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Biomembranes

Biomembranes are composed of phospholipid molcules, built from
a hydrophilic phosphate ’head’ and a hydrophobic lipid ’tail’.
When immersed in water they form structures in which the heads
point towards the water and the tails away. Biomembranes are
composed of one such structure, the bilayer sheet.

-Hydrophillic Head

-Hydrophobic Tail



Biomembrane Deformation - Embedded Inclusions

Biomembranes can be deformed by the action of protein molecules.
For example protein molecules can be embedded into the
phospholipid bilayer and their shape can locally bend the
membrane.
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Protein Inclusion

-Membrane Bending



Biomembrane Deformation - Exterior Inclusions

Biomembrane deformation can also be caused by the action of
exterior proteins. Actin filaments push against the membrane and
cause it to bend.

Force applied by actin filaments

-Membrane Bending



Modelling Assumptions

I The membrane is a single elastic sheet and may be represented
by the graph {(x , u(x)) | x ∈ Ω} where Ω ⊂ R2 is some
domain and u(x) is the displacement of the membrane at x .

I Protein inclusions are modelled as single points.

I Inclusions may apply a point constraint to u (hard inclusions)
or apply a point force to the membrane (soft inclusions).

I The energy due to the curvature of the membrane is given by
the Helfrich energy functional.



Hard Inclusions - Fixed Heights Problem

We consider the (approximate) Helfrich energy functional given by

E (u) :=
1

2

∫
Ω
κ|∆u|2 + σ|∇u|2.

Here κ > 0 is a constant called the bending modulus and σ > 0 is
a constant accounting for the surface tension.
Let N ∈ N and take X ∈ ΩN to be the inclusion locations. The
inclusions apply the point constraints

u(Xi ) = αi ∀1 ≤ i ≤ N

for some α ∈ RN . We look to minimise E over an appropriate
subspace of H2(Ω).



Hard Inclusions - Fixed Heights Problem

Suppose Ω ⊂ R2 is bounded and Lipschitz. Let V ⊂ H2(Ω) be
chosen for appropriate boundary conditions, explicitly we may
choose

V =


H2(Ω) ∩ H1

0 (Ω) for Navier boundary conditions,

H2
0 (Ω) for Dirichlet boundary conditions,

H2
p,0(Ω) for Periodic b.c. with volume conservation.

Define a convex subset of V :

KX
α := {v ∈ V | v(Xi ) = αi ∀1 ≤ i ≤ N} .

Define Lα ⊂ V :

Lα :=
{
v ∈ V | ∀1 ≤ i ≤ N ∃Yi ∈ Ω̄ s.t. v(Yi ) = αi

}



Hard Inclusions - Fixed Heights Problem

We consider the following minimisation problems.

1. Given α,X minimise E (v) over v ∈ KX
α .

2. Given α minimise E (v) over v ∈ Lα.

That is we wish to find the minimal energy for a given
configuration of inclusions imposing heights α and the minimal
energy over all configurations which impose heights α.
We can solve these problems using very general methods and so
first introduce a similar problem to which these methods can also
be applied.



Hard Inclusions - Fixed Curvatures Problem

We consider the higher order approximation to the Helfrich energy
functional given by

E (u) :=
1

2

∫
Ω
κ8|∆2u|2 + κ6|∇∆u|2 + κ|∆u|2 + σ|∇u|2.

We require the higher regularity of u to apply pointwise constraints
to the curvature.
Let N ∈ N and take X ∈ ΩN to be the inclusion locations. The
inclusions each apply three point constraints

(∂2
xxu(Xi ), ∂

2
xyu(Xi ), ∂

2
yyu(Xi )) = (α3i−2, α3i−1, α3i ) ∀1 ≤ i ≤ N

for some α ∈ R3N . We look to minimise E over an appropriate
subspace of H4(Ω).



Hard Inclusions - Fixed Curvatures Problem

Suppose Ω ⊂ R2 is bounded and Lipschitz. Let V ⊂ H2(Ω) be
chosen for appropriate boundary conditions, for example we may
choose

V =

{
H4

0 (Ω) for Dirichlet boundary conditions,

H4
p,0(Ω) for Periodic b.c. with volume conservation.

Define a convex subset of V :

KX
α :=

{
v ∈ V | D2v(Xi ) = (α3i−2, α3i−1, α3i ) ∀1 ≤ i ≤ N

}
.

Define Lα ⊂ V :

Lα :=
{
v ∈ V | ∀1 ≤ i ≤ N ∃Yi ∈ Ω̄ s.t. D2v(Xi ) = (α3i−2, α3i−1, α3i )

}



Abstract Quadratic Programming Problem

Definition (Quadratic programming problem (QPP))

Let V be a Hilbert Space, fix N ∈ N, α ∈ RN and a set of
linearly independent functionals {F1, ...,FN} ⊂ V ∗. We thus define
a convex subset KF

α ⊂ V by:

KF
α := {v ∈ V | Fj(v) = αj ∀ 1 ≤ j ≤ N} .

Let a : V ×V → R be a bilinear, symmetric, bounded and coercive.
Let l : V → R be a bounded linear functional.
Define J : V → R by J(v) := 1

2a(v , v)− l(v).
We will say u ∈ KF

α is a minimiser of J over KF
α if

J(u) ≤ J(v) ∀ v ∈ KF
α .



Equivalent Problems

Lemma (Equivalent variational problems)

Using the notions in Definition 1, suppose u ∈ KF
α , then the

following are equivalent:

1. J(u) ≤ J(v) ∀v ∈ KF
α

2. a(u, v − u) ≥ l(v − u) ∀v ∈ KF
α

3. a(u,w) = l(w) ∀w ∈ KF
0

The final statement is useful to show the existence and uniqueness
of such a minimiser.



Constructing the Minimiser

For each 1 ≤ j ≤ N we define φj ∈ V by the unique solution to:

a(φj , v) = Fj(v) ∀ v ∈ V .

Hence define the matrix A = (aij)i ,j=1,...,N by aij := a(φi , φj).
Finally, define φN+1 ∈ KF

0 by the unique solution to:

a(φN+1, v) = l(v) ∀ v ∈ KF
0 .

Notice A is symmetric and invertible as it is defined by a
symmetric, coercive bilinear functional applied to linear
independent elements of V .



Constructing the Minimiser
Define λ ∈ RN by λ := A−1α and thus define u∗ ∈ V by:

u∗ :=
N∑
j=1

λjφj + φN+1.

Notice u∗ ∈ KF
α , as for any 1 ≤ i ≤ N we have

Fi (u
∗) =

N∑
j=1

λjFi (φj) + F (φN+1) = (Aλ)i = αi

Now let w ∈ KF
0 , then

a(u∗,w) =
N∑
j=1

λja(φj ,w)+a(φN+1,w) =
N∑
j=1

λjFj(w)+l(w) = l(w)

Thus u∗ ∈ KF
α satisfies the equivalent variational problem

so it is a minimiser of J over KF
α .



Global Minimisers

We now look to minimise J over all possible configurations which
impose the constraints encoded by α, that is we minimise J over
the set:

Lα := {v ∈ V | ∃G = (G1, ...,GN) ∈ G s.t. Gi (v) = αi ∀1 ≤ i ≤ N} .

Here we may choose G ⊂ (V ∗)N appropriately for each
application. For example, for the fixed heights problem we set

G =
{

(δX1 , ..., δXN
) | X1, ...,XN ∈ Ω̄

}
.



Existence of Global Minimisers

Theorem (Existence of QPP global minimisers)

Suppose G ⊂ (V ∗)N is compact and that Lα 6= ∅ then there exists
a QPP global minimiser (a minimiser of J over Lα).

The proof follows by finding minimisers uG of KG
α for each G ∈ G

and then finding the minimum of J(uG ) over G using compactness.
Having shown the existence of such global minimisers we now
return to the fixed heights problem to better characterise them.



Global Minimisers - Fixed Heights Problem

For the fixed heights problem we have V ⊂ C (Ω̄). Take
α = (α1, ..., αN) ∈ RN and wlog assume α1 ≤ α2 ≤ ... ≤ αN .

I If α1 ≥ 0 then Lα = LαN
.

I If αN ≤ 0 then Lα = Lα1 .

I If α1 < 0 < αN then Lα = L(α1,αN).

Hence all of these problems reduce to a problem with N = 1 or
N = 2.



Fixed Heights Problem - N = 1 Case

Lemma (N = 1 case)

Suppose N = 1 and define w ∈ V by the unique solution to
a(w , v) = l(v) ∀v ∈ V , then the following holds.

I u ∈ Lα is a minimiser over height α iff
u = w + α−w(X )

G(X ,X ) G (X , ·) and X ∈ Ω is chosen minimising
1

G(X ,X ) |α− w(X )|2 over Ω.

In particular when l = 0 we have w ≡ 0 thus u depends linearly on
α. The choice of X is to maximise G (X ,X ), this is a maximal
bending point and depends only upon Ω.



Maximal Bending Points

I The locations of maximal bending points are related to the
distance from the boundary.

I Maximal bending points not necessarily unique.
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