is decreased. This causes significant errors that ul-

timately ceases convergence occurring, namely when h < 1
7
. In Figure 3.2(a) we

show the plot of the approximate solution to the Galerkin problem of (3.3)—(3.4) for

49

R = 1.4 and N = 25. Figure 3.2(b) shows the graph of the maximum error between

the exact solution (3.3) and the approximate solution along each point of a fine grid

contained in [−1, 1]2.

(a) (b)

Figure 3.2: Approximate solution (left) and maximum error (right) for Galerkin so-
lution of Helmholtz equation with C2 Wendland functions using 25 equally spaced
points in [−1, 1]2.

50

Chapter 4

Multilevel Algorithms

As mentioned in Chapter 3 working in the stationary setting (scaling RBF supports

proportional to the data density) keeps the matrix sparse and the condition number

low, but this process does not always converge. In Reference [11], a multilevel algo-

rithm was suggested as a way of resolving this issue in the context of interpolation

by radial basis functions. In References [9] and [18], it was applied to the Galerkin

approximation process.

We will now describe the Galerkin multilevel algorithm and how it works. Consider

a sequence of finite dimensional subspaces V1, V2, ... ⊆ H1(Ω) given by

Vm = span{ΦRm(· − xi), i = 1, ..., Nm}

where Nm is the number of nodes at level m of the algorithm and Rm the support

radius of the RBFs at level m. As in Chapter 1, increasing the index m of Vm corre-

sponds to increasing the dimension of the subspace. But additionally the RBFs that

span each subspace Vm has their own fixed support radius Rm, which is proportional

to the fill distance hm (i.e. the stationary setting). Because of this, it is no longer

the case that V1 ⊆ V2 ⊆ ... ⊆ Vm.

Furthermore, instead of solving the Galerkin problem (1.6) for increasingly larger

subspace Vm, we solve the problem with different right-hand sides. At step m of the

algorithm, we now seek um ∈ Vm such that

a(um, v) = l(v)− a(um−1, v) for all v ∈ Vm. (4.1)

If we set

um =
Nm∑
j=1

cmj ΦRm(· − xj) (4.2)

51

then substituting (4.2) into (4.1) yields

Nm∑
j=1

cmj a(ΦRm(· − xj),ΦRm(· − xi))

= l(ΦRm(· − xi))−
Nm−1∑
j=1

cm−1
j a(ΦRm−1(· − xj),ΦRm(· − xi)). (4.3)

Thus we obtain the matrix problem

Acm = f −Bcm−1

where cm = (cm1 , ..., c
m
Nm

)T ∈ RNm , f = (f1, ..., fNm)T ∈ RNm with fi = l(ΦRm(· − xi)).

The matrix A ∈ RNm×Nm is given by

aij = a(ΦRm(· − xj),ΦRm(· − xi)), 1 ≤ i, j ≤ Nm

and B ∈ RNm×Nm−1 by

bij = a(ΦRm−1(· − xj),ΦRm(· − xi)), 1 ≤ i ≤ Nm and 1 ≤ j ≤ Nm−1.

Notice that the first and second arguments of the bilinear form for the matrix B have

different support radii. An algorithm for this process is shown in Algorithm 4.0.1.

Algorithm 4.0.1: Multilevel Galerkin()

(1) Set u0 = 0,
(2) for k = 1, 2, ...,m

(a) Find uk ∈ Vk such that a(uk, v) = l(v)− a(uk−1, v) ∀v ∈ Vk
(b) Update uk ← uk−1 + uk

Intuitively, what Algorithm 4.0.1 does is update the approximation at each step by

a fit to the most recent residual. The final solution uN of the algorithm still satisfies

a(um, v) = l(v) for all v ∈ Vm (4.4)

but instead of being an element of Vm as it was the case in (1.6), the approximation

is now an element of V1 + ...+ Vm. As far as I am aware no convergence results have

been proved for this algorithm, but a useful stability result can be derived from (4.4):

||u− um||H1(Ω) ≤ ||u− um−1||H1(Ω) ≤ ... ≤ ||u||H1(Ω).

52

Given that the radiusRm will decrease at each step of the algorithm, the circle and lens

quadrature rules required to evaluate the entries of the matrix A are likely to produce

more accurate approximations than the quadrature rule of the whole domain as we

increase the dimension of the subspace. Furthermore, A will become increasingly

more sparse as R is decreased, leaving way for efficient iterative methods (such as

Conjugate Gradient or GMRES) to solve the corresponding system of equations.

A major feature of this algorithm is the evaluation of the right-hand side term

l(v)−a(uk−1, v). Indeed, the entries of the matrix B associated with a(uk−1, v) would

need to be approximated using numerical integration schemes over the lens-shaped

intersection of circular supports that may not necessarily have the same radius. Figure

4.1 shows an example of such an asymmetric lens.

Figure 4.1: Asymmetric lens-shaped domain of integration.

To integrate over functions over this new domain, we need to find the intersection

points between the circles of radius R and r. Without loss of generality we will again

assume that one circle of radius R is centred at the origin (0, 0) while the other circle

of radius r is centred at (d, 0), where d > 0. The equations of these circles are given

by

x2 + y2 = R2,

(x− d)2 + y2 = r2.

53

The intersection points (x∗,±y∗) exist if d ≤ r + R. After some algebraic manipula-

tion, the x-component of the intersection points is given by

x∗ =
d2 − r2 +R2

2d

and the y-component by

y∗ = ± 1

2d

√
(−d+ r −R)(−d− r +R)(−d+ r +R)(d+ r +R).

Using these bounds to integrate a function over the asymmetric lens is less obvious

than before. Consider the following scenario for which we choose R = 3, r = 2 and

d = 1.5 as shown in Figure 4.2. There are points in this lens-shaped domain that have

Figure 4.2: Asymmetric lens with R = 3, r = 2 and d = 1.5.

a larger y-component than that of the intersection point (x∗, y∗), so [−y∗, y∗] can no

longer be the “y” bounds for the double integral (2.5) in the case of the asymmetric

lens. As shown in Figure 4.2 this problem is solved by integrating separately over the

grey region which yields the bounds∫ x∗

d−r

∫ √r2−(x−d)2

−
√
r2−(x−d)2

f(x, y) dydx,

and the pink region which yields the bounds∫ R

x∗

∫ √R2−x2

−
√
R2−x2

f(x, y) dydx.

Adding these two expressions will give us the required double integral. However,

specific numerical integration schemes can be applied on each of these double integrals

separately for optimal approximations.

54

We will not pursue this analysis any further. Instead, for the sake of completeness,

we briefly discuss an improvement of Algorithm 4.0.1. Numerical tests have shown

that this algorithm does not always converge. A modified multilevel algorithm based

on the interpretation of weak formulations as Hilbert space projection methods was

proposed to solve this problem, details of which can be found in [18]. The new

algorithm is given as follows:

Algorithm 4.0.2: Modified Multilevel Galerkin()

(1) Fix N and M ∈ N and set v0 = 0
for k = 0, 1, ...

(a) Set u0 = vk
(b) Apply Algorithm 4.1.1. Denote result by uN(vk)
(c) Set vk+1 = uN(vk)

Wendland proved that Algorithm 4.0.2 converges, with a convergence rate that

was shown numerically to be at least linear based on the data in Table 2 of [18], whose

values have been copied to Table 4.1 for convenience.

N l2-error
25 3.5258e-002
81 4.4971e-003
289 9.7278e-004
1089 5.3662e-004
4225 2.8713e-004
16641 1.9330e-004

Table 4.1: l2-error of multilevel algorithm 4.0.2 taken from [18]

55

Chapter 5

Conclusions

We have studied several different numerical integration schemes for domains arising

in the Galerkin approximation of the Helmholtz equation using compactly supported

radial basis function known as Wendland functions. For the lens-shaped domain,

applying Gauss quadrature rules in both the x- and y-directions appeared to give

good results. Moving into polar coordinates was a better option for the circular

domain, for which we used a composite trapezium rule in r and Gauss quadrature

rule in θ. These two schemes were then compared with the conventional method of

using a numerical integration scheme over the entire domain Ω. Problems arising

when using them were discussed extensively and two particular scenarios stood out:

the case when the two centres of the circular supports making up the lens are too

close to one another, and the case when supports are not fully contained inside the

domain Ω. In both cases the integrand or its derivatives had discontinuities in or

close to the domain of integration, and was a cause for slower convergence. The main

issue however was the non-optimality of quadrature points for integrals over boundary

supports, which created the greatest source of error.

Having developed the numerical integration schemes, we then analysed how they

(and their drawbacks) affect convergence for the simpler least-squares problem. Once

this was understood, convergence tests were performed for the original Galerkin prob-

lem. Given the restrictions required to obtain theoretical convergence (namely the

size of the support R) and the problems caused by the circle and lens quadratures

for boundary supports, it became apparent that we had to use the quadrature on

the whole domain to obtain accurate results. If one can improve the circle and lens

quadrature rules so that they give rise to accurate approximation regardless of the

choice of R, then this would lead to a highly efficient meshfree PDE solver. How-

56

ever, this would require dealing with approximating boundary integrals for arbitrary

domains which is not an easy task.

Given more time, it would have been interesting to implement the multilevel al-

gorithm described in Chapter 4 and study the influence of the numerical integration

schemes on its convergence. Considering that the support radius Rm is decreased

after each step of the algorithm, the lens and circle quadrature may well yield more

accurate results when approximating the integrals associated with the corresponding

matrices. This would involve analysing and comparing numerical integration schemes

for asymmetric lenses. Another issue that hasn’t been discussed in this dissertation

is an adaptive Galerkin solver in which the nodes and support radii of the radial ba-

sis functions can be respectively moved and changed across the domain (in practice

we could use such an adaptive solver for problems containing some sort of moving

discontinuity, say the propagation of a fracture). In particular, such a solver can be

defined so that all supports are fully contained within the domain, hence no longer

requiring the approximation of integrals over boundary supports. To date, conver-

gence estimates aren’t known for such solvers but numerical results can be derived

and analysed.

57

Bibliography

[1] Babuska, U., Banerjee, U., Osborn, J. (2002) Meshless and Generalised Finite El-

ement Methods: a Survey of some Major Results. Lecture Notes in Computational

Science and Engineering Springer.

[2] Babuska, U., Banerjee, U., Osborn, J. (2003) Survey of Meshless and Generalised

Finite Element Methods: a Unified Approach. Acta Numerica, pp. 1-125 Cam-

bridge University Press, Cambridge, England.

[3] Bos, L., De Marchi, S. Sommariva, A., Vianello, M. (2010). Weakly Admis-

sible Meshes and Discrete Extremal Sets. (submitted and available online at:

http://www.math.unipd.it/ marcov/pdf/survey.pdf).

[4] Bos, L., Taylor, M.A., Wingate, B.A. (2000). Tensor Product Gauss-Lobatto

Points are Fekete Points for the Cube. Mathematics of Computation Vol. 70,

Num. 236, pp. 1543-1547.

[5] De, S., Bathe, K-J. (2001). Towards an Efficient Meshless Computational Tech-

nique: the Method of Finite Spheres. Engineering Computations, Vol. 18, No.

1/2, pp. 170-192 MCB University Press, USA.

[6] De, S., Bathe, K-J. (2001). The Method of Finite Spheres with Improved Numer-

ical Integration. Computers and Structures 79 pp. 2183-2196 Pergamon, USA.

[7] Dolbow, J., Belytschko, T. (1999). Numerical Integration of the Galerkin Weak

Form in Meshfree Methods. Computational Mathematics Springer.

[8] Elman, H., Silvester, D., Wathen, A. (2005). Finite Elements and Fast Iterative

Solvers: with Applications in Incompressible Fluid Dynamics. Numerical Mathe-

matics and Scientific Computation Oxford University Press, Oxford, England.

[9] Fasshauer, G.E. (1999). Solving Differential Equations with Radial Basis Func-

tions: Multilevel Methods and Smoothing. Advances in Computational Mathe-

matics Vol. 11 p 11 USA.

58

[10] Fasshauer, G.E. (2007). Meshfree Approximation Methods with Matlab. Interdis-

ciplinary Mathematical Sciences - Vol. 6 World Scientific Publishers, Singapore.

[11] Floater, M.S., Iske, A. (1996). Multistep Scattered Data Interpolation using

Compactly Supported Radial Basis Functions. Journal of Computational Science

and Applied Mathematics 73 pp. 65-78 Elsevier Science Publishers.

[12] Liu, G.R, Liu, M.B. (2003). Smoothed Particle Hydrodynamics: a Meshfree Par-

ticle Method. World Scientific Publishers, Singapore.

[13] Santin, G., Sommariva, A., Vianello, M. (2010). An Algebraic Cuba-

ture Formula on Curvilinear Polygons. (submitted and available online at:

http://www.math.unipd.it/ marcov/pdf/chebcub.pdf).

[14] Suli, E., Mayers, D. (2006). An Introduction to Numerical Analysis. Cambridge

University Press, Cambridge, England.

[15] Weideman, J.A.C (2002). Numerical Integration of Periodic Functions: a Few

Examples. The American Mathematical Monthly, Vol. 109, No. 1, pp. 21-36 Math-

ematical Association of America, USA.

[16] Trefethen, L.N. (2008). Is Gauss Quadrature Better than Clenshaw-Curtis?

SIAM Review Vol. 50, No. 1, pp. 67-87 SIAM.

[17] Wendland, H. (1995). Piecewise Polynomial, Positive Definite and Compactly

Supported Radial Functions of Minimal Degree. Advances in Computational Math-

ematics 4, pp. 389-396 Springer.

[18] Wendland, H. (1998). Numerical Solution of Variational Problems by Radial

Basis Functions. Approximation Theory IX, Vol. 2: Computational Aspects Van-

derbilt University Press, USA.

[19] Wendland, H. (1999). Meshless Galerkin Methods using Radial Basis Functions.

Mathematics of Computation Vol. 68, Num. 228, pp. 1521-1531 American Math-

ematical Society, USA.

[20] Wendland, H. (2005). Scattered Data Approximation. Cambridge Monographs on

Applied and Computational Mathematics Cambridge University Press, Cambridge,

England.

59

