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Problem Formulation

We will consider the following PDE
kA%u — cAu = bx in Q
where £ >0, ¢ > 0 and Q C R? is a bounded, Lipschitz domain.

The right hand side Jx is the delta function centred at the point
X e Q.

We impose some appropriate homogeneous boundary conditions
which will lead to the weak formulation.



Weak Formulation

We use integration by parts to derive a weak formulation and the
possible homogeneous boundary conditions.

/(/iA2u —oAu)v = / —kVAu-Vv+oVu-Vv
Q Q
+/ 0(Au) - @v
a0 ov ov

= / kAulAv +ocVu-Vv
Q

—l—/ 8(Au)v—}-@v—i-AuQ
o0 ov ov ov
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Weak Formulation - Boundary Conditions

We thus pose the problem in H?(Q2) and impose boundary
conditions by considering the problem in a subspace V C H?(Q).

We take the first boundary condition to be u|sq = 0. The
boundary integral now vanishes if we choose the second boundary
condition as follows.

> Dirichlet boundary conditions: u = % =0 on 092

» Navier boundary conditions: v = Au =0 on 9N



Weak Formulation - Imposing Boundary Conditions

For Dirichlet boundary conditions we take the test space to be:

v
 Ov

4

V= {v € H*(Q)

=0on 89} = H3(Q).
For Navier boundary conditions we take the test space to be:

V= {veHz(Q)‘v:Oon aQ} = H?> N HA(Q).
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Weak Formulation - Left Hand Side

We have now constructed the left hand side of the weak
formulation:

a(u,v) = / kAuAv +oVu-Vv.
Q

Notice that a: V x V — R is bilinear, bounded and coercive.
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Weak Formulation - Right Hand Side

For the right hand side we follow the same process and 'integrate’
the right side against a test function v € V.

/anv = v(X)
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Weak Formulation - Right Hand Side

For the right hand side we follow the same process and 'integrate’
the right side against a test function v € V.

/anv = v(X)

» This doesn't make sense!
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Weak Formulation - Right Hand Side

For the right hand side we follow the same process and 'integrate’
the right side against a test function v € V.

/anv = v(X)

» This doesn't make sense!

» We must interpret §x as an element of the dual space, V*.
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Weak Formulation - Right Hand Side

By the Sobolev embedding theorem we have H?(Q) — C(Q).

We then interpret dx as | € V* such that

Notice that |/(v)| < [[v[/¢c(q) < Cl|v|lv, so indeed / € V*.
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Weak Form

We may thus state the weak form of our problem;
Find u e Vsit. a(u,v) =1(v) VveV.

By the Lax-Milgram theorem we have the existence of a unique
solution u € V.
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An Example - The Biharmonic Problem

To gain an idea of the regularity of solutions consider the problem
A%u=6in Q= B(0;1)

Beginning with Navier boundary conditions, we use the Green's
function of the laplacian to construct a radial solution. The
Green's function is given by:
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An Example - The Biharmonic Problem

We then conclude that u has the form
2

u(r) = 8r—7r[ln(r) — 1] + aln(r) + b.

If u€ H?(Q) it is continuous and thus a = 0. We then enforce the
zero boundary condition and so b = 1/8.

Notice that u € C%7(Q) for all v € [0,1). The same result holds
for Dirichlet boundary conditions.
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Regularity for General Problem

In fact the same regularity result holds for the general problem.

Theorem
Suppose Q has C3 boundary and u € V is the weak solution of

KA’y — ocAu = 0x

Then u € W3P(Q) for all p € (1,2) and hence u € C*V(Q) for all
v €1[0,1).
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Proof

Define T : L?(Q) — C(Q) by Tf = v¢ such that
a(ve,v) = (f,v) ) Vv € V (1)

And thus define the adjoint operator T*: C(Q)* — L?(Q).
Hence, for any f € L2(Q)

(T(0x), Fiz(e) = 0x[Tf]

= ve(X)

= a(u, vf)
(u, F)i2(e)

Thus u= T*(0x).
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Proof

Now let 1 € C§°(Q) and find v € H}(R) such that kKAv —ov = 1.
By elliptic regularity, v is smooth, we will only require v € H*(Q).

/QAW:/QUMJ

:/ u[kA2%v — o AV]
Q

= (T*6x, kA%v — 0 Av)
= dx|[v]

= v(x)
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Proof

< [Ivlleo
< C(Q2, P[Pl wre(ay for p € (1,2)

Where 1 € WHP(Q)* is given by

vlw = [ vw

C$°(R) is dense in WLP(Q)* thus Au € WIP(Q). B
By elliptic regularity u € W3P(Q), hence u € C17(Q).

:'/QAM/;
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Application - Biomembrane Deformation

If we consider an elastic membrane which is deformed by point
forces we are lead to the energy functional:

+ - -
E(u,X*) = o 5180 + §[VuP + o TN w(XH) ~ BTN u(X))

Elastic Energy Coupling Energy

» Energy minimisation produces our fourth order equation.

» Gradient flow produces particle movement in o Vu(in).
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Further Work - Eighth Order Equations

Another model for biomembrane deformation considers the
coupling energy:

N+t N~
Ec(u,X¥) =a ) Du(X") = B> Du(X).
j=1 j=1

We add higher order terms to the elastic energy and arrive at an
equation of the form:

kgA*u — keA3u+ KA%u — o Au = Déx
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