
Revised July 2014 

   

 

Library Declaration and Deposit Agreement 

 
1. STUDENT DETAILS 

Please complete the following: 

Full name: ……………………………………………………………………………………………. 

University ID number: ………………………………………………………………………………. 

 
2. THESIS DEPOSIT  

2.1   Under your registration at the University, you are required to deposit your thesis with the 
University in BOTH hard copy and in digital format. The digital copy should normally be saved as 
a single pdf file. 

 
2.2   The hard copy will be housed in the University Library. The digital copy will be deposited in the 

University’s Institutional Repository (WRAP). Unless otherwise indicated (see 2.6 below), this will 
be made immediately openly accessible on the Internet and will be supplied to the British Library 
to be made available online via its Electronic Theses Online Service (EThOS) service. 
[At present, theses submitted for a Master’s degree by Research (MA, MSc, LLM, MS or 
MMedSci) are not being deposited in WRAP and not being made available via EthOS. This may 
change in future.] 

 
2.3   In exceptional circumstances, the Chair of the Board of Graduate Studies may grant permission 

for an embargo to be placed on public access to the thesis in excess of two years. This must be 
applied for when submitting the thesis for examination (further information is available in the 
Guide to Examinations for Higher Degrees by Research.) 

 
2.4   If you are depositing a thesis for a Master’s degree by Research, the options below only relate to 

the hard copy thesis. 
 
2.5 If your thesis contains material protected by third party copyright, you should consult with your 

department, and if appropriate, deposit an abridged hard and/or digital copy thesis. 
 

2.6 Please tick one of the following options for the availability of your thesis (guidance is available in 
the Guide to Examinations for Higher Degrees by Research): 
 

Both the hard and digital copy thesis can be made publicly available immediately  
 

The hard copy thesis can be made publicly available immediately and the digital copy 
thesis can be made publicly available after a period of two years (should you 
subsequently wish to reduce the embargo period please inform the Library) 

                 
Both the hard and digital copy thesis can be made publicly available after a period of two 
years (should you subsequently wish to reduce the embargo period please inform the 
Library) 

 
Both the hard copy and digital copy thesis can be made publicly available after 
_______________ (insert time period in excess of two years).  This option requires the 
prior approval of the Chair of the Board of Graduate Studies (see 2.3 above) 

 
The University encourages users of the Library to utilise theses as much as possible, and unless 
indicated below users will be able to photocopy your thesis. 
 

I do not wish for my thesis to be photocopied  
 
 

3. GRANTING OF NON-EXCLUSIVE RIGHTS 

Whether I deposit my Work personally or through an assistant or other agent, I agree to the following: 
 



Revised July 2014 

 Rights granted to the University of Warwick and the British Library and the user of the thesis 
through this agreement are non-exclusive. I retain all rights in the thesis in its present version or 
future versions. I agree that the institutional repository administrators and the British Library or 
their agents may, without changing content, digitise and migrate the thesis to any medium or 
format for the purpose of future preservation and accessibility. 

 

4. DECLARATIONS 
 

I DECLARE THAT: 
 

 I am the author and owner of the copyright in the thesis and/or I have the authority of the 
authors and owners of the copyright in the thesis to make this agreement. Reproduction 
of any part of this thesis for teaching or in academic or other forms of publication is 
subject to the normal limitations on the use of copyrighted materials and to the proper and 
full acknowledgement of its source. 
 

 The digital version of the thesis I am supplying is either the same version as the final, 
hard-bound copy submitted in completion of my degree once any minor corrections have 
been completed, or is an abridged version (see 2.5 above).  

 

 I have exercised reasonable care to ensure that the thesis is original, and does not to the 
best of my knowledge break any UK law or other Intellectual Property Right, or contain 
any confidential material. 

 

 I understand that, through the medium of the Internet, files will be available to automated 
agents, and may be searched and copied by, for example, text mining and plagiarism 
detection software. 

 

 At such time that my thesis will be made publically available digitally (see 2.6 above), I 
grant the University of Warwick and the British Library a licence to make available on the 
Internet the thesis in digitised format through the Institutional Repository and through the 
British Library via the EThOS service. 

 

 If my thesis does include any substantial subsidiary material owned by third-party 
copyright holders, I have sought and obtained permission to include it in any version of 
my thesis available in digital format and that this permission encompasses the rights that I 
have granted to the University of Warwick and to the British Library. 

 
5. LEGAL INFRINGEMENTS 
 

I understand that neither the University of Warwick nor the British Library have any obligation to take legal 
action on behalf of myself, or other rights holders, in the event of infringement of intellectual property 
rights, breach of contract or of any other right, in the thesis. 

 
Please sign this agreement and ensure it is bound into the final hard bound copy of your thesis, which should be 
submitted to Student Reception, Senate House.  
 
 
Student’s signature: ......................................................…… Date: .......................................................... 



Analysis of Discontinuous Galerkin Methods on

Surfaces

by

Pravin Madhavan

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Warwick Mathematics Institute

September 2014



Contents

List of Tables iv

List of Figures vi

Acknowledgments viii

Declarations ix

Abstract xi

Chapter 1 Introduction 1

1.1 Surface PDEs and surface FEM . . . . . . . . . . . . . . . . . . . . . 1

1.2 Discontinuous Galerkin methods . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis motivation and contributions . . . . . . . . . . . . . . . . . . 3

1.4 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Surface Finite Elements 9

2.1 Notation and setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Surface FEM approximation . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Technical tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Surface lift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Geometric estimates . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 A priori error estimates . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 A posteriori error estimates . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 A posteriori upper bound (reliability) . . . . . . . . . . . . . 19

2.5.2 A posteriori lower bound (efficiency) . . . . . . . . . . . . . . 20

Chapter 3 Discontinuous Galerkin Methods 21

3.1 Flux formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

i



3.2 Primal formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Consistency and Galerkin orthogonality . . . . . . . . . . . . . . . . 26

3.4 Examples of DG methods . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Boundedness, stability and interpolation . . . . . . . . . . . . . . . . 29

3.6 Error estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 DG methods for first order hyperbolic problems . . . . . . . . . . . . 32

3.7.1 Upwind flux DG discretisation . . . . . . . . . . . . . . . . . 33

3.7.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.7.3 Error estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Chapter 4 A Priori Error Analysis of DG Methods on Surfaces 36

4.1 Notation and setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Higher order surface DG approximation . . . . . . . . . . . . . . . . 37

4.2.1 Surface approximation . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Primal formulation . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.3 Examples of surface DG methods . . . . . . . . . . . . . . . . 41

4.3 Technical tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Surface lift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 Geometric estimates . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.3 Boundedness and stability . . . . . . . . . . . . . . . . . . . . 52

4.4 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.1 Implementation aspects . . . . . . . . . . . . . . . . . . . . . 67

4.5.2 Test problem on the sphere . . . . . . . . . . . . . . . . . . . 69

4.5.3 Test problem on Dziuk surface . . . . . . . . . . . . . . . . . 70

4.5.4 Test problem on Enzensberger-Stern surface . . . . . . . . . . 71

4.5.5 Higher order numerics . . . . . . . . . . . . . . . . . . . . . . 72

Chapter 5 A Posteriori Error Analysis of DG Methods on Surfaces 75

5.1 Notation and setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Surface IP approximation . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Technical tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.1 Surface lift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.2 Clément interpolation . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Dual weighted residual equation . . . . . . . . . . . . . . . . . . . . . 79

5.4.1 Bilinear form on Γ . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.2 Residual equation . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 A posteriori upper bound (reliability) . . . . . . . . . . . . . . . . . 84

ii



5.6 A posteriori lower bound (efficiency) . . . . . . . . . . . . . . . . . . 89

5.7 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7.1 Implementation aspects . . . . . . . . . . . . . . . . . . . . . 93

5.7.2 Test problem on Dziuk surface . . . . . . . . . . . . . . . . . 93

5.7.3 Test problem on Enzensberger-Stern surface . . . . . . . . . . 95

Chapter 6 DG Methods for Advection-Diffusion Problems on Sur-

faces 97

6.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Discrete scheme, properties and convergence . . . . . . . . . . . . . . 99

6.2.1 Surface DG/UP discretisation . . . . . . . . . . . . . . . . . . 99

6.2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.3 Boundedness and stability . . . . . . . . . . . . . . . . . . . . 101

6.2.4 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3 Construction of discrete velocity field . . . . . . . . . . . . . . . . . . 106

6.3.1 Surface Raviart-Thomas interpolant . . . . . . . . . . . . . . 106

6.3.2 Surface Raviart-Thomas interpolation estimates . . . . . . . 108

6.4 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4.1 Test problem on torus . . . . . . . . . . . . . . . . . . . . . . 111

6.4.2 Test problem on sphere . . . . . . . . . . . . . . . . . . . . . 112

Chapter 7 Extensions 116

7.1 Alternative conormal choices . . . . . . . . . . . . . . . . . . . . . . 116

7.1.1 Approximation of surface conormals . . . . . . . . . . . . . . 117

7.1.2 Conormal choices for sphere . . . . . . . . . . . . . . . . . . . 120

7.1.3 Conormal choices for Dziuk surface . . . . . . . . . . . . . . . 121

7.1.4 Conormal choices for Enzensberger-Stern surface . . . . . . . 122

7.2 Nonconforming grids . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2.1 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3 Adaptive refinement on surfaces . . . . . . . . . . . . . . . . . . . . . 125

7.3.1 Adaptive refinement on Dziuk surface . . . . . . . . . . . . . 128

7.3.2 Adaptive refinement on Enzensberger-Stern surface . . . . . . 129

Chapter 8 Conclusions and Further Research 133

Appendix A Geometric Estimates 135

iii



List of Tables

4.1 Stabilisation function of the DG methods considered in our unified

analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Errors and convergence orders for the DG approximation of (4.59) on

the unit sphere with k = 1. . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Errors and convergence orders for the DG approximation of (4.59) on

the Dziuk surface with k = 1. . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Errors and convergence orders for the DG approximation of (4.59) on

the Enzensberger-Stern surface with k = 1. . . . . . . . . . . . . . . 71

4.5 Errors and convergence orders for the DG approximation of (4.59) on

the unit sphere with k = 2. . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Errors and convergence orders for the DG approximation of (4.59) on

the unit sphere with k = 4. . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 Errors and convergence orders for the DG approximation of (4.59) on

the Dziuk surface with k = 1 and r = 2. . . . . . . . . . . . . . . . . 74

6.1 Errors and convergence orders for the (unstabilised) surface FEM

approximation of (6.1) on the subdomain D of the unit sphere for

ε = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Errors and convergence orders for the (unstabilised) surface FEM

approximation of (6.1) on the subdomain D of the unit sphere for

ε = 10−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Errors and convergence orders for the (unstabilised) surface FEM

approximation of (6.1) on the subdomain D of the unit sphere for

ε = 10−6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4 Errors and convergence orders for the IP/UP approximation of (6.23)

on the subdomain D of the unit sphere for ε = 1. . . . . . . . . . . . 113

6.5 Errors and convergence orders for the IP/UP approximation of (6.23)

on the subdomain D of the unit sphere for ε = 10−3. . . . . . . . . . 114

iv



6.6 Errors and convergence orders for the IP/UP approximation of (6.23)

on the subdomain D of the unit sphere for ε = 10−6. . . . . . . . . . 114

6.7 Errors and convergence orders for the IP/UP approximation of (6.23)

with wh = w−l on the subdomain D of the unit sphere for ε = 10−6. 114

7.1 Choices of n−D, n+
eh

and n−eh , description of the numerical schemes they

respectively lead to and properties of resulting matrix. . . . . . . . . 119

7.2 Errors and convergence orders for (4.59) on the unit sphere for Choice

4 with true penalty term. . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3 Conormal estimates and convergence orders on the unit sphere. . . . 121

7.4 Errors and convergence orders for (4.59) on the unit sphere for non-

conforming grids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.5 Errors and convergence orders for (4.59) on the Dziuk surface for

nonconforming grids. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.6 Errors and convergence orders for (4.59) on the Enzensberger-Stern

surface for nonconforming grids. . . . . . . . . . . . . . . . . . . . . 124

v



List of Figures

2.1 Example of smooth surface Γ and its linear interpolant Γh =
⋃
Kh∈Th Kh

(top) and a situation showing that Γh 6⊂ Γ (bottom). . . . . . . . . . 12

2.2 Surface lift of Kh ∈ Th to K l
h ∈ T lh . . . . . . . . . . . . . . . . . . . . 14

4.1 Example of two elements in T̂h and their respective conormals on the
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estimates for model elliptic problems posed on compact smooth and oriented sur-
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numerically.
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Chapter 1

Introduction

1.1 Surface PDEs and surface FEM

Partial differential equations (PDEs) on manifolds have become an active area of

research in recent years due to the fact that, in many applications, models have

to be formulated not on a flat Euclidean domain but on a curved surface. For

example, they arise naturally in fluid dynamics (e.g. surface active agents on the

interface between two fluids, James and Lowengrub [2004] and Garcke et al. [2014])

and material science (e.g. diffusion of species along grain boundaries, Deckelnick

et al. [2001]) but have also emerged in areas as diverse as image processing and cell

biology (e.g. cell motility involving processes on the cell membrane, Neilson et al.

[2011], Amarasinghe et al. [2012] and Elliott et al. [2012] or phase separation on

biomembranes, Elliott and Stinner [2010]).

Finite element methods (FEM) for elliptic problems and their a priori error analysis

have been successfully applied to problems on surfaces via the intrinsic approach

in Dziuk [1988] using piecewise linear ansatz functions and approximations of the

surface. This approach has subsequently been extended to parabolic problems in

Dziuk and Elliott [2007b] as well as evolving surfaces in Dziuk and Elliott [2007a].

Higher order error estimates, which require higher order surface approximations,

have been derived in Demlow [2009] for the Laplace-Beltrami operator. The liter-

ature on the application of FEM to various surface PDEs and geometric flows is

now quite extensive, reviews of which can be found in Dziuk and Elliott [2013] and

Deckelnick et al. [2005].

The literature on a posteriori error estimation and adaptivity on surfaces is sig-
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nificantly less extensive than its a priori counterpart. Demlow and Dziuk [2008]

derived an a posteriori error estimator for the finite element discretisation of the

Laplace-Beltrami operator on surfaces, showing that the error can be split into a

residual indicator term and a geometric error term. Mekchay et al. [2011] have also

considered an adaptive finite element method for the Laplace-Beltrami operator

posed on C1 graphs.

However, there are a number of situations where FEM may not be the appropri-

ate numerical method; for instance, problems which lead to steep gradients or even

discontinuities in the solution. Such issues can arise for problems posed on sur-

faces, as in Sokolov et al. [2012], where the authors analyse a model for bacteria/cell

aggregation posed on the surface of organs, which are inherently curved surfaces.

Without an appropriate stabilisation mechanism artificially added to the surface

FEM scheme, the solution may exhibit spurious oscillatory behaviour which, in the

context of the above problem, may lead to negative densities of on-surface living

cells. The literature on alternative numerical methods for such problems are very

limited: to date, we are only aware of the works of Ju and Du [2009], Ju et al.

[2009], Lenz et al. [2011] and Giesselmann and Müller [2014] which considered finite

volume methods on (evolving) surfaces via the intrinsic approach, and Olshanskii

et al. [2013] which considered a volume mesh FEM with an SUPG-type stabilisation.

1.2 Discontinuous Galerkin methods

Discontinuous Galerkin (DG) methods are a class of numerical methods that have

been succesfully applied to hyperbolic, elliptic and parabolic PDEs arising from a

wide range of applications. Some of its main advantages compared to conforming

finite element methods include

• local, element-wise mass conservation;

• applicability to problems with discontinuous coefficients and ability to cap-

ture solution discontinuities, namely those arising in advection dominated problems;

• less restriction on grid structure and basis functions, making them ideal

for hp-adaptive refinement strategies;

• easily parallelisable due to (relatively) local data communications.

The main idea of DG methods is not to require continuity of the solution between

elements. Instead, inter-element behaviour has to be prescribed carefully in such
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a way that the resulting scheme has adequate consistency, stability and accuracy

properties. A short introduction to DG methods for both ODEs and PDEs is given

in Cockburn [2003]. A history of the development of DG methods can be found

in Cockburn et al. [2000] and Arnold et al. [2002]. Arnold et al. [2002] provides

an in-depth analysis of a large class of discontinuous Galerkin methods for linear

second-order elliptic problems, Ortner and Süli [2007] perform a detailed a priori er-

ror analysis for nonlinear second-order elliptic problems and Georgoulis et al. [2007]

derive both a priori and a posteriori error estimates for advection-diffusion-reaction

problems.

1.3 Thesis motivation and contributions

Given the many advantageous properties that DG methods possess, it is natural to

extend the DG framework for PDEs posed on surfaces. The motivation for this thesis

has thus been to investigate the issues arising when attempting to apply DG meth-

ods to problems on surfaces, both in the derivation of a priori and a posteriori error

estimates. Although we have restricted our attention to analysing model second-

order elliptic problems, we expect that much of the analysis will follow through for

parabolic PDEs on evolving surfaces, along the lines of Dziuk and Elliott [2007a].

To the best of our knowledge, we have been the first to look at DG methods posed

on surfaces from a rigorous mathematical perspective.

Our first contribution to the field, which has been published in Dedner et al. [2013],

involved extending the DG framework to a linear second-order elliptic problem on a

compact smooth and oriented surface in R3. A (symmetric) surface interior penalty

(IP) method is introduced on a piecewise linear discrete surface and we derived a

priori error estimates by relating the latter to the original surface via the lift in-

troduced in Dziuk [1988]. The estimates suggested that the geometric error terms

arising from the surface discretisation do not affect the overall convergence rate of

the surface IP method when using linear ansatz functions and surface approxima-

tions. This was then verified numerically for a number of challenging test problems.

An intricate issue was the approximation of the surface conormal required in the

surface IP formulation, choices of which were investigated numerically. Numeri-

cal tests involving nonconforming grids and higher order ansatz functions (but still

with linear surface approximations) have also been considered. Furthermore, we

presented a generic implementation of test problems on surfaces.

Since then, a continuous/discontinuous Galerkin method for a fourth order
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elliptic PDE on surfaces and its error analysis have been considered in Larsson and

Larson [2013] and an isogeometric analysis of a DG method for elliptic PDEs on

surfaces has been considered in Langer and Moore [2014].

Our second contribution, which is currently under review for publication (a preprint

of which can be found in Dedner and Madhavan [2014a]), has been to derive and

analyse an a posteriori error estimator for the surface IP method considered in Ded-

ner et al. [2013]. Following the work done in Demlow and Dziuk [2008] and Houston

et al. [2007], we showed that the estimator for the error in the DG norm may be

split into a residual term, a “DG” term and a geometric term. Upper and lower

bounds for the resulting a posteriori error estimator were rigorously proven and we

considered a number of challenging test problems to demonstrate the reliability and

efficiency of the estimator. We also presented a novel “geometric” driven refinement

strategy for PDEs on surfaces which considerably improved the performance of the

method on complicated surfaces.

Our third contribution, which is currently under review for publication (a preprint

of which can be found in Antonietti et al. [2014]), has been to generalise the results

of Dedner et al. [2013] by considering both a larger class of DG methods as well as

deriving higher order estimates for this class. This was done by carefully adapting

the unified DG approach of Arnold et al. [2002] onto piecewise polynomial discrete

surfaces, the theory of which was first considered in Demlow [2009]. Optimal error

estimates were proven in both the DG and L2 norms provided that the surface ap-

proximations are of high enough order compared to the DG space order.

Our fourth contribution, which is currently under preparation (see Dedner and Mad-

havan [2014b]), has been to extend the surface DG analysis to advection-diffusion

problems posed on surfaces. This was done by discretising the diffusive term along

the lines of Antonietti et al. [2014] and using a “discrete surface” upwind flux for the

discretisation of the advective term. A key issue arising in the analysis (which does

not appear in the planar setting) was the treatment of the discrete velocity field,

choices of which play an important role in the stability of the scheme. We then

proved optimal error estimates in the DG norm given a number of assumptions on

the discrete velocity field, and verified the estimates numerically for test problems

exhibiting advection-dominated behaviour.
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1.4 Outline of thesis

This thesis is organised in the following way. In Chapter 2, we introduce the general

setup of surface PDEs and their finite element approximation based on the approach

considered in Dziuk [1988]. For simplicity, we consider the model second-order

elliptic problem

−∆Γu+ u = f on Γ (1.1)

where Γ is a compact smooth and oriented (hyper)surface in R3 and ∆Γ is the

Laplace-Beltrami operator on Γ. We introduce some elementary differential ge-

ometry required to derive the variational formulation of the surface PDE, defining

Sobolev spaces on manifolds and citing regularity results along the way. We then

approximate Γ by a piecewise linear discrete surface Γh and define a linear finite

element space on the discrete surface. A priori error esimates are then derived in

the H1 norm and in the L2 norm by relating the discrete surface to the original

surface via the surface lift operator introduced in Dziuk [1988]. We then show that

the geometric error terms arising from the discretisation of the surface converge fast

enough as to not influence the overall convergence rate of the approximation. Fi-

nally, we give a brief overview of a posteriori error estimation for FEM on surfaces,

as considered in Demlow and Dziuk [2008].

In Chapter 3, we introduce a unified approach for the analysis of DG methods

for second-order elliptic problems on planar domains, following the framework in-

troduced in Arnold et al. [2002]. We first rewrite the problem as a first-order system

and obtain its flux formulation by multiplying each equation by test functions in

appropriate spaces (which do not assume continuity across elements). Introducing

jump and averaging operators on edges of elements allows us to derive the general

form of a DG method for the equation, known as the primal formulation. We then

introduce the notions of consistency and conservativity and give examples of DG

methods with such properties. Next, we derive a priori error estimates for the IP

method (although much of the analysis may be applied to a wider range of DG

methods) in the DG norm as well as in the L2 norm. This is done by making use

of the classical properties of consistency, boundedness and stability similarly as for

a typical finite element error analysis. Finally, we briefly look into DG methods

for first-order hyperbolic as detailed in Brezzi et al. [2004]. In particular, we derive

stability estimates when considering an upwind flux discretisation of the advection

term and state a priori error estimates for the resulting scheme.
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In Chapter 4, which is based on work we have done in Dedner et al. [2013] and

Antonietti et al. [2014], we again consider the model second-order elliptic problem

(1.1) posed on a compact smooth and oriented (hyper)surface Γ ⊂ R3. Following

the framework given in Demlow [2009] (which extends to higher order the surface

FEM analysis considered in Dziuk [1988] for linear ansatz functions/suface approx-

imation), we approximate Γ by a piecewise polynomial discrete surface Γkh of order

k ≥ 1. Following the unified DG framework of Arnold et al. [2002], we then derive

the primal formulation of the surface PDE on Γkh. The derivation requires an inte-

gration by parts formula which makes use of “discrete surface” trace operators that

differ from the conventional ones used in the planar case. Our choice for the trace

operators is later shown to play a key part in making the analysis possible. Finally,

by choosing the numerical fluxes of the primal formulation appropriately, we derive

“discrete surface” counter-parts of the planar DG bilinear forms stated in Chapter

3. A priori error esimates are derived in the DG norm and in the L2 norm using

the surface lift operator introduced in Chapter 2, and we show that the geometric

error terms arising from the discretisation of the surface converge fast enough as to

not influence the overall convergence rate of the approximation provided that the

surface approximation order is at least of the same order as that of the DG space.

The geometric error terms involve those arising from surface FEM given in Chapter

2 as well as additional terms arising from those present in the surface DG methods.

Assuming that the exact solution u ∈ Hk+1(Γ), the estimates are given by

‖u− u`h‖L2(Γ) + hη‖u− u`h‖DG . hk+η(‖f‖L2(Γ) + ‖u‖Hk+1(Γ))

where ulh is the surface lift of the surface DG approximation uh, f is the right-hand

side of our model problem and η = 0, 1 depending on the choice of surface DG

method.

We then present some numerical results, making use of the Distributed and

Unified Numerics Environment (DUNE) software package (see Bastian et al. [2008a],

Bastian et al. [2008b]) and, in particular, the DUNE-FEM module described in Ded-

ner et al. [2010] (also see dune.mathematik.uni-freiburg.de for more details on this

module). We consider a number of test problems, for which we compute experimen-

tal orders of convergence (EOCs) in both the L2 norm and the DG norm, and show

that these coincide with the theoretical error estimates derived previously. In the

process, we present a generic implementation of test problems on surfaces which fol-

lows as a direct application of implicit surface lift algorithms considered in Demlow
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and Dziuk [2008].

In Chapter 5, which is based on work we have done in Dedner and Madhavan

[2014a], we derive a dual weighted residual-based a posteriori error estimate for the

surface IP method considered in Chapter 4, restricting ourselves to the piecewise

linear surface approximation setting for simplicity. We prove both reliability and ef-

ficiency of the error estimator in the DG norm and show that the error may be split

into a “residual part”, made up of an element residual term along with the jump of

the DG approximation, and a higher order “geometric part” which arises from the

surface approximation. The geometric residual terms involve those present for the

surface FEM geometric residual given in Chapter 2 as well as additional terms arising

from those present in the surface IP method. We conclude by verifying the relia-

bility and efficiency estimates numerically for a number of challenging test problems.

In Chapter 6, which is based on work we have done in Dedner and Madhavan

[2014b], we extend the analysis considered in Chapter 4 to advection-diffusion prob-

lems posed on surfaces, following the lines of Brezzi et al. [2004]. The model problem

we consider takes the form

−∆Γu+ u+ w · ∇Γu = f on Γ,

where the velocity field w is purely tangential to the surface and divergence-free.

The fluxes considered in Chapter 4 are used for the discretisation of the diffusion

term and we use a “discrete surface” upwind flux to deal with the advection term.

A number of challenging issues which do not appear in the planar setting arise when

attempting to prove stability of the numerical scheme, related to the treatment of

the velocity field on the discrete surface. We then derive optimal a priori error esti-

mates for the scheme given a number of assumptions on the discrete velocity field.

We then attempt to justify these assumptions by choosing the discrete velocity field

to be a Raviart-Thomas-type interpolant of the velocity field. Numerical results are

then presented for test problems exhibiting advection-dominated behaviour, sug-

gesting that our surface DG method is stable and free of spurious oscillations in

contrast to the unstabilised surface FEM.

In Chapter 7, which is based on work we have done in both Dedner et al. [2013] and

Dedner and Madhavan [2014a], we look into a variety of topics which fall beyond

the theory discussed in Chapters 4, 5 and 6. We first consider several alternative
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but intuitive ways of approximating the surface conormal for the surface interior

penalty (IP) method derived in Chapter 4, and investigate the resulting schemes

numerically. It is worth noting that this is a feature which appears exclusively for

DG methods posed on discrete surfaces.

Next, we will look into issues arising when attempting to derive a priori error

estimates on nonconforming grids, discuss a way of tackling the issue and present

numerical results which suggest that the convergence rates derived in Chapter 4

appear to hold for nonconforming grids in the piecewise linear surface approximation

setting. In addition, we show numerical results involving different conormal choices

for nonconforming grids.

Finally, we show the benefits of using adaptive refinement for problems posed

on complicated surfaces which, when discretised, poorly resolves regions of high cur-

vature. We then describe and test a new adaptive refinement strategy which is based

on the “geometric part” of the residual and show that we may obtain similar er-

rors to the standard adaptive refinement strategy for a fraction of the computational

cost, making it a significantly better adaptive refinement strategy for such problems.

We finish off with Chapter 8 in which we give the conclusions of this thesis, dwell

into some of the key issues we came across to derive the results of the previous

chapters and outline further research that can be done in this field.
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Chapter 2

Surface Finite Elements

In this chapter, we will introduce the general setup of surface PDEs and their surface

finite element approximation based on the approach considered in Dziuk [1988] and

Dziuk and Elliott [2013].

2.1 Notation and setting

Let Γ be a compact smooth and oriented surface in R3 given by the zero level-set of

a signed distance function |d(x)| = dist(x,Γ) defined in an open subset U of R3. For

simplicity we assume that ∂Γ = ∅ and that d < 0 in the interior of Γ and d > 0 in

the exterior. The orientation of Γ is set by taking the normal ν of Γ to be pointing

in the direction of increasing d whence

ν(ξ) = ∇d(ξ), ξ ∈ Γ.

With a slight abuse of notation we also denote the projection to Γ by ξ, i.e. ξ : U → Γ

is given by

ξ(x) = x− d(x)ν(x) where ν(x) := ν(ξ(x)). (2.1)

It is worth noting that such a projection is (locally) unique provided that the width

δU > 0 of U satisfies

δU <

[
max
i=1,2

‖κi‖L∞(Γ)

]−1

where κi denotes the ith principle curvature of the Weingarten map H, given by

H(x) := ∇2d(x). (2.2)
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Later on, we will consider a triangulated surface Γh ⊂ U approximating Γ such that

there is a one-to-one relation between points x ∈ Γh and ξ ∈ Γ so that, in particular,

the above relation (2.1) can be inverted. Throughout this thesis, we denote by

P(ξ) := I− ν(ξ)⊗ ν(ξ), ξ ∈ Γ,

the projection onto the tangent space TξΓ on Γ at a point ξ ∈ Γ. Here ⊗ denotes

the usual tensor product.

Remark 2.1.1. It is easy to see that

∇ξ = P− dH. (2.3)

Definition 2.1.2. For any function η defined on an open subset of U containing Γ

we can define its tangential gradient on Γ by

∇Γη := ∇η − (∇η · ν) ν = P∇η

and then the Laplace-Beltrami operator on Γ by

∆Γη := ∇Γ · (∇Γη).

Definition 2.1.3. We define the surface Sobolev spaces

Hm(Γ) := {u ∈ L2(Γ) : ∇αu ∈ L2(Γ) ∀|α| ≤ m}, m ∈ N ∪ {0},

with corresponding Sobolev seminorm and norm respectively given by

|u|Hm(Γ) :=

 ∑
|α|=m

‖∇αu‖2L2(Γ)

1/2

, ‖u‖Hm(Γ) :=

(
m∑
k=0

|u|2Hk(Γ)

)1/2

.

We refer to Wloka [1987] for a proper discussion of Sobolev spaces on mani-

folds.

Throughout this thesis, we write x . y to signify x < Cy, where C is a

generic positive constant whose value, possibly different at any occurrence, does not

depend on the grid size. Moreover, we use x ∼ y to state the equivalence between

x and y, i.e., C1y ≤ x ≤ C2y, for C1, C2 independent of the grid size.

The problem that we consider in this chapter is the following second-order

elliptic equation:

−∆Γu+ u = f on Γ (2.4)
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for a given f ∈ L2(Γ). In order to derive a weak formulation for such a PDE, we

need the following generalisation, taken from Theorem 2.10 in Dziuk and Elliott

[2013], of the integration by parts formula to surfaces.

Theorem 2.1.4. Let η ∈ H1(Γ) and ξ ∈ [H1(Γ)]3. Then we have that∫
Γ
η∇Γ · ξ dA = −

∫
Γ
ξ · ∇Γη + ηξ · κ dA +

∫
∂Γ
ηξ · µ ds (2.5)

where µ denotes the outer conormal of Γ on ∂Γ and κ(x) = tr(H(x))ν is the mean

curvature vector, with tr(H(x)) denoting the trace of the Weingarten map (2.2).

Here dA and ds denote respectively the two and one dimensional surface measures

over Γ.

Remark 2.1.5. The integration by parts formula on surfaces (2.5) differs from its

planar counterpart through the presence of the additional term involving the mean

curvature vector κ.

Multiplying (2.4) by a test function v ∈ H1(Γ), integrating by parts using

(2.5), making use of the fact that ∂Γ = ∅ and that∇Γu ⊥ ν, the weak problem reads:

(PΓ) Find u ∈ H1(Γ) such that

aΓ(u, v) =

∫
Γ
fv dA ∀v ∈ H1(Γ) (2.6)

where

aΓ(u, v) =

∫
Γ
∇Γu · ∇Γv + uv dA.

Existence and uniqueness of a solution u follow from standard arguments. In

addition, we assume that u ∈ H2(Γ) and satisfies

‖u‖H2(Γ) . ‖f‖L2(Γ) (2.7)

where we refer to Aubin [1982] and Wloka [1987] for more details on elliptic regu-

larity on surfaces.

2.2 Surface FEM approximation

To obtain a discretisation of u, the smooth surface Γ is approximated by a polyhedral

surface Γh ⊂ U , with outward unit normal νh, composed of planar triangles. Let Th
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be the associated regular, conforming triangulation of Γh i.e.

Γh =
⋃

Kh∈Th

Kh.

The vertices of {Kh}Kh∈Th are taken to sit on Γ so that Γh is its linear interpolant.

As mentioned before, we assume that the projection map ξ defined in (2.1) is a

bijection when restricted to Γh, thus avoiding multiple coverings of Γ by Γh, and

that ν · νh ≥ 0 everywhere on Γh.

Figure 2.1: Example of smooth surface Γ and its linear interpolant Γh =
⋃
Kh∈Th Kh

(top) and a situation showing that Γh 6⊂ Γ (bottom).

A discrete finite element space associated with Γh is given by

Vh := {vh ∈ C0(Γh) : vh|Kh
∈ P1(Kh) ∀Kh ∈ Th}

i.e. the space of piecewise linear functions which are globally in C0(Γh). Note that

Vh ⊂ H1(Γh), more details on the smoothness requirements on manifolds when

defining Sobolev spaces can be found in Wloka [1987]. We can now define a discrete

finite element formulation on Γh for a given function fh ∈ L2(Γh) (note that, in
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general, this is not a finite element function, it will be related to the function f

given in problem (PΓ) later on, see (2.9) below):

(PΓh
) Find uh ∈ Vh such that

aΓh
(uh, vh) =

∫
Γh

fhvh dAh ∀vh ∈ Vh (2.8)

where

aΓh
(uh, vh) :=

∫
Γh

∇Γh
uh · ∇Γh

vh + uhvh dAh.

Here dAh denotes the two dimensional surface measure over Γh. Our goal is to

now compare the solution u ∈ H2(Γ) of (PΓ) with the solution uh ∈ Vh of (PΓh
).

However, as can be seen in Figure 2.1, these two functions live on different domains

(since Γh 6⊂ Γ) and hence cannot be compared to each other directly. It is also worth

noting that, by approximating the surface, we are introducing what is known as a

variational crime: plugging the exact solution u of (PΓ) into (2.8) does not yield

the right-hand side of (2.6) tested with vh. In other words, Galerkin orthogonality

does not hold in our setting. In order to deal with this issue, we need to intoduce

some extra tools.

2.3 Technical tools

In this section we introduce the necessary tools and geometric relations needed to

work on discrete domains, following the framework introduced in Dziuk [1988].

2.3.1 Surface lift

Definition 2.3.1. For any function w defined on Γh we define the surface lift onto

Γ by

wl(ξ) := w(x(ξ)), ξ ∈ Γ,

where by (2.1) and the non-overlapping of the triangular elements, x(ξ) is defined

as the unique solution of

x = ξ + d(x)ν(ξ).

Extending wl constantly along the lines s 7→ ξ + sν(ξ) we obtain a function
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defined on U . In particular, we

define fh such that f lh = f on Γ. (2.9)

By (2.1), for everyKh ∈ Th, there is a unique curved triangleK l
h := ξ(Kh) ⊂ Γ. Note

that we assumed ξ(x) is a bijection so multiple coverings are in fact not permitted.

We now define the regular, conforming triangulation T lh of Γ such that

Γ =
⋃

Kl
h∈T

l
h

K l
h.

The triangulation T lh of Γ is thus induced by the triangulation Th of Γh via the

surface lift.

Figure 2.2: Surface lift of Kh ∈ Th to K l
h ∈ T lh .

The appropriate function space for surface lifted functions is given by

V l
h := {vlh ∈ C0(Γ) : vlh(ξ) = vh(x(ξ)) with some vh ∈ Vh}.

We define, for x ∈ Γh,

Ph(x) = I− νh(x)⊗ νh(x)

so that, for vh defined on Γh and x ∈ Γh,

∇Γh
vh(x) = Ph∇vh(x).

Note that this projection is well defined in the interior of triangles only, as νh jumps

between elements. Finally, by applying the chain rule for differentiation on (2.1),

one can show that for x ∈ Γh and vh defined on Γh, we have that

∇Γh
vh(x) = Ph(x)(I− dH)(x)P(x)∇Γv

l
h(ξ(x)). (2.10)
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See Dziuk [1988] or Dziuk and Elliott [2013] for further details. From this and

the smoothness of Γ, we see that ulh ∈ H1(Γ) and so V l
h ⊂ H1(Γ). Next we state

integral equalities which we shall use repeatedly. For x ∈ Γh, we denote the local

area deformation when transforming Γh to Γ by δh(x) i.e.

δh(x) dAh(x) = dA(ξ(x)). (2.11)

Note that, by construction, δh(x) > 1. Also, let

Rh(x) = Rl
h(ξ(x)) = δ−1

h (x)P(x)(I− dH)(x)Ph(x)(I− dH)(x)P(x). (2.12)

Then, for every Kh ∈ Th, one can show that∫
Kh

∇Γh
uh · ∇Γh

vh dAh =

∫
Kl

h

(Ph(I− dH)P∇Γu
l
h ·Ph(I− dH)P∇Γv

l
h)δ−1

h dA

=

∫
Kl

h

Rl
h∇Γu

l
h · ∇Γv

l
h dA. (2.13)

Summing over all elements and proceeding similarly with the other terms of (2.8),

we obtain ∫
Γ

Rl
h∇Γu

l
h · ∇Γv

l
h + δ−1

h ulhv
l
h dA =

∫
Γ
fvlhδ

−1
h dA (2.14)

which holds for every vlh ∈ V l
h.

2.3.2 Geometric estimates

We next prove some geometric estimates relating Γ to Γh.

Lemma 2.3.2. Let Γ be a compact smooth and oriented surface in R3 and let Γh

be its linear interpolation. Then, omitting the surface lift symbols, we have that

‖d‖L∞(Γh) . h2, (2.15)

‖1− δh‖L∞(Γh) . h2, (2.16)

‖ν − νh‖L∞(Γh) . h, (2.17)

‖P−Rh‖L∞(Γh) . h2. (2.18)

Proof. The first and second inequalities follow from standard interpolation theory

(we linearly interpolate a smooth surface Γ). The third one as well because normals

are related to derivatives of local parametrisations. See the proof of Lemma 4.1 in
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Dziuk and Elliott [2013] for further details.

The last estimate follows by observing that

P−Rh = δ−1
h (P− δhRh) +

(
1− δ−1

h

)
P

and so, by (2.16), the only term we have to deal with is P − δhRh. Since d is C2,

we have that H = ∇2d is bounded and so, using (2.15), we have that

P− δhRh = P(I− dH)Ph(I− dH)P

= P−PPhP +O(h2)

= P−PIP + Pνh ⊗ νhP +O(h2) = P(νh − ν)⊗ (νh − ν)P +O(h2)

since Pν = 0. The result follows by applying (2.17).

2.3.3 Stability

We finally prove some stability estimates satisfied by the finite element approxima-

tion uh on both Γh and Γ.

Theorem 2.3.3. There is a unique weak solution uh ∈ Vh to (2.8) which satisfies

‖uh‖H1(Γh) . ‖fh‖L2(Γh). (2.19)

Proof. This follows straightforwardly from applying the Lax-Milgram theorem.

Theorem 2.3.4. Let uh ∈ Vh satisfy (2.8). Then ulh ∈ V l
h satisfies

‖ulh‖H1(Γ) . ‖f‖L2(Γ) (2.20)

for h small enough.

Proof. Using the geometric estimate (2.16), we have that∫
Γh

|fh|2 dAh =

∫
Γ
|f |2δ−1

h dA =

∫
Γ
|f |2 dA +

∫
Γ
|f |2

(
δ−1
h − 1

)
dA . ‖f‖2L2(Γ)

for h small enough. Similarly, using (2.14), the fact that P∇Γu
l
h = ∇Γu

l
h and the
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geometric estimate (2.18), we have that∫
Γh

|∇Γh
uh|2 + |uh|2 dAh =

∫
Γ

Rh∇Γu
l
h · ∇Γu

l
h + δ−1

h |u
l
h|2 dA

=

∫
Γ
|∇Γu

l
h|2 + |ulh|2 dA +

∫
Γ
(Rh −P)∇Γu

l
h · ∇Γu

l
h +

(
δ−1
h − 1

)
|ulh|2 dA

& ‖ulh‖H1(Γ)

for h small enough. Hence we obtain the desired estimate.

2.4 A priori error estimates

Theorem 2.4.1. Let u ∈ H2(Γ) and uh ∈ Vh denote the solutions to (PΓ) and

(PΓh
), respectively. Denote by ulh ∈ V l

h the lift of uh onto Γ. Then

‖u− ulh‖L2(Γ) + h‖u− ulh‖H1(Γ) . h2‖f‖L2(Γ).

The proof of Theorem 2.4.1 will, for the most part, follow the standard a

priori error analysis framework. We have that

‖φlh − ulh‖2H1(Γ) = aΓ(φlh − ulh, φlh − ulh) = aΓ(φlh − u, φlh − ulh) + aΓ(u− ulh, φlh − ulh)

(2.21)

where φlh ∈ V l
h. Dealing with the first term will require an interpolation estimate.

The presence of the second term marks the departure from standard error analysis

as this term would be identically equal to zero in the planar setting due to Galerkin

orthogonality. It can be thought of as quantifying the variational crime caused by

the geometric error arising from approximating the smooth surface Γ by Γh. These

terms are addressed by the following lemmas:

Lemma 2.4.2. For a given η ∈ H2(Γ) there exists an interpolant I lhη ∈ V l
h such

that

‖η − I lhη‖L2(Γ) + h‖∇Γ(η − I lhη)‖L2(Γ) . h2
(
‖∇2

Γη‖L2(Γ) + h‖∇Γη‖L2(Γ)

)
Proof. See Lemma 4.3 in Dziuk and Elliott [2013].

Lemma 2.4.3. Let u and ulh be given as in Theorem 2.4.1 and define the functional

EFEM
h on V l

h by

EFEM
h (vlh) := aΓ(u− ulh, vlh)
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for every vlh ∈ V l
h. Then EFEM

h can be written as

EFEM
h (vlh) =

∑
Kl

h∈T
l
h

∫
Kl

h

(Rh −P)∇Γu
l
h · ∇Γv

l
h +

(
δ−1
h − 1

)
ulhv

l
h +

(
1− δ−1

h

)
fvlh dA

where Rh is defined in (2.12). Furthermore, EFEM
h scales quadratically in h i.e.

|EFEM
h (vlh)| . h2‖f‖L2(Γ)‖vlh‖H1(Γ). (2.22)

Before we give the full proof of Lemma 2.4.3, we will complete that of The-

orem 2.4.1 assuming this result. Using the equality (2.21) given at the start of the

proof of Theorem 2.4.1 and the quadratic scaling of EFEM
h given in (2.22), we have

that

‖φlh − ulh‖2H1(Γ) = EFEM
h (φlh − ulh) + aΓ(φlh − u, φlh − ulh)

≤ EFEM
h (φlh − ulh) + ‖φlh − u‖H1(Γ)‖φlh − ulh‖H1(Γ)

. h2‖f‖L2(Γ)‖φlh − ulh‖H1(Γ) + ‖φlh − u‖H1(Γ)‖φlh − ulh‖H1(Γ),

thus

‖φlh − ulh‖H1(Γ) . h2‖f‖L2(Γ) + ‖φlh − u‖H1(Γ).

Now taking the continuous interpolant φlh = I lhu and using Lemma 2.4.2 we obtain

‖u− ulh‖H1(Γ) ≤ ‖u− φlh‖H1(Γ) + ‖φlh − ulh‖H1(Γ)

. ‖u− φlh‖H1(Γ) + h2‖f‖L2(Γ) + ‖φlh − u‖H1(Γ)

. h‖f‖L2(Γ)

as required. A standard duality argument and the Aubin-Nitsche trick yield an

estimate of the error in the L2 norm as detailed in Dziuk [1988]. The proof will

be discussed in more detail in Chapter 4 in the context of higher order surface DG

methods. This concludes the proof of Theorem 2.4.1.

Proof of Lemma 2.4.3. The expression for the error functional EFEM
h given in Lemma

2.4.3 is obtained by considering the difference between the two equations (2.6) and

(2.8). Making use of (2.13) and (2.14), we have that

0 = aΓ(u, vlh)−
∑

Kl
h∈T

l
h

∫
Kl

h

fvlh dA− aΓh
(uh, vh) +

∑
Kh∈Th

∫
Kh

fhvh dAh

= aΓ(u− ulh, vlh)− EFEM
h (vlh)
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as required. Finally, using the stability estimate (2.20) and Lemma 2.3.2, we can

estimate the error functional EFEM
h as follows:

|EFEM
h (vlh)| ≤ ‖Rh −P‖L∞(Γ)‖∇Γu

l
h‖L2(Γ)‖∇Γv

l
h‖L2(Γ)

+ ‖δ−1
h − 1‖L∞(Γ)‖ulh‖L2(Γ)‖vlh‖L2(Γ)

+ ‖1− δ−1
h ‖L∞(Γ)‖f‖L2(Γ)‖vlh‖L2(Γ)

. h2‖ulh‖H1(Γ)‖vlh‖H1(Γ) + h2‖f‖L2(Γ)‖vlh‖H1(Γ)

. h2‖f‖L2(Γ)‖vlh‖H1(Γ)

for every vlh ∈ V l
h, which concludes the proof.

2.5 A posteriori error estimates

In this section we state the main results for surface FEM a posteriori error estima-

tion, as first considered in Demlow and Dziuk [2008].

2.5.1 A posteriori upper bound (reliability)

Theorem 2.5.1. Suppose that Th is shape-regular. Denote by hKh
the largest

edge of Kh ∈ Th. For any given vertex p of {Kh}Kh∈Th, let the patch wp =

interior(∪Kh|p∈K̄h
K̄h). Furthermore, let

ηKh
= hKh

‖fhδh + ∆Γh
uh − uhδh‖L2(Kh) + h

1/2
Kh
‖[∇Γh

uh]‖L2(∂Kh) (2.23)

be the sum of the scaled element and jump residuals, then

‖u− ulh‖H1(Γ) ≤ C

 ∑
Kh∈Th

R2
Kh

+ G2
Kh

 1
2

with

R2
Kh

:= ‖Rh‖l2,L∞(wKh
)η

2
Kh
, (2.24)

G2
Kh

:=‖Bh∇Γh
uh‖2L2(Kh) + ‖(1− δh)(uh − fh)‖2L2(Kh), (2.25)

where C depends only on the shape regularity of the grid and wKh
=
⋃
p∈Kh

wp. The

operators Rh,Bh are defined in (2.12) and (5.4), respectively. Here ‖Rh‖l2,L∞(wKh
) :=
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‖‖Rh‖l2→l2‖L∞(wKh
).

2.5.2 A posteriori lower bound (efficiency)

Theorem 2.5.2. Suppose that Th is shape-regular and let R := fhδh+∆Γh
uh−uhδh.

Then for each Kh ∈ Th, we have

ηKh
≤ C‖Rh‖

1/2
l2,L∞(wKh

)

(
‖u− ulh‖H1(wl

Kh
) + ‖Bh∇Γh

uh‖L2(wKh
)

)
+ ChKh

‖R− R̄‖L2(wKh
).

where ηKh
is given in Theorem 2.5.1. Here C depends on the number of elements

in wKh
, the minimum angle of the elements in wKh

. R̄ is a piecewise linear approx-

imation of R.
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Chapter 3

Discontinuous Galerkin

Methods

In this chapter, we introduce a unified approach for the analysis of DG methods

for second-order elliptic problems on planar domains, following the framework in-

troduced in Arnold et al. [2002].

3.1 Flux formulation

For the sake of simplicity we restrict ourselves to the model problem

−∆u+ u = f in Ω , u = 0 on ∂Ω (3.1)

where Ω ⊂ R2 is assumed to be a convex polygonal domain and f a given function

in L2(Ω). In addition, we assume throughout this chapter that there exists a weak

solution u ∈ H2(Ω) to (3.1) satisfying

‖u‖H2(Ω) . ‖f‖L2(Ω). (3.2)

As done in Arnold et al. [2002], the first step towards deriving a class of DG methods

for (3.1) is to introduce an auxiliary variable σ and rewrite (3.1) as a first-order

system, given by

σ = ∇u , −∇ · σ + u = f in Ω , u = 0 on ∂Ω.
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Multiplying these equations by respectively the vector-valued test function τ and

the scalar test function v, and integrating by parts over a subset K̃h of Ω, we obtain∫
K̃h

σ · τ dx = −
∫
K̃h

u∇ · τ dx +

∫
∂K̃h

u n
K̃h
· τ ds,∫

K̃h

σ · ∇v + uv dx =

∫
K̃h

fv dx +

∫
∂K̃h

σ · n
K̃h

v ds,

where n
K̃h

is the unit outward normal to ∂K̃h.

Let T̃h be a triangulation of Ω i.e.

Ω =
⋃

K̃h∈T̃h

K̃h.

Given our assumptions on the domain, Ω can be triangulated exactly by taking K̃h

to be triangles (the domain is not approximated). We define the corresponding finite

element spaces as follows:

S̃h := {v ∈ L2(Ω) : v|
K̃h
∈ P1(K̃h) ∀K̃h ∈ T̃h},

Σ̃h := {v ∈ [L2(Ω)]2 : v|
K̃h
∈ [P1(K̃h)]2 ∀K̃h ∈ T̃h},

where P1(K̃h) is the space of piecewise linear functions on K̃h. We can now derive

the flux formulation for (3.1): find uh ∈ S̃h and σh ∈ Σ̃h such that for all K̃h ∈ T̃h
we have that∫

K̃h

σh · τ dx = −
∫
K̃h

uh∇ · τ dx +

∫
∂K̃h

û
K̃h

n
K̃h
· τ ds ∀τ ∈ [Pk(K̃h)]2, (3.3)∫

K̃h

σh · ∇v dx +

∫
K̃h

uhv dx =

∫
K̃h

fv dx +

∫
∂K̃h

σ̂
K̃h
· n

K̃h
v ds ∀v ∈ Pk(K̃h),

(3.4)

where the numerical fluxes σ̂
K̃h

and û
K̃h

are approximations to σ = ∇u and to

u on ∂K̃h, respectively. The choice of the numerical fluxes is key to deriving an

appropriate DG method. We will now show how to go from the flux formulation

(3.3)–(3.4) to a typical finite element formulation, called the primal formulation,

which is obtained by eliminating the auxiliary variable σh.
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3.2 Primal formulation

We begin by introducing an appropriate functional setting. We denote by Hm(T̃h)

the space of functions in Ω whose restriction to each element K̃h belongs to Hm(K̃h).

Thus, the finite element spaces S̃h and Σ̃h are subsets of Hm(T̃h) and [H l(T̃h)]2,

respectively, for any m. The traces of functions in H1(T̃h) belong to T (Ẽh) :=∏
K̃h∈T̃h L

2(∂K̃h), where Ẽh denotes the union of the boundaries of elements K̃h of

T̃h. Note that L2(Ẽh) is a subspace of T (Ẽh).

Now let K̃1
h, K̃2

h and K̃3
h be the neighbouring elements of K̃h. Let e1 = ∂K̃h ∩ ∂K̃1

h,

e2 = ∂K̃h ∩ ∂K̃2
h and e3 = ∂K̃h ∩ ∂K̃3

h, then

∂K̃h = e1 ∪ e2 ∪ e3.

Definition 3.2.1. The scalar numerical flux û =
(
û
K̃h

)
K̃h∈T̃h

and the vector nu-

merical flux σ̂ =
(
σ̂
K̃h

)
K̃h∈T̃h

are defined to be linear mappings

û : H2(T̃h)→ T (Ẽh), σ̂ : H2(T̃h)× [H1(T̃h)]2 → [T (Ẽh)]2.

To be more specific, for uh ∈ H2(T̃h), each component of the numerical

fluxes, given by

û
K̃h

(uh)(x) =


û(uh)|e1 (x) if x ∈ e1;

û(uh)|e2 (x) if x ∈ e2;

û(uh)|e3 (x) if x ∈ e3;

and

σ̂
K̃h

(uh,∇uh)(x) =


σ̂(uh,∇uh)|e1 (x) if x ∈ e1;

σ̂(uh,∇uh)|e2 (x) if x ∈ e2;

σ̂(uh,∇uh)|e3 (x) if x ∈ e3.

is in L2(∂K̃h).

Definition 3.2.2. Numerical fluxes are said to be consistent if

û(v) = v|Ẽh , σ̂(v,∇v) = ∇v|Ẽh ,

for every v ∈ H2(Ω) ∩H1
0 (Ω) .

Definition 3.2.3. Numerical fluxes û and σ̂ are said to be conservative if

û : H2(T̃h)→ L2(Ẽh), σ̂ : H2(T̃h)× [H1(T̃h)]2 → [L2(Ẽh)]2.
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We now introduce some trace operators that will allow us to manipulate the

numerical fluxes and obtain the primal formulation. Let ẽh be an edge shared by

elements K̃+
h and K̃−h and define n

K̃+
h

and n
K̃−h

to be respectively the outward unit

normals to K̃+
h and K̃−h on ẽh (we say that n

K̃+
h

and n
K̃−h

are respectively conormals

to K̃+
h and K̃−h ). In addition, let q+/− := q|

∂K̃
+/−
h

.

Definition 3.2.4. For q ∈ T (Ẽh), the average {{q}} and the jump [[q]] of q are given

by

{{q}} =
1

2
(q+ + q−), [[q]] = q+n

K̃+
h

+ q−n
K̃−h

on ẽh ∈ Ẽh,

where Ẽh is the set of interior edges. For ϕ ∈ [T (Ẽh)]2, {{ϕ}} and [[ϕ]] are given by

{{ϕ}} =
1

2
(ϕ+ + ϕ−), [[ϕ]] = ϕ+ · n

K̃+
h

+ ϕ− · n
K̃−h

on ẽh ∈ Ẽh.

Notice that the jump [[q]] of the scalar q is a vector quantity, and the jump

[[ϕ]] of the vector ϕ is a scalar quantity. For ẽh ∈ Ẽ∂h , the set of boundary edges,

each q ∈ T (Ẽh) and ϕ ∈ [T (Ẽh)]2 has a uniquely defined retriction on ẽh. We set

[[q]] = qν, {{ϕ}} = ϕ on ẽh ∈ Ẽ∂h ⊂ ∂Ω

where ν is the outward unit normal to Ω. Note that both the average and jump

operators map functions in T (Ẽh) to functions in L2(Ẽh). In short,

{{·}} : T (Ẽh)→ L2(Ẽh), [[·]] : T (Ẽh)→ [L2(Ẽh)]2,

{{·}} : [T (Ẽh)]2 → [L2(Ẽh)]2, [[·]] : [T (Ẽh)]2 → L2(Ẽh).

Summing (3.3)–(3.4) over all the elements K̃h ∈ T̃h, we obtain∫
Ω
σh · τ dx = −

∫
Ω
uh∇h · τ dx +

∑
K̃h∈T̃h

∫
∂K̃h

û
K̃h

n
K̃h
· τ ds ∀τ ∈ Σ̃h,∫

Ω
σh · ∇hv + uhv dx =

∫
Ω
fv dx +

∑
K̃h∈T̃h

∫
∂K̃h

σ̂
K̃h
· n

K̃h
v ds ∀v ∈ S̃h,

where ∇hv and ∇h · τ are the functions whose restrictions to each element K̃h ∈
T̃h are equal to ∇v and ∇ · τ , respectively. We may rewrite sums of the form∑

K̃h∈T̃h

∫
∂K̃h

q
K̃h
ϕ
K̃h
· n

K̃h
ds using the average and jump operators introduced
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previously: for all q ∈ T (Ẽh) and ϕ ∈ [T (Ẽh)]2, we have that

∑
K̃h∈T̃h

∫
∂K̃h

q
K̃h
ϕ
K̃h
· n

K̃h
ds =

∑
ẽh∈Ẽh∪Ẽ∂h

∫
ẽh

[[q]] · {{ϕ}}+ {{q}}[[ϕ]] ds. (3.5)

After a simple application of this identity, we get that∫
Ω
σh · τ dx = −

∫
Ω
uh∇h · τ dx +

∑
ẽh∈Ẽh∪Ẽ∂h

∫
ẽh

[[û]] · {{τ}}+ {{û}}[[τ ]] ds, (3.6)

∫
Ω
σh · ∇hv + uhv dx−

∑
ẽh∈Ẽh∪Ẽ∂h

∫
ẽh

{{σ̂}} · [[v]] + [[σ̂]]{{v}} ds =

∫
Ω
fv dx, (3.7)

respectively for all τ ∈ Σ̃h and v ∈ S̃h. Taking q equal to the trace of v and ϕ equal

to the trace of τ in (3.5), we obtain the integration by parts formula

−
∫

Ω
∇h · τ v dx =

∫
Ω
τ · ∇hv dx−

∑
ẽh∈Ẽh∪Ẽ∂h

∫
ẽh

{{τ}} · [[v]] + [[τ ]]{{v}} ds. (3.8)

Taking v = uh in the above identity and inserting the resulting right-hand side into

(3.6), we get that for every τ ∈ Σ̃h,∫
Ω
σh · τ dx =

∫
Ω
∇huh · τ dx+

∑
ẽh∈Ẽh∪Ẽ∂h

∫
ẽh

[[û−uh]] · {{τ}}+{{û−uh}}[[τ ]] ds. (3.9)

Let the DG lifting operators r : [L2(Ẽh)]2 → Σ̃h and l : L2(Ẽh)→ Σ̃h be given by∫
Ω
r(ϕ) · τ dx := −

∑
ẽh∈Ẽh∪Ẽ∂h

∫
ẽh

ϕ · {{τ}} ds ∀τ ∈ Σ̃h,

∫
Ω
l(q) · τ dx := −

∑
ẽh∈Ẽh∪Ẽ∂h

∫
ẽh

q[[τ ]] ds ∀τ ∈ Σ̃h.

Using the DG lifting operators r and l, we can write σh solely in terms of uh:

σh = σh(uh) := ∇huh − r([[û(uh)− uh]])− l({{û(uh)− uh}}). (3.10)

Taking τ = ∇hv in (3.9), we may then rewrite (3.7) as follows:

aDG(uh, v) =

∫
Ω
fv dx ∀v ∈ S̃h, (3.11)
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where

aDG(uh, v) :=

∫
Ω
∇huh · ∇hv + uhv dx

+
∑

ẽh∈Ẽh∪Ẽ∂h

∫
ẽh

([[û− uh]] · {{∇hv}} − {{σ̂}} · [[v]]) ds

+
∑

ẽh∈Ẽh∪Ẽ∂h

∫
ẽh

({{û− uh}}[[∇hv]]− [[σ̂]]{{v}}) ds. (3.12)

For any functions uh ∈ H2(T̃h) and v ∈ H2(T̃h), (3.12) defines aDG(uh, v), with the

understanding that û = û(uh) and σ̂(uh, σh(uh)), where the map uh 7→ σh(uh) is

given by (3.10). aDG : H2(T̃h) × H2(T̃h) → R is a bilinear form, and if (uh, σh) ∈
S̃h × Σ̃h solves (3.3)–(3.4), then uh solves (3.11) and σh is given by (3.10). We call

(3.11) the primal formulation of the method.

3.3 Consistency and Galerkin orthogonality

Plugging the solution u of (3.1) into the bilinear form (3.12) and using the integration

by parts formula (3.8), we have for any v ∈ H2(T̃h) that∫
Ω
∇hu · ∇hv dx = −

∫
Ω

∆uv dx +
∑

ẽh∈Ẽh∪Ẽ∂h

∫
ẽh

{{∇hu}} · [[v]] + [[∇hu]]{{v}} ds.

Now by assumption u ∈ H2(Ω), so we have that {{u}} = u, [[u]] = 0, {{∇hu}} = ∇u,

[[∇hu]] = 0 on Ẽh, and −∆u + u = f . Furthermore if the numerical flux û is

consistent, i.e. û(u) = u|Ẽh , then [[û]] = 0 and {{û}} = u on Ẽh which implies by

(3.10) that σh(u) = ∇u. If the numerical flux σ̂ is also consistent, we have [[σ̂]] = 0,

{{σ̂}} = ∇u on Ẽh. We thus conclude that

aDG(u, v) =

∫
Ω
fv dx.

Thus if the numerical fluxes are consistent, the primal formulation itself is consistent

and hence we must have Galerkin orthogonality i.e.

aDG(u− uh, v) = 0 ∀v ∈ S̃h. (3.13)

Now consider the dual problem given by

−∆ψ + ψ = g in Ω , ψ = 0 on ∂Ω.
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Definition 3.3.1. We say that the primal form is adjoint consistent if

aDG(v, ψ) =

∫
Ω
vg dx (3.14)

for all v ∈ H2(T̃h).

Since by assumption ψ ∈ H2(Ω) we have that {{ψ}} = ψ, [[ψ]] = 0, {{∇ψ}} =

∇ψ and [[∇ψ]] = 0. Hence from (3.11) we have that

aDG(v, ψ) =

∫
Ω
vg dx +

∑
ẽh∈Ẽh∪Ẽ∂h

∫
ẽh

[[û(v)]] · ∇ψ − [[σ̂(v, σh(v))]]ψ ds.

Now if we choose the numerical fluxes to be conservative (i.e. û(·) ∈ L2(Ẽh) and

σ̂(·, (·, ·)) ∈ [L2(Ẽh)]2), then [[û]] = 0 and [[σ̂]] = 0 on Ẽh. Thus conservativity of the

numerical fluxes implies adjoint consistency.

3.4 Examples of DG methods

Bassi-Rebay method

Let ẽh be an interior edge shared by K̃+
h and K̃−h , then a simple choice for the

numerical fluxes is given by

û|
∂K̃

+/−
h

= {{uh}}|ẽh for ẽh ∈ Ẽh, û = 0 for ẽh ∈ Ẽ∂h ,

σ̂|
∂K̃

+/−
h

= {{σh}}|ẽh for ẽh ∈ Ẽh.

Plugging these choices into (3.12) and (3.10), we obtain the method of Bassi-Rebay,

first considered in Bassi and Rebay [1997]:

aBR(uh, v) :=

∫
Ω
∇huh · ∇hv + uhv + r([[uh]]) · r([[v]]) dx

−
∑

ẽh∈Ẽh∪Ẽ∂h

∫
ẽh

{{∇huh}} · [[v]] + [[uh]] · {{∇hv}} ds.

along with

σh = ∇huh + r([[uh]]).
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Interior penalty (IP) method

As a second example, we derive the classical interior penalty (IP) method, first

considered in Douglas and Dupont [1976]; Arnold [1982], for which the numerical

fluxes are given by

û|
∂K̃

+/−
h

= {{uh}}|ẽh for ẽh ∈ Ẽh, û = 0 for ẽh ∈ Ẽ∂h ,

σ̂|
∂K̃

+/−
h

= {{∇huh}}|ẽh − βẽh [[uh]]|ẽh for ẽh ∈ Ẽh

where βẽh := αh−1
ẽh

with hẽh being a length scale associated with the edge ẽh and

α is some positive parameter. For such a choice we have σh as for the Bassi-Rebay

method, but the bilinear form now looks like

aIP (uh, v) :=

∫
Ω
∇huh · ∇hv + uhv dx

−
∑

ẽh∈Ẽh∪Ẽ∂h

∫
ẽh

[[uh]] · {{∇hv}}+ {{∇huh}} · [[v]] ds +
∑

ẽh∈Ẽh∪Ẽ∂h

∫
ẽh

βẽh [[uh]] · [[v]] ds

= I1(uh, v) + I2(uh, v) + I3(uh, v). (3.15)

LDG method

A third example is the LDG method, first considered in Cockburn and Shu [1998],

for which the numerical fluxes are now chosen to be

û|
∂K̃

+/−
h

= {{uh}}|ẽh − µ · [[uh]]|ẽh for ẽh ∈ Ẽh, û = 0 for ẽh ∈ Ẽ∂h ,

σ̂|
∂K̃

+/−
h

= {{σh}}|ẽh+µ [[σh]]|ẽh−βẽh [[uh]]|ẽh for ẽh ∈ Ẽh, σ̂ = {{σh}}−βẽh [[uh]] for ẽh ∈ Ẽ∂h
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where µ ∈ [L2(Ẽh)]2 is a vector-valued function which is constant on each edge. The

bilinear from for the LDG method is now given by

aLDG(uh, v) :=

∫
Ω
∇huh · ∇hv + uhv dx−

∑
ẽh∈Ẽh∪Ẽ∂h

∫
ẽh

[[uh]] · {{∇hv}}+ {{∇huh}} · [[v]] ds

+
∑

ẽh∈Ẽh∪Ẽ∂h

∫
ẽh

µ · [[uh]][[∇hv]] + [[uh]]βẽh · [[v]] ds

+

∫
Ω

(r([[uh]]) + l(µ · [[uh]])) · (r([[v]]) + l(µ · [[v]])) dx

+
∑

ẽh∈Ẽh∪Ẽ∂h

∫
ẽh

βẽh [[uh]] · [[v]] ds.

We note that both the scalar flux û and the vector flux σ̂ are consistent for all

the DG methods that have been mentioned. Hence, as discussed previously, their

corresponding bilinear forms are also consistent and Galerkin orthogonality holds.

Furthermore both the scalar and numerical fluxes are conservative, hence these DG

methods are also adjoint consistent.

3.5 Boundedness, stability and interpolation

For simplicity, we will focus our analysis on the interior penalty (IP) method whose

bilinear form is given in (3.15), although much of what follows can be directly ap-

plied to other DG methods.

To analyse this DG method we cannot directly use the H1 norm because H2(T̃h) is

not a subset of H1(Ω). Also, a piecewise version of the H1 norm would not produce

a suitable norm on H2(T̃h). We thus introduce a DG norm, which will be the norm

of choice in the error analysis.

Definition 3.5.1. For u ∈ H2(T̃h) we define

|u|21,h :=
∑

K̃h∈T̃h

‖u‖2
H1(K̃h)

, |u|2∗,h :=
∑
ẽh∈Ẽh

h−1
ẽh
‖[[u]]‖2L2(ẽh).

Now it can be shown that the following provides a norm on H2(T̃h):

‖u‖2DG := |u|21,h + |u|2∗,h.

First we prove a boundedness estimate of aIP :
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Lemma 3.5.2. Let u ∈ H2(Ω) and v, w ∈ S̃h. If βẽh = αh−1
ẽh

with α = O(1) then

|aIP (u+ w, v)| .
(
‖u+ w‖DG + h2‖u‖H2(Ω)

)
‖v‖DG. (3.16)

Proof. From (3.15), it can be easily seen that I1(u + w, v) ≤ |u + w|1,h|v|1,h and

I3(u+w, v) . |u+w|∗,h|v|∗,h. It remains to bound I2(u+w, v) = −
∑

ẽh∈Ẽh∪Ẽ∂h

∫
ẽh

[[u+

w]]·{{∇hv}}+{{∇h(u+w)}}·[[v]] ds. It suffices to show that the first term is bounded

by ‖u+ w‖DG‖v‖DG.

Using Cauchy-Schwartz we can estimate∣∣∣∣∣∣∣
∑

ẽh∈Ẽh∪Ẽ∂h

∫
ẽh

{{∇h(u+ w)}} · [[v]] ds

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∑

ẽh∈Ẽh∪Ẽ∂h

∫
ẽh

h
1
2

ẽh
{{∇(u+ w)}} · h−

1
2

ẽh
[[v]] ds

∣∣∣∣∣∣∣
≤

 ∑
ẽh∈Ẽh∪Ẽ∂h

∫
ẽh

h−1
ẽh
|[[v]]|2 ds


1
2
 ∑
ẽh∈Ẽh∪Ẽ∂h

∫
ẽh

hẽh |{{∇(u+ w)}}|2 ds


1
2

.

Now clearly the first part can be estimated by ‖v‖DG. For the second part we make

use of Cauchy-Schwartz and Young’s inequality to show that for interior intersec-

tions, we have that

‖{{∇(u+ w)}}‖2L2(ẽh) . ‖ ∇(u+ w)|
K̃+

h
· n

K̃+
h
‖2L2(ẽh) + ‖ ∇(u+ w)|

K̃−h
· n

K̃−h
‖2L2(ẽh)

≤ ‖ ∇(u+ w)|
K̃+

h
‖2L2(ẽh) + ‖ ∇(u+ w)|

K̃−h
‖2L2(ẽh),

while on boundary interesections,

‖{{∇(u+ w)}}‖2L2(ẽh) ≤ ‖ ∇(u+ w)|
K̃h
‖2L2(ẽh).

Putting this together, we get

∑
ẽh∈Ẽh∪Ẽ∂h

∫
ẽh

hẽh |{{∇(u+ w)}}|2 ds ≤ 2
∑

K̃h∈T̃h

∑
ẽh⊂∂K̃h

hẽh‖ ∇(u+ w)|
K̃h
‖2L2(ẽh).

Finally, applying the trace theorem as in (2.5) in Arnold [1982] followed by an inverse

inequality as in Brezzi et al. [1999] gives

‖ ∇(u+ w)|
K̃h
‖2L2(ẽh) . h−1

ẽh
‖∇(u+ w)‖2

L2(K̃h)
+ hẽh‖∇

2u‖2
L2(K̃h)

,
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hence ∑
ẽh∈Ẽh∪Ẽ∂h

∫
ẽh

hẽh |{{∇(u+ w)}}|2 ds .
∑

K̃h∈T̃h

|u+ w|2
H1(K̃h)

+ h2|u|2
H2(K̃h)

which concludes the proof.

We now move on to proving stability of aIP :

Lemma 3.5.3. Let v ∈ S̃h. If βẽh = αh−1
ẽh

with α = O(1) then

|aIP (v, v)| & ‖v‖2DG (3.17)

if α is chosen large enough.

Proof. Using the arguments found in the proof of the boundedness lemma with

w = v and u ≡ 0, we have that |I2(v, v)| ≥ −C|v|1,h|v|∗,h where C depends on

the grid (angle condition) but not on the penalty coefficients α. Using Young’s

inequality with δ we obtain |I2(v, v)| ≥ −δ|v|21,h − C
1
4δ |v|

2
∗,h. Therefore

|aIP (v, v)| ≥ |I1(v, v)|+ |I2(v, v)|+ |I3(v, v)|

≥ |v|21,h + α|v|2∗,h − Cδ|v|21,h − C
1

4δ
|v|2∗,h

= (1− Cδ)|v|21,h +

(
α− C

4δ

)
|v|2∗,h.

Now if we take δ = 1
2C then

|aIP (v, v)| ≥ 1

2
|v|21,h +

(
α− C2

2

)
|v|2∗,h

≥ C‖v‖2DG

where C > 0 if α is sufficiently large.

The last ingredient required for the error analysis is a bound on the inter-

polation error ‖u − Ĩhu‖DG when Ĩhu ∈ S̃h is the linear interpolant of the exact

solution u. If Ĩhu is chosen to be a continuous interpolant, then the jump of u− Ĩhu
will be zero at the inter-element boundaries. Standard interpolation theory then

yields the interpolation estimate

‖u− Ĩhu‖DG = |u− Ĩhu|1,h . h|u|H2(Ω). (3.18)
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3.6 Error estimates

We now derive a priori error estimates for the IP method. More generally, the proof

presented below applies to DG methods with are completely consistent (consistent

and adjoint consistent), bounded and stable in the appropriate norms.

Theorem 3.6.1. Let u ∈ H2(Γ) denote the solution to (3.1) and uh ∈ S̃h its interior

penalty (IP) approximation, given by (3.15). We then have that

‖u− uh‖L2(Ω) + h‖u− uh‖DG . h‖f‖L2(Ω). (3.19)

Proof. Using the stability of aIP given in (3.17), the Galerkin orthogonality con-

dition (3.13), the boundedness estimate (3.16), the stability estimate (3.2) and the

interpolation estimate (3.18) with Ĩhu chosen to be the continuous interpolant of u,

we have that

‖Ĩhu− uh‖2DG . aIP (Ĩhu− uh, Ĩhu− uh) = aIP (Ĩhu− u, Ĩhu− uh)

.
(
‖Ĩhu− u‖DG + h2‖u‖H2(Ω)

)
‖Ĩhu− uh‖DG

. h‖f‖L2(Ω)‖Ĩhu− uh‖DG.

Using this, we then have that

‖u− uh‖DG ≤ ‖u− Ĩhu‖DG + ‖Ĩhu− uh‖DG
. ‖u− Ĩhu‖DG + h‖f‖L2(Γ)

. h‖f‖L2(Γ)

as required. A standard duality argument and the Aubin-Nitsche trick yield an

estimate of the error in the L2 norm as detailed in Arnold et al. [2002].

3.7 DG methods for first order hyperbolic problems

In this section we will briefly outline some key aspects of the a priori error analysis

of DG methods for first order hyperbolic problems, following the lines of Brezzi et al.

[2004]. Aspects of its analysis will be combined with that of the elliptic case to derive

a priori error estimates for advection-diffusion problems on surfaces in Chapter 6.

We make use of the same notation as in the previous section and, in addition, let

c ∈ C(Ω̄) and let the velocity field w = (w1, w2)T be a vector-valued function defined

on Ω̄ with wi ∈ C1(Ω̄), i = 1, 2. As a model problem we will consider the hyperbolic
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boundary value problem

∇ · (wu) +cu = f in Ω (3.20)

u = 0 on ∂Ω. (3.21)

We shall assume the existence of a positive constant c0 such that

c(x) +
1

2
∇ · w(x) ≥ c0 ∀x ∈ Ω̄.

3.7.1 Upwind flux DG discretisation

A DG discretisation of (3.20) based on a jump-stabilisation discretisation of the

advection term is given as follows: find uh ∈ S̃h such that

aUP (uh, vh) =
∑

K̃h∈T̃h

∫
K̃h

fvh dx ∀ϕh ∈ S̃h (3.22)

where

aUP (uh, vh) :=
∑

K̃h∈T̃h

∫
K̃h

−uhw · ∇vh + cuhvh dx

+
∑
ẽh∈Ẽh

∫
ẽh

{{wuh}}up · [[vh]] ds (3.23)

with {{wuh}}up · nK̃h
:=
(
{{wuh}}+ ξẽh [[uh]]

)
· n

K̃h
where ξẽh =

∣∣∣w·nK̃h

∣∣∣
2 for each

ẽh ⊂ ∂K̃h.

Remark 3.7.1. Note that the jump-stabilisation term {{wuh}}up is exactly equivalent

to the classical upwind flux. However, as we will see later on, there are distinct

advantages of writing the upwing flux in this jump-satbilisation form.

3.7.2 Stability

We shall prove stability in the norm

‖| · |‖2 := ‖ · ‖2L2(Ω) +
∑
ẽh∈Ẽh

‖ξ1/2
ẽh

[[·]]‖2L2(ẽh).
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We proceed along the lines of Brezzi et al. [2004] by testing (3.23) with vh = uh and

integrating by parts on each K̃h ∈ T̃h. By doing so, we obtain

aUP (uh, uh) :=
∑

K̃h∈T̃h

∫
K̃h

(
c+

1

2
∇ · w

)
u2
h dx

+
∑
ẽh∈Ẽh

∫
ẽh

ξẽh |[[uh]]|2 + {{wuh}} · [[uh]] ds

− 1

2

∑
K̃h∈T̃h

∫
∂K̃h

(
w · n

K̃h

)
u2
h ds. (3.24)

Using formula (3.5) for DG functions and the fact that [[w]] = 0, we have that

∑
K̃h∈T̃h

∫
∂K̃h

(
w · n

K̃h

)
u2
h ds =

∑
ẽh∈Ẽh

∫
ẽh

[[wu2
h]] ds (3.25)

=
∑
ẽh∈Ẽh

∫
ẽh

{{w}} · [[u2
h]] ds. (3.26)

On the other hand, using the continuity of w and the definitions of the planar jump

and average, we have that

{{wuh}} · [[uh]] ≡ 1

2
{{w}} · [[u2

h]]. (3.27)

As noted in Brezzi et al. [2004], formula (3.27) is straightforward yet crucial for

providing a simple treatment of the jump-stabilisation given in (3.23), compared

with the classical upwind stabilisation. Plugging (3.25) and (3.27) into (3.24) yields

aUP (uh, uh) :=
∑

K̃h∈T̃h

∫
K̃h

(
1

2
∇ · w + c

)
u2
h dx +

1

2

∑
ẽh∈Ẽh

∫
ẽh

{{w}} · [[u2
h]] ds

− 1

2

∑
ẽh∈Ẽh

∫
ẽh

{{w}} · [[u2
h]] ds +

∑
ẽh∈Ẽh

∫
ẽh

ξẽh |[[uh]]|2 ds

≥ c0‖uh‖2L2(Ω) +
∑
ẽh∈Ẽh

‖ξ1/2
ẽh

[[uh]]‖2L2(ẽh) & ‖|uh|‖
2 (3.28)

which gives the desired result.

3.7.3 Error estimates

Optimal a priori error estimates for the solution uh to (3.22) follow standard argu-

ments, details of which can be found in Brezzi et al. [2004]. The estimate takes the
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form

‖u− uh‖2L2(Ω) +
∑
ẽh∈Ẽh

‖ξ1/2
ẽh

[[u− uh]]‖2L2(ẽh) . h3‖u‖2H2(Ω).
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Chapter 4

A Priori Error Analysis of DG

Methods on Surfaces

In this chapter, we will derive and analyse a large class of surface DG methods posed

on piecewise polynomial discrete surfaces, extending on the a priori error analysis

done for surface FEM and the planar DG method. As such, we urge the reader to

first consider reading through Chapter 2 and Chapter 3, which give an outline of the

latter two and introduce much of the notation found in this chapter, before reading

through this chapter and subsequent ones.

4.1 Notation and setting

Recall from Chapter 2 the model weak problem (2.6), given as follows: let f ∈ L2(Γ)

be a given function, find u ∈ H1(Γ) such that

aΓ(u, v) =

∫
Γ
fv dA ∀v ∈ H1(Γ) (4.1)

where

aΓ(u, v) =

∫
Γ
∇Γu · ∇Γv + uv dA.

As before, Γ is a compact smooth oriented surface in R3 with ∂Γ = ∅. In addition,

for this chapter, we assume that u ∈ Hs(Γ), s ≥ 2. Existence, uniqueness and

regularity of such a solution are shown in Aubin [1982].
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4.2 Higher order surface DG approximation

4.2.1 Surface approximation

Following the surface approximation framework discussed in Chapter 2, we approxi-

mate Γ by a piecewise linear surface approximation Γh composed of planar triangles

{Kh}Kh∈Th whose vertices lie on Γ, and denote by Th the associated regular, con-

forming triangulation of Γh, i.e., Γh =
⋃
Kh∈Th Kh. We now describe a family Γkh

of polynomial approximations to Γ which are of degree k (with the convention that

Γ1
h = Γh), as introduced in Demlow [2009]. For a given element Kh ∈ Th, let

{φki }1≤i≤nk
be the Lagrange basis functions of degree k defined on Kh correspond-

ing to a set of nodal points x1, ..., xnk
. For x ∈ Kh, we define the discrete projection

ξk : Γh → U by

ξk(x) =

nk∑
j=1

ξ(xj)φ
k
j (x).

Recall from (2.1) that the map ξ(x) is given by

ξ(x) = x− d(x)ν(x) where ν(x) := ν(ξ(x))

with d and ν being respectively the signed distance function and the outward unit

normal to Γ. By constructing ξk elementwise we obtain a continuous piecewise

polynomial map on Γh. We then define the corresponding discrete surface Γkh =

{ξk(x) : x ∈ Γh} and the corresponding regular, conforming triangulation T̂h =

{ξk(Kh)}Kh∈Th . We denote by Êh the set of all (codimension one) intersections êh

of elements in T̂h, i.e., the edges êh = K̂+
h ∩ K̂

−
h , for some elements K̂±h ∈ T̂h.

Furthermore, we denote by hêh the length of the edge êh ∈ Êh. For any êh ∈ Êh, the

conormal n̂+
h to a point x ∈ êh is the unique unit vector that belongs to TxK̂

+
h and

satisfies

n̂+
h (x) · (x− y) ≥ 0 ∀y ∈ K̂+

h ∩Bε(x).

Analogously, one can define the conormal n̂−h on êh by exchanging K̂+
h with K̂−h . It

is important to notice that, with the above definition,

n̂+
h 6= −n̂

−
h

in general and independently of the surface approximation order k (see Figure 4.1),

in contrast to the planar setting. Finally, we will denote by ν̂h the outward unit

normal to Γkh and define for each K̂h ∈ T̂h the discrete projection Phk onto the
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tangential space of Γkh by

Phk(x) = I− ν̂h(x)⊗ ν̂h(x), x ∈ K̂h,

so that, for vh defined on Γkh,

∇Γk
h
vh = Phk∇vh.

êh

n̂
−

h

n̂
+

h

K̂
+

h

K̂
−

h

Figure 4.1: Example of two elements in T̂h and their respective conormals on the
common edge êh. Notice that n̂+

h 6= −n̂
−
h .

Let K ⊂ R2 be the (flat) reference element and let F
K̂h

: K → K̂h ⊂ R3 for

K̂h ∈ T̂h. We define the DG space associated to Γkh by

Ŝhk = {χ̂ ∈ L2(Γkh) : χ̂|
K̂h

= χ ◦ F−1

K̂h
, χ ∈ Pk(K) ∀K̂h ∈ T̂h}.

For vh ∈ Ŝhk we adopt the convention that v±h is the trace of vh on êh = K̂+
h ∩ K̂

−
h

taken within the interior of K̂±h , respectively. In addition, we define the vector-

valued function space

Σ̂hk = {ŵ ∈ [L2(Γkh)]3 : ŵ|
K̂h

= ∇F−T
K̂h

(
w ◦ F−1

K̂h

)
, w ∈ [Pk(K)]2 ∀K̂h ∈ T̂h}.

Here, ∇F−1

K̂h
refers to the (left) pseudo-inverse of ∇F

K̂h
, i.e.,

∇F−1

K̂h
=
(
∇F T

K̂h
∇F

K̂h

)−1
∇F T

K̂h
.

Note that Phk∇F−TK̂h
= ∇F−T

K̂h
, i.e., τ̂ ∈ Σ̂hk ⇒ τ̂ ∈ TxΓkh almost everywhere. This

result straightforwardly implies that χ̂ ∈ Ŝhk ⇒ ∇Γk
h
χ̂ ∈ Σ̂hk.

Remark 4.2.1. This follows by noting that since the columns of ∇F T
K̂h

span the

tangential space of Γkh, we have ∇F T
K̂h
ν̂h = 0. Combining this with the definition of
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the (left) pseudo-inverse, we straighforwardly have that ∇F−1

K̂h
ν̂h = 0 which can be

rewritten as ν̂Th∇F
−T
K̂h

= 0. Now Phk∇F−TK̂h
η = ∇F−T

K̂h
η − (ν̂Th∇F

−T
K̂h

η)ν̂h = ∇F−T
K̂h

η

for all η.

4.2.2 Primal formulation

Following the lines of Arnold et al. [2002] as outlined in Chapter 3, we wish to find

(uh, σh) ∈ Ŝhk × Σ̂hk such that

∫
K̂h

σh · wh dAhk = −
∫
K̂h

uh∇Γk
h
· wh dAhk +

∫
∂K̂h

û wh · nK̂h
dshk,∫

K̂h

σh · ∇Γk
h
vh + uhvh dAhk =

∫
K̂h

fhvh dAhk +

∫
∂K̂h

σ̂ · n
K̂h

vh dshk,

for all wh ∈ Σ̂hk, vh ∈ Ŝhk, where dAhk and dshk denote respectively the two and one

dimensional surface measures over Γkh and the discrete right-hand side fh ∈ L2(Γkh)

will be related to f in Section 4.3.1. Here û = û(uh) and σ̂ = σ̂(uh, σh(uh)) are

the so called numerical fluxes which determine the inter-element behaviour of the

solution and will be prescribed later on.

In order to deal with these terms, we need to introduce the following discrete

surface trace operators:

Definition 4.2.2. Suppose there is an element numbering for all K̂h ∈ T̂h. For

q ∈ Π
K̂h∈T̂hL

2(∂K̂h), {q} and [q] are given by

{q} :=
1

2
(q+ + q−), [q] := q+ − q− on êh ∈ Êh.

For φ, ñ ∈ [Π
K̂h∈T̂hL

2(∂K̂h)]3, {φ; ñ} and [φ; ñ] are given by

{φ; ñ} :=
1

2
(φ+ · ñ+ − φ− · ñ−), [φ; ñ] := φ+ · ñ+ + φ− · ñ− on êh ∈ Êh.

We now state and prove a useful formula which holds for functions in

H1(T̂h) := {v|
K̂h
∈ H1(K̂h) : ∀K̂h ∈ T̂h}.

Lemma 4.2.3. Let φ ∈ [H1(T̂h)]3 and ψ ∈ H1(T̂h). Then we have that

∑
K̂h∈T̂h

∫
∂K̂h

ψφ · n
K̂h

dshk =
∑
êh∈Êh

∫
êh

[φ; n̂h]{ψ}+ {φ; n̂h}[ψ] dshk.
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Proof. The result follows straightforwardly by noting that

∑
K̂h∈T̂h

∫
∂K̂h

ψφ · n
K̂h

dshk =
∑
êh∈Êh

∫
êh

[ψφ; n̂h] dshk

=
∑
êh∈Êh

∫
êh

[φ; n̂h]{ψ}+ {φ; n̂h}[ψ] dshk.

Remark 4.2.4. Note that the way we have defined our trace operators is in line with

the classical approach to DG methods, considered for example in Arnold [1982],

rather than the modern approach considered in Arnold et al. [2002], in which the

analogue of Lemma 4.2.3 (given in (3.5) ) requires that n̂+
h = −n̂−h .

Applying the above lemma, summing over all elements and proceeding in a

similar fashion to the planar case setting outlined in Chapter 3, we obtain

∑
K̂h∈T̂h

∫
K̂h

σh · wh dAhk =
∑

K̂h∈T̂h

∫
K̂h

∇Γk
h
uh · wh dAhk

+
∑
êh∈Êh

∫
êh

[û− uh]{wh; n̂h}+ {û− uh}[wh; n̂h] dshk,

(4.2)

∑
K̂h∈T̂h

∫
K̂h

σh · ∇Γk
h
vh + uhvh dAhk =

∑
K̂h∈T̂h

∫
K̂h

fhvh dAhk

+
∑
êh∈Êh

∫
êh

(
{σ̂; n̂h}[vh] + [σ̂; n̂h]{vh}

)
dshk,

(4.3)

for every wh ∈ Σ̂hk and vh ∈ Ŝhk.

We now introduce the DG lift operators rêh : L2(Êh)→ Σ̂hk and

lêh : L2(Êh)→ Σ̂hk which satisfy∫
Γk
h

rêh(φ) · τh dAhk = −
∫
êh

φ{τh; n̂h} dshk ∀τh ∈ Σ̂hk,

∫
Γk
h

lêh(q) · τh dAhk = −
∫
êh

q[τh; n̂h] dshk ∀τh ∈ Σ̂hk,
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and rh : L2(Êh)→ Σ̂hk and lh : L2(Êh)→ Σ̂hk, given by

rh(φ) =
∑
êh∈Êh

rêh(φ), lh(φ) =
∑
êh∈Êh

lêh(φ).

Existence of such operators follow standard arguments. Using these, we can

write σh solely in terms of uh. Indeed, on each element K̂h ∈ T̂h we obtain from

(4.2) that

σh = σh(uh) = ∇Γk
h
uh − rh([û(uh)− uh])− lh({û(uh)− uh}). (4.4)

Note that (4.4) does in fact imply that σh ∈ Σ̂hk as ∇Γk
h
uh ∈ Σ̂hk and rh, lh ∈ Σ̂hk by

construction. Taking wh = ∇Γk
h
vh in (4.2), substituting the resulting expression into

(4.3) and using (4.4), we obtain the primal formulation: find (uh, σh) ∈ Ŝhk × Σ̂hk

such that

Akh(uh, vh) =
∑

K̂h∈T̂h

∫
K̂h

fhvh dAhk ∀vh ∈ Ŝhk, (4.5)

where

Akh(uh, vh) =
∑

K̂h∈T̂h

∫
K̂h

∇Γk
h
uh · ∇Γk

h
vh + uhvh dAhk

+
∑
êh∈Êh

∫
êh

(
[û− uh]{∇Γk

h
vh; n̂h} − {σ̂; n̂h}[vh]

)
dshk

+
∑
êh∈Êh

∫
êh

(
{û− uh}[∇Γk

h
vh; n̂h]− [σ̂; n̂h]{vh}

)
dshk. (4.6)

4.2.3 Examples of surface DG methods

For the following methods we introduce the penalization coefficients ηêh and βêh ,

given by

ηêh := α, βêh := αk2h−1
êh
, (4.7)

where α > 0 is a parameter at our disposal.
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Surface Bassi-Rebay method

To derive the surface Bassi-Rebay method, based on Bassi and Rebay [1997], we

choose

û+ = {uh}, û− = {uh},

σ̂+ = {σh; n̂h}n̂+
h , σ̂− = −{σh; n̂h}n̂−h .

From (4.4) we obtain σh = ∇Γk
h
uh + rh([uh]) and

∑
êh∈Êh

∫
êh

{σ̂; n̂h}[vh] dshk

=
∑
êh∈Êh

∫
êh

{σh; n̂h}[vh] dshk

=
∑
êh∈Êh

∫
êh

{∇Γk
h
uh; n̂h}[vh] dshk +

∑
êh∈Êh

∫
êh

{rh([uh]); n̂h}[vh] dshk

=
∑
êh∈Êh

∫
êh

{∇Γk
h
uh; n̂h}[vh] dshk −

∑
K̂h∈T̂h

∫
K̂h

rh([uh]) · rh([vh]) dAhk.

Therefore, making use of the fact that {û − uh} = 0, [û − uh] = [uh] and

[σ̂; n̂h] = 0, we have that

Akh(uh, vh) =
∑

K̂h∈T̂h

∫
K̂h

(
∇Γk

h
uh · ∇Γk

h
vh + uhvh + rh([uh]) · rh([vh])

)
dAhk

−
∑
êh∈Êh

∫
êh

(
{∇Γk

h
uh; n̂h}[vh] + {∇Γk

h
vh; n̂h}[uh]

)
dshk. (4.8)

Surface Brezzi et al. method

For the surface Brezzi et al. method, based on Brezzi et al. [1999], we choose

û+ = {uh}, û− = {uh},

σ̂+ = {σh + ηêhrêh([uh]); n̂h}n̂+
h , σ̂− = −{σh + ηêhrêh([uh]); n̂h}n̂−h ,

The method is similar to that of Bassi-Rebay, but with an additional term.

Indeed,
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∑
êh∈Êh

∫
êh

{σ̂; n̂h}[vh] dshk

=
∑
êh∈Êh

∫
êh

{σh + ηêhrêh([uh]); n̂h}[vh] dshk

=
∑
êh∈Êh

∫
êh

{∇Γk
h
uh; n̂h}[vh] + {rh([uh]) + ηêhrêh([uh]); n̂h}[vh] dshk

=
∑
êh∈Êh

∫
êh

{∇Γk
h
uh; n̂h}[vh] dshk −

∑
K̂h∈T̂h

∫
K̂h

rh([uh]) · rh([vh]) dAhk

−
∑

K̂h∈T̂h

∫
K̂h

ηêhrêh([uh]) · rêh([vh]) dAhk.

Then

Akh(uh, vh) =
∑

K̂h∈T̂h

∫
K̂h

∇Γk
h
uh · ∇Γk

h
vh + uhvh dAhk

−
∑
êh∈Êh

∫
êh

{∇Γk
h
uh; n̂h}[vh] + {∇Γk

h
vh; n̂h}[uh] dshk

+
∑

K̂h∈T̂h

∫
K̂h

rh([uh]) · rh([vh]) + ηêhrêh([uh]) · rêh([vh]) dAhk. (4.9)

Surface IP method

To derive the surface IP method, based on Douglas and Dupont [1976]; Baker [1977];

Arnold [1982], we choose the numerical fluxes û and σ̂ as follows:

û+ = {uh}, û− = {uh},

σ̂+ =

(
{∇Γk

h
uh; n̂h} − βêh [uh]

)
n̂+
h , σ̂− = −

(
{∇Γk

h
uh; n̂h} − βêh [uh]

)
n̂−h .

Substituting them into (4.6), we obtain

Akh(uh, vh) =
∑

K̂h∈T̂h

∫
K̂h

∇Γk
h
uh · ∇Γk

h
vh + uhvh dAhk +

∑
êh∈Êh

∫
êh

βêh [uh][vh] dshk

−
∑
êh∈Êh

∫
êh

(
[uh]{∇Γk

h
vh; n̂h}+ [vh]{∇Γk

h
uh; n̂h}

)
dshk. (4.10)
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Surface NIPG method

For the surface NIPG method, based on Rivière et al. [1999] (or equivalently the

Baumann-Oden method in Baumann and Oden [1998] with βêh = 0), we choose

û+ = {uh}+ [uh], û− = {uh} − [uh],

σ̂+ =

(
{∇Γk

h
uh; n̂h} − βêh [uh]

)
n̂+
h , σ̂− = −

(
{∇Γk

h
uh; n̂h} − βêh [uh]

)
n̂−h .

We may derive the surface NIPG bilinear form in a similar way as for the surface

IP method.

Surface IIPG method

For the surface IIPG method, based on Dawson et al. [2004], we choose the numerical

fluxes û and σ̂ as follows:

û+ = u+
h , û− = u−h ,

σ̂+ =

(
{∇Γk

h
uh; n̂h} − βêh [uh]

)
n̂+
h , σ̂− = −

(
{∇Γk

h
uh; n̂h} − βêh [uh]

)
n̂−h .

Here again, we may derive the surface IIPG bilinear form in a similar way as for the

surface IP method.

Surface Bassi et al. method

For the surface Bassi et al. method, based on Bassi et al. [1997], we choose

û+ = {uh}, û− = {uh},

σ̂+ =

(
{∇Γk

h
uh + ηêhrêh([uh]); n̂h}

)
n̂+
h , σ̂− = −

(
{∇Γk

h
uh + ηêhrêh([uh]); n̂h}

)
n̂−h .

The resulting bilinear form can be easily obtained in a similar way as for the surface

IP and surface Brezzi et al. bilinear forms.
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Surface LDG method

Finally for the surface LDG method, based on Cockburn and Shu [1998], the nu-

merical fluxes are chosen as follows:

û+ = {uh} − β · n̂+
h [uh], û− = {uh} − β · n̂+

h [uh],

σ̂+ =

(
{σh; n̂h} − βêh [uh] + β · n̂+

h [σh; n̂h]

)
n̂+
h ,

σ̂− = −
(
{σh; n̂h} − βêh [uh] + β · n̂+

h [σh; n̂h]

)
n̂−h ,

where β ∈ [L∞(Γkh)]3 is a (possibly null) constant on each edge êh ∈ Êh. We see

that {û− uh} = −β · n̂+
h [uh] and [û− uh] = −[uh]. So, from (4.4), we obtain:

σ̂+ =

(
{∇Γk

h
uh; n̂h}+ {rh([uh]); n̂h}+ {β · n̂+

h lh([uh]); n̂h} − βêh [uh]

+ β · n̂+
h

(
[∇Γk

h
uh; n̂h] + [rh([uh]); n̂h] + [β · n̂+

h lh([uh]); n̂h]
))

n̂+
h ,

and in a similar way σ̂−. Then

∑
êh∈Êkh

∫
êh

{σ̂; n̂h}[vh] dshk

=
∑
êh∈Êkh

∫
êh

(
{∇Γk

h
uh; n̂h}[vh] + [∇Γk

h
uh; n̂h]β · n̂+

h [vh]− βêh [uh][vh]
)

dshk

−
∑

K̂h∈T̂h

∫
K̂h

(
rh([uh]) + β · n̂+

h lh
(
[uh]

))
·
(
rh([vh]) + β · n̂+

h lh
(
[vh]
))

dAhk,

and the surface LDG form can be written as

Akh(uh, vh) =
∑

K̂h∈T̂h

∫
K̂h

∇Γk
h
uh · ∇Γk

h
vh + uhvh dAhk

−
∑
êh∈Êh

∫
êh

[uh]{∇Γk
h
vh; n̂h} − {∇Γk

h
uh; n̂h}[vh] dshk

+
∑
êh∈Êh

∫
êh

(
− [∇Γk

h
uh; n̂h]β · n̂+

h [vh]− β · n̂+
h [uh][∇Γk

h
vh; n̂h] + βêh [uh][vh]

)
dshk

+
∑

K̂h∈T̂h

∫
K̂h

(
rh([uh]) + β · n̂+

h lh
(
[uh]

))
·
(
rh([vh]) + β · n̂+

h lh
(
[vh]
))

dAhk. (4.11)
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Remark 4.2.5. Notice that for all of our choices of the numerical fluxes û and σ̂,

we have that [û] = 0 and [σ̂; n̂h] = 0. In addition, they are consistent with the

corresponding fluxes in the flat case given in Chapter 3 and Arnold et al. [2002], with

the exception of the fluxes for the surface LDG method which cannot be combined

in the same way to obtain the corresponding LDG fluxes in the flat case due to the

fact that the trace operators are scalars. On the other hand, in the flat case (for

which we have n̂+
h = −n̂−h ), all of the surface DG methods yield the corresponding

ones found in Chapter 3 and Arnold et al. [2002]. This can be seen by noticing that

{·;nh}[·] = {{·}} · [[·]] and that [·][·] = [[·]] · [[·]] in the flat case, where the operators [[·]]
and {{·}} are defined in Chapter 3. On discrete surfaces however, these equalities no

longer hold.

4.3 Technical tools

In this section we recall from Chapter 2 some of the tools and geometric relations

required to work on discrete surfaces, applying them to the new setting of surface

DG methods posed on higher order discrete surface approximations. In addition,

we prove boundedness and stability of the surface DG bilinear forms.

4.3.1 Surface lift

Recall from Chapter 2 that for any function w defined on Γkh we define the surface

lift onto Γ by

w`(ξ) = w(x(ξ)), ξ ∈ Γ

with ξ = ξ(x) given by (2.1) and where, as before, x(ξ) is defined as the unique

solution of

x(ξ) = ξ(x) + d(x)ν(ξ).

In particular, for every K̂h ∈ T̂h, there is a unique curved triangle K̂`
h = ξ(K̂h) ⊂ Γ.

We may then define a regular, conforming triangulation T̂ `h of Γ, given by

Γ =
⋃

K̂`
h∈T̂

`
h

K̂`
h.

The triangulation T̂ `h of Γ is thus induced by the triangulation T̂h of Γkh via the

surface lift operator. Similarly, we denote by ê`h = ξ(êh) ∈ Ê`h the unique curved

edge associated to êh. The function space for surface lifted functions is chosen to
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be given by

Ŝ`hk = {χ ∈ L2(Γ) : χ = χ̂` for some χ̂ ∈ Ŝhk}.

As in (2.9), we define the discrete right-hand side fh of (4.5) such that f `h = f .

We also denote by w−` ∈ Ŝhk the inverse surface lift of some function w ∈ Ŝ`hk,

satisfying (w−`)` = w.

One can show that for vh defined on Γkh, we have that

∇Γk
h
vh = Phk(x)(I− dH)(x)P(x)∇Γv

`
h(ξ(x)).

Furthermore, let δhk be the local area deformation when transforming K̂h to K̂`
h,

i.e.,

δhk(x) dAhk(x) = dA(ξ(x)),

and finally, let δêh be the local edge deformation when transforming êh to ê`h, i.e.,

δêh(x) dshk(x) = ds(ξ(x)).

Finally, let

Rhk(x) = Rl
hk(ξ(x)) = δ−1

hk (x)P(x)(I− dH)(x)Phk(x)(I− dH)(x)P(x). (4.12)

Then one can show that∫
Γk
h

∇Γk
h
uh · ∇Γk

h
vh + uhvh dAhk =

∫
Γ

Rhk∇Γu
`
h · ∇Γv

`
h + δ−1

hk u
`
hv
`
h dA. (4.13)

4.3.2 Geometric estimates

We next prove some geometric error estimates relating Γ to Γkh. Given the impor-

tance of the following lemma, we restate it in Appendix A for the convenience of

the reader.

Lemma 4.3.1. Let Γ be a compact smooth and oriented surface in R3 and let Γkh
be its Lagrange interpolant of degree k. Furthermore, we denote by n+/− the unit

(surface) conormals to respectively ê
l+/−
h . Then, omitting the surface lift symbols,
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we have that

‖d‖L∞(Γk
h) . hk+1, (4.14a)

‖1− δhk‖L∞(Γk
h) . hk+1, (4.14b)

‖ν − ν̂h‖L∞(Γk
h) . hk, (4.14c)

‖P−Rhk‖L∞(Γk
h) . hk+1, (4.14d)

‖1− δêh‖L∞(Êh)
. hk+1, (4.14e)

sup
K̂∈T̂h

‖P−Rêh‖L∞(∂K̂h)
. hk+1, (4.14f)

‖n+/− −Pn̂
+/−
h ‖

L∞(Êh)
. hk+1, (4.14g)

for sufficiently small h, where Rêh = δ−1
êh

P(I− dH)Phk(I− dH).

Proof of Lemma 4.3.1. Proofs of (4.14a)-(4.14d) can be found in Proposition 2.3 and

Proposition 4.1 in Demlow [2009]. The proof of (4.14f) will follow exactly the same

lines as (4.14d) once we have proven (4.14e). Let e, K be the reference segment [0,1]

and the (flat) reference element, respectively, and let Kh, K̂h and K̂`
h be elements

in Γh, Γkh and Γ, respectively, such that ξk(Kh) = K̂h and ξ(K̂h) = K̂`
h. Let also

Le be the inclusion operator that maps e into an edge of K and let LKh
(K) = Kh.

In what follows, all geometric operators and quantities are implicitely considered

e K Kh K̂h K̂ℓ

h

Le LKh
ξk ξ

Figure 4.2: Mappings used in the proof of Lemma 4.3.1.

as being evaluated either at a point x̂ ∈ êh ⊂ ∂K̂h (if on the discrete surface Γkh)

or at a point x̂l := ξ(x̂) ∈ êlh ⊂ ∂K̂ l
h (if on the smooth surface Γ), omitting the

evaluation operator for notational simplicity. A tangent on such an edge êh is given

by τ̂h = ∇(ξk ◦LKh
◦Le). Analogously, a tangent on the corresponding surface lifted

edge ê`h is given by τ = ∇ξτ̂h. We denote by τ̂h and τ respectively the unit tangents

of êh and ê`h, and let λ = ‖τ̂h‖l2 . We will now prove estimate (4.14e). Let dx be the
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Lebesgue measure on the reference interval e. We then have that

dshk = λ dx,

ds =
√
‖(∇ξτ̂h)T · ∇ξτ̂h‖l2 dx = λ

√
‖(∇ξτ̂h)T · ∇ξτ̂h‖l2 dx = ‖∇ξτ̂h‖l2︸ ︷︷ ︸

δêh

dshk.

Having characterised δêh , we wish to show that

1− Chk+1 ≤ ‖∇ξτ̂h‖l2 ≤ 1 + Chk+1.

Making use of (2.3) and (4.14a), we have that

‖∇ξτ̂h‖l2 ≤ ‖∇ξ‖l2‖τ̂h‖l2 ≤ ‖P− dH‖l2 ≤ 1 + Chk+1. (4.15)

Next, to provide a lower bound for ‖∇ξτ̂h‖l2 , we consider

τ − τ̂h = (∇ξ −Phk)τ̂h = λ(∇ξ −Phk)τ̂h.

Recalling the definition of the projection matrices P and Phk, we have that

‖τ − τ̂h‖l2 ≤ λ‖(P−Phk)− dH‖l2‖τ̂h‖l2 ≤ λChk.

Using the reverse triangle inequality, we obtain

λ‖∇ξτ̂h‖l2 = ‖τ‖l2 ≥ ‖τ̂h‖l2 − ‖τ − τ̂h‖l2 ≥ λ(1− Chk) (4.16)

and, dividing by λ and using (4.15), we obtain the sub-optimal estimate

1− Chk ≤ ‖∇ξτ̂h‖l2 ≤ 1 + Chk+1. (4.17)

The lower bound (4.17) can be improved in an iterative way as follows. We consider

λ‖∇ξτ̂h‖l2 = ‖τ‖l2 ≥ ‖Pτ̂h‖l2 − ‖Pτ̂h − τ‖l2 . (4.18)

Then, using again the reverse triangular inequality, we have that

‖Pτ̂h‖l2 = λ‖Pτ̂h‖l2 ≥ λ(‖τ‖l2 − ‖τ −Pτ̂h‖l2) = λ(1− ‖τ −Pτ̂h‖l2). (4.19)

Since τ , n, ν form an orthonormal basis of R3 and recalling that P maps vectors into
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the tangential space of Γ (hence have null normal component), we get

λ(1− ‖τ −Pτ̂h‖l2) = λ(1− ‖1− (τ ,Pτ̂h)τ − (n,Pτ̂h)n‖l2)

≥ λ(1− ‖(1− (τ , τ̂h))‖l2 − ‖(n, τ̂h)‖l2)

≥ λ(1− ‖τ − τ̂h‖2l2 − ‖(n, τ̂h)‖l2). (4.20)

Now

τ̂h − τ = (Phk −
∇ξ

‖∇ξτ̂h‖l2
)τ̂h,

so using (4.17) and a Taylor expansion argument, it is easy to see that

‖τ̂h − τ‖l2 . hk. (4.21)

To deal with the last term of (4.20) we note that

(n, τ̂h) = (τ × ν, τ̂h) = (ν, τ̂h × τ) = (ν, τ̂h ×
∇ξτ̂h
‖∇ξτ̂h‖l2

).

Then, using the sub-optimal lower bound (4.17) and a Taylor expansion argument,

we get

(ν, τ̂h ×
∇ξτ̂h
‖∇ξτ̂h‖l2

) =
1

‖∇ξτ̂h‖l2
(ν, τ̂h ×∇ξτ̂h) . |(ν, τ̂h ×∇ξτ̂h)| .

Using the definition of P and (2.3), we have that

∇ξτ̂h = (P− dH)τ̂h = τ̂h − (ν · τ̂h)ν − dHτ̂h. (4.22)

Now, using (4.22), we can write

(ν, τ̂h ×∇ξτ̂h) =

(
ν, τ̂h × (τ̂h − (τ̂h · ν)ν − dHτ̂h)

)
= −(ν, τ̂h × dHτ̂h).

Hence,

‖(n, τ̂h)‖l2 . ‖d‖L∞‖(ν, τ̂h ×Hτ̂h)‖l2 . hk+1. (4.23)

Combining (4.23) and (4.21) with (4.20) we obtain that

‖Pτ̂h‖l2 ≥ λ(1− ‖(1− (τ ,Pτ̂h))τ − (n,Pτ̂h)n‖l2) ≥ λ(1− Chk+1). (4.24)
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For the second term in the right-hand side of (4.18), notice that

‖τ −Pτ̂h‖l2 = ‖∇ξτ̂h −Pτ̂h‖l2 = ‖dHτ̂h‖l2 ≤ λChk+1. (4.25)

We are now ready to improve the lower bound in (4.17). By making use of (4.25)

and (4.24) in (4.18), we get

‖∇ξτ̂h‖l2 ≥ 1− Chk+1 (4.26)

which proves (4.14e).

To prove (4.14g), we need to first prove the following auxiliary estimates:

|(τ , n̂h)| . hk+1, (4.27)

|1− (n, n̂h)| . h2k. (4.28)

We start showing (4.27). Using the property of the cross product, we get

(τ , n̂h) = (τ , ν̂h × τ̂h) = (ν̂h, τ̂h × τ) = (ν̂h, τ̂h ×∇ξτ̂h). (4.29)

Replacing (4.22) in (4.29), we obtain

(τ , n̂h) = [ν · (τ̂h − τ)](τ̂h, ν × ν̂h)− (ν̂h, τ̂h × dHτ̂h).

Taking the absolute value and using (4.14a), (4.14c) and (4.21), we find

|(τ , n̂h)| . h2k+1 + Chk+1 . hk+1.

In order to prove (4.28), we start showing that the following holds

|(ν, n̂h)| . hk. (4.30)

Indeed, using again the properties of the cross and scalar products, we obtain:

|(ν, n̂h)| = |(ν, ν̂h × τ̂h)| = |(ν̂h, τ̂h × ν)| = |(ν̂h, τ̂h × (ν − ν̂h))| . hk.

Since the vector n̂h is of unit length, there exist a(x), b(x), c(x) ∈ R satisfying

a2 + b2 + c2 = 1 such that

n̂h = aτ + bn+ cν,

where a = (τ , n̂h), b = (n, n̂h) and c = (ν, n̂h). Hence, using (4.27), (4.30) and a
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Taylor expansion argument, we get

b = ±
√

1− a2 − c2 = ±
√

1 + Ch2k = ±1 + Ch2k.

The inequality (4.28) follows by assuming that the grid size h of T̂h is chosen small

enough so that b = 1 + Ch2k. Finally, writing Pn̂h = (τ ,Pn̂h)τ + (n,Pn̂h)n, we

obtain (4.14g), i.e.,

|n−Pn̂h| = |n− (τ ,Pn̂h)τ + (n,Pn̂h)n|

≤ |1− (n,Pn̂h)|+ |(τ ,Pn̂h)|

= |1− (n, n̂h)|+ |(τ , n̂h)| . hk+1.

4.3.3 Boundedness and stability

Lemma 4.3.2. Let v̂ ∈ Hj(K̂h), j ≥ 2, and let ṽ = v̂ ◦ ξk. Then, for h small

enough, we have that

‖v̂`‖
L2(K̂`

h)
∼‖v̂‖

L2(K̂h)
∼ ‖ṽ‖L2(Kh), (4.31a)

‖∇Γv̂
`‖
L2(K̂`

h)
∼‖∇Γk

h
v̂‖

L2(K̂h)
∼ ‖∇Γh

ṽ‖L2(Kh), (4.31b)

‖Dj

Γk
h

v̂‖
L2(K̂h)

.
∑

1≤m≤j
‖Dm

Γ v̂
`‖
L2(K̂`

h)
, (4.31c)

‖Dj
Γh
ṽ‖L2(Kh) .

∑
1≤m≤j

‖Dm
Γk
h
v̂‖

L2(K̂h)
. (4.31d)

Proof. The proof of these relations is discussed in Demlow [2009].

We next prove the following trace inequality:

Lemma 4.3.3. For sufficiently small h, we have that

‖∇Γk
h
ŵh‖2L2(∂K̂h)

. h−1‖∇Γk
h
ŵh‖2L2(K̂h)

∀ŵh ∈ Ŝhk.

Proof. Defining δeh := ds/ dsh1 and δeh→êh := dshk/ dsh1, using (4.14e) and a

Taylor expansion argument, we have that

|1− δeh→êh | =
∣∣∣∣1− δeh

δêh

∣∣∣∣ =

∣∣∣∣1− 1 +O(h2)

1 +O(hk+1)

∣∣∣∣ . h2.

Now let w̃h be defined such that w̃h = ŵh ◦ ξk. From (2.21) and (2.22) in Demlow
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[2009] we have that ∣∣∣∇Γk
h
ŵh(ξk(x̃))

∣∣∣ . |∇Γh
w̃h(x̃)| (4.32)

for each x̃ ∈ Γh, provided h is sufficiently small. Applying classical inverse estimates

on each Kh ∈ Th (which can be done given that w̃h is a finite-dimensional function

living on the flat triangle Kh), we get∫
∂Kh

|∇Γh
w̃h|2 dsh1 .

1

h
‖∇Γh

w̃h‖2L2(Kh).

Surface lifting the left-hand side to Γkh, making use of (4.32) and using (4.31b) for

the right-hand side we have that∫
∂K̂h

|∇Γk
h
ŵh|2δ−1

eh→êh dshk .
1

h
‖∇Γk

h
ŵh‖2L2(K̂h)

.

We thus obtain, using (4.14e),

(1− Ch2)‖∇Γk
h
ŵh‖2L2(∂K̂h)

.
1

h
‖∇Γk

h
ŵh‖2L2(K̂h)

,

which yields the desired result for h small enough.

In order to perform a unified analysis of the surface DG methods presented

in Section 4.2.3, we introduce the stabilisation function

Sh(uh, vh) =



∑
êh∈Êh

βêh

∫
êh

[uh][vh] dshk, (4.33a)

∑
êh∈Êh

ηêh

∫
Γk
h

rêh([uh]) · rêh([vh]) dAhk, (4.33b)

for uh, vh ∈ Ŝhk, cf. also Table 4.1.

Finally, we define the DG norm ‖ · ‖DG to be given by

‖uh‖2DG = ‖uh‖21,h + |uh|2∗,h ∀uh ∈ Ŝhk, (4.34)

with

‖uh‖21,h =
∑

K̂h∈T̂h

‖uh‖2H1(K̂h)
,

and

|uh|2∗,h = Sh(uh, uh),
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Method Stabilisation function Sh(·, ·)
Surface IP

Surface NIPG
Surface IIPG
Surface LDG

(4.33a)

Surface Brezzi et al.
Surface Bassi et al.

(4.33b)

Table 4.1: Stabilisation function of the DG methods considered in our unified anal-
ysis.

where Sh(·, ·) depends on the method under investigation and is defined as in (4.33a)-

(4.33b).

We will now prove boundedness and stability (in the DG norm) of the bilinear

forms Akh(·, ·) corresponding to the surface DG methods given in Table 4.1. We first

state some estimates required for the analysis of the surface LDG method.

Lemma 4.3.4. For any vh ∈ Ŝhk,

α‖rêh([vh])‖2
L2(Γk

h)
. βêh‖[vh]‖2L2(êh),

α‖lêh([vh])‖2
L2(Γk

h)
. βêh‖[vh]‖2L2(êh),

on each êh ∈ Êh.

Proof. The proof is the same as that of Lemma 2.3 in Antonietti and Houston [2011]

provided proper definition of the DG lift operators.

Lemma 4.3.5. The bilinear forms Akh(·, ·) corresponding to the surface DG methods

given in Table 4.1 are bounded and stable in the DG norm (4.34), i.e.,

Akh(uh, vh) . ‖uh‖DG‖vh‖DG, Akh(uh, uh) & ‖uh‖2DG,

for every uh, vh ∈ Ŝhk.

For the surface IP, Bassi et al. and IIPG methods, stability holds provided

the penalty parameter α appearing in the definition of βêh or ηêh in (4.7) is chosen

sufficiently large.

Proof. For all the methods stabilized with Sh(·, ·) defined as in (4.33a), Lemma 4.3.3
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implies that

∑
êh∈Êh

∫
êh

[uh]{∇Γk
h
vh; n̂h} dshk ≤

∑
êh∈Êh

∥∥∥β1/2
êh

[uh]
∥∥∥
L2(êh)

∥∥∥β−1/2
êh
{∇Γk

h
vh; n̂h}

∥∥∥
L2(êh)

.
∑

K̂h∈T̂h

α−
1
2 |uh|∗,h‖∇Γk

h
vh‖L2(K̂h)

. α−
1
2 |uh|∗,h‖vh‖1,h, (4.35)

where the hidden constant depends on the degree of the polynomial approximation

but not on the penalty parameter βêh . Otherwise, if Sh(·, ·) is given as in (4.33b),

we observe that for uh, vh ∈ Ŝhk we have that

∑
êh∈Êh

∫
êh

[uh]{∇Γk
h
vh; n̂h} dshk =

∑
K̂h∈T̂h

∫
K̂h

rh([uh]) · ∇Γk
h
vh dAhk

and, making use of the fact that rêh only has support on K̂+
h

⋃
K̂−h where ∂K̂+

h

⋂
∂K̂−h =

êh,

‖rh(φ)‖2
L2(K̂h)

=

∥∥∥∥∥∥
∑

êh⊂∂K̂h

rêh(φ)

∥∥∥∥∥∥
2

L2(K̂h)

.
∑

êh⊂∂K̂h

‖rêh(φ)‖2
L2(K̂h)

. (4.36)

Hence, applying Cauchy-Schwarz, we obtain∑
K̂h∈T̂h

‖η1/2
êh
rh([uh])‖

L2(K̂h)
‖η−1/2
êh
∇Γk

h
vh‖L2(K̂h)

.α−
1
2 |uh|∗,h‖vh‖1,h, (4.37)

where the hidden constant depends on the degree of the polynomial approximation

but not on the penalty parameter ηêh . For the surface LDG method, using Lemma

4.3.4, Lemma 4.3.3 and the L∞(Γkh) bound on β, we obtain∣∣∣∣∫
êh

[∇Γk
h
uh; n̂h]β · n̂+

h [vh] dshk

∣∣∣∣ . α−
1
2 ‖β‖L∞(Γk

h)‖∇Γk
h
uh‖L2(K̂h)

|vh|∗,h,

∣∣∣∣∫
K̂h

rh([uh]) · lh(β · n̂+
h [uh]) dshk

∣∣∣∣ . α−1‖β‖L∞(Γk
h)|uh|∗,h|vh|∗,h,

and, in a similar way, the remaining quantities. Boundedness then follows from

Cauchy-Schwarz and the above estimates.

We next show stability of the DG bilinear forms. For the surface NIPG
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method, stability follows straightforwardly from the Cauchy-Schwarz inequality. For

the surface LDG method, we have that

Akh(uh, uh) ≥‖uh‖21,h − 2
∑
êh∈Êkh

∫
êh

∣∣∣[uh]{∇Γk
h
uh; n̂h}

∣∣∣ dshk

− 2‖β‖L∞(Γk
h)

∑
êh∈Êkh

∫
êh

∣∣∣[uh][∇Γk
h
uh; n̂h]

∣∣∣ dshk + |uh|2∗,h.

For the other methods involving Sh(·, ·) defined as in (4.33a) we obtain

Akh(uh, uh) ≥‖uh‖21,h − 2
∑
êh∈Êkh

∫
êh

∣∣∣[uh]{∇Γk
h
uh; n̂h}

∣∣∣ dshk + |uh|2∗,h,

otherwise, if Sh(·, ·) is given as in (4.33b), we have that

Akh(uh, uh) ≥‖uh‖21,h − 2
∑

K̂h∈T̂ k
h

∫
K̂h

∣∣∣rh([uh]) · ∇Γk
h
uh

∣∣∣ dAhk + |uh|2∗,h.

The result follows by making use of the corresponding boundedness estimates, using

using Cauchy-Schwarz inequality and Young’s inequalities and choosing the penalty

parameter α sufficiently large.

Lemma 4.3.5, together with Lax-Milgram, guarantees that there exists a

unique solution uh ∈ Ŝhk of (4.6) that satisfies the stability estimate

‖uh‖DG . ‖fh‖L2(Γk
h), (4.38)

Remark 4.3.6. It is worth noting that one would run into issues when trying to

prove h independent boundedness/stability of the planar DG methods (considered in

Chapter 3) when posed on Γkh. Recall the planar jump and average operators [[·]] and

{{·}} defined in Chapter 3. On discrete surfaces, since n̂+
h 6= −n̂

−
h , [[uh]] = 0 6⇔ uh = 0

and thus cannot constitute a part of a DG norm. If, on the other hand, we kept

the DG norm as it is defined in (4.34) but chose to use the planar operators [[·]]
and {{·}} instead of respectively the discrete surface operators [·] and {·; n̂h} in the

surface DG bilinear forms, we would not be able to write the planar operators in

terms of the discrete surface operators independently of h. As such, we would not

obtain boundedness/stability independently of h.
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We now define the DG norm for functions in Ŝ`hk as follows:

‖u`h‖2DG = ‖u`h‖21,h + |u`h|2∗,h ∀u`h ∈ Ŝ`hk, (4.39)

with

‖u`h‖21,h =
∑

K̂`
h∈T̂

`
h

‖u`h‖2H1(K̂`
h)
,

and

|u`h|2∗,h = S`h(u`h, u
`
h),

where S`h(·, ·) is given by

S`h(u`h, v
`
h) =



∑
êlh∈Ê

l
h

βêh

∫
ê`h

δ−1
êh

[u`h][v`h] ds, (4.40a)

∑
êlh∈Ê

l
h

ηêh

∫
Γ
δ−1
hk

(
rêh([uh])

)` · (rêh([vh])
)`

dA, (4.40b)

for u`h, v
`
h ∈ Ŝ`hk.

Lemma 4.3.7. Let uh ∈ Ŝhk satisfy (4.38). Then u`h ∈ Ŝ`hk satisfies

‖u`h‖DG . ‖f‖L2(Γ), (4.41)

for h small enough.

Proof. We first show that for any function vh ∈ Ŝhk, for sufficiently small h,

‖v`h‖DG . ‖vh‖DG. (4.42)

The ‖ · ‖21,h component of the DG norm is dealt with in exactly the same way as in

Demlow [2009]. For the | · |2∗,h component of the DG norm we have that

∫
êh

[vh]2 dshk =

∫
ê`h

δ−1
êh

[v`h]2 ds and

∫
Γk
h

|rh([vh])|2 dAhk =

∫
Γ
δ−1
hk |rh([vh])`|2 dA,

which straightforwardly yields (4.42). Making use of the discrete stability estimate

(4.38) and noting that, by Lemma 4.3.4, ‖fh‖L2(Γk
h) . ‖f `h‖L2(Γ) = ‖f‖L2(Γ), we get

the desired result.

For each of the surface DG bilinear forms given in Table 4.1, we define a

corresponding bilinear form on Γ induced by the surface lifted triangulation T̂ `h
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which is well defined for functions w, v ∈ H2(Γ) + Ŝ`hk. For the surface IP bilinear

form (4.10), we define

A(w, v) =
∑

K̂`
h∈T̂

`
h

∫
K̂`

h

∇Γw · ∇Γv + wv dA−
∑
ê`h∈Ê

`
h

∫
ê`h

[w]{∇Γv;n}+ [v]{∇Γw;n} ds

+
∑
ê`h∈Ê

`
h

∫
ê`h

δ−1
êh
βêh [w][v] ds, (4.43)

where n+ and n− are respectively the unit surface conormals to K̂`+
h and K̂`−

h on

ê`h ∈ Ê`h. For the Brezzi et al. bilinear form (4.9), we define

A(w, v) =
∑

K̂`
h∈T̂

`
h

∫
K̂`

h

∇Γw · ∇Γv + wv dA

+
∑

K̂`
h∈T̂

`
h

∫
K̂`

h

δ−1
hk ηêhrêh([w−`])` · rêh([v−`])` + δ−1

hk

(
rh([w−`])

)` · (rh([v−`])
)`

dA

−
∑
ê`h∈Ê

`
h

∫
ê`h

[w]{∇Γv;n}+ [v]{∇Γw;n} − δ−1
êh
βêh [w][v] ds. (4.44)

For the surface LDG bilinear form (4.11), we define

A(w, v) =
∑

K̂`
h∈T̂

`
h

∫
K̂`

h

∇Γw · ∇Γv + wv dA−
∑
ê`h∈Ê

`
h

∫
ê`h

[w]{∇Γv;n} − {∇Γw;n}[v] ds

+
∑
ê`h∈Ê

`
h

∫
ê`h

(
− δ−1

êh
[∇Γw;n]β · n̂`+h [v]− δ−1

êh
β · n̂`+h [w][∇Γv;n] + δ−1

êh
βêh [w][v]

)
ds

+
∑

K̂`
h∈T̂

`
h

∫
K̂`

h

(
rh([w−`]) + β · n̂`+h lh

(
[w−`]

))`
·
(
rh([v−`]) + β · n̂`+h lh

(
[v−`]

))`
dA.

(4.45)

The corresponding bilinear forms for the other surface DG methods can be

derived in a similar manner. Since we assumed that the weak solution u of (4.1)

belongs to Hs(Γ), s ≥ 2, they all satisfy

A(u, v) =
∑

K̂`
h∈T̂h

`

∫
K̂`

h

fv dA, ∀v ∈ H2(Γ) + Ŝ`hk. (4.46)

Finally, we require the following boundedness/stability estimates for A(·, ·),
which follow by applying similar arguments as those found in the proof of Lemma
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4.3.5.

Lemma 4.3.8. The bilinear forms A(·, ·) induced by the surface DG methods given

in Table 4.1 are bounded and stable in the DG norm (4.39), i.e.,

A(ulh, v
l
h) . ‖u`h‖DG‖v`h‖DG, A(ulh, u

l
h) & ‖u`h‖2DG,

for all u`h, v
`
h ∈ Ŝ`hk if, for the surface IP, Bassi et al. and IIPG methods, the penalty

parameter α appearing in the definition of βêh or ηêh in (4.7) is chosen sufficiently

large.

4.4 Convergence

We now state the main result of this chapter.

Theorem 4.4.1. Let u ∈ Hk+1(Γ) and uh ∈ Ŝhk denote the solutions to (4.1) and

(4.5), respectively. Let η = 0 for IIPG, NIPG formulations and let η = 1 otherwise.

Then,

‖u− u`h‖L2(Γ) + hη‖u− u`h‖DG . hk+η(‖f‖L2(Γ) + ‖u‖Hk+1(Γ)),

provided the grid size h is small enough and the penalty parameter α is large enough

for the surface IP, Bassi et al. and IIPG methods. Here the hidden constant depends,

in particular, on the signed distance function d and its first/second derivatives.

The proof will follow an argument similar to the one outlined in Arnold et al.

[2002]. Using the stability result given in Lemma 4.3.8, we have that

‖φ`h−u`h‖2DG . A(φ`h−u`h, φ`h−u`h) = A(u−u`h, φ`h−u`h)+A(φ`h−u, φ`h−u`h), (4.47)

where φ`h ∈ Ŝ`hk. Since we do not directly have Galerkin orthogonality the first

term on the right-hand side of (4.47) is not zero and its estimation will be the main

part of this section. The second term is dealt with in the following way: following

Demlow [2009], for ŵ ∈ H2(Γkh), we define the interpolant Îkh : C0(Γkh)→ Ŝhk by

Îkhŵ = Ĩkh(ŵ ◦ ξk),

where Ĩkh is the standard Lagrange interpolant of degree k on the piecewise linear

surface Γh. We also define the interpolant Ikh : C0(Γ)→ Ŝ`hk by

Ikhw = Îkh(w ◦ ξ).
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Lemma 4.4.2. Let w ∈ Hm(Γ) with 2 ≤ m ≤ k + 1. Then for i = 0, 1,

|w − Ikhw|Hi(K̂`
h)

. hm−i‖w‖
Hm(K̂`

h)
.

Proof. The proof follows easily by combining standard estimates for the Lagrange

interpolant on Γh with Lemma 4.3.2. See Demlow [2009] for further details.

Lemma 4.4.3. Let w ∈ Hm(Γ) with 2 ≤ m ≤ k + 1. Then, for sufficiently small

h, we have that

‖w − Ikhw‖2L2(∂K̂`
h)

+ h2‖∇Γ(w − Ikhw)‖2
L2(∂K̂`

h)
. h2m−1‖w‖2

Hm(K̂`
h)
.

Proof. Fix an arbitrary element K̂`
h ∈ T̂ `h . We then define ŵ ∈ Hm(K̂h) and

w̃ ∈ Hm(Kh) such that w = ŵ ◦ ξ and w̃ = ŵ ◦ ξk.
Applying the trace theorem on Kh ∈ Th we get∫

∂Kh

|∇Γh
(w̃ − Ĩkhw̃)|2 dsh1 .

∫
Kh

1

h
|∇Γh

(w̃ − Ĩkhw̃)|2 + h|∇2
Γh

(w̃ − Ĩkhw̃)|2 dAh1.

Applying a classical interpolation result for the right-hand side of the above (see,

for example, Theorem 6.4 in Braess [2001]), we obtain∫
∂Kh

|∇Γh
(w̃ − Ĩkhw̃)|2 dsh1 . h2m−3|w̃|2Hm(Kh).

Then, lifting the left-hand side onto Γkh as in Lemma 4.3.3 and using (4.31b) with

(4.31d), we get

(1− Ch2)

∫
∂K̂h

|∇Γk
h
(ŵ − Îkhŵ)|2 dshk . h2m−3‖ŵ‖2

Hm(K̂h)
.

In the same way, we lift the left-hand side onto Γ and use (4.31b) with (4.31d) to

obtain

(1− Chk+1)(1− Ch2)‖∇Γ(w − Ikhw)‖2
L2(∂K̂`

h)
. h2m−3‖w‖2

Hm(K̂`
h)
.

Then, proceeding similarly with ‖w − Ikhw‖2L2(∂K̂`
h)

, we get the desired result for h

small enough.

These interpolation estimates allow us to derive the following boundedness

estimates for A(·, ·):
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Lemma 4.4.4. Let u ∈ Hm(Γ) and w ∈ Hn(Γ) with 2 ≤ m,n ≤ k + 1. Then, for

all v`h ∈ Ŝ`hk, we have that

A(u− Ikhu, v`h) . hm−1‖u‖Hm(Γ)‖v`h‖DG, (4.48)

A(u− Ikhu,w − Ikhw) . hm+n−2‖u‖Hm(Γ)‖w‖Hn(Γ). (4.49)

Proof. Since u ∈ Hm(Γ) ⊂ C0(Γ) for m ≥ 2 and Ikhu ∈ C0(Γ), we have that

[u− Ikhu] = 0 on each êlh ∈ Ê lh. Than, using Cauchy-Schwarz in the definition of rêh
and lêh , we have that

‖rêh([(u− Ikhu)−l])‖2
L2(Γk

h)
= 0, ‖lêh((u− Ikhu)−l])‖2

L2(Γk
h)

= 0.

Then, following the proof of Lemma 4.3.5, it is easy to obtain (4.48) and (4.49) from

Lemma 4.4.2 and Lemma 4.4.3.

For the first term on the right-hand side of (4.47), we require the following

perturbed Galerkin orthogonality result:

Lemma 4.4.5. Let u ∈ Hs(Γ), s ≥ 2, and uh ∈ Ŝhk denote the solutions to (4.1)

and (4.5), respectively. We define the functional Ehk on Ŝ`hk by

Ehk(v
`
h) = A(u− u`h, v`h).

Then, for all surface DG methods apart from LDG, Ehk can be written as

Ehk(v
`
h) =

∑
K̂`

h∈T̂
`
h

∫
K̂`

h

(Rhk −P)∇Γu
`
h · ∇Γv

`
h +

(
δ−1
hk − 1

)
u`hv

`
h +

(
1− δ−1

hk

)
fv`h dA

+
∑
ê`h∈Ê

`
h

∫
ê`h

[u`h]
(
{∇Γv

`
h;n} − {δ−1

êh
Phk(I− dH)P∇Γv

`
h; n̂`h}

)
ds

+
∑
ê`h∈Ê

`
h

∫
ê`h

[v`h]
(
{∇Γu

`
h;n} − {δ−1

êh
Phk(I− dH)P∇Γu

`
h; n̂`h}

)
ds (4.50)

where Rhk is given in (4.12). The functional corresponding to the surface LDG
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method can be written as

Ehk(v
`
h) =(4.50)

+
∑
ê`h∈Ê

`
h

∫
ê`h

δ−1
êh
β · n̂`+h [v`h]

(
[∇Γu

`
h;n]− [Phk(I− dH)P∇Γu

`
h; n̂`h]

)
ds

+
∑
ê`h∈Ê

`
h

∫
ê`h

δ−1
êh
β · n̂`+h [u`h]

(
[∇Γv

`
h;n]− [Phk(I− dH)P∇Γv

`
h; n̂`h]

)
ds.

(4.51)

Furthermore,

|Ehk(v`h)| . hk+1‖f‖L2(Γ)‖v`h‖DG. (4.52)

The proof of Lemma 4.4.5 will be the main part of this section. Before we

give its full proof, we will complete that of Theorem 4.4.1 assuming this result.

Proof of Theorem 4.4.1. Choosing the continuous interpolant φ`h = Ikhu, using the

boundedness estimate (4.48) and the error functional estimate (4.52), (4.47) can be

bounded by

‖Ikhu− u`h‖2DG . Ehk(I
k
hu− u`h) +A(Ikhu− u, Ikhu− u`h)

. hk+1‖f‖L2(Γ)‖Ikhu− u`h‖DG + hk‖u‖Hk+1(Γ)‖Ikhu− u`h‖DG,

which implies

‖Ikhu− u`h‖DG . hk(‖f‖L2(Γ) + ‖u‖Hk+1(Γ)).

Recalling that u− Ikhu ∈ C0(Γ), using Lemma 4.4.2 we obtain

‖u− u`h‖DG ≤ ‖u− Ikhu‖DG + ‖Ikhu− u`h‖DG . hk(‖f‖L2(Γ) + ‖u‖Hk+1(Γ)).

This concludes the first part of the proof. In the case of η = 1, to derive the

L2 estimate, we first observe that the solution z ∈ H2(Γ) to the dual problem

−∆Γz + z = u− u`h (4.53)

satisfies

‖z‖H2(Γ) . ‖u− u`h‖L2(Γ). (4.54)
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Then, using the symmetry of the bilinear form A(·, ·), we have that

‖u− u`h‖2L2(Γ) = (u− u`h, u− u`h)Γ = A(z, u− u`h)

= A(u− u`h, z) = A(u− u`h, z − Ikhz) + Ehk(I
k
hz). (4.55)

Using (4.52), a triangle inequality and the interpolation estimate in Lemma 4.4.2,

we obtain

|Ehk(Ikhz)| . hk+1‖f‖L2(Γ)‖Ikhz‖H1(Γ) . hk+1‖f‖L2(Γ)‖z‖H2(Γ).

Hence, using (4.54),

|Ehk(Ikhz)| . hk+1‖f‖L2(Γ)‖u− u`h‖L2(Γ)

Making use of the continuity of Ikhz − z and Ikhu− u, the symmetry of the bilinear

form A(·, ·), Lemma 4.4.4 and the stability estimate (4.54) we get

A(u− u`h, z − Ikhz) = A(z − Ikhz, u− u`h)

. A(z − Ikhz, Ikhu− u`h) +A(z − Ikhz, u− Ikhu)

. h‖z‖H2(Γ)‖Ikhu− u`h‖DG + hk+1‖z‖H2(Γ)‖u‖Hk+1(Γ)

. h‖z‖H2(Γ)(‖Ikhu− u‖DG + ‖u− u`h‖DG) + hk+1‖z‖H2(Γ)‖u‖Hk+1(Γ)

. (hk+1‖u‖Hk+1(Γ) + h‖u− u`h‖DG)‖u− u`h‖L2(Γ).

Combining these estimates with (4.55) yields

‖u− u`h‖2L2(Γ) .
(
h‖u− u`h‖DG + hk+1(‖f‖L2(Γ) + ‖u‖Hk+1(Γ))

)
‖u− u`h‖L2(Γ),

which gives us the desired L2 estimate and concludes the proof. In the case of η = 0,

we can trivially obtain the (sub-optimal) bound for the error in the L2 norm from

bounding it by the error in the DG norm.

Proof of Lemma 4.4.5. The expression for the error functional Ehk given in Lemma

4.4.5 is obtained by considering the difference between the two equations (4.46) and

(4.5). In order to do this, the integrals of (4.5) have to first be lifted onto Γ. Recall

that, for every K̂h ∈ T̂h, we have that∫
K̂h

∇Γk
h
uh · ∇Γk

h
vh + uhvh dAhk =

∫
K̂l

h

Rhk∇Γu
l
h · ∇Γv

l
h + δ−1

hk u
l
hv
l
h dA.
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Furthermore, for every êh ∈ Êh, we have that∫
êh

[uh]{∇Γk
h
vh; n̂h}+ [vh]{∇Γk

h
uh; n̂h} dshk

=

∫
êlh

[ulh]{Phk(I− dH)P∇Γv
l
h; n̂lh}δ−1

êh
+ [vlh]{Phk(I− dH)P∇Γu

l
h; n̂lh}δ−1

êh
ds.

And finally, we have that∫
êh

βêh [uh][vh] dshk =

∫
êlh

δ−1
êh
βêh [ulh][vlh] ds.

The right-hand side of (4.5) gets transformed in a similar way:

∑
K̂h∈T̂h

∫
K̂h

fhvh dAhk =
∑

K̂l
h∈T̂

l
h

∫
K̂l

h

fvlhδ
−1
hk dA.

Making use of the above, the difference between the two equations (4.46) and (4.5)

yields

0 = A(u, vlh)−
∑

K̂l
h∈T̂

l
h

∫
K̂l

h

fvlh dA−Akh(uh, vh) +
∑

K̂h∈T̂h

∫
K̂h

fhvh dAhk

= A(u− ulh, vlh)− Ehk(vlh)

as required.

Finally we need to show that the error functional Ehk scales appropriately

i.e.

|Ehk(vlh)| . hk+1‖f‖L2(Γ)‖vlh‖DG.

To this end we need to show that the additional terms arising in the error functional

Ehk do not affect the convergence rates expressed in Demlow [2009]. The first term

of the error functional Ehk (the element integral) is the one resulting from the

standard (higher order) surface FEM approach. By Lemma 4.3.1, this term scales

like hk+1 and making use of the stability estimate (4.41) this term scales like the

right-hand side of (4.52). We will now get a bound for the third term of Ehk, for
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which we have the following:

∑
êlh∈Êh

∫
êlh

[vlh]{∇Γu
l
h;n}

(
1 + δ−1

êh
− δ−1

êh

)
− [vlh]{Phk(I− dH)P∇Γu

l
h; n̂lh}δ−1

êh
ds

=
∑
êlh∈Ê

l
h

∫
êlh

[vlh]{∇Γu
l
h;n}

(
1− δ−1

êh

)
+ δ−1

êh
[vlh]
(
{∇Γu

l
h;n} − {Phk(I− dH)P∇Γu

l
h; n̂lh}

)
ds.

Making use of Lemma 4.3.8, Lemma 4.3.1 and the stability estimate (4.41) it is clear

that the first component in the above scales appropriately, so all we have to deal

with is the second component. We first note that since PH = HP = H, we have

that

∇Γu
l+
h · n

+ −P+
hk(I− dH)P∇Γu

l+
h · n̂

l+
h = ∇Γu

l+
h · n

+ −∇Γu
l+
h ·P(I− dH)P+

hkn̂
l+
h

= ∇Γu
l+
h · n

+ −∇Γu
l+
h ·P(I− dH)n̂l+h = ∇Γu

l+
h · (n

+ −Pn̂l+h ) + d∇Γu
l+
h ·Hn̂l+h

where we have used the fact that the Hessian H is symmetric. Hence

∑
êlh∈Ê

l
h

∫
êlh

δ−1
êh

[vlh]
(
{∇Γu

l
h;n} − {Phk(I− dH)P∇Γu

l
h; n̂lh}

)
ds

=
∑
êlh∈Ê

l
h

∫
êlh

δ−1
êh

[vlh]
(
{∇Γu

l
h;n−Pn̂lh}+ d{∇Γu

l
h; Hn̂lh}

)
ds.

For the first component of the above, we have that

∑
êlh∈Ê

l
h

∫
êlh

δ−1
êh

[vlh]{∇Γu
l
h;n−Pn̂lh} ds

. ‖vlh‖DG

 ∑
êlh∈Ê

l
h

∫
êlh

δ−1
êh
hêlh
|{∇Γu

l
h;n−Pn̂lh}|2 ds


1
2

after applying Cauchy-Schwartz. Using similar arguments as done in the proof of
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Lemma 4.3.8, we have that

∑
êlh∈Ê

l
h

∫
êlh

δ−1
êh
hêlh

∣∣∣(n+ −Pn̂l+h ) · ∇Γu
l+
h

∣∣∣2 ds

≤
∑
êlh∈Ê

l
h

∫
êlh

δ−1
êh
hêlh
|n+ −Pn̂l+h |

2|∇Γu
l+
h |

2 ds

. ‖n+ −Pn̂l+h ‖
2
L∞(Êlh)

∑
K̂l

h∈T̂
l
h

∑
êlh∈∂K̂

l
h

hêlh
‖ ∇Γu

l
h

∣∣∣
K̂l

h

‖2
L2(êlh)

. ‖n+ −Pn̂l+h ‖
2
L∞(Êlh)

‖ulh‖2DG.

For the second component, we have that

∑
êlh∈Ê

l
h

∫
êlh

δ−1
êh

[vlh]d{∇Γu
l
h; Hn̂lh} ds

. ‖vlh‖DG

 ∑
êlh∈Ê

l
h

∫
êlh

δ−1
êh
hêlh

d2
∣∣∣{∇Γu

l
h; Hn̂lh}

∣∣∣2 ds


1
2

.

Pursuing the analysis as before and using the fact that the Hessian H is bounded,

we have that∑
êlh∈Ê

l
h

∫
êlh

δ−1
êh
hêlh

d2|∇Γu
l+
h ·Hn̂l+h |

2 ds ≤
∑
êlh∈Ê

l
h

∫
êlh

δ−1
êh
hêlh

d2|∇Γu
l+
h |

2|Hn̂l+h |
2 ds

. ‖d‖2L∞(Γ)

∑
K̂l

h∈T̂
l
h

∑
êlh∈∂K̂

l
h

hêlh
‖ ∇Γu

l
h

∣∣∣
K̂l

h

‖2
L2(êlh)

. ‖d‖2L∞(Γ)‖u
l
h‖2DG

where again the last inequality follows from applying similar arguments as in the

proof of Lemma 4.3.8.

We can now estimate the error functional Ehk:

|Ehk(vlh)| . ‖Rhk −P‖L∞(Γ)‖ulh‖DG‖vlh‖DG + ‖δ−1
hk − 1‖L∞(Γ)‖ulh‖DG‖vlh‖DG

+ ‖1− δ−1
hk ‖L∞(Γ)‖f‖L2(Γ)‖vlh‖DG + ‖1− δ−1

êh
‖
L∞(Êlh)

‖ulh‖DG‖vlh‖DG

+ ‖n+ −Pn̂l+h ‖L∞(Êlh)
‖ulh‖DG‖vlh‖DG + ‖n− −Pn̂l−h ‖L∞(Êlh)

‖ulh‖DG‖vlh‖DG

+ ‖d‖L∞(Γ)‖ulh‖DG‖vlh‖DG.
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So by Lemma 4.3.1 and the stability estimate (4.41) we have

|Ehk(vlh)| . hk+1‖f‖L2(Γ)‖vlh‖DG

for every vlh ∈ V l
h as required.

Remark 4.4.6. Note that the error functional Ehk in Lemma 4.4.5 includes all of the

terms present in the higher order surface FEM setting (see Demlow [2009]) as well

as additional terms arising from the surface DG methods.

4.5 Numerical tests

4.5.1 Implementation aspects

In the following numerical tests we will restrict our attention to the (symmetric)

surface IP method (4.10) with the penalty parameter α chosen to be equal to 10.

This surface DG method has been implemented using DUNE-FEM, a discretisa-

tion module based on the Distributed and Unified Numerics Environment (DUNE),

(further information about DUNE can be found in Bastian et al. [2008b], Bastian

et al. [2008a] and Bastian et al. [2012]). DG methods are well tested for the DUNE-

FEM module, as shown in Dedner et al. [2010], Brdar et al. [2012], but only simple

schemes have been tested for surface PDEs (further information about the DUNE-

FEM module can be found in Dedner et al. [2010] and Dedner et al. [2012]). The

initial grid generation for each test case is performed using the 3D surface grid gen-

eration module of the Computational Geometry and Algorithms Library (CGAL)

(see Rineau and Yvinec [2009]).

The efficient computation of the surface lifting ξ and the signed distance

function d are central to implementing the surface DG methods analysed in the

previous sections; namely for performing grid refinements, as newly created nodes

have to be surface lifted onto Γ. However, only in a very few cases is d available

explicitely (for example, d(x) = |x|−R for a sphere of radius R). Even for relatively

simple surfaces such as ellipsoids, an explicit expression for d is not available and so

both ξ and d must be approximated. Since d is assumed to be smooth and we need

to be concerned only about starting points sufficiently close to Γ, standard methods

of nonlinear optimisation (based on the more general/available level-set description

φ of the surface) to approximate d are, in principle, applicable.

Two different algorithms, developed and discussed in Demlow and Dziuk

[2008], have been tested for such problems: one being Newton’s method and the

other being an ad-hoc first-order method. Before describing the methods, we note a
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relationship which we shall use in our algorithms. For x ∈ U , φ(x) =
∫ d(x)

0 ∇φ(ξ(x)+

tν(x)) · ν(x) dt = d|∇φ(x)|+O(d2). Thus,

d(x) ≈ φ(x)

|∇φ(x)|
. (4.56)

Next, we describe the implementation of Newton’s method. Assume that

x0 ∈ U and that we wish to compute ξ(x0). The Newton method seeks to find a

stationary point of the function F (x, λ) = |x− x0|2 + λφ(x) where φ is the level-set

function of Γ (and not necessarily a signed distance function). Note that ∇F (x, λ) =

(2(x − x0) + λ∇φ(x), φ(x)). Thus ∇F (x, λ) = 0 implies that x ∈ Γ and (x − x0)

is parallel to ∇φ(x), that is, x = ξ(x0). In order to choose a starting point, we

note that 2(x − x0) + λ∇φ(x) = 0 implies that λ = 2d(x0)
|∇φ(x0)| . Using (4.56), we thus

choose the starting value (x0, λ0) = (x0, 2φ(x0)/|∇φ(x0)|2). Given a tolerance tol,

we iterate Newton’s method until(
φ(x)2

|∇φ(x)|2
+

∣∣∣∣ ∇φ(x)

|∇φ(x)|
+ sign(φ(x0))

x− x0

|x− x0|

∣∣∣∣2
)1/2

< tol (4.57)

is reached. Fulfillment of this stopping criteria guarantees that the returned value

x ≈ ξ(x0) lies in the correct direction from x0 to within tol and that, because of

(4.56), d(x) < tol up to higher-order terms.

The first-order algorithm detailed in Demlow and Dziuk [2008] may be de-

scribed as follows: since ξ(x) = x− d(x)ν(x), we may use (4.56) and ν(x) ≈ ∇φ(x)
|∇φ(x)|

to approximate ξ by ξ(x) ≈ x − φ(x)∇φ(x)
|∇φ(x)|2 . Iterating this relationship leads to an

algorithm which converges to some point on Γ but no generally to ξ(x). We thus

correct the direction x− x0 at each step, yielding the following algorithm.

1. Stipulate tol and x0 and initialise x = x0.

2. While (4.57) is not satisfied, iterate the following steps:

(a) Calculate x̃ = x− φ(x)∇φ(x)
|∇φ(x)|2 and dist = sign(φ(x0))|x̃− x0|.

(b) Set x = x0 − dist ∇φ(x̃)
|∇φ(x̃)| .

For both algorithms, we additionally choose to approximate the entries of

∇φ(x) via second order finite difference approximations for a more generic imple-

mentation. It was observed in Demlow and Dziuk [2008] that in practice the second

of the two algorithms was more efficient due to the fact that each step of Newton’s

method is relatively expensive. This was observed in practice and, as such, the

numerical tests discussed below make use of the first-order algorithm.

In addition, we make use of this algorithm to provide a generic implementa-
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tion of test problems on surfaces. Computing the Laplace-Beltrami operator of some

given function over an arbitrary compact smooth and oriented surface in R3 given

by the zero level-set of some function is tedious and requires changing the imple-

mentation for every such surface. In particular, we would need to explicitly compute

the outward unit normal of the surface and its gradient whenever we consider a new

surface. For any u ∈ C2(R3), we have that

∆Γu = ∆u− ν · ∇2uν − tr(∇ν)∇u · ν (4.58)

where ∆ is the usual Euclidean Laplace operator in R3, ∇2u ∈ R3×3 the (Euclidean)

Hessian of u, ∇u the (Euclidean) gradient of u and finally tr(∇ν) the trace of ∇ν
where ∇ν ∈ R3×3 whose entries are the (Euclidean) partial derivatives of each com-

ponent of the normal. We can make use of the ad-hoc first-order algorithm described

previously to approximate the outward unit normal ν of Γ in (4.58): this is done

by computing ν(ξ(x0)) ≈ sign(φ(x0)) ξ̃(x0)−x0

|ξ̃(x0)−x0|
where ξ̃(x0) is the approximation

of ξ(x0) resulting from the algorithm . We may also approximate the (diagonal)

entries of ∇ν via second-order finite difference approximations as done for the ap-

proximation of ∇φ in the first-order algorithm. Such a generic implementation has

the benefit of only requiring input of the level-set function for the surface and noth-

ing more, significantly facilitating numerical tests. Although we omit a rigorous

error analysis of such an approximation of the Laplace-Beltrami operator, the error

caused by such an approximation appears not to affect the resulting convergence

orders for all of the test cases considered below.

4.5.2 Test problem on the sphere

We first consider the simple test problem

−∆Γu+ u = f (4.59)

on the unit sphere

Γ = {x ∈ R3 : |x| = 1}

whose exact solution is chosen to be given by

u(x1, x2, x3) = cos(2πx1) cos(2πx2) cos(2πx3). Table 4.2 shows the L2 and DG er-

rors/EOCs for linear (k = 1) DG/surface approximation order. As expected, the

experimental orders of convergence (EOCs) match up well with the theoretical con-

vergence rates.
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Elements h L2-error L2-eoc DG-error DG-eoc

632 0.223929 0.171459 5.07662
2528 0.112141 0.0528817 1.70 2.64273 0.94
10112 0.0560925 0.0146074 1.86 1.3151 1.01
40448 0.028049 0.00378277 1.95 0.653612 1.01
161792 0.0140249 0.000957472 1.98 0.325961 1.00
647168 0.00701247 0.000240483 1.99 0.162822 1.00

Table 4.2: Errors and convergence orders for the DG approximation of (4.59) on the
unit sphere with k = 1.

4.5.3 Test problem on Dziuk surface

Our second test problem, taken from Dziuk [1988], considers (4.59) on the Dziuk

surface

Γ = {x ∈ R3 : (x1 − x2
3)2 + x2

2 + x2
3 = 1}

whose exact solution is chosen to be given by u(x) = x1x2. The outward unit normal

to this surface is given by ν(x) = (x1− x2
3, x2, x3(1− 2(x1− x2

3)))/(1 + 4x2
3(1− x1−

x2
2))1/2. There is no explicit projection map for mapping newly created nodes to

Γ so ξ(x) has to be approximated via the ad-hoc first order algorithm described in

Section 4.5.1.

Elements h L2-error L2-eoc DG-error DG-eoc

92 0.704521 0.243493 0.894504
368 0.353599 0.0842372 1.53 0.490805 0.87
1472 0.176993 0.0268596 1.65 0.263808 0.90
5888 0.0885231 0.00637826 2.07 0.135162 0.97
23552 0.0442651 0.00171047 1.90 0.0685366 0.98
94208 0.022133 0.000416366 2.04 0.0343677 1.00
376832 0.0110666 0.000104274 2.00 0.0171891 1.00
1507328 0.0055333 2.60734e-05 2.00 0.0085935 1.00

Table 4.3: Errors and convergence orders for the DG approximation of (4.59) on the
Dziuk surface with k = 1.

Table 4.3 shows the L2 and DG errors/EOCs for linear (k = 1) DG/surface

approximation order. As before, the experimental orders of convergence (EOCs)

match up well with the theoretical convergence rates. Figure 4.3 shows the resulting

DG approximation to (4.59) on the Dziuk surface.
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(a)

Figure 4.3: DG approximation of (4.59) on the Dziuk surface with k = 1.

4.5.4 Test problem on Enzensberger-Stern surface

Our next test problem considers (4.59) on the Enzensberger-Stern surface

Γ = {x ∈ R3 : 400(x2y2 + y2z2 + x2z2)− (1− x2 − y2 − z2)3 − 40 = 0}

whose exact solution is again chosen to be given by u(x) = x1x2. As for the previous

test problem, there is no explicit projection map so we make use of the first order

ad-hoc algorithm. In this test problem, the computation of ∆Γu to derive the right-

hand side of (4.59) is done via our approximation of the Laplace-Beltrami operator

described in Section 4.5.1.

Elements h L2-error L2-eoc DG-error DG-eoc

2358 0.163789 0.476777 0.998066
9432 0.0817973 0.175293 1.44 0.472241 1.08
37728 0.040885 0.0160606 3.45 0.150144 1.65
150912 0.0204411 0.00139698 3.52 0.0703901 1.09
603648 0.0102204 0.00033846 2.04 0.03473453 1.02
2414592 0.00511 7.86713e-05 2.10 0.0172348 1.01

Table 4.4: Errors and convergence orders for the DG approximation of (4.59) on the
Enzensberger-Stern surface with k = 1.

Table 4.4 shows the L2 and DG errors/EOCs for linear (k = 1) DG/surface

approximation order. Although the EOCs are more erratic than for the previous test

problem, partly due to our approximation of the Laplace-Beltrami operator, they
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nevertheless match up well with theoretical convergence rates. Figure 4.4 shows the

resulting DG approximation to (4.59) on this surface.

(a)

Figure 4.4: DG approximation of (4.59) on the Enzensberger-Stern surface with
k = 1.

4.5.5 Higher order numerics

Table 4.5 and Table 4.6 show the L2 and DG errors/EOCs for respectively quadratic

(k = 2) and quartic (k = 4) DG/surface approximation order for the sphere test

problem. As expected, we observe higher order optimal convergence rates which

coincide with those that were derived theoretically.

Elements h L2-error L2-eoc DG-error DG-eoc

632 0.223929 0.0369759 1.42052
2528 0.112141 0.00490374 2.91 0.386962 1.88
10112 0.0560925 0.000609787 3.00 0.0986477 1.97
40448 0.028049 7.58558e-05 3.01 0.0247951 1.99
161792 0.0140249 9.45978e-06 3.00 0.00620871 2.00

Table 4.5: Errors and convergence orders for the DG approximation of (4.59) on the
unit sphere with k = 2.

Next, we look at the case when the surface approximation order k and the

DG space order r do not coincide. In this case, one can show that, for symmetric
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Elements h L2-error L2-eoc DG-error DG-eoc

632 0.223929 0.000776829 0.0471208
2528 0.112141 2.68079e-05 4.86 0.00325848 3.85
10112 0.0560925 8.48343e-07 4.98 0.000207653 3.97
40448 0.028049 2.65819e-08 5.00 1.30507e-05 4.00

Table 4.6: Errors and convergence orders for the DG approximation of (4.59) on the
unit sphere with k = 4.

Figure 4.5: Paraview plots of the linear (k = 1) (right) and quartic (k = 4) (left)
DG approximation of (4.59) on the unit sphere (623 elements).

surface DG methods, if u ∈ Hr+1(Γ), the estimates given in Theorem 4.4.1 are now

given by

‖u− ulh‖DG . hr‖u‖Hr+1(Γ) + hk+1‖f‖L2(Γ),

‖u− ulh‖L2(Γ) . hr+1‖u‖Hr+1(Γ) + hk+1‖f‖L2(Γ).

These estimates indicate that one could obtain optimal higher order conver-

gence rates in the DG norm by choosing the ansatz space order to be one order

higher than the surface approximation order. This is shown in Table 4.7 for the

Dziuk test problem.
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Elements h L2-error L2-eoc DG-error DG-eoc

92 0.704521 0.136442 0.322416
368 0.353599 0.0551454 1.31 0.150303 1.10
1472 0.176993 0.0215041 1.36 0.0601722 1.32
5888 0.0885231 0.00448861 2.26 0.0182412 1.72
23552 0.0442651 0.00120287 1.90 0.00513161 1.83
94208 0.022133 0.00029651 2.02 0.00130482 1.98
376832 0.0110666 7.41044e-05 2.00 0.00032728 2.00

Table 4.7: Errors and convergence orders for the DG approximation of (4.59) on the
Dziuk surface with k = 1 and r = 2.
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Chapter 5

A Posteriori Error Analysis of

DG Methods on Surfaces

In this chapter, we will derive and analyse an a posteriori error estimator for the

(symmetric) surface IP method (4.10). For simplicity we will restrict our a posteriori

analysis to piecewise linear surface approximations/DG spaces, rather than higher

order surface approximations/DG spaces which was considered in Chapter 4 for the

a priori analysis. To highlight this, all Γh geometric objects and derived quantities

(functions spaces, change of measures, etc.) defined in Chapter 4 will appear without

hats (e.g. eh ∈ Eh instead of êh ∈ Êh and δeh instead of δêh) and without the surface

approximation order (“k”) subscripts (e.g. Sh instead of Ŝh1). Much of the analysis

presented in this chapter can be straightforwardly applied to both a larger class of

surface DG methods and higher order surface approximations, as in Chapter 4. It is

also worth comparing the main results in this chapter (Theorem 5.5.1 and Theorem

5.6.1) with those for surface FEM given in Section 2.5.

5.1 Notation and setting

Recall from Chapter 2 the model problem (2.6): given f ∈ L2(Γ), find u ∈ H1(Γ)

such that

aΓ(u, v) =

∫
Γ
fv dA ∀v ∈ H1(Γ) (5.1)

where

aΓ(u, v) =

∫
Γ
∇Γu · ∇Γv + uv dA.
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Here Γ is still a compact smooth and oriented surface in R3. In this chapter, we will

only assume that u ∈ H1(Γ): no higher (elliptic) regularity results will be assumed.

5.2 Surface IP approximation

As in Chapter 2, we approximate Γ by a piecewise linear surface approximation Γh

composed of planar triangles {Kh}Kh∈Th whose vertices lie on Γ, and denote by Th
the associated regular, conforming triangulation of Γh, i.e., Γh =

⋃
Kh∈Th Kh. In

addition, let N denote the set of nodes of triangles in Th (note that N ⊂ Γ). We

also denote by hKh
the largest edge of Kh ∈ Th. Given p ∈ N , we define the patch

wp = interior(∪Kh|p∈K̄h
K̄h) and let hp = maxKh⊂wp hKh

. The discrete problem

reads: find uh ∈ Sh such that

AIPh (uh, vh) =
∑

Kh∈Th

∫
Kh

fhvh dAh ∀vh ∈ Sh (5.2)

where

AIPh (uh, vh) :=
∑

Kh∈Th

∫
Kh

∇Γh
uh · ∇Γh

vh + uhvh dAh

−
∑
eh∈Eh

∫
eh

[uh]{∇Γh
vh;nh}+ [vh]{∇Γh

uh;nh} dsh

+
∑
eh∈Eh

∫
eh

βeh [uh][vh] dsh

where βeh is given by (4.7) with k = 1.

5.3 Technical tools

5.3.1 Surface lift

The surface lift is defined as in Section 2.3.1. As before, for every Kh ∈ Th, there

is a unique curved triangle K l
h := ξ(Kh) ⊂ Γ and these lifted triangles induce a

(lifted) regular, conforming triangulation T lh of Γ. Similarly, elh := ξ(eh) ∈ E lh are

the unique curved edges. The surface lift Slh of the scalar function space Sh is given

in the usual way. As in (2.9), we define the discrete right-hand side fh such that

f `h = f . Recall that we denote by w−` ∈ Sh the inverse surface lift of some function

w ∈ S`h satisfying (w−`)` = w.

In addition to (2.10), which provides a formula for moving from gradients on
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Γh to gradients on Γ, one can show that for x ∈ Γh and vh defined on Γh, we have

that

∇Γv
l
h(ξ(x)) = Fh(x)∇Γh

vh(x) (5.3)

where

Fh(x) := (I− dH)(x)−1

(
I− νh ⊗ ν

νh · ν

)
.

See Demlow and Dziuk [2008] for further details. We will also require the surface

lift Σl
h of the vector-valued function space Σh, which is given by

Σl
h := {wlh ∈ [L2(Γ)]3 : wlh(ξ) = Fhwh(x(ξ)), for some wh ∈ Σh}.

Remark 5.3.1. Note that the definition of Σl
h also implies that wh = Ph(I−dH)Pwlh

for wlh ∈ Σl
h. This can be seen by noting that since wlh is tangential to Γ, we have

that

FhPh(I− dH)Pwlh = (I− dH)−1(I− νh ⊗ ν
νh · ν

)(I− νh ⊗ νh)(I− dH)wlh.

Now (νh⊗ν)(νh⊗νh)
νh·ν = (ν·νh)νh⊗νh

ν·νh = νh ⊗ νh so

FhPh(I− dH)Pwlh = (I− dH)−1(I− νh ⊗ ν
νh · ν

)(I− dH)wlh

= wlh −
1

νh · ν
(I− dH)−1(νh ⊗ ν)(I− dH)wlh.

Now we define w̃lh := (I−dH)wlh and note that this is still tangential to Γ. As such,

we have that (νh ⊗ ν)w̃lh = (ν · w̃lh)νh = 0. And so,

FhPh(I− dH)Pwlh = wlh.

Finally, we define

Bh :=
√
δh(P−Rh)Fh (5.4)

where, as before, Rh is given by (2.12). Next, we derive explicit formulas for the

change of measures δh and δeh , which will be useful to obtain a computable a pos-

teriori error estimator.
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Lemma 5.3.2. Assume that x ∈ Γh. Then

δh(x) = (1− d(x)κ1(x))(1− d(x)κ2(x))ν · νh, (5.5)

δeh(x) = |∇ξ(x)τh(x)| (5.6)

where τh is the unit tangent of eh.

Proof. See Proposition 2.1 in Demlow and Dziuk [2008] for the first expression. To

prove the second expression, we do the following: let e ⊂ R be the reference edge

for codimension one entities. Let f : e→ eh ⊂ Γh be the linear transformation from

the reference edge to some fixed edge eh ∈ Eh. F := f ′ ∈ R3×1 is tangent to eh

and so F = λτh where λ ∈ R and τh is the unit tangent of eh. Hence we have that

ds =
√
|F T∇ξT∇ξF | dx = |λ||∇ξτh| dx where ∇ξ ∈ R3×3 is the gradient of the

projection mapping ξ given in (2.1) and dx is the Lebesgue measure on e. Similarly,

we have that dsh = |λ| dx and the second expression follows.

5.3.2 Clément interpolation

We now define a quasi-interpolant and state some estimates that it must satisfy.

Given z ∈ L1(Γ) and p ∈ N , we let

z−lp :=
1∫

wp
ϕp dAh

∫
wp

ϕpz
−l dAh (5.7)

where ϕp ∈ Sh ∩H1(Γh) denotes the Lagrange nodal basis function associated with

p, and define

Ihz
−l :=

∑
p∈N

z−lp ϕp. (5.8)

We note a useful property that the weights z−lp satisfy (see (2.2.33) in Demlow and

Dziuk [2008]):

‖z−lp ‖L2(wp) ≤
√

3

2
‖z−l‖L2(wp) ≤

√
3

2
‖
√
δh‖L∞(wp)‖z‖L2(wl

p). (5.9)

Since {ϕp} is a partition of unity i.e.
∑

p∈N ϕp = 1, we also have the following:∫
Γh

(z−l − Ihz−l) dAh =
∑
p∈N

∫
wp

(z−l − z−lp )ϕp dAh = 0. (5.10)

The Clément interpolant satisfies the following estimates.
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Lemma 5.3.3. Let z ∈ H1(Γ). Assume that the grid Th is shape-regular and that

the number of elements sharing the node p is bounded. Let wlp be the surface lift of

the patch wp onto Γ. Then for each p ∈ N , we have that

‖z−l − z−lp ‖L2(wp) ≤ Chp‖Rh‖
1
2

l2,L∞(wp)
‖∇Γz‖L2(wl

p). (5.11)

Let also p ∈ ēh ⊂ Eh. Then

‖z−l − z−lp ‖L2(eh) ≤ Ch
1
2
p ‖Rh‖

1
2

l2,L∞(wp)
‖∇Γz‖L2(wl

p) (5.12)

where Rh is given by (2.12). Note that C does not depend on any essential quantities.

Here ‖Rh‖lp,Lq(wp) := ‖‖Rh‖lp→lp‖Lq(wp) and, if p = q, we omit the first index.

Proof. See Lemma 2.2 in Demlow and Dziuk [2008].

5.4 Dual weighted residual equation

We derive a residual equation for some quantity of interest J(u − ulh) where J is

some bounded, linear functional acting on H1(Γ) + Slh.

5.4.1 Bilinear form on Γ

Before we state the bilinear form we consider on Γ, we require the following DG lift

operators.

Definition 5.4.1. Let w ∈ H1(Γ) +Slh. Define the operators L : H1(Γ) +Slh → Σl
h

and, for every elh ∈ E lh, Lelh
: H1(Γ) + Slh → Σl

h by respectively

∑
Kl

h∈T
l
h

∫
Kl

h

L(w) · φlh dA =
∑
elh∈E

l
h

∫
elh

[w]{φlh;n} ds,

∑
Kl

h∈T
l
h

∫
Kl

h

Lelh
(w) · φlh dA =

∫
elh

[w]{φlh;n} ds

for all φlh ∈ Σl
h, where n+ and n− are respectively the unit surface conormals to

K l+
h and K l−

h on elh ∈ E lh, satisfying n+ = −n−.

Remark 5.4.2. Note that w ∈ H1(Γ)⇒ L(w) = 0 and Lelh
(w) = 0 for all eh ∈ Eh.

Remark 5.4.3. Note that, for each elh ∈ E lh, Lelh
(w) vanishes outside the union of the

two triangles containing elh and that L(w) =
∑

elh∈E
l
h

Lelh
(w) for all w ∈ H1(Γ) +Slh.

The DG lifting operator Lelh
satisfies the following stability estimate:
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Lemma 5.4.4. Let weh = K+
h ∪K

−
h and w∂eh = ∂K+

h ∪ ∂K
−
h . Then there exists a

constant CL > 0 such that, for each elh = K l+
h ∩K

l−
h ∈ E

l
h,

‖Lelh(w)‖L2(Γ) . ‖Fh‖L∞(w∂
eh

)‖Ph(I− dH)P‖L∞(weh
)‖δeh‖L∞(eh)‖

√
βeh [w−l]‖L2(eh)

for every w ∈ Slh +H1(Γ). The constant CL depends solely on the shape-regularity

of the mesh and on the penalty parameter α.

Proof. The proof will follow a similar argument to the one found in Schötzau et al.

[2003]. Let Σl
h(wleh) denote the space of all functions in Σl

h restricted to wleh . For

w ∈ Slh +H1(Γ), making use of Remark 5.4.3 and the definition of Σl
h, we have that

‖Lelh(w)‖L2(wl
eh

) = sup
φlh∈Σl

h(wl
eh

)

∫
wl

eh

Lelh
(w) · φlh dA

‖φlh‖L2(wl
eh

)

= sup
φlh∈Σl

h(wl
eh

)

∫
elh

[w]{φlh;n} ds

‖φlh‖L2(wl
eh

)

≤ sup
φlh∈Σl

h(wl
eh

)

(∫
elh
δehβeh |[w]|2 ds

) 1
2
(∫

elh
δ−1
eh
β−1
eh
|{φlh;n}|2 ds

) 1
2

‖φlh‖L2(wl
eh

)

.

Now, by definition of Σl
h, there exists a φh ∈ Σh such that φlh(ξ) = Fhφh(x(ξ)).

Therefore (∫
elh
δehβeh |[w]|2 ds

) 1
2
(∫

elh
δ−1
eh
β−1
eh
|{φlh;n}|2 ds

) 1
2

‖φlh‖L2(wl
eh

)

≤

(∫
eh
δ2
eh
βeh |[w−l]|2 dsh

) 1
2
(∫

w∂
eh

β−1
eh
|Fhφh|2 dsh

) 1
2

‖φlh‖L2(wl
eh

)

Applying the trace theorem on Γh and lifting back onto Γ, we obtain∫
∂K+

h

β−1
eh
|Fhφh|2 dsh ≤ ‖Fh‖2L∞(∂K+

h )

∫
∂K+

h

β−1
eh
|φh|2 dsh

≤ C‖Fh‖2L∞(∂K+
h )

∫
K+

h

α−1|φh|2 dAh

≤ C‖Fh‖2L∞(∂K+
h )
‖Ph(I− dH)P‖2

L∞(K+
h )
‖φlh‖2L2(Kl+

h )

where we have used that δ−1
h < 1. Here C depends on the shape-regularity of the

mesh and on the penalty parameter α but not on any other essential quantity like

h. This provides the desired estimate.

We can now define a bilinear form on Γ which is well-defined in the space
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(H1(Γ) + Slh)× (H1(Γ) + Slh) by making use of the DG lift. Let

AIP (v, z) :=
∑

Kl
h∈T

l
h

∫
Kl

h

∇Γv · ∇Γz + vz dA−
∑

Kl
h∈T

l
h

∫
Kl

h

L(v) · ∇Γz + L(z) · ∇Γv dA

+
∑

elh∈E
l
h

∫
elh

δ−1
eh
βeh [v][z] ds. (5.13)

The bilinear form AIP is related to the original problem (5.1) in the following way:

Lemma 5.4.5. Let uh ∈ Sh denote the solution to (5.2) and ulh ∈ Slh its surface lift

onto Γ. Let zlh ∈ S
c,l
h := Slh ∩H1(Γ). Then we have that

AIP (ulh, z
l
h) =

∑
Kl

h∈T
l
h

∫
Kl

h

fzlh dA− Eh(zlh)

where

Eh(zlh) :=
∑

Kl
h∈T

l
h

∫
Kl

h

(Rl
h −P)∇Γu

l
h · ∇Γz

l
h +

(
δ−1
h − 1

)
ulhz

l
h +

(
1− δ−1

h

)
fzlh dA

+
∑
elh∈E

l
h

∫
elh

[ulh]
(
{∇Γz

l
h;n} −

{
Pl
h(I− dH)P∇Γz

l
h;nlh

}
δ−1
eh

)
ds.

Proof. We notice that AIP (ulh, z
l
h) = AIP (ulh − u, zlh) + AIP (u, zlh). Since u, zlh ∈

H1(Γ) we have that AIP (u, zlh) = aΓ(u, zlh) =
∑

Kl
h∈T

l
h

∫
Kl

h
fzlh dA by Remark 5.4.2

and (5.1). Also, we have that AIP (u− ulh, zlh) = Eh(zlh) by Lemma 4.4.5.

5.4.2 Residual equation

In order to derive the residual equation, we consider the following dual problem:

find z ∈ H1(Γ) such that

AIP (v, z) = J(v) ∀v ∈ H1(Γ). (5.14)

In a similar fashion to Karakashian and Pascal [2003] and Houston et al. [2007], we

decompose the error eh := u− ulh using uh = uch + u⊥h (hence ulh = uc,lh + u⊥,lh ) with

uc,lh ∈ S
c,l
h (which will be constructed explicitely in the proof of Lemma 5.5.3) and

u⊥,lh ∈ S⊥,lh where S⊥,lh denotes the orthogonal complement in Slh of Sc,lh with respect

to the DG norm. Thus ech = u − uc,lh ∈ H
1(Γ). Let zlh ∈ S

c,l
h , then from the dual
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problem (5.14) we have that

J(eh) = J(ech)− J(u⊥,lh ) = AIP (ech, z)− J(u⊥,lh )

= AIP (eh, z) +AIP (u⊥,lh , z)− J(u⊥,lh )

= AIP (u, z)−AIP (ulh, z − zlh)−AIP (ulh, z
l
h) +AIP (u⊥,lh , z)− J(u⊥,lh )

Using the fact that AIP (u, z) = aΓ(u, z) (by Remark 5.4.2), (5.1) and Lemma 5.4.5,

we get

J(eh) =
∑

Kl
h∈T

l
h

∫
Kl

h

f(z − zlh) dA−AIP (ulh, z − zlh) +AIP (u⊥,lh , z)− J(u⊥,lh ) + Eh(zlh).

Using the fact that z − zlh ∈ H1(Γ) so that [z − zlh] = 0 holds, we have that

J(eh) =
∑

Kl
h∈T

l
h

∫
Kl

h

f(z − zlh) dA−
∑

Kl
h∈T

l
h

∫
Kl

h

∇Γu
l
h · ∇Γ(z − zlh) + ulh(z − zlh) dA

+
∑

Kl
h∈T

l
h

∫
Kl

h

L(ulh) · ∇Γ(z − zlh) dA +AIP (u⊥,lh , z)− J(u⊥,lh ) + Eh(zlh).

Moving the first two integrals in the above onto Γh and integrating by parts, we get

J(eh) =
∑

Kh∈Th

(∫
Kh

(fhδh + ∆Γh
uh − uhδh)(z−l − zh) dAh −

∫
∂Kh

∇Γh
uh · nKh

(z−l − zh) dsh

)

−
∑

Kl
h
∈T l

h

∫
Kl

h

(P−Rl
h)∇Γu

l
h · ∇Γz dA +

∑
Kl

h
∈T l

h

∫
Kl

h

(
δ−1
h − 1

)
(ulh − f)zlh dA

+
∑

Kl
h
∈T l

h

∫
Kl

h

L(ulh) · ∇Γ(z − zlh) dA

+
∑

el
h
∈El

h

∫
el
h

[ulh]
(
{∇Γz

l
h;n} −

{
Pl

h(I− dH)P∇Γz
l
h;nl

h

}
δ−1
eh

)
ds +AIP (u⊥,l

h , z)− J(u⊥,l
h ).

We now wish to move all the terms in the above onto the discrete surface. Making

use of (5.3), we have the following:

−
∫
Kl

h

(P−Rl
h)∇Γu

l
h · ∇Γz ds = −

∫
Kh

δehFT
h (P−l −Rh)Fh∇Γh

uh · ∇Γh
z−l dsh

and∑
Kl

h∈T
l
h

∫
Kl

h

L(ulh) · ∇Γ(z − zlh) dA =
∑

Kh∈Th

∫
Kh

L−l(ulh) · δhFh∇Γh
(z−l − zh) dAh.
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Furthermore, making use of the fact that P
l+/−
h n

l+/−
h = n

l+/−
h on each elh ∈ E lh and

HP = H, we have that

∑
elh∈E

l
h

∫
elh

[ulh]
({
∇Γz

l
h;n
}
−
{

Pl
h(I− dH)P∇Γz

l
h;nlh

}
δ−1
eh

)
ds

=
∑
elh∈E

l
h

∫
elh

[ulh]
({
∇Γz

l
h;n
}
−
{
∇Γz

l
h; δ−1

eh
P(I− dH)nlh

})
ds

=
∑
elh∈E

l
h

∫
elh

[ulh]
({
∇Γz

l
h; (n− δ−1

eh
Pnlh)

}
+ δ−1

eh
d
{
∇Γz

l
h; Hnlh

})
ds

=
∑
eh∈Eh

∫
eh

[uh]
({

Fh∇Γh
zh; (δehn

−l −P−lnh)
}

+ d {Fh∇Γh
zh; Hnh}

)
dsh.

Making use of the above and writing all terms as element-wise computations, we
derive the following residual equation:

J(eh) =
∑

Kh∈Th

∫
Kh

(fhδh + ∆Γh
uh − uhδh)(z−l − zh) dAh

︸ ︷︷ ︸
I

−
1

2

∑
Kh∈Th

∫
∂Kh

[∇Γh
uh;nh](z−l − zh) dsh

︸ ︷︷ ︸
II

−
∑

Kh∈Th

∫
Kh

δehF
T
h (P−l −Rh)Fh∇Γh

uh · ∇Γh
z−l dAh

︸ ︷︷ ︸
III

+
∑

Kh∈Th

∫
Kh

(1− δh)(uh − fh)zh dAh

︸ ︷︷ ︸
IV

+
∑

Kh∈Th

∫
Kh

L−l(ulh) · δhFh∇Γh
(z−l − zh) dAh

︸ ︷︷ ︸
V

+
∑

Kh∈Th

1

2

∫
∂Kh

[uh]
({

Fh∇Γh
zh; (δehn

−l −P−lnh)
}

+ d
{
Fh∇Γh

zh;Hnh

})
dsh

︸ ︷︷ ︸
V I

+AIP (u⊥,l
h , z)− J(u⊥,l

h )︸ ︷︷ ︸
V II

. (5.15)

Remark 5.4.6. The residual equation (5.15) may be used to estimate an arbitrary

bounded linear functional J in H1 + Slh of the error eh. In particular, one may use

it to derive a posteriori error estimates in the L2 or L∞ norm, which will be the

subject of future work. In this paper, we will only focus on deriving estimates in the

DG norm and will do so by bounding all of the terms in the residual equation (5.15),

approximating the dual weights z−l − zh using interpolation estimates. It is worth

mentioning that instead of using interpolation estimates, one may also deal with

the weights by approximating the dual solution z of (5.14) by a fine mesh approx-

imation (thus requiring an additional solve step for each iteration), and computing

the resulting terms in the residual directly. Such an approach was considered in

Georgoulis et al. [2009] for example, and typically leads to very accurate estimators
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(with efficiency indices close to 1).

5.5 A posteriori upper bound (reliability)

In this section we derive a reliable estimator for the error in the DG norm.

Theorem 5.5.1. Suppose that Th is shape-regular and let

ηKh
= hKh

‖fhδh + ∆Γh
uh − uhδh‖L2(Kh) + h

1/2
Kh
‖[∇Γh

uh;nh]‖L2(∂Kh) (5.16)

be the sum of the scaled element and jump residuals, then

‖u− ulh‖DG(Γ) ≤ C

 ∑
Kh∈Th

R2
Kh

+R2
DGKh

+ G2
Kh

+ G2
DGKh

 1
2

with

R2
Kh

:= ‖Rh‖l2,L∞(wKh
)η

2
Kh
, (5.17)

R2
DGKh

:=
(

1 + ‖Fh‖2L∞(w∂
∂Kh

)‖Ph(I− dH)P‖2L∞(w∂Kh
)‖δeh‖

2
L∞(∂Kh) + ‖Rh‖l2,L∞(wKh

)

‖δh‖L∞(wKh
)‖Fh‖2L∞(w∂

∂Kh
)‖Ph(I− dH)P‖2L∞(w∂Kh

)‖δeh‖
2
L∞(∂Kh)

)
‖
√
βeh [uh]‖2L2(∂Kh),

(5.18)

G2
Kh

:=‖Bh∇Γh
uh‖2L2(Kh) + ‖(1− δh)(uh − fh)‖2L2(Kh), (5.19)

G2
DGKh

:= ‖δh‖L∞(wKh
)h
−2
Kh

(
‖
√
βeh [uh]

{
| (FhPh)T (δehn

−l −P−lnh)|
}
‖2L2(∂Kh)

+ ‖d
√
βeh [uh]

{
| (FhPh)T Hnh|

}
‖2L2(∂Kh)

)
, (5.20)

where C depends only on the shape regularity of the grid, wKh
=
⋃
p∈Kh

wp, w∂Kh
=⋃

eh⊂∂Kh
weh and w∂∂Kh

=
⋃
eh⊂∂Kh

w∂eh. The operators Rh,Bh are defined in (2.12)

and (5.4), respectively.

Remark 5.5.2. The geometric estimates given in Lemma A.0.1 (applied to the piece-

wise linear surface approximation setting k = 1) make it clear that, if Γ is sufficiently
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smooth, the geometric residuals GKh
and GDGKh

defined in Theorem 5.5.1 are of

higher order compared to RKh
and RDGKh

i.e.

 ∑
Kh∈Th

R2
Kh

+R2
DGKh

1/2

≤ Ch and

 ∑
Kh∈Th

G2
Kh

+ G2
DGKh

1/2

≤ Ch2.

In addition, the scaling terms for η2
Kh

and ‖
√
βeh [uh]‖2L2(∂Kh) given in respectively

(5.17) and (5.18) scale like O(1)+h and can thus be omitted from the local estimator

computation for small enough h.

The proof of Theorem 5.5.1 will require the following approximation result:

Lemma 5.5.3. Suppose Th is a conforming grid. Then for any vh ∈ Sh, there exists

vch ∈ Sch such that

‖vlh − v
c,l
h ‖DG ≤ C⊥

 ∑
elh∈E

l
h

∫
elh

δ−1
eh
βeh |[v

l
h]|2 ds

1/2

for some constant C⊥ independent of h but which may depend on the shape-regularity

of the grid.

Proof. We construct vch ∈ Sch in such a way that, at every node of Th corresponding

to a Lagrangian-type degree of freedom for Sch, the value of vch is set to the average

of the values of vh at that node. Its surface lift, vc,lh ∈ S
c,l
h , simply lifts the resulting

function onto T lh in the usual way. The proof then follows along the lines of Theorem

2.2 in Karakashian and Pascal [2003].

To prove Theorem 5.5.1, we begin by bounding term I of (5.15). Let zh =

Ihz
−l, R := fhδh + ∆Γh

uh − uhδh, r := [∇Γh
uh;nh]. Recalling that {ϕp}p∈N is a

partition of unity, recalling (5.10) and applying (5.11), we then have that

I =
∑
p∈N

∫
wp

R(z−l − z−lp )ϕp dsh ≤ C
∑
p∈N

hp‖Rh‖
1
2

l2,L∞(wp)
‖Rϕp‖L2(wp)‖∇Γz‖L2(wl

p).

(5.21)
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Next we turn to bounding term II. Applying (5.12), we get

II = −
∑
p∈N

∑
ēh3p

∫
eh

r(z−l − z−lp )ϕp dsh

≤ C
∑
p∈N

∑
ēh3p

h
1
2
p ‖Rh‖

1
2

l2,L∞(wp)
‖rϕp‖L2(eh)‖∇Γz‖L2(wl

p). (5.22)

Let

ηp = hp‖Rϕp‖L2(wp) +
∑
ēh3p

h
1
2
p ‖rϕp‖L2(eh).

Combining (5.21) and (5.22) and noting that each element Kh has only three nodes,

we thus find that

I + II ≤ C
∑
p∈N
‖Rh‖

1
2

l2,L∞(wp)
ηp‖∇Γz‖L2(wl

p)

≤ C

∑
p∈N
‖Rh‖l2,L∞(wp)η

2
p

 1
2

‖z‖H1(Γ), (5.23)

where C does not depend on Th or any other essential quantities.

In order to bound term III in (5.15) we first surface lift the integral back to

Γ, and making use of (5.3) and (5.4) we get

III = −
∑

Kl
h∈T

l
h

∫
Kl

h

(P−Rl
h)∇Γu

l
h · ∇Γz ds

≤

 ∑
Kh∈Th

‖Bh∇Γh
uh‖2L2(Kh)

1/2

‖z‖H1(Γ).

Next we bound term IV . First we note that, for p ∈ N and with z−lp defined as in

(5.7), we have that

‖√ϕpz−lp ‖L2(wp) =

√∫
wp

ϕp dsh
1∫

wp
ϕp dsh

∣∣∣∣∣
∫
wp

ϕpz
−l
p dsh

∣∣∣∣∣ ≤ ‖√ϕpz−l‖L2(wp).
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Making use of the above, we have the following:

IV =
∑

Kh∈Th

∫
Kh

(1− δh)(uh − fh)zh dAh

≤
∑
p∈N
‖√ϕp(1− δh)(uh − fh)‖L2(wp)‖

√
ϕpz

−l
p ‖L2(wp)

≤
∑
p∈N
‖δ−1
h ‖

1/2
L∞(wp)‖

√
ϕp(1− δh)(uh − fh)‖L2(wp)‖

√
ϕlpz‖L2(wl

p)

≤

∑
p∈N
‖√ϕp(1− δh)(uh − fh)‖2L2(wp)

1/2

‖z‖H1(Γ).

Making use of Remark 5.4.3, we may bound term V in the following way:

V =
∑
p∈N

∫
wp

L−l(ulh) · δhFh∇Γh
((z−l − z−lp )ϕp) dAh

=
∑
p∈N

∫
wp

L−l(ulh) ·
(
δhFh∇Γh

z−lϕp + δhFh(z−l − z−lp )∇Γh
ϕp

)
dAh

=
∑
p∈N

∫
wl

p

L(ulh) · ∇Γzϕ
l
p + L(ulh) · ∇Γϕ

l
p(z − zp) dA

≤
∑
p∈N
‖L(ulh)

√
ϕlp‖L2(wl

p)‖∇Γz
√
ϕlp‖L2(wl

p)

+
∑
p∈N
‖L(ulh) · ∇ϕlp‖L2(wl

p)‖δh‖
1/2
L∞(wp)‖z − zp‖L2(wp)

≤

∑
p∈N

∫
wl

p

 ∑
elh⊂w̄l

p

Lelh
(ulh)

2

ϕlp dA

1/2∑
p∈N
‖∇Γz

√
ϕlp‖2L2(wl

p)

1/2

+ C
√

2
∑
p∈N

h−1
p ‖L(ulh)‖L2(wl

p)‖δh‖
1/2
L∞(wp)hp‖Rh‖

1
2

l2,L∞(wp)
‖∇Γz‖L2(wl

p)

≤ C

∑
p∈N

∫
wl

p

∑
elh⊂w̄l

p

L2
elh

(ulh)ϕlp dA

1/2

‖z‖H1(Γ)

+ C
√

2

∑
p∈N
‖Rh‖l2,L∞(wp)‖δh‖L∞(wp)

∫
wl

p

∑
elh⊂w̄l

p

L2
elh

(ulh) dA

1/2

‖z‖H1(Γ).
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Using again Remark 5.4.3 and the DG lift estimate in Lemma 5.4.4, we have that

∑
p∈N

∫
wl

p

∑
elh⊂w̄l

p

L2
elh

(ulh)ϕlp dA ≤
∑
elh∈E

l
h

∫
Γ

L2
elh

(ulh) dA

≤ CL
∑
eh∈Eh

‖Fh‖2L∞(w∂
eh

)‖Ph(I− dH)P‖2L∞(weh
)‖δeh‖

2
L∞(eh)‖

√
βeh [uh]‖2L2(eh).

Similarly, we have that

∑
p∈N

∫
wl

p

∑
elh⊂w̄l

p

L2
elh

(ulh) dA ≤ C
∑

Kl
h∈T

l
h

∫
Kl

h

∑
elh⊂∂K

l
h

L2
elh

(ulh) dA

≤ C
∑

Kl
h∈T

l
h

∑
elh⊂∂K

l
h

∫
Γ

L2
elh

(ulh) dA

≤ CCL

∑
Kh∈Th

∑
eh⊂∂Kh

‖Fh‖2L∞(w∂
eh

)‖Ph(I− dH)P‖2L∞(weh
)‖δeh‖

2
L∞(eh)‖

√
βeh [uh]‖2L2(eh).

For term V I we have the following,

V I =
∑

eh∈Eh

∫
eh

[uh]
({

Fh∇Γh
zh; (δehn

−l −P−lnh)
}

+ d {Fh∇Γh
zh; Hnh}

)
dsh

=
∑
p∈N

∑
ēh3p

∫
eh

z−lp [uh]
{
Fh∇Γh

ϕp; (δehn
−l −P−lnh)

}
+ z−lp [uh]d {Fh∇Γh

ϕp; Hnh} dsh.

Multiplying by βehβ
−1
eh

, applying Cauchy-Schwartz and an inverse estimate, making

use of (5.9) and recalling that ∇Γh
ϕp = Ph∇ϕp, the first term of V I is bounded

above by∑
p∈N

∑
ēh3p
‖
√
βeh [uh]

{
Fh∇Γh

ϕp; (δehn
−l −P−lnh)

}
‖L2(eh)‖β

− 1
2

eh z−lp ‖L2(eh)

≤ C
∑
p∈N
‖
√
δh‖L∞(wp)

∑
ēh3p
‖
√
βeh [uh]

{
∇ϕp; (FhPh)

T
(δehn

−l −P−lnh)
}
‖L2(eh)‖z‖L2(wl

p)

≤ C
∑
p∈N
‖
√
δh‖L∞(wp)

∑
ēh3p

h−1
eh
‖
√
βeh [uh]

{
| (FhPh)

T
(δehn

−l −P−lnh)|
}
‖L2(eh)‖z‖L2(wl

p)

≤ C

(∑
p∈N
‖δh‖L∞(wp)

∑
ēh3p

h−2
eh
‖
√
βeh [uh]

{
| (FhPh)

T
(δehn

−l −P−lnh)|
}
‖2L2(eh)

) 1
2

‖z‖H1(Γ).

Similarly, for the second term of V I, we get the upper bound

C

∑
p∈N
‖δh‖L∞(wp)

∑
ēh3p

h−2
eh
‖d
√
βeh [uh]

{
| (FhPh)T Hnh|

}
‖2L2(eh)

1/2

‖z‖H1(Γ).

To bound the final term V II in our residual equation, we first prescribe the
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functional J as follows:

J(v) = ‖eh‖−1
DG

 ∑
Kl

h∈T
l
h

(eh, v)H1(Kl
h) +

∑
elh∈E

l
h

δ−1
eh
βeh([eh], [v])L2(elh)


which is in fact a functional on H1(Γ) + Slh. Note that J(eh) = ‖eh‖DG. For such a

functional, the solution z of the dual problem (5.14) satisfies

‖z‖2H1(Γ) ≤ J(z) ≤ ‖z‖DG = ‖z‖H1(Γ),

where we have used that L(z) = 0 and [z] = 0 since z ∈ H1(Γ). Hence ‖z‖H1(Γ) ≤ 1.

Making use of this stability estimate, the DG lifting estimate given in Lemma 5.4.4

and the approximation result in Lemma 5.5.3 (for which we use that u⊥h = uh − uch
with uch given as in the proof of Lemma 5.5.3), we have that

V II := AIP (u⊥,lh , z)− J(u⊥,lh ) ≤ C

( ∑
Kh∈Th

‖
√
βeh [uh]‖2L2(∂Kh)

+ ‖Fh‖2L∞(w∂
∂Kh

)
‖Ph(I− dH)P‖2L∞(w∂Kh

)‖δeh‖
2
L∞(∂Kh)‖

√
βeh [uh]‖2L2(∂Kh)

)1/2

.

(5.24)

Combining all of the estimates in this section and writing them in terms of element-

wise computations completes the proof of Theorem 5.5.1.

5.6 A posteriori lower bound (efficiency)

We now show that the estimator in Theorem 5.5.1 is efficient up to higher-order

terms.

Theorem 5.6.1. Suppose that Th is shape-regular. As before, let R := fhδh +

∆Γh
uh − uhδh and r := [∇Γh

uh;nh]. Then, for each Kh ∈ Th, we have that

ηKh
+ ‖
√
βeh [uh]‖L2(∂Kh)

≤ C max
{

1, ‖Rh‖
1/2
l2,L∞(wKh

)

}(
‖u− ulh‖DG + ‖Bh∇Γh

uh‖L2(wKh
)

)
+ ChKh

‖R− R̄‖L2(wKh
) + Ch

1/2
Kh
‖r − r̄‖L2(∂Kh).

where ηKh
is given in Theorem 5.5.1. Here C depends on the number of elements in

wKh
, the minimum angle of the elements in wKh

and on the penalty parameter α.
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R̄ and r̄ are respectively piecewise linear approximations of R and r and assumed to

yield optimal error estimates.

Proof. The proof will follow the bubble function approach considered in Verfürth

[1989], which was then straightforwardly applied to the DG framework in Karakashian

and Pascal [2003] and Schötzau and Zhu [2009]. First we bound the element residual

‖R‖L2(Kh). Let p ∈ N and Kh ⊂ wp. Letting pi, 1 ≤ i ≤ 3 be the nodes of Kh, we

define the bubble function φKh
=
∏3
i=1 ϕpi . Integrating by parts on Kh, lifting the

resulting integral onto K l
h, making use of the fact that the exact solution satisfies

(f + ∆Γu− u)|Kl
h

= 0 and integrating by parts on K l
h, we get∫

Kh

RR̄φKh
dAh =

∫
Kh

fhδhR̄φKh
+∇Γh

uh · ∇Γh
(R̄φKh

)− uhδhR̄φKh
dAh

=

∫
Kl

h

fR̄lφlKh
+ Rl

h∇Γu
l
h · ∇Γ(R̄lφlKh

)− ulhR̄lφlKh
dA

=

∫
Kl

h

∇Γ(u− ulh) · ∇Γ(R̄lφlKh
) dA +

∫
Kl

h

(u− ulh)R̄lφlKh
dA

+

∫
Kl

h

(P−Rl
h)∇Γu

l
h · ∇Γ(R̄lφlKh

) dA.

Note that we have used the fact that φKh
= 0 on ∂Kh so that all boundary terms

resulting from the integration by parts vanish. We then have that∫
Kh

RR̄φKh
dAh ≤ C

(
‖u− ulh‖DG + ‖(P−Rl

h)∇Γu
l
h‖L2(Kl

h)

)
‖∇Γ(R̄lφlKh

)‖L2(Kl
h)

≤ C
(
‖u− ulh‖DG + ‖Bh∇Γuh‖L2(Kh)

)
‖Rh‖1/2

L∞(Kh)‖∇Γh
(R̄φKh

)‖L2(Kh)

where we have used Poincare’s inequality. Since R̄φKh
is a polynomial, it satisfies

the inverse inequality

‖∇Γh
(R̄φKh

)‖L2(Kh) ≤ Ch−1
Kh
‖R̄‖L2(Kh)

where C depends only on the shape-regularity of Kh. Applying this inverse inequal-

ity, we get∫
Kh

RR̄φKh
dAh ≤ Ch−1

Kh
‖Rh‖1/2

L∞(Kh)

(
‖u− ulh‖DG + ‖Bh∇Γuh‖L2(Kh)

)
‖R̄‖L2(Kh).
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Applying Theorem 2.2 in Ainsworth and Oden [2011], we have that

‖R̄‖2L2(Kh) ≤ C‖
√
φKh

R̄‖2L2(Kh)

≤ C
(∫

Kh

RR̄φKh
dAh +

∫
Kh

R̄(R̄−R)φKh
dAh

)
≤ C

(∫
Kh

RR̄φKh
dAh + ‖R− R̄‖L2(Kh)‖R̄φKh

‖L2(Kh)

)
≤ C

(∫
Kh

RR̄φKh
dAh + ‖R− R̄‖L2(Kh)‖R̄‖L2(Kh)

)
.

Combining this with the previous inequality, we get

‖R̄‖2L2(Kh) ≤
(
‖R− R̄‖L2(Kh)

+ Ch−1
Kh
‖Rh‖

1/2
L∞(Kh)

(
‖u− ulh‖DG + ‖Bh∇Γuh‖L2(Kh)

))
‖R̄‖L2(Kh).

Dividing both sides by ‖R̄‖L2(Kh) and making use of the triangle inequality, we

obtain

hKh
‖R‖L2(Kh) ≤ C

(
‖Rh‖

1/2
L∞(Kh)

(
‖u− ulh‖DG + ‖Bh∇Γuh‖L2(Kh)

)
+ hKh

‖R− R̄‖L2(Kh)

)
.

Next we bound the jump residual ‖r‖L2(∂Kh). Let eh be an edge which is shared by

elements K1
h = Kh and K2

h and whose closure contains the nodes p1 and p2. Let

λi,j , i, j = 1, 2, be the barycentric coordinate on triangle i corresponding to vertex

pj , and define φeh |Ki
h

= λi,1λi,2. Thus φeh ∈ H1
0 (K1

h ∪ K2
h), and φeh > 0 on eh.

Finally let weh = K1
h ∪K2

h. Applying similar arguments as for the element residual

‖R‖L2(Kh), we have that∫
eh

rr̄φeh dsh =

∫
weh

∆Γh
uhr̄φeh +∇Γh

uh · ∇Γh
(r̄φeh) dAh

=

∫
weh

Rr̄φeh dAh +

∫
wl

eh

Rl
h∇Γu

l
h · ∇Γ(r̄lφleh) dA +

∫
wl

eh

(ulh − f)r̄lφleh dA

=

∫
weh

Rr̄φeh dAh +

∫
wl

eh

∇Γ(ulh − u) · ∇Γ(r̄lφleh) dA +

∫
wl

eh

(ulh − u)r̄lφleh dA

+

∫
wl

eh

(Rl
h −P)∇Γu

l
h · ∇Γ(r̄lφleh) dA

where again we have used the fact that φeh = 0 on ∂weh so that all boundary terms

resulting from the integration by parts vanish. We now proceed to bounding the
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terms as done previously to obtain

∫
eh

rr̄φeh dsh ≤ C

(
‖R‖L2(weh

)‖r̄φeh‖L2(weh
)

+
(
‖u− ulh‖DG + ‖Bh∇Γh

uh‖L2(weh
)

)
‖Rh‖

1/2
L∞(weh

)‖∇Γh
(r̄φeh)‖L2(weh

)

)

where again the constant C depends only on the shape regularity of the grid. Since

r̄φeh is a polynomial, it satisfies the inverse inequalities

‖r̄φeh‖L2(weh
) ≤ Ch

1/2
Kh
‖r̄‖L2(eh) , ‖∇Γh

(r̄φeh)‖L2(weh
) ≤ Ch

−1/2
Kh
‖r̄‖L2(eh).

Applying these inverse inequalities, we get

∫
eh

rr̄φeh dsh ≤ C

(
h
−1/2
Kh
‖Rh‖

1/2
L∞(weh

)

(
‖u− ulh‖DG + ‖Bh∇Γuh‖L2(weh

)

)
+ h

1/2
Kh
‖R‖L2(weh

)

)
‖r̄‖L2(eh).

Applying Theorem 2.4 in Ainsworth and Oden [2011], we have that

‖r̄‖2L2(eh) ≤ C‖
√
φeh r̄‖

2
L2(eh)

≤ C
(∫

eh

rr̄φeh dAh + ‖r − r̄‖L2(eh)‖r̄φeh‖L2(eh)

)
≤ C

(∫
eh

rr̄φeh dAh + ‖r − r̄‖L2(eh)‖r̄‖L2(eh)

)
.

Combining this with the previous inequality, we get

‖r̄‖2L2(eh) ≤ C
(
‖r − r̄‖L2(eh) + h

−1/2
Kh
‖Rh‖

1/2
L∞(weh

)

(
‖u− ulh‖DG

+ ‖Bh∇Γuh‖L2(weh
)

)
+ h

1/2
Kh
‖R‖L2(weh

)

)
‖r̄‖L2(eh).

Dividing both sides by ‖r̄‖L2(eh) and making use of the triangle inequality, we obtain

h
1/2
Kh
‖r‖L2(eh) ≤ C

(
‖Rh‖

1/2
L∞(weh

)

(
‖u− ulh‖DG + ‖Bh∇Γuh‖L2(weh

)

)
+ hKh

‖R‖L2(weh
) + h

1/2
Kh
‖r − r̄‖L2(eh)

)
.
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For the jump term in our estimator, we note that since [u] = 0 we have that∥∥∥√βeh [uh]
∥∥∥
L2(∂Kh)

=

∥∥∥∥√δ−1
eh βeh [ulh]

∥∥∥∥
L2(∂Kl

h)

=

∥∥∥∥√δ−1
eh βeh [u− ulh]

∥∥∥∥
L2(∂Kl

h)

≤ C‖u− ulh‖DG.

5.7 Numerical tests

In this section we present some numerical tests which verify the reliability and

efficiency of the a posteriori estimator given in Theorem 5.5.1.

5.7.1 Implementation aspects

In all our numerical tests we choose the polynomial order on each element Kh ∈ Th
to be 1, the penalty parameter α to be equal to 10 and the constant C appearing in

the estimator given in Theorem 5.5.1 to be equal to 1. In addition, given that the

signed-distance function d is rarely available in practice but appears explicitely in

our estimator, we have to approximate it using the level-set function φ via (4.56).

Further implementational details can be found in the relevant section in Chapter 4

as well as in Demlow and Dziuk [2008].

5.7.2 Test problem on Dziuk surface

The first test problem will consider

−∆Γu+ u = f (5.25)

on the Dziuk surface

Γ = {x ∈ R3 : (x1 − x2
3)2 + x2

2 + x2
3 = 1}.

As a test solution, we took the function

u(x, y, z) = e
1

1.85−(x−0.2)2 sin y

which has sharp gradient changes, as shown in Figure 5.1(a). In Figure 5.2(a) we plot

each of the contributions of our error estimator against the number of degrees of free-

dom when performing global refinement for the Dziuk surface. Note that we plot the
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standard residual with its geometric scaling term i.e.
(∑

Kh∈Th ‖Rh‖l2,L∞(wKh
)η

2
Kh

) 1
2

.

Notice how both the geometric residual
(∑

Kh∈Th G
2
Kh

)1/2
and the DG geometric

residual
(∑

Kh∈Th G
2
DGKh

)1/2
converge with higher order as noted in Remark 5.5.2.

Figure 5.2(b) confirms that our estimator is efficient, with an efficiency index of

about 5.6.

(a) (b)

Figure 5.1: Front and rear view of the initial grid for the Dziuk surface.

(a) (b)

Figure 5.2: Residual components (left) and efficiency index (right) for the Dziuk
surface.

94



5.7.3 Test problem on Enzensberger-Stern surface

Our second test problem considers (5.25) on the Enzensberger-Stern surface given

by

Γ = {x ∈ R3 : 400(x2y2 + y2z2 + x2z2)− (1− x2 − y2 − z2)3 − c = 0}

where c = 40 and whose exact solution is chosen to be given by u(x) = x1x2. In Fig-

ure 5.3(a) we plot each of the contributions of our error estimator against the number

of degrees of freedom when performing global refinement for the Enzensberger-Stern

surface. Figure 5.4(b) again confirms that our estimator is efficient, with an effi-

ciency index of about 5.9. It is worth noticing that the geometric residual term

remains the dominant source of error all the way through our computations despite

converging with higher order. This issue will be considered in more detail in Chapter

7.
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(a)

Figure 5.3: Initial grid for the Enzensberger-Stern surface.

(a) (b)

Figure 5.4: Residual components (left) and efficiency index (right) for the
Enzensberger-Stern surface.
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Chapter 6

DG Methods for

Advection-Diffusion Problems

on Surfaces

In this chapter, we extend the surface DG framework considered in Chapter 4 to

advection-diffusion problems posed on surfaces. Before reading this chapter, it is

worth having a look at Section 3.7 which outlines some key issues arising in the

planar setting for first-order hyperbolic problems.

6.1 Problem formulation

We consider the model problem

−∆Γu+ u+ w · ∇Γu = f on Γ (6.1)

where the velocity field w ∈ [W 2,∞(Γ)]3 can be assumed to be purely tangential to

the surface, i.e. w · ν = 0 everywhere, since any normal contribution would vanish

when multiplied with ∇Γu. We will also assume, for simplicity, that the velocity

field is divergence-free which, together with w · ν = 0, implies that ∇Γ · w = 0.

The analysis that follows can be straightforwardly extended to non divergence-free

velocity fields.

The weak formulation resulting from (6.1) is given as follows: find u ∈ H1(Γ)

such that ∫
Γ
∇Γu · ∇Γv + uv − uw · ∇Γv dA =

∫
Γ
fv dA ∀v ∈ H1(Γ). (6.2)
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Existence and uniqueness of a solution u ∈ H2(Γ) follow again from standard ar-

guments and we refer to Aubin [1982] and Wloka [1987] for more details on elliptic

regularity on surfaces.

6.1.1 Motivation

Besides the fact that one would naturally be interested in extending the DG frame-

work to advection-diffusion problems posed on surfaces (which arise as models for

various physical and biological phenomena as discussed in Chapter 1), extending

the analysis from the previous chapters to the model problem (6.1) is surprisingly

non-trivial.

To see this, consider the following surface DG version of the discrete scheme

(3.23) for first order hyperbolic problems given in Section 3.7 i.e.

Bkh(uh, vh) :=
∑

K̂h∈T̂h

∫
K̂h

−uhwh · ∇Γk
h
vh + γhuhvh dAhk

+
∑
êh∈Êh

∫
êh

ŵhuh[vh] dshk (6.3)

where ŵhuh is some numerical flux. For this subsection and this subsection only,

we choose γh = c for some c ≥ c0 > 0 and wh = w−l i.e. the scheme simply lifts

the velocity field w downwards onto the discrete surface Γkh. If we simply chose

the discrete velocity field to be the true velocity field surface lifted downwards, the

matrix resulting from such a scheme may not be positive-definite independently

of h.This can be seen by integrating by parts (using Lemma 4.2.3) in a similar

fashion to (3.24), choosing uh ≡ 0 for every K̂h ∈ T̂h except for the two elements

K̂+
h and K̂−h for which êh = K̂+

h

⋂
K̂−h . Furthermore, we choose n̂+

h = (−1, 0, 0),

n̂−h = (cos(q), sin(q), 0) with q ∈ (0, 2π). Note that unless q = 0, 2π, we have that

n̂+
h 6= −n̂

−
h . The velocity w−l at êh is assumed to be (−1, 0, 0), so that w−l · n̂+

h =

1 > 0 and w−l · n̂−h = − cos(q) < 0. Finally, we assume that u+
h = u−h = 1 so that

[uh] = 0 on êh. With these conditions, it is clear from (3.24) that the stability of

(6.3) boils down to showing that

−1

2

∑
K̂h∈T̂h

∫
∂K̂h

(
w−l · n

K̂h

)
u2
h dshk ≥ 0
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which, from Lemma 4.2.3 and the above conditions, is equivalent to showing that

−1

2

∫
êh

[w−lu2
h; n̂h] dshk ≥ 0.

Notice that the numerical flux does not appear given that it is scaled with [uh] = 0,

and thus cannot influence the sign of the above quantity. Expanding the expression,

we have that

−1

2

∫
êh

[w−lu2
h; n̂h] dshk = −1

2

∫
êh

w−lu2+
h · n̂

+
h + w−lu2−

h · n̂
−
h dshk

=
1

2
|êh| (cos(q)− 1) < 0.

Hence, in general, whenever n̂+
h 6= −n̂

−
h , h-independent positive-definiteness of the

matrix resulting from the scheme may not hold, regardless of the choice of the

modified upwind flux.

6.2 Discrete scheme, properties and convergence

6.2.1 Surface DG/UP discretisation

We can now define a discrete DG formulation on Γkh based on the unified surface

DG discretisation of the diffusion term discussed in Chapter 4 and a surface upwind

flux (UP) discretisation of the advection term. We will refer to it as the surface

DG/UP method. The problem reads: find uh ∈ Ŝhk such that

Ckh(uh, vh) =
∑

K̂h∈T̂h

∫
K̂h

fhvh dAhk ∀vh ∈ Ŝhk (6.4)

with

Ckh(uh, vh) := Akh(uh, vh) + Bkh(uh, vh) (6.5)

where Akh(uh, vh) corresponds to any of the surface DG methods given in Table 4.1

and Bkh(uh, vh) is defined in (6.3). Note that the discrete velocity field wh present in

Bkh(uh, vh) is now at our disposal and will be related to w in Section 6.3. For reasons

that will be clear later on, the discrete mass perturbation coefficient γh is given by

γh =

{
0 if 1 +∇Γk

h
· wh > 0;

−1
2∇Γk

h
· wh if 1 +∇Γk

h
· wh ≤ 0.

(6.6)
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Finally, with the convention that n̂+
h is the conormal to êh ⊂ ∂K̂h, we define the

surface upwind flux ŵhuh present in Bkh(uh, vh) by

ŵhuh = {whuh; n̂h}+ ρêh [uh]

where ρêh := 1
2 |w

+
h · n̂

+
h |.

After stating a number of assumptions we make on the discrete velocity field

wh, we shall prove stability and convergence in the DG norm given in (4.34) with

(4.33a) but with the scaling βêh present in ‖ · ‖∗,h norm replaced by βêh + ρêh .

6.2.2 Assumptions

We now state several assumptions which will allow the analysis to follow through

straightforwardly. These assumptions will then be justified in Section 6.3 for the

simpler setting of piecewise linear surface approximations. We will assume that the

discrete velocity field wh is tangential to Γkh and satisfies

w+
h · n̂

+
h = −w−h · n̂

−
h (6.7)

on each edge êh ∈ Êh and, if the data velocity field w ∈ [Wm+1,∞(Γkh)]3, we have

that, for all K̂h ∈ T̂h,

‖Phkw
−l − wh‖L∞(K̂h)

. hm+1, (6.8)∥∥∥(Phkw
−l − wh) · n̂+

h

∥∥∥
L∞(∂K̂h)

. hm+1, (6.9)

‖∇Γk
h
· wh‖L∞(K̂h)

. hl (6.10)

where 0 ≤ m ≤ k and l > 0. Note that assumption (6.10) implies that

γh ≡ 0 for h small enough. (6.11)

Remark 6.2.1. From assumption (6.7), we have that

ŵhuh =


w+
h · n̂

+
h u

+
h if w+

h · n̂
+
h > 0;

w+
h · n̂

+
h u
−
h if w+

h · n̂
+
h < 0;

0 if w+
h · n̂

+
h = 0,

and it can thus be seen that this flux works in exactly the same way as the classical

(planar) upwind flux when scaled with the jump term [vh].
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6.2.3 Boundedness and stability

Lemma 6.2.2. The surface DG/UP bilinear form Ckh is bounded and stable in the

DG norm, i.e.,

Ckh(uh, vh) . ‖uh‖DG‖vh‖DG, Ckh(uh, uh) & ‖uh‖2DG,

for every uh, vh ∈ Ŝhk, provided that the discrete velocity field wh satisfies (6.7) and

the penalty parameter α is chosen sufficiently large.

Proof. Boundedness of Ckh follows from similar arguments to that of Akh, given in

the proof of Lemma 4.3.5. To show stability, we proceed in a similar fashion to

the planar case setting detailed in Section 3.7 by testing (6.5) with vh = uh and

integrating by parts on each Kh ∈ Th. By doing so, we obtain

Ckh(uh, uh) = Akh(uh, uh) +
∑

K̂h∈T̂h

∫
K̂h

(
γh +

1

2
∇Γk

h
· wh

)
u2
h dAhk

+
∑
êh∈Êh

∫
êh

{whuh; n̂h}[uh] + ρêh |[uh]|2 dshk

− 1

2

∑
K̂h∈T̂h

∫
∂K̂h

(
wh · nK̂h

)
u2
h dshk. (6.12)

Applying Lemma 4.2.3, we then have that

∑
K̂h∈T̂h

∫
∂K̂h

(
wh · nK̂h

)
u2
h dshk =

∑
êh∈Êh

∫
êh

[whu
2
h; n̂h] dshk

=
∑
êh∈Êh

∫
êh

{wh; n̂h}[u2
h] + [wh; n̂h]{u2

h} dshk.

Now, making use of assumption (6.7), we have that [wh; n̂h] = 0 and, in addition,

{whuh; n̂h}[uh] =

(
1

2
w+
h u

+
h · n̂

+
h −

1

2
w−h u

−
h · n̂

−
h

)(
u+
h − u

−
h

)
=

(
1

2
w+
h u

+
h · n̂

+
h +

1

2
w+
h u
−
h · n̂

+
h

)(
u+
h − u

−
h

)
=

1

2
w+
h · n̂

+
h

(
u+
h + u−h

) (
u+
h − u

−
h

)
=

1

2
{wh; n̂h}[u2

h].
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Plugging this equality back into (6.12) and cancelling the resulting terms yields

Ckh(uh, uh) = Akh(uh, uh) +
∑

K̂h∈T̂h

∫
K̂h

(
γh +

1

2
∇Γk

h
· wh

)
u2
h dAhk

+
∑
êh∈Êh

∫
êh

ρêh |[uh]|2 dshk. (6.13)

Combining the second and third terms of (6.13) with respectively the mass and

jump terms of Akh(uh, uh), making use of the expression for γh given in (6.6) and

proceeding in a similar fashion as for the stability proof of Akh in Lemma 4.3.5, we

obtain the desired result independently of h provided that the penalty parameter α

is large enough.

Remark 6.2.3. It is clear from the above proof that assumption (6.7) on the discrete

velocity field wh is key to showing stability of the surface DG/UP bilinear form. If

we simply chose the discrete velocity field to be the true velocity field surface lifted

downwards i.e. wh = w−l in (6.5) (in which case assumption (6.7) and all related

results would not be satisfied), the matrix resulting from the scheme may not be

positive-definite, as discussed in Section 6.1.1.

Lemma 6.2.2 allows us to straightforwardly extend the stability estimate

(4.38) to our setting.

As before, for each of the surface DG bilinear forms represented by (6.5), we

define a corresponding bilinear form on Γ induced by the surface lifted triangulation

T̂ `h which is well defined for functions v1, v2 ∈ H2(Γ) + Ŝ`hk. We define

C(v1, v2) := A(v1, v2) + B(v1, v2) (6.14)

where A corresponds to any of the surface lifted DG bilinear forms considered in

Chapter 4, and

B(v1, v2) =
∑

K̂l
h∈T̂

l
h

∫
K̂l

h

−v1w · ∇Γv2 dA

+
∑
êlh∈Ê

l
h

∫
êlh

(
{wv1;n}+ ρêhδ

−1
êh

[v1]
)

[v2] ds.

The DG norm on Γ is given as in (4.39) with (4.40a) but with the scaling

δ−1
êh
βêh present in ‖ · ‖∗,h norm replaced by δ−1

êh
(βêh + ρêh). Finally, one can easily

derive equivalent results of (4.46) and the boundedness/stability estimates given in
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Lemma 4.3.8 which hold for the bilinear form C.

6.2.4 Convergence

We now state the main result of this chapter, which is the advection-diffusion ana-

logue of Theorem 4.4.1.

Theorem 6.2.4. Let u ∈ Hk+1(Γ) and uh ∈ Ŝhk denote the solutions to (6.2) and

(6.4), respectively. Then, under assumptions (6.7), (6.8), (6.9) and (6.10) on the

discrete velocity field wh, with m ≥ k − 1, we have that

‖u− u`h‖DG . hk
(
‖f‖L2(Γ) + ‖u‖Hk+1(Γ)

)
,

provided the grid size h is small enough and the penalty parameter α is large enough

for the surface IP, Bassi et al. and IIPG methods.

Since the key continuity estimate (4.48) can be straightforwardly extended to

the bilinear form C, the proof of Theorem 6.2.4 follows the same lines as that of The-

orem 4.4.1 as long as the perturbed Galerkin orthogonality result given in Lemma

4.4.5 can be extended to the advection-diffusion setting, which will be the focus of

this section. Before doing so, we will require an additional geometric estimate.

Lemma 6.2.5. Let Γ be a compact smooth and oriented surface in R3 and let Γkh
be its Lagrange interpolant of degree k. Then, for sufficiently small h, we have that

‖P−PPhkP‖L∞(Γk
h) . h2k. (6.15)

Proof. It is sufficient to show that (P−PPhkP)x for x ∈ R3 scales appropriately.

Setting x̃ = Px (which is tangential to Γ) and noting that Phkx̃ = x̃ − (x̃ · ν̂h)ν̂h,

we have that

(P−PPhkP)x = x̃−PPhkx̃ = x̃−P (x̃− (x̃ · ν̂h)ν̂h)

= x̃− (x̃− (x̃ · ν)ν − (x̃ · ν̂h)(ν̂h − (ν̂h · ν)ν)

= (x̃ · ν̂h)ν̂h − (x̃ · ν̂h)(ν̂h · ν)ν

= (x̃ · ν̂h)(ν̂h − ν) + (x̃ · ν̂h)ν (1− (ν̂h · ν))

= (x̃ · (ν̂h − ν))(ν̂h − ν) + (x̃ · (ν̂h − ν))ν (1− (ν̂h · ν))

≤ |ν̂h − ν|2|x̃|+
1

2
|ν̂h − ν|2|x̃|

. h2k|x̃| . h2k|x|
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where we have used the equality 1− (ν̂h ·ν) = 1
2 |ν̂h−ν|

2 and the geometric estimate

(A.1c).

Lemma 6.2.6. Let u ∈ Hs(Γ), s ≥ 2, and uh ∈ Ŝhk denote the solutions to (6.2)

and (6.4), respectively. We define the functional EChk on Ŝ`hk by

EChk(v
`
h) = C(u− u`h, v`h).

Then, EChk can be written as

EChk(v
`
h) = Ehk(v

`
h) + EBhk(v

`
h) + Edata

hk (v`h) (6.16)

where Ehk is given by (4.50) or (4.51), EBh is given by

EBhk(v
l
h) =

∑
K̂l

h∈T̂
l
h

∫
K̂l

h

(
δ−1
hk − 1

)
ulhv

l
h + δ−1

hk w · (P−Phk(I− dH)P)∇Γv
l
hu

l
h dA

+
∑
êlh∈Ê

l
h

∫
êlh

({
wulh; Pn̂lh − n

}
+
(
δ−1
êh
− 1
)
{wlhulh; n̂lh}

)
[vlh] ds

and finally, the data approximation functional Edata
h (v`h) is given by

Edata
hk (v`h) =

∑
K̂l

h∈T̂
l
h

∫
K̂l

h

(
Phkw − wlh

)
·Phk(I− dH)P∇Γv

`
hu

l
h dA

+
∑
êlh∈Ê

l
h

∫
êlh

{(
wlh −Phkw

)
ulh; n̂lh

}
ds

Furthermore, for h small enough, we have that

|EBhk(v`h)| . hk+1‖f‖L2(Γ)‖v`h‖DG, (6.17)

and, under assumptions (6.7), (6.8), (6.9) and (6.10), we have that

|Edata
hk (v`h)| . hm+1‖f‖L2(Γ)‖v`h‖DG (6.18)

where 0 ≤ m ≤ k.

Remark 6.2.7. Notice that if m = k − 1 in (6.18), the data approximation error

is suboptimal relative to the geometric error (6.17) but still yields optimal a priori

error estimates. If we choose m = k, the data approximation error will be of the

same (higher) order as the geometric error.
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Proof of Lemma 6.2.6. Since the scaling of Ehk(v
`
h) is known from Lemma 4.4.5, the

proof will only focus on the terms which were not dealt with in that lemma. Recall

that, for h small enough, (6.11) holds. Using this, it can be easily seen that, for h

small enough,

∑
K̂l

h∈T̂
l
h

∫
K̂l

h

uvlh dA−
∑

K̂h∈T̂h

∫
K̂h

(1 + γh)uhvh dAhk

=
∑

K̂l
h∈T̂

l
h

∫
K̂l

h

(u− ulh)vlh dA +
∑

K̂l
h∈T̂

l
h

∫
K̂l

h

(
1− δ−1

hk

)
ulhv

l
h dA.

Next, we consider terms involving the velocity field in the interior of elements i.e.

−
∑

K̂l
h∈T̂

l
h

∫
K̂l

h

w · ∇Γv
l
hu dA +

∑
K̂h∈T̂h

∫
K̂h

wh · ∇Γk
h
vhuh dAhk

= −
∑

K̂l
h∈T̂

l
h

∫
K̂l

h

w · ∇Γv
l
h(u− ulh) + δ−1

hk w · (Phk(I− dH)P−P)∇Γv
l
hu

l
h dA

+
∑

K̂h∈T̂h

∫
K̂h

(
wh − w−l

)
· ∇Γk

h
vhuh dAhk

= −
∑

K̂l
h∈T̂

l
h

∫
K̂l

h

w · ∇Γv
l
h(u− ulh) dA +

∑
K̂l

h∈T̂
l
h

∫
K̂l

h

δ−1
hk w · (PPhkP−P)∇Γv

l
hu

l
h dA

−
∑

K̂l
h∈T̂

l
h

∫
K̂l

h

δ−1
hk w · (dPPhkH)∇Γv

l
hu

l
h dA +

∑
K̂h∈Th

∫
K̂h

(
wh −Phkw

−l) · ∇Γk
h
vhuh dAhk

where, in the last line, we have made use of the fact that ∇Γk
h
vh = Phk∇Γk

h
vh,

w = Pw and Phkwh = wh. Finally, we consider the terms involving the velocity

field on the boundary of elements i.e.

∑
êlh∈Ê

l
h

∫
êlh

{wu;n}[vlh] ds−
∑
êh∈Êh

∫
êh

{whuh; n̂h}[vh] dshk

=
∑
êlh∈Ê

l
h

∫
êlh

{w(u− ulh);n}[vlh] ds +
∑
êlh∈Ê

l
h

∫
êlh

(
{wulh;n} − {wlhulh; n̂lh}δ−1

êh

)
[vlh] ds.

Focusing on one of the terms in the above, using the fact that w = Pw and n̂l+h =

Pl+
hkn̂

l+
h , we have that

wul+h · n
+ − δ−1

êh
wlhu

l+
h · n̂

l+
h = wul+h · n

+ − wlhul+h · n̂
l+
h +

(
1− δ−1

êh

)
wlhu

l+
h · n̂

l+
h

= wul+h ·
(
n+ −Pn̂l+h

)
+
(
Pl+
hkw − w

l
h

)
ul+h · n̂

l+
h +

(
1− δ−1

êh

)
wlhu

l+
h · n̂

l+
h .
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Combining all of the terms, we get that

∑
êlh∈Ê

l
h

∫
êlh

{wu;n}[vlh] ds−
∑

êh∈Êh

∫
êh

{whuh; n̂h}[vh] dshk

=
∑

êlh∈Ê
l
h

∫
êlh

({
wulh;n−Pn̂lh

}
+
{(

Pl
hkw − wl

h

)
ulh; n̂lh

}
+
(

1− δ−1
êh

)
{wl

hu
l
h; n̂lh}

)
[vlh] ds.

This completes the first part of the proof of Lemma 6.2.6. The scaling of the error

functional EBh follows by applying similar arguments as for the proof of Lemma 4.4.5

in addition to the new geometric estimate given in Lemma 6.2.5. The scaling for

the data approximation functional Edata
h follows from assumptions (6.8) and (6.9).

This completes the proof.

6.3 Construction of discrete velocity field

We will now attempt to justify the assumptions we have made on wh by constructing

a discrete velocity field which satisfies assumptions (6.7), (6.8), (6.9) and (6.10) in a

simpler setting. We only consider a particular direction one could take to construct

such a discrete velocity field, and this is by no means the only one. We will restrict

ourselves to the piecewise linear surface approximation setting Γh := Γ1
h. As in

Chapter 5, we will make use of the notation from the piecewise linear setting (by

omitting the hats, e.g. eh instead of êh) to highlight this.

6.3.1 Surface Raviart-Thomas interpolant

A natural way of constructing a discrete velocity field wh which satisfies the as-

sumptions we have made is to define it as a Raviart-Thomas-type interpolant of

w−l, which we will refer to as the surface Raviart-Thomas interpolant.

Let FKh
denote the mapping from the reference element K to Kh. Then we

have that ∇FKh
= (e0, e1) ∈ R3×2 where e0 and e1 are two edges of Kh intersecting

at the vertex x0. We first define the local spaces

PqRT (Kh) :=
{
sh(x) := ∇FKh

(F−1
Kh

(x))p
(
F−1
Kh

(x)
)
, p ∈ [Pq(K)]2

}
.

We next define the local Raviart-Thomas space of order q on Kh to be given by

RT q(Kh) :=
{
w̄h(x) := sh(x) + (x− x0)t

(
F−1
Kh

(x)
)
, sh ∈ PqRT (Kh), t ∈ Pq(K)

}
.

It is clear from the definition of RT q(Kh) that any function w̄h ∈ RT q(Kh) for every
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Kh ∈ Th is tangential to Γh. Using the convention that the conormal to eh ⊂ ∂Kh

is n+
h , the local degrees of freedom of w̄h ∈ RT q(Kh) are given by∫

eh

w̄h · n+
h pq dsh ∀pq ∈ Pq(eh), eh ⊂ ∂Kh, (6.19)∫

Kh

w̄h · pq−1 dsh ∀pq−1 ∈ Pq−1
RT (Kh). (6.20)

We then define, for w−l ∈ [W 2,∞(Γh)]3, the local surface Raviart-Thomas inter-

polant of order q to be Πq
Kh
w−l ∈ RT q(Kh) satisfying∫

eh

Πq
Kh
w−l · n+

h pq dsh =

∫
eh

w−l · n+
eh
pq dsh ∀pq ∈ Pq(eh), eh ⊂ ∂Kh, (6.21)∫

Kh

Πq
Kh
w−l · pq−1 dsh =

∫
Kh

w−l · pq−1 dsh ∀pq−1 ∈ Pq−1
RT (Kh). (6.22)

Here, the “average” conormals n
+/−
eh are given by n

+/−
eh := ±

1
2

(n+
h−n

−
h )

| 1
2

(n+
h−n

−
h )| .

Remark 6.3.1. Notice that this definition differs from that of the local classical

Raviart-Thomas interpolant in the way we have defined the right-hand side of (6.21).

We have to use what we call the “average” conormals n
+/−
eh instead of the standard

conormals n
+/−
h because they satisfy n+

eh
= −n−eh , which is key for assumption (6.7)

to be satisfied. From here on, we will refer to the local classical Raviart-Thomas

interpolant by Π̃q
Kh
w−l.

Lemma 6.3.2. Let Πq
Kh
w−l and Πq

K−h
w−l be the local surface Raviart-Thomas in-

terpolants of w−l ∈ [W 2,∞(Γh)]3 (defined as in (6.21)–(6.22)) on respectively the

neighbouring elements Kh,K
−
h ∈ Th with conormals n+

h and n−h . Then we have that

Πq
Kh
w−l · n+

h = −Πq

K−h
w−l · n−h

on each edge eh = ∂Kh
⋂
∂K−h .

Proof. By (6.21)–(6.22) and using the fact that n+
eh

= −n−eh , we have that

∫
eh

Πq
Kh
w−l · n+

h pq dsh =

∫
eh

w−l · n+
eh
pq dsh = −

∫
eh

w−l · n−ehpq dsh

= −
∫
eh

Πq

K−h
w−l · n−h pq dsh.
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It follows that ∫
eh

(
Πq
Kh
w−l · n+

h + Πq

K−h
w−l · n−h

)
pq dsh = 0

for every pq ∈ Pq(eh). By Proposition 3.2 in Fortin and Brezzi [1991], we have that

Πq
Kh
w−l · n+

h ,Π
q

K−h
w−l · n−h ∈ Pq(eh) which gives us the pointwise equality

Πq
Kh
w−l · n+

h = −Πq

K−h
w−l · n−h

as required.

6.3.2 Surface Raviart-Thomas interpolation estimates

Lemma 6.3.3. Let Πq
Kh
w−l be the local surface Raviart-Thomas interpolant of

w−l ∈ [W 2,∞(Γh)]3 defined as in (6.21)–(6.22) and let Π̃q
Kh
w be its local classical

Raviart-Thomas interpolant. We then have that

‖Πq
Kh
w−l − Π̃q

Kh
w−l‖L∞(Kh) . h2

for each Kh ∈ Th.

Proof. Denote by {N∂Kh
i }n∂Kh

i=1 the set of local degrees of freedom given by (6.19)

and {ϕ∂Kh
i }n∂Kh

i=1 the associated (vector-valued) basis functions. Similarly, we denote

by {NKh
i }

nKh
i=1 the set of local degrees of freedom given by (6.20) and {ϕKh

i }
nKh
i=1 the

associated (vector-valued) basis functions. The local degrees of freedom for the local

standard Raviart-Thomas interpolant {Ñi}
n∂Kh
i=1 and {Ñi}

nKh
i=1 are defined similarly.

We then have that

Πq
Kh
w−l(x) =

n∂Kh∑
i=1

N∂Kh
i (w−l)ϕ∂Kh

i (x) +

nKh∑
i=1

NKh
i (w−l)ϕKh

i (x),

and similarly for Π̃q
Kh
w−l. Then by noting that NKh

i (w−l) = ÑKh
i (w−l) and making
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use of (6.19) and (6.21), we have that

‖Πq
Kh
w−l − Π̃q

Kh
w−l‖L∞(Kh) =

∥∥∥∥∥
n∂Kh∑
i=1

(
N∂Kh
i (w−l)− Ñ∂Kh

i (w−l)
)
ϕ∂Kh
i

∥∥∥∥∥
L∞(Kh)

≤ max
1≤i≤n∂Kh

∣∣∣N∂Kh
i (w−l)− Ñ∂Kh

i (w−l)
∣∣∣ n∂Kh∑
i=1

∣∣∣ϕ∂Kh
i

∣∣∣
. max

1≤i≤n∂Kh

∣∣∣N∂Kh
i (w−l)− Ñ∂Kh

i (w−l)
∣∣∣

= max
1≤i≤n∂Kh

∣∣∣∣∫
eh

w−l · n+
eh
ξi dsh −

∫
eh

w−l · n+
h ξi dsh

∣∣∣∣
= max

1≤i≤n∂Kh

∣∣∣∣∫
eh

w−l ·
(
P−ln+

eh
−P−ln+

h

)
ξi dsh

∣∣∣∣
. ‖n−Pn+

eh
‖L∞(Eh) + ‖n−Pn+

h ‖L∞(Eh) . h2

where {ξi} denote the basis functions of Pq(eh). The last estimate follows from

Lemma A.0.1.

The following theorem will help justify assumptions (6.8) and (6.9) for the

case of the local surface Raviart-Thomas interpolant of zero order (q = 0).

Theorem 6.3.4. Let w−l ∈ [W 2,∞(Γh)]3 and Π̃0
Kh
w−l be its local classical Raviart-

Thomas interpolant of zero order defined only through condition (6.21) (with n+
eh

replaced by n+
h ). We then have that

‖Phw
−l − Π̃0

Kh
w−l‖L∞(Kh) . h‖∇Γh

w−l‖L∞(Kh),∥∥∥∇Γh
·
(
Phw

−l − Π̃0
Kh
w−l

)∥∥∥
L∞(Kh)

. h|∇Γh
w−l|W 1,∞(Kh)

for each Kh ∈ Th.

Proof. The proof of the first estimate follows similar lines as that of Theorem 6.3 in

Acosta et al. [2011]. The second estimate follows similar lines as that of Theorem

1.114 in Ern [2004].

The first estimate of Theorem 6.3.4 together with Lemma 6.3.3 guarantees

that the local surface Raviart-Thomas interpolant also satisfies Theorem 6.3.4. As

such, assumption (6.8) holds when choosing wh to be the local surface Raviart-

Thomas interpolant of zero order.

Assumption (6.9) follows straightforwardly by noting that, from (6.21),

Π̃0
Kh
w−l ·n+

h can be thought of as an L2 projection of w−l ·n+
h onto the space of piece-

wise constant functions living on eh ⊂ ∂Kh. Coupling this fact with Lemma 6.3.3
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validates (6.9) when choosing wh to be the local surface Raviart-Thomas interpolant

of zero order.

We finally show that assumption (6.10) holds for local surface Raviart-

Thomas interpolants of zero order.

Lemma 6.3.5. Let w−l ∈ [W 2,∞(Γh)]3 and Π0
Kh
w−l be its local surface Raviart-

Thomas interpolant of zero order defined only through condition (6.21). We then

have that ∥∥∥∇Γh
·Π0

Kh
w−l

∥∥∥
L∞(Kh)

. h.

Proof. We have that∥∥∥∇Γh
·Π0

Kh
w−l

∥∥∥
L∞(Kh)

≤
∥∥∥∇Γh

·
(

Π0
Kh
w−l −Phw

−l
)∥∥∥

L∞(Kh)

+ ‖∇Γh
·Phw

−l‖L∞(Kh).

Making use of Lemma 3.2 in Olshanskii et al. [2013], we have that the second term

scales like h. For the first term, we have that∥∥∥∇Γh
·
(

Π0
Kh
w−l −Phw

−l
)∥∥∥

L∞(Kh)
≤
∥∥∥∇Γh

·
(

Π0
Kh
w−l − Π̃0

Kh
w−l

)∥∥∥
L∞(Kh)

+
∥∥∥∇Γh

·
(

Π̃0
Kh
w−l −Phw

−l
)∥∥∥

L∞(Kh)
.

The second term in the above scales appropriately by the second estimate of The-

orem 6.3.4. For the first term we proceed as in the proof of Lemma 6.3.3 to get

that ∥∥∥∇Γh
·
(

Π0
Kh
w−l − Π̃0

Kh
w−l

)∥∥∥
L∞(Kh)

≤ max
1≤i≤n∂Kh

∣∣∣N∂Kh
i (w−l)− Ñ∂Kh

i (w−l)
∣∣∣ ∑

1≤i≤n∂Kh

∣∣∣∇Γh
· ϕ∂Kh

i

∣∣∣
. max

1≤i≤n∂Kh

∣∣∣N∂Kh
i (w−l)− Ñ∂Kh

i (w−l)
∣∣∣h−1 . h

as required.

Remark 6.3.6. Proving corresponding results for higher-order Raviart-Thomas in-

terpolants is not a trivial extension of the proofs given in this section. This is due

to the fact that, on higher order surface approximations, the conormals n̂
+/−
h are

no longer constant along each edge êh ∈ Êh but, instead, vary pointwise.
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6.4 Numerical tests

In the following test problems, we will go slightly beyond the theory dealt with in

this chapter by considering advection-diffusion problems of the form

−ε∆Γu+ w · ∇Γu+ u = f on Γ (6.23)

where 0 < ε � ‖w‖L∞(Γ)|Γ|
1
2 , which corresponds to the advection-dominated

regime. For the test problems discussed below, we will focus on a surface IP dis-

cretisation of the diffusion term and call the resulting approximation the surface

IP/UP approximation. Furthermore, the discrete velocity field wh is chosen to be

the zero order surface Raviart-Thomas interpolant of w−l i.e. wh|Kh
= Π0

Kh
w−l. We

will also briefly discuss the case when we choose wh = w−l in the numerics. Further

implementational aspects can be found in Section 4.5.1.

6.4.1 Test problem on torus

Our first test problem, considered in Olshanskii et al. [2013], involves solving (6.23)

on the torus

Γ =

{
(x1, x2, x3) |

(√
x2

1 + x2
2 − 1

)2

+ x2
3 =

1

16

}

with velocity field

w(x) =
1√

x2
1 + x2

2

(−x2, x1, 0)T .

Note that the velocity field w is tangential to the torus and divergence-free. We set

ε = 10−6 and construct the right-hand side f such that the solution u of (6.23) is

given by

u(x) =
x1x2

π
arctan

(
x3√
ε

)
.

Note that u has a sharp internal layer as shown in Figure 6.1.

Figure 6.1 shows the exact solution and both the unstabilised surface FEM

approximation and the surface IP/UP approximation of (6.23). Notice how, as

in the planar case, the unstabilised surface FEM approximation exhibits global

spurious oscillations whilst the surface IP/UP approximation is completely free of

such oscillations. We obtain similar results for the case when we choose wh = w−l

in the surface IP/UP method, although L∞ errors tend to be slightly larger for such

a choice.
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Figure 6.1: Exact solution of (6.1) (top) and pointwise errors for respectively the
(unstabilised) surface FEM approximation (bottom left) and the surface IP/UP
approximation (bottom right) on the torus (1410 elements).

6.4.2 Test problem on sphere

Next, we consider (6.1) on the unit sphere

Γ = {x ∈ R3 : |x| = 1}

with velocity field

w(x) =

(
−x2

√
1− x2

3, x1

√
1− x2

3, 0

)T
.

Notice again that w is tangential to the sphere and divergence-free. We perform

siulations for ε = 1, 10−3, 10−6 and construct the right-hand side f such that the

solution u of (6.23) is given by the expression given in the previous test problem.

Tables 6.1, 6.2 and 6.3 show the L2 and H1 norm errors/EOCs outside the sharp

internal layer, given by D = {x ∈ Γ : |x3| > 0.3}, for the (unstabilised) surface

FEM approximation with ε = 1, 10−3, 10−6. Similarly, Tables 6.4, 6.5 and 6.6 show

the resulting errors for the surface IP/UP approximation.

As expected, the results indicate that the surface IP/UP method performs

112



Elements h L2(D)-error L2(D)-eoc H1(D)-error H1(D)-eoc

632 0.223929 0.00405438 0.0515491
2528 0.112141 0.00105686 1.94 0.0262205 0.98
10112 0.0560925 0.000267298 1.98 0.0132106 0.99
40448 0.028049 6.70853e-05 1.99 0.00662013 1.00
161792 0.0140249 1.67875e-05 2.00 0.00331284 1.00

Table 6.1: Errors and convergence orders for the (unstabilised) surface FEM ap-
proximation of (6.1) on the subdomain D of the unit sphere for ε = 1.

Elements h L2(D)-error L2(D)-eoc H1(D)-error H1(D)-eoc

632 0.223929 0.023718 0.460813
2528 0.112141 0.00377738 2.65 0.147209 1.65
10112 0.0560925 0.000367357 3.36 0.0358393 2.03
40448 0.028049 5.18992e-05 2.82 0.0144664 1.31
161792 0.0140249 1.25028e-05 2.05 0.00716878 1.01

Table 6.2: Errors and convergence orders for the (unstabilised) surface FEM ap-
proximation of (6.1) on the subdomain D of the unit sphere for ε = 10−3.

Elements h L2(D)-error L2(D)-eoc H1(D)-error H1(D)-eoc

632 0.223929 0.0446193 0.865006
2528 0.112141 0.0173573 1.36 0.6525 0.40
10112 0.0560925 0.00936689 0.89 0.727195 -0.16
40448 0.028049 0.00604055 0.63 0.93466 -0.36
161792 0.0140249 0.00356562 0.76 1.09546 -0.23
647168 0.00701247 0.00169426 1.07 1.038 0.08

Table 6.3: Errors and convergence orders for the (unstabilised) surface FEM ap-
proximation of (6.1) on the subdomain D of the unit sphere for ε = 10−6.

Elements h L2(D)-error L2(D)-eoc DG(D)-error DG(D)-eoc

632 0.223929 0.00375621 0.0496429
2528 0.112141 0.000978274 1.94 0.025178 0.98
10112 0.0560925 0.000247591 1.98 0.0126658 0.99
40448 0.028049 6.21797e-05 1.99 0.00634436 1.00
161792 0.0140249 1.55661e-05 2.00 0.00317464 1.00

Table 6.4: Errors and convergence orders for the IP/UP approximation of (6.23) on
the subdomain D of the unit sphere for ε = 1.
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Elements h L2(D)-error L2(D)-eoc DG(D)-error DG(D)-eoc

632 0.223929 0.00567022 0.129852
2528 0.112141 0.00119357 2.25 0.0611303 1.09
10112 0.0560925 0.000268463 2.15 0.0285963 1.10
40448 0.028049 6.32703e-05 2.08 0.0138836 1.04
161792 0.0140249 1.53156e-05 2.05 0.00683969 1.02

Table 6.5: Errors and convergence orders for the IP/UP approximation of (6.23) on
the subdomain D of the unit sphere for ε = 10−3.

Elements h L2(D)-error L2(D)-eoc DG(D)-error DG(D)-eoc

632 0.223929 0.00732565 0.159321
2528 0.112141 0.00217458 1.75 0.0889267 0.84
10112 0.0560925 0.00064893 1.75 0.0501573 0.83
40448 0.028049 0.000191337 1.76 0.0282022 0.83
161792 0.0140249 5.39969e-05 1.83 0.0153762 0.88
647168 0.00701247 1.39351e-05 1.95 0.00778131 0.98

Table 6.6: Errors and convergence orders for the IP/UP approximation of (6.23) on
the subdomain D of the unit sphere for ε = 10−6.

better than the unstabilised surface FEM, namely regarding its robustness with

respect to the ε parameter. The results for the surface IP/UP method indicate a

O(h2) convergence in the L2(D)-norm and O(h) in the DG(D)-norm independently

of ε. The unstabilised surface FEM, on the other hand, shows a much more erratic

behaviour for smaller ε and does not appear to attain its asymptotic convergence

rates within our computational domain for ε = 10−6.

Elements h L2(D)-error L2(D)-eoc DG(D)-error DG(D)-eoc

632 0.223929 0.00408458 0.112754
2528 0.112141 0.00104637 1.96 0.0570778 0.98
10112 0.0560925 0.000265394 1.98 0.0286707 0.99
40448 0.028049 6.67961e-05 1.99 0.014371 1.00
161792 0.0140249 1.67035e-05 2.00 0.00718674 1.00
647168 0.00701247 4.16052e-06 2.00 0.00359164 1.00

Table 6.7: Errors and convergence orders for the IP/UP approximation of (6.23)
with wh = w−l on the subdomain D of the unit sphere for ε = 10−6.

Table 6.7 show the relevant errors when using wh = w−l in the surface IP/UP

approximation for ε = 10−6. The errors appear to be smaller by a fact of about
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0.5 compared to those shown in Table 6.6 for which we chose wh|Kh
= Π0

Kh
w−l.

This can be explained by the fact that triangulations for simple surfaces such as the

unit sphere can be constructed to be very “smooth” (in the sense that the relation

n+
h = −n−h pratically holds for each eh ∈ Eh) and that the zero order Raviart-Thomas

approximation error is relatively large.
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Chapter 7

Extensions

In this chapter, we will look into a variety of interesting topics which fall beyond the

theory discussed in Chapters 4, 5 and 6. The first topic will numerically investigate

alternative conormal choices for the surface IP method. The second topic will con-

sider issues arising when applying the surface DG analysis considered in Chapters

4, 5 and 6 to nonconforming grids. The last topic will deal with adaptive refinement

strategies for PDEs posed on complicated surfaces, following on from Chapter 5.

7.1 Alternative conormal choices

In this section, we will look at alternative choices for the conormals n̂+
h and n̂−h

which have been appearing thus far, which is a feature that appears exclusively for

the case of problems posed on discrete surfaces. For the sake of simplicity, we will

restrict ourselves to considering the surface IP method and piecewise linear surface

approximations/ansatz functions i.e. k = 1, and make use of the notation specific

to the piecewise linear surface approximation setting (see Chapter 5).
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7.1.1 Approximation of surface conormals

Consider a generalisation of the surface IP bilinear form (4.10) which, when written

out explicitely, is given by

ÃIPh (uh, vh) :=
∑

Kh∈Th

∫
Kh

∇Γh
uh · ∇Γh

vh + uhvh dAh

−
∑
eh∈Eh

∫
eh

(u+
h − u

−
h )

1

2
(∇Γh

v+
h · n

+
eh
−∇Γh

v−h · n
−
eh

)

+ (v+
h − v

−
h )

1

2
(∇Γh

u+
h · n

+
eh
−∇Γh

u−h · n
−
eh

) dsh

+
∑
eh∈Eh

∫
eh

βeh(u+
h − u

−
h )(v+

h − v
−
h ) dsh (7.1)

where n+
eh

and n−eh are simply vectors which lie on the intersection eh ∈ Eh of

neighbouring elements K+
h and K−h . Now suppose that we want to assemble the

system matrix on an element Kh and we assume that Kh = K−h for all eh ⊂ ∂Kh.

To this end, we fix vh = ϕ− with supp(ϕ−) = Kh which leads to

ÃIPh (uh, ϕ
−) :=

∫
Kh

∇Γh
uh · ∇Γh

ϕ− + uhϕ
− dAh

+
∑

eh⊂∂Kh

∫
eh

(u+
h − u

−
h )

1

2
∇Γh

ϕ− · n−eh + ϕ−
1

2
(∇Γh

u+
h · n

+
eh
−∇Γh

u−h · n
−
eh

) dsh

−
∑

eh⊂∂Kh

∫
eh

βeh(u+
h − u

−
h )ϕ− dsh.

To assemble the block on the diagonal of the matrix we need to take uh = ψ− with

supp(ψ−) = Kh. For the off-diagonal block we take uh = ψ+ with supp(ψ+) =

K+
h for one neighbour K+

h of Kh. We will then discuss different choices for n
+/−
eh

which are linked to several intuitive ways of approximating respectively the surface

conormals n+/− of elh. We use one choice for n+
eh

in both cases. To cover all of the

choices we want to consider, it is necessary to use different choices for n−eh , i.e., the

vector belonging to the element Kh on which we are assembling the matrix. For

the diagonal block we will denote our choice for this vector with n−D and use the

original notation n−eh for the choice used to assemble the off-diagonal block. Note

that n−D = n−h for all of the choices discussed below except for Choice 3.
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Now consider uh = ψ− with supp(ψ−) = Kh in (7.1) using n−D instead of n−eh :

ÃIPh (ψ−, ϕ−) :=

∫
Kh

∇Γh
ψ− · ∇Γh

ϕ− + ψ−ϕ− dAh

−
∑

eh⊂∂Kh

∫
eh

1

2
ψ−∇Γh

ϕ− · n−D + ϕ−
1

2
∇Γh

ψ− · n−D − βehψ
−ϕ− dsh.

Next we take uh = ψ+ with supp(ψ+) = K+
h for one neighbour K+

h of Kh, we now

have

ÃIPh (ψ+, ϕ−) :=
∑

eh⊂∂Kh

∫
eh

1

2
ψ+∇Γh

ϕ− · n−eh dsh + ϕ−
1

2
∇Γh

ψ+ · n+
eh
− βehψ

+ϕ− dsh.

We can now prescribe choices for the vectors n−D, n−eh , n+
eh

and will later investigate

the behaviour of the numerical scheme (7.1) for different choices of these three

vectors.

Choice 1

n−D = n−h , n−eh = n−h , n+
eh

= −n−h .

Such a choice corresponds to using the IP method in a planar setting, for which

n+
h = −n−h , and is the simplest scheme to implement.

Choice 2

n−D = n−h , n−eh = n−h , n+
eh

= n+
h .

This choice yields the surface IP method (4.10) whose error analysis has been dis-

cussed in detail in Chapters 4.

Choice 3

n−D =
1
2(n−h − n

+
h )

|12(n−h − n
+
h )|

, n−eh =
1
2(n−h − n

+
h )

|12(n−h − n
+
h )|

, n+
eh

=
1
2(n+

h − n
−
h )

|12(n+
h − n

−
h )|

.

This choice corresponds to prescribing the vectors to be the average of the two

conormals and yields additional symmetry in the resulting matrix due to the fact

that the vectors are now independent of the element on which they are computed.

Choice 4

n−D = n−h , n−eh = −n+
h , n+

eh
= −n−h .

This particular choice corresponds to using the formulation of the planar IP method

(3.15) on the discrete surface Γh, but with a modified penalty term that does not
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depend on the conormals i.e.

ÃIPh (uh, vh) =
∑

Kh∈Th

∫
Kh

∇Γh
uh · ∇Γh

vh + uhvh dAh

−
∑

eh⊂∂Kh

∫
eh

(u+
h n

+
h + u−h n

−
h ) · 1

2
(∇Γh

v+
h +∇Γh

v−h )

+
1

2
(∇Γh

u+
h +∇Γh

u−h ) · (v+
h n

+
h + v−h n

−
h ) dsh

+
∑

eh⊂∂Kh

∫
eh

βeh(u+
h − u

−
h )(v+

h − v
−
h ) dsh (modified penalty term).

We summarise the choices in Table 7.1.

Choice n−D n−eh n+
eh

Description

1 n−h n−h −n−h Planar (non-sym)
2 n−h n−h n+

h Analysis (sym pos-def)

3
1
2 (n−h−n

+
h )

| 12 (n−h−n
+
h )|

1
2 (n−h−n

+
h )

| 12 (n−h−n
+
h )|

1
2 (n+

h−n
−
h )

| 12 (n+
h−n

−
h )| Average (sym pos-def)

4 n−h −n+
h −n−h Arnold et al. [2002] (sym pos-def)

Table 7.1: Choices of n−D, n+
eh

and n−eh , description of the numerical schemes they
respectively lead to and properties of resulting matrix.

We also consider the planar IP method (3.15) on the discrete surface Γh with

its true penalty term, given by

∑
eh⊂∂Kh

∫
eh

βeh(u+
h n

+
h + u−h n

−
h ) · (v+

h n
+
h + v−h n

−
h ) dsh (true penalty term).

Choosing vh = ϕ− and uh = ψ− as before yields

∑
eh⊂∂Kh

∫
eh

βehψ
−ϕ− dsh.

For uh = ψ+ we now have,

∑
eh⊂∂Kh

∫
eh

βehψ
+ϕ−(n+

h · n
−
h ) dsh.

The matrices arising from Choices 2-4 are symmetric positive definite, so

the Conjugate Gradient (CG) method is particularly well suited for such matrix

problems. Choice 1 however yields a non-symmetric matrix, for which we use the

Biconjugate Gradient Stabilized (BICGSTAB) method. All of these solvers make

119



use of the algebraic multigrid algorithm (AMG) preconditioner coupled with the

incomplete-LU factorisation preconditioner to speed up the solvers. Information on

the implementation of these solvers and preconditioners in DUNE can be found in

Blatt and Bastian [2007] and on their parallelisation in Blatt and Bastian [2008].

7.1.2 Conormal choices for sphere

We consider the DG approximation of (4.59) for different choices of n−D, n+
eh

and

n−eh . Figure 7.1(a,b) shows respectively the ratios of the L2 and DG errors Erri
Err2

with i = 1, 3, 4 where Erri denotes the error in the corresponding norm when using

Choice i. For this simple test problem, the different choices do not appear to give

significantly different results.

(a) (b)

Figure 7.1: Ratio of respectively L2 and DG errors for (4.59) on the unit sphere
with respect to the analysis error (Choice 2) for Choices 1, 3 and 4.

A few remarks on Choice 4 with the true penalty term which, as mentioned

before, would correspond to the planar IP method (3.15) on Γh: interestingly, the

scheme fails to converge for such a choice. The convergence of the numerical scheme

appears to be particularly sensitive to small perturbations in the off-diagonal entries

of the resulting matrix, namely the ones caused by the product of the conormals

n+
h · n

−
h when using the true penalty term for Choice 4. Such a sensitivity seems

counter-intuitive considering that n+
h · n

−
h = −1 + 1

2 |n
+
h + n−h |

2 → −1 as h → 0,

especially considering that we did not observe convergence even for very small h.

Note that, in the flat case, n+
h · n

−
h is equal to −1. We tried to reproduce this

problem in the flat case, taking two different values for the penalty parameter on eh

depending on whether we are assembling the diagonal or the off-diagonal block. A

difference as small as 10−5 leads to similar problems. We do not have an explanation
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for such a behaviour (and we do not exclude the possibility that this could be an

implementation issue rather than a mathematical one), and so further investigation

of this sensitivity would be useful. Table 7.2 shows the L2 and DG errors/EOCs

when using Choice 4 with the true penalty term, which shows the loss of convergence

discussed above. In addition, we show in Table 7.3 that the conormals n
+/−
h behave

as expected for this test problem.

Elements h L2-error L2-eoc DG-error DG-eoc

632 0.223929 0.594031 6.1414
2528 0.112141 0.480233 0.30 3.92988 0.64
10112 0.0560925 0.451843 0.09 2.97823 0.40
40448 0.028049 0.444274 0.02 2.66527 0.16
161792 0.0140249 0.442029 0.01 2.57612 0.05
647168 0.00701247 0.441281 0.00 2.55134 0.01

Table 7.2: Errors and convergence orders for (4.59) on the unit sphere for Choice 4
with true penalty term.

Elements h ‖1 + n+
h · n

−
h ‖L∞(Eh) eoc ‖n+

h + n−h ‖L∞(Eh) eoc

632 0.223929 0.025248 0.224715
2528 0.112141 0.00721 1.81 0.120084 0.90
10112 0.0560925 0.001823 1.98 0.0603874 0.99
40448 0.028049 0.000457 1.99 0.0302372 1.00
161792 0.0140249 0.000114 2.00 0.0151241 1.00
647168 0.00701247 0.000029 1.98 0.00756271 1.00

Table 7.3: Conormal estimates and convergence orders on the unit sphere.

7.1.3 Conormal choices for Dziuk surface

We again consider the DG approximation of (4.59) for different choices of n−D, n+
eh

and n−eh . Figure 7.2(a,b) show respectively the ratios of the L2 and DG errors for

the Dziuk surface test problem. Choices 2 (analysis) and 3 (average) appear to

give the best results in both the L2 and DG norms. In particular, the additional

symmetry induced by using Choice 3 which we mentioned previously makes it the

preferable choice. Since Choice 4 with or without the true penalty term appears to

be consistently less accurate than the other choices, we omit this choice in our next

test problem.
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(a) (b)

Figure 7.2: Ratio of respectively L2 and DG errors for (4.59) on the Dziuk surface
with respect to the analysis error (Choice 2) for Choices 1, 3 and 4.

7.1.4 Conormal choices for Enzensberger-Stern surface

(a) (b)

Figure 7.3: Ratio of respectively L2 and DG errors for (4.59) on the Enzensberger-
Stern surface with respect to the analysis error (Choice 2) for Choices 1 and 3.

The results of our final test problem are shown in Figure 7.3(a,b), which

show respectively the ratios of the L2 and DG errors for the Enzensberger-Stern

surface test problem. These results confirm that Choices 2 and 3 are the preferable

ones to use for DG schemes on surfaces.
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7.2 Nonconforming grids

The analysis discussed in Chapters 4, 5 and 6 would be a bit different if we were to

replicate it on nonconforming grids. In such a situation, newly created (hanging)

nodes created during the refinement process would get lifted to the smooth surface

Γ, as shown in Figure 7.4. An interesting point to note is that neighbouring elements

may not necessarily share a common edge due to this. Furthermore, if we denote

the lift of the edge eh shown in Figure 7.4 to be elh then it is not necessarily the case

that the lift of ẽh coincides with that of eh.

Figure 7.4: Instance of a nonconforming grid resulting from the discretisation of a
problem posed on a surface.

In order to deal with these issues in the analysis, one would first have to

redefine the surface DG bilinear forms in such a way that it does not involve terms

that are defined on the skeleton Eh of the grid, as such terms no longer make sense

in this setting. This is easily done by replacing any terms of the form
∑

eh∈Eh
∫
eh
. . .

by 1
2

∑
Kh∈Th

∫
∂Kh

. . . .

Secondly, one could perform the error analysis by considering a conforming

triangulation T ch of Th and posing a discrete solution uch on T ch . The conforming

triangulation T ch can be constructed by bisecting the element K+
h shown in Figure

7.4 and lifting the resulting hanging node onto the surface (which coincides with

the hanging node of the neighbouring element). The standard error analysis can

then be applied for uch, but in addition one would have to derive and evaluate a new

error functional Ẽh, which stems from the fact that uch does not satisfy the original

problem.
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7.2.1 Numerical tests

Although our analysis was restricted to conforming grids, our numerical tests sug-

gest that the estimates of Theorem 4.4.1 also hold for nonconforming grids in the

piecewise linear setting, as shown in Tables 7.4, 7.5 and 7.6 for respectively the unit

sphere, the Dziuk surface and the Enzensberger-Stern surface. The resulting DG

approximations are shown in respectively Figures 7.5, 7.7 and 7.9.

Elements h L2-error L2-eoc DG-error DG-eoc

1580 0.112141 0.146369 4.24728
6320 0.0560925 0.0402358 1.86 2.11183 1.01
25280 0.028049 0.0104518 1.94 1.04316 1.02
101120 0.0140249 0.0026346 1.99 0.516816 1.01
404480 0.00701247 0.000658561 2.00 0.25718 1.01

Table 7.4: Errors and convergence orders for (4.59) on the unit sphere for noncon-
forming grids.

Elements h L2-error L2-eoc DG-error DG-eoc

230 0.353599 0.21889 0.777436
920 0.176993 0.0530078 2.05 0.413817 0.91
3680 0.0885231 0.0281113 0.92 0.223119 0.89
14720 0.0442651 0.00442299 2.67 0.111518 1.00
58880 0.022133 0.00104207 2.08 0.0562128 0.99
235520 0.0110666 0.00026444 1.99 0.0281247 1.00
942080 0.00553329 6.60383e-05 2.00 0.0140544 1.00

Table 7.5: Errors and convergence orders for (4.59) on the Dziuk surface for non-
conforming grids.

Elements h L2-error L2-eoc DG-error DG-eoc

5895 0.0817973 0.43854 0.931253
23580 0.040885 0.104653 2.06 0.308369 1.59
94320 0.0204411 0.0161014 2.70 0.11975 1.36
377280 0.0102204 0.00109894 3.87 0.0552095 1.12

Table 7.6: Errors and convergence orders for (4.59) on the Enzensberger-Stern sur-
face for nonconforming grids.

In addition, and in a similar fashion to what was done in Section 7.1, we

numerically investigate alternative conormal choices for nonconforming grids. Re-
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sults are shown in Figures 7.6(a,b), 7.8(a,b) and 7.10(a,b) for respectively the unit

sphere, the Dziuk surface and the Enzensberger-Stern surface.

(a)

Figure 7.5: DG approximation of (4.59) on the unit sphere using a nonconforming
grid.

(a) (b)

Figure 7.6: Ratio of respectively L2 and DG errors for (4.59) on the unit sphere with
respect to the analysis error (Choice 2) for Choices 1, 3 and 4 on nonconforming
grids.

7.3 Adaptive refinement on surfaces

In this section, we look at the benefits of using adaptive refinement for PDEs posed

on surfaces, following on from the surface DG a posteriori error analysis discussed in

Chapter 5, and present our own adaptive strategy based on the geometric residual

of the estimator.

Despite the geometric residual being asymptotically of higher order, it is
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(a)

Figure 7.7: DG approximation of (4.59) on the Dziuk surface using a nonconforming
grid.

(a) (b)

Figure 7.8: Ratio of respectively L2 and DG errors for (4.59) on the Dziuk surface
with respect to the analysis error (Choice 2) for Choices 1, 3 and 4 on nonconforming
grids.

126



(a)

Figure 7.9: DG approximation of (4.59) on the Enzensberger-Stern surface using a
nonconforming grid.

(a) (b)

Figure 7.10: Ratio of respectively L2 and DG errors for (4.59) on the Enzensberger-
Stern surface with respect to the analysis error (Choice 2) for Choices 1 and 3 on
nonconforming grids.
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often the case that initial grids poorly resolve areas of high curvature. This is in

fact the case with our initial grid of the Dziuk surface as can be seen in Figure

5.1(b). Hence, in practice, the geometric residual can be very large for coarser grids

and even remain dominant after multiple global refinements. What we now aim

to show is that adaptive refinement strategies based on our estimator are not only

useful for problems with sharp changes in the solution, but are also a way of rapidly

decreasing the geometric residual for grids with poorly resolved high curvature areas

compared to global refinement.

7.3.1 Adaptive refinement on Dziuk surface

Figure 7.11(a) shows the plots of the estimator and the true error when performing

global and adaptive refinement against the number of degrees of freedom for the

Dziuk surface. The adaptive refinement strategy used here is the so-called fixed

fraction strategy, detailed for example in Section 3.2 of Rannacher and Suttmeier

[1999], with rate θ = 0.3. We give a schematic description of the adaptive refinement

below.

REFINE

SOLVE

ESTIMATE

MARK

Start with an intitial grid T 0
h . Then for n ≥ 0:

• SOLVE: compute a finite element ap-

proximation uh of u.

• ESTIMATE: use uh to compute local in-

dicators {ηKh
}Kh∈Th . If

∑
Kh∈Th ηKh

<

TOL, break.

• MARK: depending on value of local indi-

cator ηKh
, mark corresponding element

Kh for refinement or not.

• REFINE: Refine marked elements Kh ∈
T nh to construct new grid T n+1

h .

Notice how, in Figure 7.11(a), the estimator and the true error decrease at a faster

rate for coarser grids when using adaptive refinement, which is due to it rapidly

reducing the initially dominant geometric residual. In addition, our estimator ap-

pears to attain a given error with approximately a third of the number of degrees of

freedom required by global refinement. Figure 7.11(b) shows an adaptively refined

grid for the Dziuk surface colour coded by element size. Notice how our estimator

captures both the region with exponential peaks (right) and the regions with high
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curvature (left).

(a) (b)

Figure 7.11: Estimated/true errors for uniform and adaptive refinement (left) and
an adaptively refined
grid (right) for the Dziuk surface colour coded by element size.

7.3.2 Adaptive refinement on Enzensberger-Stern surface

This is a more extreme example of a surface with high curvature areas whose initial

grid poorly resolves them, as shown in Figure 5.3(a). In fact, it is worth noting that

as c→ 0 the width δU of the open subset U required for the one-to-one property of

(2.1) to hold locally tends to zero.

Figure 7.12(a) shows the plots of the estimator and the true error when

performing global and adaptive refinement against the number of degrees of freedom

for the Enzensberger-Stern surface. The estimator decreases at a much faster rate

for coarser grids when using adaptive refinement by rapidly reducing the geometric

residual. Figure 7.12(b) shows the efficiency of the estimator when performing

respectively uniform and adaptive refinement, the latter converging significantly

faster to an efficiency index of 5.9. Figure 7.12(c) shows an adaptively refined

grid for the Enzensberger-Stern surface colour coded by element size. Again, our

estimator manages to capture the regions of high curvature which were the cause of

the dominant geometric residual occuring for global refinement.

Geometric adaptive refinement

We also consider an adaptive refinement strategy based on the geometric residual,

as numerics have suggested that it is the dominant contribution for grids that poorly

resolve the underlying surface. This strategy only computes the DG approximation
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uh if the geometric residual statisfies(∑
Kh∈Th G

2
Kh

)1/2

(∑
Kh∈Th R

2
Kh

+R2
DGKh

+ G2
Kh

+ G2
DGKh

)1/2
≤ tolgeometric

where tolgeometric ∈ (0, 1) is some user-defined tolerance which prescribes how

small the geometric residual should be relative to the full estimator. Otherwise, we

recompute the estimator and adaptively refine the grid until the criteria is satisfied.

We give a schematic description of the new geometric adaptive refinement below.

REFINE

SOLVE

ESTIMATE

MARK

geometric criteria

≥ TOLgeometric

Start with an intitial grid T 0
h .

• SOLVE: compute a finite element

approximation uh of u.

Then for n ≥ 0:

• ESTIMATE: use uh to compute

local indicators {ηKh
}Kh∈Th . If∑

Kh∈Th ηKh
< TOL, break.

• MARK: depending on value of

local indicator ηKh
, mark corre-

sponding element Kh for refine-

ment or not.

• REFINE: Refine marked elements

Kh ∈ T nh to construct new grid

T n+1
h .

• While∑
Kh∈Th GKh∑
Kh∈Th ηKh

≥ TOLgeometric

go to ESTIMATE else SOLVE.

In Figures 7.12(a) and 7.12(b) we also show respectively the plots of the estima-

tor/true error and the efficiency index when performing our geometric adaptive

refinement strategy. Highlighted are the iterations at which the DG approximation

is recomputed; the true error is only plotted for those iterations. Our estimator

reaches a similar error as the standard adaptive strategy as we increase the number

130



of degrees of freedom but requires far less recomputations of the DG approximation

(11 for the standard adaptive strategy compared to 5 for the geometric adaptive

strategy), hence significantly more computationally efficient. It is also worth men-

tioning that although we do not have a rigorous proof that the stopping criteria for

our geometric adaptive refinement strategy would be satisfied, it appears that this is

in fact the case for all of our test problems, with the number of iterations required to

satisfy the stopping criteria decreasing as expected. Note also that after a number

of refinement steps the curves for both refinement strategies seem to collapse but

that we are in fact reaching the same error with slightly fewer elements in addition

to requiring far fewer computations of uh.
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(a) (b)

(c)

Figure 7.12: Estimated/true errors (top right) and efficiency indices (top left) for
uniform and adaptive refinement. Results for both standard and geometric adapta-
tion strategies are shown. The solution and a colour coding of the adaptive grid are
shown in the bottom row.
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Chapter 8

Conclusions and Further

Research

In this PhD thesis, we have been the first to extend the discontinuous Galerkin

framework to surface partial differential equations and investigate issues arising

when doing so. This was done by deriving both (optimal) a priori and (reli-

able/efficient) a posteriori error estimates for surface DG approximations of elliptic

PDEs posed on compact smooth oriented surfaces in R3 without boundary. We

verified all of the estimates numerically for a number of complicated test problems,

a number of which went beyond the results covered by the theory.

One of the key aspects in enabling a natural treatment of DG methods on sur-

faces was to follow the original formulation of DG methods, given in say Arnold

[1982], rather than the modern approach considered in Arnold et al. [2002]. Using

an original formulation than the modern one allows us to derive boundedness and

stability bounds which are independent of h, as detailed in Remark 4.3.6.

In order to obtain a priori error estimates for the resulting surface DG meth-

ods, one requires additional geometric estimates compared to surface FEM to esti-

mate the error functional arising from the variational crime caused by approximat-

ing the surface. These involve estimating the change of measure between discrete

and lifted edges δêh as well as the (pointwise) difference between surface conormals

and projected discrete conormals n−Pn̂lh. Introducing projected discrete conormals

Pn̂lh in the analysis rather than simply discrete conormals n̂lh is crucial for obtaining

optimal error estimates.

Our extension of the surface DG analysis to advection-diffusion problems on

surfaces required the introduction of a discrete velocity field wh which satisfied a
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number of assumptions. In particular, we required that wh · n̂+
h = −whn̂−h in order

to derive h-independent positive-definiteness of the matrix resulting from the nu-

merical scheme. The introduction of such a discrete velocity field was justified by

considering a situation where one may not necessarily obtain h-independent positive-

definiteness by simply lifting the original velocity downwards. We then explicitely

constructed wh by taking it to be a surface Raviart-Thomas interpolant of w−l.

Such a choice (which is by no means the only possible one) naturally satisfies the

assumption required for h-independent positive-definiteness and allows us to derive

optimal error estimates for the resulting scheme in the DG norm.

There are a number of areas one may choose to pursue further research in. A par-

ticularly interesting one would be to extend the a posteriori error analysis discussed

in Chapter 5 to surface DG methods other than the surface IP method, noncon-

forming grids and hp−adaptive refinement, where both the polynomial order of the

approximation and that of the surface approximation can differ across elements. As

discussed in Chapter 1, one of the advantages of DG methods lies in their ability to

deal with adaptive refinement so this is a natural path to consider.

Having detailed the a priori analysis of surface DG methods for a simple

advection-diffusion problem, it would also be natural to rigorously look into both

a priori and a posteriori analysis of advection dominated problems of the form

(6.23) and look into how the small ε parameter affects the estimates. Extending the

analysis for the purely hyperbolic case (ε = 0) is another interesting path to take:

preliminary results have suggested that one obtains suboptimal estimates for the

error functional arising from the surface approximation, with a convergence order of

h instead of h2 in the piecewise linear setting, and thus suboptimal estimates for the

scheme. This appears to be caused by the application of inverse estimates, required

to eliminate gradient terms, which results in a loss of a full h power.

The presence of a reaction term in our advection-diffusion equation plays a

crucial part in getting the analysis to follows through: it is used for both the sta-

bility of the scheme and in the convergence proof when we assumed that the mass

perturbation coefficient γh ≡ 0 for h small enough. Given that in many applications

no such term is present, it would be natural to extend the analysis for the case when

no reaction term is present.

We hope that much of the work discussed in this thesis (and in the publications

that have resulted from it) will provide a stepping stone for further research in this

exciting new field.
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Appendix A

Geometric Estimates

Lemma A.0.1. Let Γ be a compact smooth and oriented surface in R3 and let Γkh
be its Lagrange interpolant of degree k. Furthermore, we denote by n+/− the unit

(surface) conormals to respectively ê
l+/−
h . Then, omitting the surface lift symbols,

we have that

‖d‖L∞(Γk
h) . hk+1, (A.1a)

‖1− δhk‖L∞(Γk
h) . hk+1, (A.1b)

‖ν − ν̂h‖L∞(Γk
h) . hk, (A.1c)

‖P−Rhk‖L∞(Γk
h) . hk+1, (A.1d)

‖1− δêh‖L∞(Êh)
. hk+1, (A.1e)

sup
K̂∈T̂h

‖P−Rêh‖L∞(∂K̂h)
. hk+1, (A.1f)

‖n+/− −Pn̂
+/−
h ‖

L∞(Êh)
. hk+1, (A.1g)

for sufficiently small h, where Rêh = δ−1
êh

P(I− dH)Phk(I− dH).

e K Kh K̂h K̂ℓ

h

Le LKh
ξk ξ

Figure A.1: Diagram of mappings.
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