Probability Theory

September 27, 2012

1 Basic Probability

Definition: Algebra
If \(S \) is a set then a collection \(\mathcal{A} \) of subsets of \(S \) is an algebra if

- \(S \in \mathcal{A} \)
- \(A \in \mathcal{A} \implies A^c \in \mathcal{A} \)
- \(\{ A_i \}_{i=1}^n \in \mathcal{A} \implies \bigcup_{i=1}^n A_i \in \mathcal{A} \)

Definition: \(\sigma \)-Algebra
If \(S \) is a set then a collection \(\mathcal{F} \) of subsets of \(S \) is an algebra if

- \(S \in \mathcal{F} \)
- \(A \in \mathcal{F} \implies A^c \in \mathcal{F} \)
- \(\{ A_i \}_{i=1}^\infty \in \mathcal{F} \implies \bigcup_{i=1}^\infty A_i \in \mathcal{F} \)

Lemma:
The following are basic properties of \(\sigma \)-algebras

- \(\emptyset \in \mathcal{F} \)
- \(\{ A_i \}_{i=1}^\infty \in \mathcal{F} \implies \bigcap_{i=1}^\infty A_i \in \mathcal{F} \)

Lemma:
If \(S \) is a non-empty set and \(\mathcal{G} \in \mathcal{P}(S) \) then \(\exists \mathcal{F} := \sigma(\mathcal{G}) \) the smallest \(\sigma \)-algebra containing \(\mathcal{G} \)

Proof:
We know that \(\mathcal{P}(S) \) is a \(\sigma \)-algebra containing \(\mathcal{G} \)
Define \(\Gamma := \{ \mathcal{A} \text{ \(\sigma \)-algebra} : \mathcal{G} \in \mathcal{A} \} \)
Claim \(\mathcal{F} = \bigcap_{\mathcal{A} \in \Gamma} \mathcal{A} \)
If this is a \(\sigma \)-algebra it is clearly the smallest one containing \(\mathcal{G} \) by definition of intersection.
Remark:
From the above lemma we say that \(F \) is the \(\sigma \)-algebra generated by \(G \) and that \(G \) is the generator of \(F \)

Definition: Borel \(\sigma \)-Algebra
Let \(S = \mathbb{R}^n, G := \{ \prod_{i=1}^{n} [a_i, b_i] : a_i \leq b_i \in \mathbb{Q} \} \)
Then the Borel \(\sigma \)-algebra is \(B(\mathbb{R}^n) = \sigma(G) \)

Remark:
If \(S \) is a topological space then \(B(S) \) is the \(\sigma \)-algebra generated by open sets of \(S \)

Definition: Measurable Space
\((S, \mathcal{F})\) is a measurable space where
- \(S \) is a set
- \(\mathcal{F} \) is a \(\sigma \)-algebra

Definition: Measurable Set
\(A \) is measurable if \(A \in \mathcal{F} \) where \(\mathcal{F} \) is a \(\sigma \)-algebra

Definition: Additive
If \(S \) is a set, \(A \) is an algebra then
\(\mu : A \rightarrow \mathbb{R}_{[0,\infty)} \)
is additive if \(F, G \in A, F \cap G = \phi \implies \mu(F \cup G) = \mu(F) + \mu(G) \)

Definition: \(\sigma \)-Additive
If \(S \) is a set, \(A \) is an algebra then
\(\mu : A \rightarrow \mathbb{R}_{[0,\infty)} \)
is \(\sigma \)-additive if \(\{A_i\}_{i=1}^{\infty} \in \mathcal{F}, A_i \cap A_j = \phi \forall i \neq j \implies \mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i) \)

Definition: Measure
If \((S, \mathcal{F})\) is a measurable space and \(\mu : \mathcal{F} \rightarrow \mathbb{R}_{[0,\infty]} \) is a measure if \(\mu \) is \(\sigma \)-additive

Definition: Finite Measure
A measure \(\mu \) on measurable space \((S, \mathcal{F})\) is finite if \(\mu(S) < \infty \)

Definition: \(\sigma \)-Finite Measure
A measure \(\mu \) on measurable space \((S, \mathcal{F})\) is \(\sigma \)-finite if
\(\exists \{A_i\}_{i=1}^{\infty} \in \mathcal{F} \) s.t.
- \(\mu(A_i) < \infty \ \forall i \)
- \(\bigcup_{i=1}^{\infty} A_i = S \)

Definition: Probability Measure
A measure \(\mu \) on \(S \) is a probability measure if \(\mu(S) = 1 \)

Definition: Measure Space
A measure space is \((S, \mathcal{F}, \mu)\) where \(S \) is a set, \(\mathcal{F} \) is a \(\sigma \)-algebra on \(S \) and \(\mu \) is a measure on \((S, \mathcal{F})\)

Definition: Probability Space
A measure space \((S, \mathcal{F}, \mu)\) is a probability space if \(\mu \) is a probability measure

Definition: \(\pi \)-System
A family \(\mathcal{Y} \) of subsets of set \(S \) is a \(\pi \)-system if \(Y \) is closed under intersection
i.e. \(A, B \in Y \implies A \cap B \in Y \)

Definition: Dynkin System
If \(S \) is a set and \(\mathcal{D} \) is a set of subsets of \(S \) then \(\mathcal{D} \) is a Dynkin system of \(S \) if
- \(S \in \mathcal{D} \)
- \(A, B \in \mathcal{D}, A \subseteq B \implies B \setminus A \in \mathcal{D} \)
- \(\{A_i\}_{i=1}^{\infty} \in \mathcal{D}, A_i \cap A_j = \phi \forall i \neq j \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{D} \)

Remark:
We denote \(d(\mathcal{G}) \) to be the smallest Dynkin system containing \(\mathcal{G} \) which exists

Lemma:
If \(\mathcal{G} \) is a \(\pi \)-system then \(\sigma(\mathcal{G}) = d(\mathcal{G}) \)
Proof:
Clearly every \(\sigma \)-algebra is also a Dynkin system hence \(d(\mathcal{G}) \subseteq \sigma(\mathcal{G}) \) is trivial hence it remains to show that \(d(\mathcal{G}) \) is a \(\sigma \)-algebra

- Clearly \(\mathcal{S} \in d(\mathcal{G}) \) by definition
- Suppose \(A \in d(\mathcal{G}) \) then \(B \setminus A \in d(\mathcal{G}) \forall B \in d(\mathcal{G}) \) hence \(A^c = \mathcal{S} \setminus A \in d(\mathcal{G}) \)
- Want to show that \(d(\mathcal{G}) \) is a \(\pi \)-system
 - Define \(D_1 := \{ A \subseteq \mathcal{S} : A \cap B \in d(\mathcal{G}) \forall B \in \mathcal{G} \} \)
 - Is a Dynkin system and \(\mathcal{G} \subseteq D_1 \)
 - Define \(D_2 := \{ A \subseteq \mathcal{S} : A \cap B \in d(\mathcal{G}) \forall B \in d(\mathcal{G}) \} \subseteq d(\mathcal{G}) \)
 - Is a Dynkin system and \(\mathcal{G} \subseteq D_2 \)
 - Hence \(d(\mathcal{G}) \) is a Dynkin system hence is a \(\pi \)-system
- Let \(\{ A_i \}_{i=1}^\infty \in d(\mathcal{G}) \), we need to show that \(\bigcup_{i=1}^\infty A_i \in d(\mathcal{G}) \)
 - Define \(B_i = A_i \setminus \bigcup_{j=1}^{i-1} A_j \in d(\mathcal{G}) \forall i \)
 - Hence \(\bigcup_{i=1}^\infty A_i = \bigcup_{i=1}^\infty B_i \in d(\mathcal{G}) \)

since this is a disjoint union

hence indeed \(d(\mathcal{G}) \) is a \(\sigma \)-algebra

Theorem:
Let \((\mathcal{S}, \mathcal{F}, \mu)\) be a probability space and suppose \(\mathcal{F} = \sigma(\mathcal{G}) \) for some \(\pi \)-system \(\mathcal{G} \in \mathcal{P}(\mathcal{S}) \)
If \(\nu \) is another probability measure on \((\mathcal{S}, \mathcal{F})\) s.t.
\(\mu(A) = \nu(A) \) \(\forall A \in \mathcal{G} \)
then \(\mu = \nu \)

Proof:
write \(\mathcal{D} = \{ A \in \mathcal{F} : \mu(A) = \nu(A) \} \)

is a Dynkin system with \(\mathcal{G} \subseteq \mathcal{D} \) hence
\(d(\mathcal{G}) \subseteq \mathcal{D} \)

hence by the previous lemma \(\mathcal{F} = \sigma(\mathcal{G}) = d(\mathcal{G}) = \mathcal{D} \)

Definition: Content
\(\mu \) is a content on \((\mathcal{S}, \mathcal{A})\) if
- \(\mu(\emptyset) = 0 \)
- \(\mu(A \cup B) = \mu(A) + \mu(B) \) \(\forall A, B \in \mathcal{A} : A \cap B = \emptyset \)

Theorem Caratheodory’s Theorem
If \(\mu \) is a \(\sigma \)-additive content on \((\mathcal{S}, \mathcal{A})\) where \(\mathcal{A} \) is an algebra of \(\mathcal{S} \) then \(\mu \) extends to a measure on \((\mathcal{S}, \sigma(\mathcal{A}))\)

Lemma: Cantor
If \(\{ K_n \}_{n=1}^\infty \) are compact sets in a metric space s.t.
\(K_n \neq \emptyset \) \(\forall n \) and
\(K_{n+1} \subseteq K_n \) \(\forall n \)
then
\(\bigcap_{n=1}^\infty K_n \neq \emptyset \)

Proof:
Choose \(x_n \in K_n \) for each \(n \in \mathbb{N} \) since \(K_n \neq \emptyset \)
Notice that \(\{x_n\}_{n=r}^{\infty} \subseteq K_r \) since \(K_n \) are decreasing.

\[\exists \{x_{kn}\}_{k=1}^{\infty}, x_0 \in K_1 \text{ s.t.} \]

\[\lim_{k \to \infty} x_{nk} = x_0 \]

by compactness

\[\{x_n\}_{k=r}^{\infty} \subseteq K_r \]

hence \(x_0 \in K_n \) \(\forall n \) hence \(x_0 \in \bigcap_{n=1}^{\infty} K_n \)

Lemma:

If \(\{A_n\}_{n=1}^{\infty} \subseteq A \) and \(\mu \) is a \(\sigma \)-additive content s.t.

- \(A = a \{Int(a, b) : -\infty \leq a \leq b \leq \infty\} \) where
 \[
 Int(a, b) = \begin{cases}
 (a, b) & b < \infty \\
 (a, \infty) & b = \infty
 \end{cases}
 \]

- \(A_{n+1} \subseteq A_n \)
- \(\lim_{n \to \infty} A_n = \phi \)
- \(\mu(A_n) < \infty \) \(\forall n \)

then

\[\lim_{n \to \infty} \mu(A_n) = 0 \]

Proof:

By contradiction assume that \(\lim_{n \to \infty} \mu(A_n) = \delta > 0 \)

then \(\mu(A_n) \geq \delta \) \(\forall n \in \mathbb{N} \)

We can choose sets \(\{F_n\}_{n=1}^{\infty} \in A \) s.t.

- \(F_n \subseteq A_n \) for each \(n \)
- \(\mu(A_n) - \mu(F_n) \leq 2^{-n}\delta \)
- \(F_{n+1} \subseteq F_n \)

then we have that

\[\mu(F_n) \geq \mu(A_n) - \delta 2^{-n} \geq \delta - \delta 2^{-n} \geq \delta/2 \]

hence \(F_n \neq \phi \)

moreover \(F_n \neq \phi \)

\(F_n \) is compact so by the previous lemma

\[\bigcap_{n=1}^{\infty} F_n \neq \phi \]

but

\[\bigcap_{n=1}^{\infty} F_n \subseteq \bigcap_{n=1}^{\infty} A_n \neq \phi \]

which is a contradiction to

\[\bigcap_{n=1}^{\infty} A_n = \lim_{n \to \infty} A_n = \phi \]

Proposition:

The Lebesgue measure \(\mathcal{L} \) on \((\mathbb{R}, A) \) where

\[A = a \{Int(a, b) : -\infty \leq a \leq b \leq \infty\} \]

extends to a measure on \((\mathbb{R}, \sigma(A) = (\mathbb{R}, \mathcal{B}(\mathbb{R})) \)

Proof:

By Carathéodory’s theorem it suffices to show that \(\mathcal{L} \) is \(\sigma \)-additive
i.e. $\forall\{A_i\}_{i=1}^{\infty} \in \mathcal{A}$ pairwise disjoint s.t. $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$ we have that

$$L\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} L(A_i)$$

For $\mathcal{A}_{\text{finite}} := \{ A \in \mathcal{A} : L(A) < \infty \}$

suppose $\{A_i\}_{i=1}^{\infty} \in \mathcal{A}_{\text{finite}}$ be pairwise disjoint s.t. $A = \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}_{\text{finite}}$

Define $B_n := \bigcup_{i=1}^{n} A_i$

$L(A) = L(A \setminus B_n) + \sum_{i=1}^{n} L(A_i)$

by the previous lemma $\lim_{n \to \infty} L(A \setminus B_n) = 0$

hence

$$L\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} L(A_i)$$

so it remains to show this holds for $A \in \mathcal{A} \setminus \mathcal{A}_{\text{finite}}$

suppose $A = (-\infty, a]$ let $\{A_i\}_{i=1}^{\infty} \in \mathcal{A}$ be pairwise disjoint s.t. $\bigcup_{i=1}^{\infty} A_i = A$

Since $\{A_i\}_{i=1}^{\infty}$ are pairwise disjoint $\exists 1 A_k \in \{A_i\}_{i=1}^{\infty}$ s.t. $A_k = (-\infty, a_k]$ for some a_k

$L(A) \geq 0$ since it is a content hence

$$\infty = L(A_k) \leq \sum_{i=1}^{\infty} L(A_i)$$

$$\infty = L(A_k) \leq L\left(\bigcup_{i=1}^{\infty} A_i\right)$$

hence indeed the proposition holds.

Definition: Measurable Function

If $(\mathcal{S}, \mathcal{F}), (\mathcal{S}', \mathcal{F}')$ are measurable spaces then

$f : \mathcal{S} \to \mathcal{S}'$ is $(\mathcal{S}, \mathcal{S'})$-measurable if

$\forall A' \in \mathcal{F}'$ $f^{-1}(A') \in \mathcal{F}$

Lemma:

If $(\mathcal{S}, \mathcal{F}), (\mathcal{S}', \mathcal{F}')$ are measurable spaces and $\mathcal{F}' = \sigma(\mathcal{G})$, then it is sufficient that

$f^{-1}(A) \in \mathcal{F}$ $\forall A \in \mathcal{G}$

for f to be measurable.

Corollary:

Let $(\mathcal{S}, \mathcal{F})$ is measurable and $f : \mathcal{S} \to \mathbb{R}$

then if $\{f \leq a\} \in \mathcal{F}$ $\forall a \in \mathbb{R}$ then f is $(\mathcal{S}, \mathbb{R})$ measurable.

Proof:

By the previous lemma take $\mathcal{G} = \{(-\infty, a] : a \in \mathbb{R}\}$ which generates $\mathcal{B}(\mathbb{R})$

Lemma:

If $\{f_i\}_{i=1}^{\infty}$ are measurable then

- $h_1 h_2$
- $\alpha h_1 + \beta h_2$
- $h_1 \circ h_2$
- $\inf_i h_i$
- $\liminf_i h_i$
- $\limsup_i h_i$
are measurable when well defined.

Corollary:
Let S be a topological space with σ-algebra $\mathcal{B}(S)$
If $f : S \to \mathbb{R}$ is continuous then it is Borel measurable.

Proof:
Open sets generate $\mathcal{B}(\mathbb{R})$
Since the preimage of open sets by a continuous function are open we have that $\forall A$ open $f^{-1}(A)$ is open hence is
in the σ-algebra generated by open sets in S

Definition: Random Variable
If $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and (S, F') is measurable then
$X : \Omega \to S$ is a random variable if it is a measurable mapping
i.e. $\forall A' \in F' \quad X^{-1}(A') \in F$

Definition: Push Forward Measure
If $X : \Omega \to S$ is a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ then the distribution of X is the probability measure

$$\mathbb{P}_X(A) = \mathbb{P}(\{X \in A\}) \quad \forall A \in F'$$

Definition: Cumulative Distribution Function
Define

$$F_X(x) = \mathbb{P}_X((-\infty, x]) = \mathbb{P}(\{X \leq x\})$$

Lemma:
Suppose $F = F_X$ for some random variable X then
- $F : \mathbb{R} \to [0, 1]$ is non decreasing
- F is right-continuous
- $\lim_{x \to -\infty} F(x) = 0$
- $\lim_{x \to \infty} F(x) = 1$

Lemma:
If $F : \mathbb{R} \to [0, 1]$ s.t.
- $F : \mathbb{R} \to [0, 1]$ is non decreasing
- F is right-continuous
- $\lim_{x \to -\infty} F(x) = 0$
- $\lim_{x \to \infty} F(x) = 1$

then $\exists (\Omega, \mathcal{F}, \mathbb{P})$ and random variable X s.t. $F_X = F$

Definition: Product σ-Algebra
If $(S_i, \mathcal{F}_i)_{i=1}^n$ are measurable spaces then the product σ-algebra on these is

$$\bigotimes_{i=1}^n \mathcal{F}_i = \sigma(\{A_1 \times ... \times A_n : A_i \in \mathcal{F}_i\})$$

Lemma:
If $(\Omega, \mathcal{F}), (S_i, \mathcal{F}_i)_{i=1}^n$ are measurable spaces then
$\{X_i : \Omega \to S_i\}_{i=1}^n$ are all random variables iff
$Z := (X_1, ... X_n) : \Omega \to S_1 \times ... \times S_n$ is $(\mathcal{F}, \bigotimes_{i=1}^n \mathcal{F}_i)$-measurable

Proof:
Suppose Z is a random variable
let $\pi_i : S_1 \times ... \times S_n \to S_i$ be the ith canonical projection
then $X_i = \pi_i \circ Z$
Compositions of measurable functions are measurable so it is sufficient that the projections \(\pi_i \) are measurable which is true since
\[
\pi^{-1}_i(A) = \mathbb{R} \times \ldots \times \mathbb{R} \times A \times \mathbb{R} \times \ldots \times \mathbb{R}
\]
Suppose \(\{X_i\}_{i=1}^n \) are random variables and let \(A \in \bigotimes_{i=1}^n \mathcal{F}_i \)
\[
Z^{-1}(A) = \{\omega : z(\omega) \in A\} = \{\omega : X_i(\omega) \in A_i \ \forall i\} = \bigcap_{i=1}^n X_i^{-1}(A_i) \in \mathcal{F}
\]

Definition: Joint Distribution
If \(\{X_i\}_{i=1}^n : (\Omega, \mathcal{F}) \to (\mathcal{S}_i, \mathcal{F}_i) \) are random variables for measurable spaces \((\Omega, \mathcal{F}), (\mathcal{S}_i, \mathcal{F}_i)_{i=1}^n\) then the distribution of \(Z = (X_1, \ldots, X_n) : (\Omega, \mathcal{F}) \to (\mathcal{S}_n \times \ldots \times \mathcal{S}_n, \bigotimes_{i=1}^n \mathcal{F}_i) \) is called the joint distribution of \((X_1, \ldots, X_n)\):
\[
\mathbb{P}_Z(A) = \mathbb{P}(\{Z \in A\}) = \mathbb{P}\left(\bigcap_{i=1}^n \{X_i \in A_i\}\right)
\]

2 Independence

Definition: Independence
Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a probability space then
- Sub-\(\sigma\) algebras \(\{\mathcal{F}_i\}_{i=1}^n\) are independent if whenever \(\{i_k\}_{k=1}^n\) are distinct and \(A_{i_k} \in \mathcal{F}_{i_k}\) then
 \[
 \mathbb{P}\left(\bigcap_{i=1}^n A_{i_k}\right) = \prod_{i=1}^k \mathbb{P}(A_{i_k})
 \]
- Random variables \(\{X_i\}_{i=1}^n\) are independent if the sub-\(\sigma\) algebras \(\{\sigma(X_i)\}_{i=1}^n\) are independent where \(\sigma(X_i) = \sigma(\{X_i^{-1}(A) : A \in \mathcal{F}_i\})\)
- Events \(\{E_i\}_{i=1}^n \in \mathcal{F}\) are independent if the sub-\(\sigma\) algebras \(\{\sigma(E_i)\}_{i=1}^n\) are independent where \(\sigma(E_i) = \{\phi, \Omega, E_i, \Omega \setminus E_i\}\)

Lemma:
Suppose \(\mathcal{G}, \mathcal{H}\) are sub-\(\sigma\) algebras of \(\mathcal{F}\) on the probability space \((\Omega, \mathcal{F}, \mathbb{P})\) s.t. \(\mathcal{G} = \sigma(I), \mathcal{H} = \sigma(J)\) for \(\pi\)-systems \(I, J\) then \(\mathcal{G}, \mathcal{H}\) are independent iff
\[
\mathbb{P}(I \cap J) = \mathbb{P}(I)\mathbb{P}(J) \quad \forall I \in I, J \in J
\]

Proof:
Independence \(\implies\) \(\mathbb{P}(I \cap J) = \mathbb{P}(I)\mathbb{P}(J) \quad \forall I \in I, J \in J\)
is trivial since independence \(\implies\) \(\mathbb{P}(I \cap J) = \mathbb{P}(I)\mathbb{P}(J) \quad \forall I \in I \supseteq J, J \in \mathcal{H} \supseteq J\)
Define \(\mu(A) = \mathbb{P}(A \cap I), \nu(A) = \mathbb{P}(A)\mathbb{P}(I) \quad \forall I \in I, A \in \mathcal{H}\)
clearly these are measures and by the property we have that they coincide on \(\mathcal{H}\)
Define \(\eta(A) = \mathbb{P}(A \cap H), \kappa(A) = \mathbb{P}(A)\mathbb{P}(H) \quad \forall A \in \mathcal{G}, H \in \mathcal{H}\)
clearly these are measures and by the property we have that they coincide on \(\mathcal{G}\)
So indeed we have independence.

Corollary:
Let \((\Omega, \mathcal{F}, P)\) be a probability space and \(X, Y : \Omega \to \mathbb{R}\) be random variables. If
\[
\mathbb{P}(\{X \leq a\} \cap \{Y \leq b\}) = \mathbb{P}(X \leq a)\mathbb{P}(Y \leq b) \quad \forall a, b \in \mathbb{R}
\]
then \(X, Y\) are independent.

Proof:
\(\sigma(\{-\infty, a\} : a \in \mathbb{R}) = \mathcal{B}(\mathbb{R})\) hence this holds by the previous lemma.

Corollary:
\(X, Y\) are independent iff
\[
F_X(a)F_Y(b) = \mathbb{P}(X \leq a)\mathbb{P}(Y \leq b) = \mathbb{P}(\{X \leq a\} \cap \{Y \leq b\}) = F_{X,Y}(a,b)
\]
\(\forall a, b \in \mathbb{R}\)

Lemma:
Let \((\Omega_i, \mathcal{F}_i, \mu_i)_{i=1,2}\) be \(\sigma\)-finite measure spaces then
\[
\exists \mu = \mu_1 \bigotimes \mu_2\text{ which is }\sigma\text{-finite and }
\mu(A_1 \times A_2) = \mu(A_1)\mu_2(A_2) \quad \forall A_i \in \mathcal{F}_i \ i = 1,2
\]
\(\mu\) is a measure on \((\Omega_1 \times \Omega_2, \mathcal{F}_1 \bigotimes \mathcal{F}_2)\)

Corollary:
Random variables \(X, Y\) with joint distribution \(\mathbb{P}_{X,Y}\) are independent iff
\[
\mathbb{P}_{X,Y} = \mathbb{P}_X\mathbb{P}_Y
\]

Definition: Tail-\(\sigma\) Algebras
If \(\{\mathcal{F}_i\}_{i=1}^\infty\) are a sequence of \(\sigma\)-algebras then the tail-\(\sigma\) algebra is defined as
\[
\mathcal{T} = \bigcap_{n=1}^{\infty} \sigma\left(\bigcup_{k=n}^{\infty} \mathcal{F}_k\right)
\]
If \(\{X_i\}_{i=1}^\infty\) are a sequence of random variables then the tail-\(\sigma\) algebra is defined as
\[
\mathcal{T} = \bigcap_{n=1}^{\infty} \sigma\left(\bigcup_{k=n}^{\infty} \{\sigma(X_k)\}\right)
\]

Definition: Deterministic
A random variable \(X\) is deterministic if \(\exists c \in [-\infty, \infty] \text{ s.t. } \mathbb{P}(X = c) = 1\)

Definition: P-Trivial
\(\mathcal{T}\) is \(P\)-trivial if
- \(A \in \mathcal{T} \implies \mathbb{P}(A) \in \{0, 1\}\)
- If \(X\) is a \(\mathcal{T}\)-measurable random variable then \(X\) is deterministic.

Lemma:
Let \(\mu\) be a measure on measurable space \((\Omega, \mathcal{F})\) and \(\{A_i\}_{i=1}^\infty \in \mathcal{F}\)
- If \(A_i \subseteq A_{i+1} \forall i\) then \(\mu(\lim_{i \to \infty} A_i) = \lim_{i \to \infty} \mu(A_i)\)
- If \(A_i \supseteq A_{i+1} \forall i\) and \(\mu(A_i) < \infty\) then \(\mu(\lim_{i \to \infty} A_i) = \lim_{i \to \infty} \mu(A_i)\)
Theorem: Kolmogorov

Suppose that \(\{F_i\}_{i=1}^{\infty} \) are an independent sequence of \(\sigma \)-algebras then the associated \(\sigma \)-algebra is \(P \)-trivial

Proof:

\[P(A) \in \{0, 1\} \iff P(A)^2 = P(A) \]

\[\iff P(A)P(A) = P(A \cap A) \]

\[\iff A \perp A \]

Let \(T_n = \sigma\left(\bigcup_{k=n+1}^{\infty} F_k \right) \)

and \(T = \bigcap_{n=1}^{\infty} T_n \)

\(H_n := \sigma\left(\bigcup_{k=1}^{n} F_k \right) \)

\(\{F_k\}_{k=1}^{\infty} \) are independent hence

\(H_n \perp T_n \) hence

\(H_n \perp T \)

therefore \(A \in T \) is independent from every \(H_n \)

\(\bigcup_{n=1}^{\infty} H_n \) is a \(\pi \)-system hence it is sufficient that

\[A \perp \sigma\left(\bigcup_{n=1}^{\infty} H_n \right) = \sigma\left(\bigcup_{k=1}^{\infty} F_k \right) = T_0 \supset T \]

hence \(A \perp A \)

Let \(c \in \mathbb{R} \) by the first part of the theorem we have that \(P(X \leq c) \in \{0, 1\} \)

define \(c := \sup\{x : P(X \leq x) = 0\} \)

If \(c = -\infty \) then \(P(X = -\infty) = 1 \)

If \(c = \infty \) then \(P(X \leq \infty) = 1 \)

If \(|c| < \infty \) then

\[P(X \leq c - \frac{1}{n}) = 0 \quad \forall n \in \mathbb{N} \]

\[P(X \leq c + \frac{1}{n}) = 1 \quad \forall n \in \mathbb{N} \]

hence by the previous lemma

\[P\left(\bigcup_{n=1}^{\infty} \{X \leq c - \frac{1}{n}\} \right) = P(X < c) \]

\[= 0 \]

\[P\left(\bigcap_{n=1}^{\infty} \{X \leq c + \frac{1}{n}\} \right) = P(X \leq c) \]

\[= 1 \]

\[P(X = c) = P(X \leq c) - P(X < c) \]

\[= 1 \]

Definition: Limsup

Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a probability space with \(\{A_i\}_{i=1}^{\infty} \in \mathcal{F} \) then
Definition: Liminf

Let \((Ω, F, P)\) be a probability space with \(\{A_i\}_{i=1}^{∞} \in F\) then

\[
\{A_n: \text{i.o.}\} = \bigcap_{m=1}^{∞} \bigcup_{n \geq m} A_n
\]
\[
= \{ω: \forall m; \exists n \geq m \text{ s.t. } ω \in A_n\}
\]
\[
= \liminf_n A_n
\]

Lemma: Fatou

Let \((Ω, F, µ)\) be a measure space and \(\{A_n\}_{n=1}^{∞} \in F\) then

- \(µ(\liminf_n A_n) \leq \liminf_n µ(A_n)\)
- If \(µ(Ω) < ∞\) then \(µ(\limsup_n A_n) ≥ \limsup_n µ(A_n)\)

Proof:

- Define \(Z_m := \bigcap_{n \geq m} A_n\) is monotonic and \(µ(Z_m) < µ(A_n) \quad ∀n \geq m\)

\[
µ(\liminf_n A_n) = µ\left(\bigcup_{m=1}^{∞} Z_m \right)
\]
\[
= \lim_{m \to ∞} µ(Z_m)
\]
\[
≤ \lim_{m \to ∞} \inf_{n \geq m} µ(A_n)
\]
\[
= \liminf_n µ(A_n)
\]

- \(µ(Ω) - µ(\limsup_n A_n) = µ(Ω \setminus \limsup_n A_n)\)

\[
= µ(\liminf_n (Ω \setminus A_n))
\]
\[
≤ \liminf_n µ(Ω \setminus A_n)
\]
\[
= µ(Ω) - \limsup_n µ(A_n)
\]

Since \(µ(Ω) < ∞\) we have that \(µ(\limsup_n A_n) ≥ \limsup_n µ(A_n)\)

Lemma: Borel-Cantelli

Let \((Ω, F, P)\) be a probability space and \(\{A_i\}_{i=1}^{∞} \in F\) then
If \(\sum_{n=1}^{\infty} P(A_n) < \infty \) then \(P(A_n : \text{i.o.}) = 0 \)

If \(\{A_n\}_{n=1}^{\infty} \) are independent and \(\sum_{n=1}^{\infty} P(A_n) = \infty \) then \(P(A_n : \text{i.o.}) = 1 \)

Proof:

- define \(G_m : \bigcup_{n \geq m} A_n \)
 then for \(k \in \mathbb{N} \) we have \(\bigcap_{m=1}^{\infty} G_m \subset G_k \)

\[
\mathbb{P}\left(\bigcap_{m=1}^{\infty} G_m \right) = \mathbb{P}(G_k) \leq \mathbb{P}\left(\bigcup A_n \right) \leq \sum_{n=k}^{\infty} \mathbb{P}(A_n)
\]

\[
\lim_{k \to \infty} \sum_{n=k}^{\infty} \mathbb{P}(A_n) = 0
\]

- \(\{A_i\}_{i=1}^{\infty} \) independent \(\implies \{A_i^c\}_{i=1}^{\infty} \) are independent.

\[
\mathbb{P}\left(\bigcap_{n=m}^{r} A_n^c \right) = \prod_{n=m}^{r} \mathbb{P}(A_n^c) \quad \text{by independence}
\]

\[
= \prod_{n=m}^{r} (1 - \mathbb{P}(A_n)) \\
\leq \prod_{n=m}^{r} e^{-\mathbb{P}(A_n)} \\
= e^{-\sum_{n=m}^{r} \mathbb{P}(A_n)}
\]

\[
\lim_{r \to \infty} e^{-\sum_{n=m}^{r} \mathbb{P}(A_n)} = 0
\]

hence we have that \(\mathbb{P}\left(\bigcap_{n=m}^{\infty} A_n^c \right) = 0 \)

\[
(limsup_n A_n)^c = \bigcup_{m=1}^{\infty} \bigcap_{n \geq m} A_n^c
\]

is the countable union of null sets hence it itself a null set hence

\[
\mathbb{P}(limsup_n A_n) = 1
\]

Corollary:
If \(\{A_i\}_{i=1}^{\infty} \) are independent then \(\mathbb{P}(A_i : \text{i.o.}) \in \{0, 1\} \)

Corollary:
If we write \(\mathcal{F}_i = \sigma(A_n) \) then \(\{A_n : \text{i.o.}\} \) is a tail event of \(\mathcal{T} = \bigcap_{i=1}^{\infty} \sigma(\{\mathcal{F}_i\}_{i=1}^{\infty}) \)

Lemma: Existence Of Independent Random Variables
Let \((\Omega_i, \mathcal{F}_i, \mathbb{P}_i) \) \(i=1, 2 \) be probability spaces with respective random variables \(X_1, X_2 \) which have distributions \(\mathbb{P}_{X_1}, \mathbb{P}_{X_2} \)
If we set $\Omega = \Omega_1 \times \Omega_2$, $\mathcal{F} = \mathcal{F}_1 \otimes \mathcal{F}_2$, $\mathbb{P} = \mathbb{P}_1 \times \mathbb{P}_2$ then for $\omega = (\omega_1, \omega_2) \in \Omega$ define

$X_1(\omega) = X_1(\omega_1)$

$X_2(\omega) = X_2(\omega_2)$

are defined on $(\Omega, \mathcal{F}, \mathbb{P})$ and are independent.

3 Expectation And Convergence

Definition: Simple Function

A function $f : S \to \mathbb{R}$ on measure space (S, \mathcal{F}, μ) is simple if

$\exists \{\alpha_i\}_{i=1}^n \in \mathbb{R}$ and partition $\{A_i\}_{i=1}^n \in \mathcal{F}$ s.t.

$f = \sum_{i=1}^n \alpha_i 1_{A_i}$

Definition: Integration Of Simple Functions

If $f : S \to \mathbb{R}$ is simple with $f = \sum_{i=1}^n \alpha_i 1_{A_i}$ then

$\int f d\mu = \sum_{i=1}^n \alpha_i \mu(A_i)$

Definition: Integration Of Positive Measurable Functions

If $f : S \to \mathbb{R}_{[0, \infty]}$ is measurable then

$\int f d\mu = \sup \{ \int g d\mu : g \leq f, g \text{ simple} \}$

Definition: μ-Integrable

$f : S \to \mathbb{R}$ is μ-integrable if

$\int |f| d\mu < \infty$

Definition: Integration Of μ-Integrable Functions

If $f : S \to \mathbb{R}$ is μ-integrable then

$\int f d\mu = \int f^+ d\mu - \int f^- d\mu$

Remark

We denote the space of μ-integrable functions as $L^1(\mu) = \mathcal{L}(S, \mathcal{F}, \mu)$

Lemma:

The following properties hold for $L^1(\mu)$

- $f, g \in L^1(\mu)$, $\alpha, \beta \in \mathbb{R}$ \implies

 $\int \alpha f + \beta g d\mu = \alpha \int f d\mu + \beta \int g d\mu$

- $0 \leq f \in L^1(\mu)$ \implies

 $\int f d\mu \geq 0$

- $\{f_n\}_{n=1}^\infty$, measurable s.t. $\lim_{n \to \infty} f_n = f$ and $f_n \leq f_{n+1}$ $\forall n$ \implies

 $\lim_{n \to \infty} \int f_n d\mu = \int f d\mu$

- $f = 0 \text{ a.e.}$ \iff

 $\int f d\mu = 0$
Theorem: Fubini’s Theorem
Let \((S_1 \times S_2, \mathcal{F}_1 \otimes \mathcal{F}_2, \mu_1 \otimes \mu_2)\) be a measure space and \(f \in \mathcal{L}^1(\mu_1 \otimes \mu_2)\) then let \(
abla = \mu_1 \otimes \mu_2\)
\[
\int \int f(s_1, s_2) d\mu_1(s_1) d\mu_2(s_2) = \int f(s) d\mu(s) = \int \int f(s_1, s_2) d\mu_2(s_2) d\mu_1(s_1)
\]
Moreover it is sufficient that \(f \geq 0\) measurable for the above integral inequality to hold.

Definition: Expectation
If \(X\) is a r.v. on \((\Omega, \mathcal{F}, \mathbb{P})\) probability space \(X \in \mathcal{L}^1(\mathbb{P})\) then
\[
\mathbb{E}[X] := \int X d\mathbb{P}
\]

Lemma:
If \(X\) is a r.v. on \((\Omega, \mathcal{F}, \mathbb{P})\) with distribution \(\mathbb{P}_X\) and \(h : \mathbb{R} \rightarrow \mathbb{R}\) is Borel measurable then
- \(h \circ X \in \mathcal{L}^1(\mathbb{P}) \iff h \in \mathcal{L}^1(\mathbb{P}_X)\)
- \(\mathbb{E}[h \circ X] = \int h \circ X d\mathbb{P} = \int h d\mathbb{P}_X\)

Corollary:
\[
\mathbb{E}[X] = \int z d\mathbb{P}_X(z) = \int X d\mathbb{P}
\]

Corollary:
Take \(h = 1_B\) for \(B \in \mathcal{B}(\mathbb{R})\) then
\[
\mathbb{E}[1_B \circ X d\mathbb{P}] = \int 1_B \circ X d\mathbb{P}
\]
\[
= \int 1_{X^{-1}(B)} d\mathbb{P}
\]
\[
= \mathbb{P}(X^{-1}(B))
\]
\[
= \mathbb{P}(X \in B)
\]
\[
= \mathbb{P}_X(B)
\]
\[
= \int 1_B d\mathbb{P}_X
\]
This holds for all indicators hence by linearity holds for all simple functions therefore by monotone convergence theorem holds for all positive measurable functions and all integrable functions.

Lemma:
If \(X, Y\) are independent r.v.s on probability space \((\Omega, \mathcal{F}, \mathbb{P})\) then
\[
\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y]
\]

Proof:
\[
\mathbb{E}[XY] = \int xy d\mathbb{P}_{X,Y}
\]
\[
= \int \int XY d\mathbb{P}_X d\mathbb{P}_Y
\]
\[
= \mathbb{E}[Y] \int X d\mathbb{P}_X d\mathbb{P}_Y
\]
\[
= \int X d\mathbb{P}_X \int Y d\mathbb{P}_Y
\]
\[
= \mathbb{E}[X] \mathbb{E}[Y]
\]

by Fubini
Remark:
If X is a r.v on (Ω, \mathcal{F}, P) and $A \in \mathcal{F}$ then we use the following notation:

$$E[X; A] := E[X1_A] = \int X1_A dP$$

Lemma: Markov’s Inequality
If X is a random variable, $\epsilon > 0$ and $g : \mathbb{R} \to \mathbb{R}_{[0, \infty]}$ is Borel measurable and non-decreasing then

- $P(g(X) > \epsilon) \leq E[g(X)]$
- $P(X > \epsilon) g(\epsilon) \leq E[g(X)]$

Proof:
$g \circ X$ is measurable and non-negative by properties of measurable functions hence

- \[
E[g(X)] = \int g(X) dP \\
\geq \int g(X)1_{\{g(X) > \epsilon\}} dP \\
\geq \int \epsilon 1_{\{g(X) > \epsilon\}} dP \\
\geq \epsilon \int 1_{\{g(X) > \epsilon\}} dP \\
= \epsilon P(g(X) > \epsilon)
\]

- \[
E[g(X)] = \int g(X) dP \\
\geq \int g(X)1_{\{X > \epsilon\}} dP \\
\geq \int g(\epsilon) 1_{\{X > \epsilon\}} dP \\
\geq g(\epsilon) \int 1_{\{X > \epsilon\}} dP \\
= g(\epsilon) P(X > \epsilon)
\]

Corollary: Chebyshev’s Inequality
If X is a r.v. with finite variance then

$$P(|X - E[X]| > \epsilon) \leq \frac{Var[X]}{\epsilon^2}$$

$\forall \epsilon > 0$

Proof:
$$P(|X - E[X]| > \epsilon) = P((X - E[X])^2 > \epsilon^2)$$
$$\leq \frac{E[(X - E[X])^2]}{\epsilon^2}$$
$$= \frac{Var[X]}{\epsilon^2}$$
Theorem:
If \(\{X_i\}_{i=1}^n \) are independent random variables each with mean \(\mu \) and variance \(\sigma^2 \) then for \(\varepsilon > 0 \)

\[
P\left(\left| \frac{1}{n} \sum_{i=1}^n X_i - \mu \right| > \varepsilon \right) \leq \frac{\sigma^2}{n\varepsilon^2}
\]

Proof:
define \(Z = \sum_{i=1}^n X_i \) then
\[
E[Z] = \mu \quad \text{Var}[Z] = \sigma^2/n
\]
hence by Chebyshev’s inequality this clearly holds.

Lemma: Jensen’s Inequality
If \(X \) is a random variable with \(E[|X|] < \infty \) s.t. \(f \) is convex on an interval containing the range of \(X \) and \(E[|f \circ X|] < \infty \) then

\[
f(E[X]) \leq E[f(X)]
\]

Proof:
Suppose that \(X \) is simple so let \(X = \sum_{i=1}^n a_i 1_{A_i} \)

\[
f(E[X]) = f \left(\sum_{i=1}^\infty a_i P(A_i) \right)
\]

\[
\leq \sum_{i=1}^\infty P(A_i) f(a_i) \quad \text{by convexity}
\]

\[
= E[f(X)]
\]

Suppose that \(X \) is a positive r.v. then \(\exists \{X_n\}_{n=1}^\infty \) r.vs which are increasing and converge to \(X \) a.s.
then

\[
f(E[X]) = \lim_{n \to \infty} f(E[X_n])
\]

\[
\leq \lim_{n \to \infty} E[f(X_n)]
\]

\[
= E[f(X)]
\]

4 Convergence

Definition: Almost Sure Convergance
If \(\{X_i\}_{i=1}^n \) are a sequence of r.vs on \((\Omega, \mathcal{F}, P)\) then \(\{X_i\}_{i=1}^n \) converge to r.v. \(X \) on \((\Omega, \mathcal{F}, P)\) if

\[
P(\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\}) = 1
\]

Remark:
Almost sure limits are unique only up to equality a.s.

Corollary:
\(X = Y \) a.s. iff

\[
P(\{\omega \in \Omega : X(\omega) = Y(\omega)\}) = 1
\]

Lemma:
\(\{X_n\}_{n=1}^\infty \) converge to \(X \) a.s. iff

\[
P(|X_n - X| > \varepsilon \ i.o.) = 0 \quad \forall \varepsilon > 0, \ n \in \mathbb{N}
\]

Corollary: Stability Properties
- If \(\{X_n\}_{n=1}^\infty \) are r.vs s.t. \(X_n \to X \) a.s. and \(g : \mathbb{R} \to \mathbb{R} \) is continuous then \(g(X_n) \to g(X) \) a.s.
Definition: Convergence In Probability
If \(\{X_n\}_{n=1}^{\infty} \), \(\{Y_n\}_{n=1}^{\infty} \) are r.vs s.t. \(X_n \rightarrow X \) a.s. and \(Y_n \rightarrow Y \) a.s. with \(\alpha, \beta \in \mathbb{R} \) then \(\alpha X_n + \beta Y_n \rightarrow \alpha X + \beta Y \).

Definition: Cauchy Convergence In Probability
If \(\{X_n\}_{n=1}^{\infty} \) are r.vs on \((\Omega, \mathcal{F}, \mathbb{P})\) then \(X_n \rightarrow X \) in probability if
\[
\lim_{n \to \infty} \mathbb{P}(|X_n - X| > \varepsilon) = 0
\]

Lemma:
Let \(\{X_n\}_{n=1}^{\infty} \), \(\{Y_n\}_{n=1}^{\infty} \) be r.vs on \((\Omega, \mathcal{F}, \mathbb{P})\)
If \(X_n \rightarrow \infty \) a.s. then \(X_n \rightarrow X \) in probability.

Proof:
\(X_n \rightarrow \infty \) a.s. implies
\[
\forall \varepsilon > 0 \quad \mathbb{P}(|X_n - X| > \varepsilon) \leq \mathbb{P}(\sup_{k \geq n}|X_k - X| > \varepsilon)
\]
hence we have
\[
\lim_{n \to \infty} \mathbb{P}(|X_n - X| > \varepsilon) \leq \lim_{n \to \infty} \mathbb{P}(\sup_{k \geq n}|X_k - X| > \varepsilon)
\]
\[
\leq \mathbb{P}(lim_{n \to \infty}\sup_{k \geq n}|X_k - X| > \varepsilon)
\]
\[
= \mathbb{P}(|X_n - X| > \varepsilon \text{ i.o.})
\]
\[
= 0
\]

Lemma:
Let \(\{X_n\}_{n=1}^{\infty} \) be r.vs on \((\Omega, \mathcal{F}, \mathbb{P})\)
\(X_n \rightarrow X \) in probability iff \(X_n \rightarrow X \) Cauchy in probability.

Proof:
Suppose \(X_n \rightarrow X \) in probability.
then
\[
|X_n - X_m| \leq |X_n - X| + |X - X_m|
\]
\[
\{|X_n - X_m| > \varepsilon\} \subseteq \{|X_n - X| > \varepsilon/2\} \cup \{|X - X_m| > \varepsilon/2\}
\]
\[
\mathbb{P}(|X_n - X_m| > \varepsilon) \leq \mathbb{P}(|X_n - X| > \varepsilon/2) + \mathbb{P}(|X - X_m| > \varepsilon/2)
\]
\[
\lim_{n,m \to \infty} \mathbb{P}(|X_n - X_m| > \varepsilon) \leq \lim_{n,m \to \infty} \mathbb{P}(|X_n - X| > \varepsilon/2) + \mathbb{P}(|X - X_m| > \varepsilon/2)
\]
\[
= 0
\]

Now suppose \(X_n \rightarrow X \) Cauchy in probability
for any \(k \geq 1 \) choose \(\varepsilon = 2^{-k} \)
\(\exists m_k \text{ s.t. } \forall n > m \geq m_k \) we have that
\[
\mathbb{P}(|X_n - X_m| > 2^{-k}) < 2^{-k}
\]
set \(n_1 = m_1 \) and recursively define \(n_{k+1} = \max\{n_k + 1, m_{k+1}\} \)
define \(X'_k := X_{n_k} \)
define \(A_k := \{|X'_k - X'_k| > 2^{-k}\} \)
then \(\sum_{k=1}^{\infty} \mathbb{P}(A_k) < \infty \)
then by Borel Cantelli
\[
|X'_{k+1}(\omega) - X'_k(\omega)| \leq 2^{-k} \quad \forall \omega \in \Omega \setminus A, \quad \forall k \geq K_0
\]
where \(\mathbb{P}(A) = 0 \)
hence \(\forall \omega \in \Omega \setminus A \)
\[\lim_{n \to \infty} \sup_{m > n} |X'_m - X'_n| \leq \lim_{n \to \infty} \sum_{k=n}^{\infty} |X'_m - X'_n| \]
\[\leq \lim_{n \to \infty} \sum_{k=n}^{\infty} 2^{-k} \]
\[= 0 \]

hence
\[\mathbb{P}(\limsup_{n} X'_n = \liminf_{n} X'_n < \infty) = 1 \]

define \(X := \liminf_{n} X'_n \) since \(X_n \to X \) a.s.
by the previous lemma we have that \(X_n \to X \) in probability
hence \(\forall \varepsilon > 0 \)
\[\lim_{k \to \infty} \mathbb{P}(|X_k - X| > \varepsilon) \leq \lim_{k \to \infty} (\mathbb{P}(|X_k - X_{n_k}| > \varepsilon/2) + \mathbb{P}(|X_{n_k} - X| > \varepsilon/2)) \]
\[= 0 \]

Lemma:
Let \(\{X_n\}_{n=1}^{\infty}, X \) be random variables on \((\Omega, \mathcal{F}, \mathbb{P})\)
If \(\sum_{n=1}^{\infty} \mathbb{P}(|X_n - X| > \varepsilon) < \infty \quad \forall \varepsilon > 0 \) then
\(X_n \to X \) a.s.

Proof:
This follows directly from Borel Cantelli.

Lemma:
If \(\{X_n\}_{n=1}^{\infty}, X \) are r.vs then
\(X_n \to X \) in probability iff
\(\forall \{X_{n_{k_r}}\}_{k_r=1}^{\infty} \exists \{X_{n_{kr}}\}_{r=1}^{\infty} \) s.t. \(X_{n_{kr}} \to X \) a.s.

Proof:
Suppose \(X_n \to X \) in probability
the \(\forall \varepsilon > 0 \) find \(n_{k_r} \in \mathbb{N} \) s.t. \(\mathbb{P}(|X_{n_{k_r}} - X| > 1/r) < 2^{-r} \)
then
\[\sum_{r=1}^{\infty} \mathbb{P}(|X_{n_{k_r}} - X| > 1/r) < \sum_{r=1}^{\infty} 2^{-r} < \infty \]
moreover \(\forall \varepsilon > 0 \)
\[\sum_{r > 1/\varepsilon} \mathbb{P}(|X_{n_{k_r}} - X| > \varepsilon) < \sum_{r > 1/\varepsilon} \mathbb{P}(|X_{n_{k_r}} - X| > 1/r) \]
\[\leq \sum_{r > 1/\varepsilon} 2^{-k} \]
\[< \infty \]

hence we simply take the sequence \(\{X_{n_{k_r}}\}_{r > 1/\varepsilon} \)
which converges to \(X \) a.s.
Assume that every subsequence has a subsequence converging a.s.
we need to show that \(X \) is unique.
fix \(\varepsilon > 0 \)
\(b_n := \mathbb{P}(|X_n - X| > \varepsilon) \in [0, 1] \) is compact hence
∃b_{n_k} converging subsequence
by our assumption X_{n_k} has a subsequence X_{n_{k_r}} → X a.s.

$$\lim_{r \to \infty} b_{n_{k_r}} = \lim_{r \to \infty} P(|X_{n_{k_r}} - X| > \varepsilon) = 0$$

since a.s. convergence implies convergence in probability.

hence since b_{n_k} is convergent we must have that \(\lim_{k \to \infty} b_{n_k} = 0 \)
hence every subsequence of b_k which converges does so to 0

Theorem: The Weak Law Of Large Numbers
If \(\{X_n\}_{n=1}^\infty \) are i.i.d r.v.s with \(X_i \in L^1(\Omega, \mathcal{F}, \mathbb{P}) \) then

$$\lim_{n \to \infty} \frac{\sum_{k=1}^n X_k}{n} = \mathbb{E}[X_1]$$

Proof:
Write

$$X_k^* := X_k \mathbb{1}_{|X_k| \leq k^{1/4}}$$
$$X_k' := X_k \mathbb{1}_{|X_k| > k^{1/4}}$$
$$Y_n^* := \frac{\sum_{k=1}^n X_k^* - \mathbb{E}[X_k^*]}{n}$$
$$Y_n' := \frac{\sum_{k=1}^n X_k' - \mathbb{E}[X_k']}{n}$$

It suffices to show that \(Y_n^*, Y_n' \to 0 \) in probability.

$$\text{Var}[X_k^*] \leq \mathbb{E}[X_k^*]^2 \leq k^{1/2}$$
$$\text{Var}[Y_n^*] \leq \sum_{k=1}^n \frac{\text{Var}[X_k^*]}{n^2} \leq \sum_{k=1}^n \frac{k^{1/2}}{n^2} \leq \sum_{k=1}^n \frac{n^{1/2}}{n^2} = n^{-1/2}$$

by Chebyshev’s inequality

$$\mathbb{P}(|Y_n^*| > \varepsilon) \leq \frac{\text{Var}[Y_n^*]}{\varepsilon^2}$$

but

$$\lim_{n \to \infty} \frac{\text{Var}[Y_n^*]}{\varepsilon^2} = 0$$

hence \(Y_n^* \to 0 \) in probability

$$\mathbb{E}[|X_k'|] = \mathbb{E}[|X_1'| 1_{|X_1'| > k^{1/4}}] \to 0$$

by MCT
hence
\[P(|Y'_n| \geq \varepsilon) \leq \frac{E[|Y'_n|]}{\varepsilon} \leq \frac{2}{\varepsilon} \sum_{k=1}^{n} E[|X'_k|] \]
\[\lim_{n \to \infty} P(|Y'_n| \geq \varepsilon) = 0 \]

hence \(Y'_n \to 0 \) in probability.

Theorem: The Strong Law Of Large Numbers

Let \(\{X_n\}_{n=1}^{\infty} \) be independent r.vs s.t.

- \(E[|X_n|^2] < \infty \quad \forall n \)
- \(v := \sup_{X_n} \{Var[X_n]\} < \infty \)

then
\[\sum_{k=1}^{n} \frac{X_k - E[X_k]}{n} \to 0 \quad a.s. \]

Proof:

WLOG assume \(E[X_k] = 0 \)

Define \(S_n = \sum_{i=1}^{n} X_i \)

Notice that \(S_n \to 0 \) in probability so we want a subsequence \(S_{n_k} \to 0 \) a.s.

\[P(|S_{n_k}| > \varepsilon) \leq \frac{Var[S_{n_k}]}{n^2 \varepsilon^2} \]

hence
\[\sum_{n=1}^{\infty} P(|S_n| > \varepsilon) < \infty \quad \forall \varepsilon > 0 \]

so we have that \(S_{n_k} \to 0 \) a.s.

For \(m \in \mathbb{N} \) let \(n = n_m \) s.t.

\(n^2 \leq m \leq (n+1)^2 \)

write \(y_k = ks_k = \sum_{i=1}^{k} X_i \)

\[P(|y_m - y_{n_k^2}| > \varepsilon n^2) \leq \varepsilon^{-2} n^{-4} Var\left[\sum_{i=n^2+1}^{m} X_i \right] \]
\[\leq \varepsilon^{-2} n^{-4} v(m-n^2) \]
\[\sum_{m=1}^{\infty} P(|y_m - y_{n_k^2}| > \varepsilon n^2) \leq \frac{v}{\varepsilon^2} \sum_{n=1}^{\infty} \sum_{m=n^2+1}^{(n+1)^2-1} \frac{m-n^2}{n^4} \]
\[\leq \frac{v}{\varepsilon^2} \sum_{n=1}^{\infty} n = 1^\infty \sum_{k=1}^{\infty} \frac{2n}{n^4} \]
\[= \frac{v}{\varepsilon^2} \sum_{n=1}^{\infty} \frac{2n(2n+1)}{2n^4} \]
\[\leq \frac{v}{\varepsilon^2} \sum_{n=1}^{\infty} \frac{2}{n^2} \]
\[< \infty \]

hence since the intersection of two sets of full measure is also a set of full measure (where finite)
we get that
$$|S_m| = |y_m/m| \leq |y_m/n^2| \to 0$$
a.s.

Definition: Absolute Moment
Let X be a random variable on probability space $(\Omega, \mathcal{F}, \mathbb{P})$
then for $p \in [1, \infty)$ the pth moment of X is defined as
$$E[|X|^p] = \int |X|^p d\mathbb{P}$$

Definition: L^p Space
$$L^p(\Omega, \mathcal{F}, \mathbb{P}) := \{ X : \Omega \to \mathbb{R} : E[|X|^p] < \infty, \ X \text{ measurable} \}$$

Definition: L^p Norm
The L^p norm is defined as
$$||X||_p := E[|X|^p]^{1/p}$$

Lemma: Holder’s Inequality
For $p, q \in [1, \infty)$ s.t. $\frac{1}{p} + \frac{1}{q} = 1$
we have that for $X \in L^p$, $Y \in L^q$
$$E[|XY|] \leq ||X||_p ||Y||_q$$
m moreover this holds for $p = 1, q = \infty$ where
$$||Y||_\infty := \inf \{ s \geq 0 : \mathbb{P}(|Y| > s) = 0 \}$$

Lemma:
For $p \in [1, \infty]$, $X, Y \in L^p$ we have
$$||X + Y||_p \leq ||X||_p + ||Y||_p$$

Corollary:
$$||X||_p = 0 \implies X = 0 \ a.s.$$
for $p \in [1, \infty]$ let $\{X_n\}_{n=1}^{\infty} \in L^p$ be a Cauchy sequence in L^p then

$\exists X \in L^p$ s.t. $X_n \to X$ in L^p

Lemma:
If $1 \leq s \leq r$ then

$$X_n \to X \text{ in } L^s \implies X_n \to X \text{ in } L^r$$

Proof:
For $s = 1, r = 2$

$$E[|X_n - X|^s] = \int |X_n - X|d\mathbb{P}$$

$$= \int |X_n - X|d\mathbb{P}$$

$$\leq \left(\int |X_n - X|^2d\mathbb{P} \right)^{1/2} \left(\int 1^2d\mathbb{P} \right)^{1/2}$$

$$= E[|X_n - X|^2]^{1/2}$$

$$\lim_{n \to \infty} E[|X_n - X|^2] = 0 \implies \lim_{n \to \infty} E[|X_n - X|^2]^{1/2} = 0$$

hence indeed the lemma holds for $s = 1, r = 2$

Lemma:
Let $\{X_n\}_{n=1}^{\infty}, X$ be r.v.s s.t. $X_n \to X$ in L^p for $p \geq 1$ then

$X_n \to X$ in probability.

Proof:
let $\varepsilon > 0$

$$P(|X_n - X| > \varepsilon) = P(|X_n - X|^p > \varepsilon^p)$$

$$\leq \frac{E[|X_n - X|^p]}{\varepsilon^p}$$

$$\lim_{n \to \infty} \frac{E[|X_n - X|^p]}{\varepsilon^p} = 0$$

by Markov’s inequality

by convergence in L^p

Lemma:
$X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ iff

$$\lim_{k \to \infty} \int_{\{|X| > k\}} |X|d\mathbb{P} = 0$$

Definition: Uniformly Integrable
A set of random variables C on $(\Omega, \mathcal{F}, \mathbb{P})$ is uniformly integrable if

$$\lim_{k \to \infty} \sup_{X \in C} \int_{\{|X| > k\}} |X|d\mathbb{P} = 0$$

Theorem:
If $X, \{X_n\}_{n=1}^{\infty} \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ then

$X_n \to X$ in L^1 iff

- $X_n \to X$ in probability
- $\{X_n\}_{n=1}^{\infty}$ is uniformly integrable.
Proof:

$X_n \to X$ in $\mathcal{L}^1 \implies X_n \to X$ in probability by a previous lemma.

Moreover if $X_n \to X$ in \mathcal{L}^1 we have finite integrability since otherwise $\mathbb{P}(X = \infty) > 0$ hence the expectation cannot be finite.

Assume that $X_n \to X$ in probability and $\{X_n\}_{n=1}^\infty$ is uniformly integrable.

For $k > 0$ define

$$\varphi_k(x) = \begin{cases} k & x > k \\ x & x \in [-k, k] \\ -k & x < -k \end{cases}$$

Then we have that

$$\mathbb{E}[|X_n - X|] \leq \mathbb{E}[|X_n - \varphi_k(X_n)|] + \mathbb{E}[|\varphi_k(X_n) - \varphi_k(X)|] + \mathbb{E}[|\varphi_k(X) - X|]$$

Notice that

$$|\varphi_k(X_n) - X_n| = 1_{\{|X_n| > k\}}|k - |X_n|| \leq 2|X_n|1_{\{|X_n| > k\}}$$

Hence let $\varepsilon > 0$ then by uniform integrability we have that

$$\exists k_1 \in [0, \infty) \text{ s.t. } \forall k \geq k_1 \quad \sup_n \int_{\{|X_n| > k\}} |X_n|d\mathbb{P} \leq \varepsilon/6$$

Hence $\forall n$ we have that $k > k_1 \implies$

$$\mathbb{E}[|X_n - \varphi_k(X_n)|] \leq \sup_n 2\int_{\{|X_n| > k\}} |X_n|d\mathbb{P} \leq \varepsilon/3$$

Since $X \in \mathcal{L}^1$ we have that

$$\lim_{k \to \infty} \int_{\{|X| > k\}} |X|d\mathbb{P} = 0$$

Hence $\exists k_2 \in [0, \infty) \text{ s.t. } \forall k > k_2 \quad \mathbb{E}[|X - \varphi_k(X)|] \leq \varepsilon/3$

Set $k_0 = \min\{k_1, k_2\}$

$$\mathbb{P}(\varphi_{k_0}(X_n) - \varphi_{k_0}(X) > \varepsilon) \leq \mathbb{P}(X_n - X > \varepsilon)$$

Hence since $X_n \to X$ in probability we have that $\varphi_k(X_n) \to \varphi_k(X)$ in probability so by the Dominated Convergence Theorem $|\varphi_{k_0}| \leq k_0$ so

$\exists N \in \mathbb{N}$ s.t. $\forall n \geq N$ we have that

$$\mathbb{E}[|\varphi_k(X_n) - \varphi(X)|] < \varepsilon/3$$

Hence indeed we have that for $k = k_0$ and $n \geq N$ we have that

$$\mathbb{E}[|X_n - X|] \leq \mathbb{E}[|X_n - \varphi_k(X_n)|] + \mathbb{E}[|\varphi_k(X_n) - \varphi_k(X)|] + \mathbb{E}[|\varphi_k(X) - X|] \leq \varepsilon$$

Definition: Probability Set

We define $\text{Prob}(\mathbb{R})$ to be the set of probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$

Definition: Continuous Bounded Functions

We define $C_b(\mathbb{R})$ to be the set of continuous bounded functions $f : \mathbb{R} \to \mathbb{R}$

Definition: Weak Convergence

- If $\mu, \{\mu_n\}_{n=1}^\infty \in \text{Prob}(\mathbb{R})$ then $\mu_n \to \mu$ weakly if
 $$\lim_{n \to \infty} \int f d\mu_n = \int f d\mu \quad \forall f \in C_b(\mathbb{R})$$

- If $F, \{F_n\}_{n=1}^\infty$ are distribution functions then $F_n \to F$ weakly if $\mu_n \to \mu$ weakly

 where $\mu, \{\mu_n\}_{n=1}^\infty$ are the associated probability measures
 $$F(x) = \mu((-\infty, x])$$
• If $X, \{X_n\}_{n=1}^\infty$ are random variables then
 $X_n \to X$ weakly if $\mathbb{P}_{X_n} \to \mathbb{P}_X$ weakly
 where $\mathbb{P}_X(A) = \mathbb{P}(X \in A)$

Definition: Convergence In Distribution

• If $F, \{F_n\}_{n=1}^\infty$ are distribution functions then
 $F_n \to F$ in distribution if for all continuous points x of F
 $$\lim_{n \to \infty} F_n(x) = F(x)$$

• If $X, \{X_n\}_{n=1}^\infty$ are random variables then
 $X_n \to X$ in distribution if
 $$\mathbb{P}_{F_n} \to \mathbb{P}_F$$
 where $\mathbb{P}_F(x) = \mathbb{P}(X \leq x)$

Theorem:
If $\{F_n\}_{n=1}^\infty, F$ are distribution functions of probability measures $\{\mu_n\}_{n=1}^\infty \mu$ then
$F_n \to F$ weakly iff $F_n \to F$ in distribution.

Proof:
Suppose $F_n \to F$ weakly.

fix $x \in \mathbb{R}$ s.t. F is continuous at x and let $\delta > 0$ define
$$h(y) = \begin{cases} 1 & y \leq x \\ 1 - \frac{y - x}{\delta} & y \in (x, x + \delta) \\ 0 & y \geq x + \delta \end{cases}$$
and
$$g(y) = \begin{cases} 1 & y \leq x - \delta \\ 1 - \frac{y - x}{\delta} & y \in (x - \delta, x) \\ 0 & y \geq x \end{cases}$$
then since $F_n(x) = \int 1_{(-\infty, x]} d\mu_n$ we have that
$$\int g d\mu_n \leq F(x) \leq \int h d\mu_n$$
$$\limsup_n F_n(x) \leq \limsup_n \int h d\mu_n = \int h d\mu \leq F(x + \delta)$$
$$\liminf_n F_n(x) \geq \liminf_n \int g d\mu_n = \int g d\mu \geq F(x - \delta)$$
by continuity of h, g

By continuity of F at x we have that
$$\lim_{\delta \to 0} F(x + \delta) = F(x) = \lim_{\delta \to 0} F(x - \delta)$$
hence
$$\lim_{n \to \infty} F_n(x) = F(x)$$
hence $F_n \to F$ in distribution.

Suppose $F_n \to F$ in distribution.

then
$$\lim_{n \to \infty} \int 1_{(-\infty, x]} d\mu_n = \int 1_{(-\infty, x]} d\mu$$
$\forall x \in \mathbb{R}$

Since any continuous bounded function can be approximated by sums of indicator functions and linearity of the integral we indeed have that $F_n \to F$ weakly

Lemma:
Let $\{X_i\}_{i=1}^\infty, X$ be random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ then if $X_n \to X$ in probability then $X_n \to X$ weakly

Proof:
There are two different proofs of this
• Since $X_n \rightarrow X$ in probability and f is continuous we have that $f(X_n) \rightarrow f(X)$ in probability. $f(X_n)$ is bounded by the properties of f hence by the dominated convergence theorem

$$
\lim_{n \rightarrow \infty} \int f(X_n) dP = \int f(X) dP
$$

hence indeed $X_n \rightarrow X$ weakly.

• Since f is bounded we know that $\exists k > 0$ s.t.

$$
l_k = \sup_{x \in \mathbb{R}} |f(x)|
$$

hence by the dominated convergance theorem

$$
\lim_{n \rightarrow \infty} \int f(X_n) dP = \int f(X) dP
$$

so $f(X_n)$ is uniformly integrable.

Since f is continuous and $X_n \rightarrow X$ in probability we have that $f(X_n) \rightarrow f(X)$ in probability. This along with uniform integrability implies that $f(X_n) \rightarrow f(X)$ in L^1 i.e. $\lim_{n \rightarrow \infty} E[|f(X_n) - f(X)|] = 0$

hence indeed we have weak convergance.

Corollary:
Let $\{X_i\}_{i=1}^{\infty}, X$ be random variables on (Ω, F, P) then if $X_n \rightarrow X$ a.s. then $X_n \rightarrow X$ weakly.

Definition: Conditional Probability

If (Ω, F, P) is a probability space with $A, B \in F$ then the conditional probability of B given A has occurred (where $P(A) > 0$ is

$$
P(B|A) = \frac{P(A \cap B)}{P(A)}
$$

Definition: Conditional Expectation

If (Ω, F, P) is a probability space with $A \in F$ with strictly positive probability then the conditional expectation of r.v X given A has occurred is

$$
E[X|A] = \frac{1}{P(A)} \int_A X dP
$$

Moreover if $F_0 = \sigma(G)$ for a countable partition $G = \{A_i\}_{i=1}^{\infty}$ of measurable sets on Ω then

$$
E[X|F_0] = \sum_{i: P(A_i) > 0} \frac{1_{A_i}}{P(A_i)} \int_{A_i} X dP
$$

is a random variable.

Theorem:
Let $X \in L^1(\Omega, F, P), F_0 = \sigma(G)$ s.t. G is a countable partition $\{A_i\}_{i=1}^{\infty} \in \Omega$ Then $E[X|F_0]$ has the following properties:

• $E[X|F_0]$ is F_0 measurable.

• $\forall A \in F_0$ we have that

$$
E[X1_A] = E[1_A E[X|F_0]]
$$

Proof:

• This is trivial since $\frac{E[X|A]}{P(A)}$ is constant, 1_{A_i} are measurable since $A_i \in F_0$ and the countable sum of measurable functions is measurable.

• Let $A \in G$ with $P(A) > 0$
\[
\begin{align*}
\mathbb{E}[1_A \mathbb{E}[X | \mathcal{F}_0]] &= \mathbb{E} \left[1_A \sum_{i : \mathbb{P}(A_i) > 0} \frac{1_{A_i}}{\mathbb{P}(A_i)} \mathbb{E}[X; A_i] \right] \\
&= \mathbb{E} \left[\frac{1_A}{\mathbb{P}(A)} \mathbb{E}[X; A] \right] \\
&= \frac{\mathbb{E}[1_A \mathbb{E}[X; A]]}{\mathbb{P}(A)} \\
&= \frac{\mathbb{E}[X; A]}{\mathbb{P}(A)} \\
&= \mathbb{E}[X 1_A]
\end{align*}
\]

This extends to \(A \in \mathcal{F}_0 \) by standard operations of elements of \(\sigma \)-algebras. If \(\mathbb{P}(A) = 0 \) then \(X 1_A, \mathbb{E}[X | \mathcal{F}_0] 1_A = 0 \) a.s. hence both sides of the equation are null.

Corollary:
Taking \(y = 1 \) in the second property we have that
\[
\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X | \mathcal{F}_0]]
\]

Definition: Version Of Conditional Expectation
A random variable \(X_0 \in L^1(\Omega, \mathcal{F}, \mathbb{P}) \) is called a version \(\mathbb{E}[X | \mathcal{F}_0] \) if

- \(X_0 \) is \(\mathcal{F}_0 \) measurable
- \(\forall A \in \mathcal{F}_0 \) we have
 \[\mathbb{E}[1_A X] = \mathbb{E}[1_A X_0] \]

Theorem:
Let \(X_1, X_2 \in L^1(\Omega, \mathcal{F}, \mathbb{P}) \) then

- \(\mathbb{P} \) a.s.
 \[
 \mathbb{E}[X_1 + X_2 | \mathcal{F}_0] = \mathbb{E}[X_1 | \mathcal{F}_0] + \mathbb{E}[X_2 | \mathcal{F}_0]
 \]

- \(\forall c \in \mathbb{R} \)
 \[
 \mathbb{E}[cX | \mathcal{F}_0] = c\mathbb{E}[X | \mathcal{F}_0]
 \]

\(\mathbb{P} \) a.s.

Proof:
For any choice of \(\mathbb{E}[X_i | \mathcal{F}_0] \) we have that \(\mathbb{E}[X_1 | \mathcal{F}_0] + \mathbb{E}[X_2 | \mathcal{F}_0] \) is measurable hence
\[
\begin{align*}
\mathbb{E}[1_A (\mathbb{E}[X_1 | \mathcal{F}_0] + \mathbb{E}[X_2 | \mathcal{F}_0])] &= \mathbb{E}[1_A \mathbb{E}[X_1 | \mathcal{F}_0] + 1_A \mathbb{E}[X_2 | \mathcal{F}_0]] \\
&= \mathbb{E}[1_A \mathbb{E}[X_1 | \mathcal{F}_0]] + \mathbb{E}[1_A \mathbb{E}[X_2 | \mathcal{F}_0]] \\
&= \mathbb{E}[1_A X_1] + \mathbb{E}[1_A X_2] \\
&= \mathbb{E}[1_A (X_1 + X_2)] \\
&= \mathbb{E}[1_A \mathbb{E}[X_1 + X_2 | \mathcal{F}_0]]
\end{align*}
\]

by linearity of expectation

Theorem:
Let \(X_1, X_2 \in L^1(\Omega, \mathcal{F}, \mathbb{P}) \) s.t. \(X_1 \leq X_2 \)
then
\[\mathbb{E}[X_1 | \mathcal{F}_0] \leq \mathbb{E}[X_2 | \mathcal{F}_0] \]

\(\mathbb{P} \) a.s.
Proof:
Let \(B_0 := \{ \omega \in \Omega : E[X_1|\mathcal{F}_0] > E[X_2|\mathcal{F}_0] \} \in \mathcal{F}_0 \) we want to show that \(P(B_0) = 0 \)

\[
0 \leq E[1_{B_0}(E[X_1|\mathcal{F}_0] - E[X_2|\mathcal{F}_0])]
= E[1_{B_0}(X_1 - X_2)] \\
\leq 0
\]

hence \(P(B_0) = 0 \) as required.

Theorem:
If \(Z, W \) are conditional expectations of \(X|\mathcal{F}_0 \) for some \(X \in L^1 \) then \(Z = W \) \(P \) a.s.

Proof:
\(Z, W \) are \(\mathcal{F}_0 \)-measurable so write
\[
A_0 := \{ Z > W \} \in \mathcal{F}_0
\]
then we have

\[
E[1_{A_0}(Z - W)] = E[1_{A_0}Z] - E[1_{A_0}W] \\
= E[1_{A_0}X] - E[1_{A_0}X] \\
= 0
\]

since \(1_{A_0}(Z - W) \geq 0 \) we have that \(1_{A_0}(Z - W) = 0 \) a.s.
but since \(Z > W \) on \(A_0 \) it must be that \(1_{A_0} = 0 \) a.s.
hence \(P(A_0) = 0 \)
this holds similarly for \(A_1 := \{ W > Z \} \)

\[
P(Z \neq W) = P(\{ Z > W \} \cup \{ Z < W \}) \\
\leq P(A_0) + P(A_1) \\
= 0
\]

Definition: Respective Density
If \(\mu, \nu \) are measures on measure space \((\Omega, \mathcal{F}) \) then \(\nu \) has density with respect to \(\mu \) if
\[
\exists f : \Omega \to [0, \infty) \text{ that is } \mathcal{F}\text{-measurable s.t.} \\
\forall A \in \mathcal{F} \text{ we have}
\nu(A) = \int_A f \, d\mu
\]

Theorem: Radon-Nikodym
If \(\mu, \nu \) are finite measures on measurable space \((\Omega, \mathcal{F}) \) then the following are equivalent:

- \(\mu(A) = 0 \implies \nu(A) = 0 \)
- \(\nu \) has density w.r.t. \(\mu \)

Lemma:
If \(0 \leq X \in L^1 \) and \(\mathcal{F}_0 \subseteq \mathcal{F} \) is a sub-\(\sigma \)-algebra then take
\[
\mu := P_{|\mathcal{F}_0} \text{ and} \\
\nu : \mathcal{F}_0 \to [0, \infty) \text{ s.t.} \\
\forall A \in \mathcal{F}_0 \quad \nu(A) = \int_A X \, dP
\]
then if \(A \) is \(\mu \)-null then by Radon-Nikodym \(\nu \) has density \(g \) w.r.t. \(\mu \)
If g is the density of ν w.r.t. μ where
\[\nu(A) := \int_A X \, d\mu \]
then g is a conditional expectation $E[X | \mathcal{F}_0]$.

Proof:
let $A_0 \in \mathcal{F}_0$

\[
E[g_{1A_0}] = \int_{A_0} g \, d\mu \\
= \int_{A_0} g \, d\mu \\
= \int 1_{A_0} \, d\nu \\
= \int 1_{A_0} X \, d\mu \\
= E[1_{A_0} X]
\]

Corollary:
If $X \in \mathcal{L}^1$ then $X = X_+ - X_-$ and if g_+, g_- are versions of $E[X_+ | \mathcal{F}_0], E[X_- | \mathcal{F}_0]$ then by linearity

\[E[X | \mathcal{F}_0] = g_+ - g_- \]

Theorem:
If $X \in \mathcal{L}^1(\Omega, \mathcal{F}, P)$ and $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \mathcal{F}$ are sub-σ-algebras then

\[X_0 := E[E[X | \mathcal{F}_1] | \mathcal{F}_0] = E[X | \mathcal{F}_0] \]

Proof:
We want to show that $E[X_0 1_{A_0}] = E[X 1_{A_0}]$

\[
E[X_0 1_{A_0}] = E[1_{A_0} E[E[X | \mathcal{F}_1] | \mathcal{F}_0]] \\
= E[1_{A_0} E[X | \mathcal{F}_1] | \mathcal{F}_0] \\
= E[E[X 1_{A_0}] | \mathcal{F}_0] \quad \text{since } A_0 \in \mathcal{F}_0 \\
= E[X 1_{A_0}] \quad \text{since } A_0 \in \mathcal{F}_1
\]

Theorem:
If $X \in \mathcal{L}^1(\Omega, \mathcal{F}, P)$ then

\[E[X | \mathcal{F}_0] \in \mathcal{L}^1(\Omega, \mathcal{F}, P) \]

Proof:
Define $A_0 := \{E[X | \mathcal{F}_0] \geq 0\} \in \mathcal{F}_0$
then

\[
E[E[X | \mathcal{F}_0]^+] = E[E[X | \mathcal{F}_0] 1_{A_0}] \\
= E[X 1_{A_0}] \\
< \infty \quad \text{since } X \in \mathcal{L}^1
\]

this holds similarly for $E[E[X | \mathcal{F}_0]^+]$

hence this holds for $E[X | \mathcal{F}_0]$ by linearity.
Let \((\Omega, \mathcal{F}, P)\) be a probability space with \(\mathcal{F}_0 \subset \mathcal{F}\) sub-\(\sigma\)-algebra, \(X \in L^1(\Omega, \mathcal{F}, P)\) where \(\mathcal{F}_0 \perp \sigma(X)\) then

\[E[X|\mathcal{F}_0] = E[X] \quad P\text{-a.s.} \]

Proof:

\(E[X]\) is \(\mathcal{F}_0\) measurable since constant so let \(A \in \mathcal{F}_0\)

\[
E[1_A E[X]] = E[X] E[1_A]
\]

\[
= E[1_A X]
\]

\[
= E[1_A E[X|\mathcal{F}_0]]
\]

Theorem: MCT For Conditional Expectations

Let \(\{X_n\}_{n=1}^\infty \in L^1\) be an increasing sequence s.t. \(X_n \to X\ \mathbb{P}\text{-a.s.}\) for some \(X \in L^1\) then

\[E[X_n|\mathcal{F}_0] \to E[X|\mathcal{F}] \]

both \(\mathbb{P}\text{-a.s.}\) and in \(L^1\)

Proof:

Since \(E[X_n|\mathcal{F}_0]\) is an increasing sequence of random variables \(\exists Z\) which is an \(\mathcal{F}_0\) measurable r.v. s.t.

\[E[X_n|\mathcal{F}_0] \to Z \quad \mathbb{P}\text{-a.s.} \]

For \(A \in \mathcal{F}_0\) we have that

\[
E[Z 1_A] = E[\lim_{n \to \infty} E[X_n|\mathcal{F}_0] 1_A]
\]

\[
= \lim_{n \to \infty} E[E[X_n|\mathcal{F}_0] 1_A]
\]

\[
= \lim_{n \to \infty} E[X_n 1_A]
\]

\[
= E[X 1_A]
\]

hence \(Z = E[X|\mathcal{F}_0] \quad \mathbb{P}\text{-a.s.}\)

\[
0 \leq E[X|\mathcal{F}_0] - E[X_n|\mathcal{F}_0]
\]

\[
\leq E[X|\mathcal{F}_0] - E[X_1|\mathcal{F}_0] \in L^1
\]

hence by dominated convergence theorem

\[
\lim_{n \to \infty} E[|E[X|\mathcal{F}_0] - E[X_n|\mathcal{F}_0]|] = 0
\]

Theorem: DCT For Conditional Expectations

Let \(\{X_n\}_{n=1}^\infty \in L^1\) converge to \(X\ \mathbb{P}\text{-a.s.}\)

If \(\exists Z \in L^1\) s.t. \(\forall n \in \mathbb{N}\) we have that \(|X_n| \leq Z\ \mathbb{P}\text{-a.s.}\) then

- \(X \in L^1\)
- \(E[X_n|\mathcal{F}_0] \to E[X|\mathcal{F}_0]\ \mathbb{P}\text{-a.s.}\)
- \(E[X_n|\mathcal{F}_0] \to E[X|\mathcal{F}_0] \in L^1\)

Proof:

- \(X \in L^1\) since \(|X_n| \leq Z\ \mathbb{P}\text{-a.s.}\) \(\implies |X| \leq Z\ \mathbb{P}\text{-a.s.}\)
- define $U_n := \inf_{m \geq n} X_m$ is an increasing sequence
 and $V_n := \sup_{m \geq n} X_m$ is a decreasing sequence
 then $U_n, V_n \to X$ \(\mathbb{P} \)-a.s.
 moreover

 $$-Z \leq U_n \leq X_n \leq V_n \leq Z$$

 by MCT for conditional expectations we have that

 $$\mathbb{E}[U_n | \mathcal{F}_0] \to \mathbb{E}[X | \mathcal{F}_0]$$
 $$\mathbb{E}[V_n | \mathcal{F}_0] \to \mathbb{E}[X | \mathcal{F}_0]$$

 both \(\mathbb{P} \)-a.s. and in \(L^1 \)
 and by monotonicity of conditional expectations we have that

 $$\mathbb{E}[U_n | \mathcal{F}_0] \leq \mathbb{E}[X_n | \mathcal{F}_0] \leq \mathbb{E}[V_n | \mathcal{F}_0]$$

 so indeed \(\mathbb{E}[X_n | \mathcal{F}_0] \to \mathbb{E}[X | \mathcal{F}_0] \) in \(L^1 \) and \(\mathbb{P} \)-a.s.

Theorem:
Let $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ and Y be \(\mathcal{F}_0 \) measurable s.t. $XY \in L^1$ then

$$\mathbb{E}[XY | \mathcal{F}_0] = Y \mathbb{E}[X | \mathcal{F}_0]$$

Proof:
Suppose $Y = 1_A$ for some $A \in \mathcal{F}_0$
then take $B \in \mathcal{F}_0$

$$\mathbb{E}[1_B Y \mathbb{E}[X | \mathcal{F}_0]] = \mathbb{E}[1_B \cap A \mathbb{E}[X | \mathcal{F}_0]]$$
$$= \mathbb{E}[1_B \cap A X]$$
$$= \mathbb{E}[1_B Y X]$$
$$= \mathbb{E}[1_B \mathbb{E}[XY | \mathcal{F}_0]]$$

hence the theorem holds for indicator functions
Suppose $Y = \sum_{n=1}^{\infty} \alpha_n 1_{A_n}$

$$\mathbb{E}[XY | \mathcal{F}_0] = \mathbb{E}\left[\sum_{n=1}^{\infty} \alpha_n 1_{A_n} X | \mathcal{F}_0 \right]$$
$$= \sum_{n=1}^{\infty} \alpha_n \mathbb{E}[1_{A_n} X | \mathcal{F}_0]$$
$$= \sum_{n=1}^{\infty} \alpha_n \mathbb{E}[1_{A_n} X | \mathcal{F}_0]$$
$$= \sum_{n=1}^{\infty} \alpha_n \mathbb{E}[X | \mathcal{F}_0]$$
$$= \mathbb{E}[XY | \mathcal{F}_0]$$

hence the theorem holds for simple functions
Suppose Y is positive
let \{ Y_n \}_{n=1}^{\infty} be an increasing sequence of simple functions s.t. $Y_n \to Y$
$|Y_n X| \leq |Y X| \in L^1$
and $Y_n X \to Y X$

hence by DCT for conditional expectations we have that
\[Y_n \mathbb{E}[X | \mathcal{F}_0] = \mathbb{E}[Y_n X | \mathcal{F}_0] \rightarrow \mathbb{E}[Y X | \mathcal{F}_0] \quad \text{P} - \text{a.s.} \]

moreover
\[Y_n \mathbb{E}[X | \mathcal{F}_0] \rightarrow Y \mathbb{E}[X | \mathcal{F}_0] \quad \text{P} - \text{a.s.} \]

hence the theorem holds for positive functions.

For the general case write \(Y = Y_+ - Y_- \)

\[\mathbb{E}[XY | \mathcal{F}_0] = \mathbb{E}[X (Y_+ - Y_-) | \mathcal{F}_0] \]
\[= \mathbb{E}[XY_+ | \mathcal{F}_0] - \mathbb{E}[XY_- | \mathcal{F}_0] \]
\[= Y_+ \mathbb{E}[X | \mathcal{F}_0] - Y_- \mathbb{E}[X | \mathcal{F}_0] \]
\[= Y \mathbb{E}[X | \mathcal{F}_0] \]

Lemma:
If \(X \in \mathcal{L}^1 \), \(\mathcal{F}_0 \subseteq \mathcal{F} \) is a sub-\(\sigma \) algebra then
\[||\mathbb{E}[X | \mathcal{F}_0]||_1 \leq ||X||_1 \]

Proof:
\[||\mathbb{E}[X | \mathcal{F}_0]||_1 = \int |\mathbb{E}[X | \mathcal{F}_0]| d\mathbb{P} \]
\[= \int \mathbb{E}[X | \mathcal{F}_0]_+ d\mathbb{P} + \int \mathbb{E}[X | \mathcal{F}_0]_- d\mathbb{P} \]
\[= \int \mathbb{E}[X | \mathcal{F}_0] I_{\mathbb{E}[X | \mathcal{F}_0] > 0} d\mathbb{P} + \int \mathbb{E}[X | \mathcal{F}_0] I_{\mathbb{E}[X | \mathcal{F}_0] < 0} d\mathbb{P} \]
\[= \mathbb{E}[X I_{\mathbb{E}[X | \mathcal{F}_0] > 0}] + \mathbb{E}[X I_{\mathbb{E}[X | \mathcal{F}_0] < 0}] \]
\[\leq ||X||_1 \]
\[= ||X||_1 \]

Theorem: Conditional Jensen’s Inequality
Let \(I \subseteq \mathbb{R} \) be open, \(\varphi : I \rightarrow \mathbb{R} \) be convex and \(X \in \mathcal{L}^1 \) a r.v. with \(X : \Omega \rightarrow I \) hence \(\varphi \circ X \in \mathcal{L}^1 \) then
\[\mathbb{E}[\varphi \circ X | \mathcal{F}_0] \geq \varphi(\mathbb{E}[X | \mathcal{F}_0]) \]

Proof:
From Jensen’s inequality we have that
\[\varphi(X) \geq \varphi(\mathbb{E}[X | \mathcal{F}_0]) + D_- \varphi(\mathbb{E}[X | \mathcal{F}_0])(X - \mathbb{E}[X | \mathcal{F}_0]) \]

let \(A_n = \{ \omega \in \Omega : |D_- \varphi(\mathbb{E}[X | \mathcal{F}_0])| \leq n \} \in \mathcal{F}_0 \)

then
\[1_{A_n} \mathbb{E}[\varphi(X) | \mathcal{F}_0] = \mathbb{E}[1_{A_n} \varphi(X) | \mathcal{F}_0] \]
\[\geq \mathbb{E}[1_{A_n} \varphi(\mathbb{E}[X | \mathcal{F}_0])] + \mathbb{E}[1_{A_n} D_- \varphi(\mathbb{E}[X | \mathcal{F}_0])(X - \mathbb{E}[X | \mathcal{F}_0])] \]
\[= 1_{A_n} \varphi(\mathbb{E}[X | \mathcal{F}_0]) + 1_{A_n} D_- \varphi(\mathbb{E}[X | \mathcal{F}_0]) \mathbb{E}[X - \mathbb{E}[X | \mathcal{F}_0]] \]
\[= 1_{A_n} \varphi(\mathbb{E}[X | \mathcal{F}_0]) + 1_{A_n} D_- \varphi(\mathbb{E}[X | \mathcal{F}_0]) (\mathbb{E}[X | \mathcal{F}_0] - \mathbb{E}[X | \mathcal{F}_0]) \]
\[= 1_{A_n} \varphi(\mathbb{E}[X | \mathcal{F}_0]) \]

since \(1_{A_n} - \mathcal{F}_0 \) measurable
this holds for all \(n \) hence also for \(\lim_{n \to \infty} A_n = \Omega \)

Theorem:
Let \(p \geq 1, X \in L^p \) then \(\|\mathbb{E}[X|F_0]\|_p \leq \|X\|_p \)

Proof:
Write \(\varphi(x) = x^p \) is convex hence by Jensen’s inequality
\[
\|\mathbb{E}[X|F_0]\|_p = \int \varphi(\mathbb{E}[X|F_0])dP \\
\leq \int \mathbb{E}[\varphi(X)|F_0]dP \\
= \|X\|_p
\]

Corollary:
If \((\Omega, \mathcal{F}), (\Omega', \mathcal{F}')\) are measurable spaces,
\(Y : (\Omega, \mathcal{F}) \to (\Omega', \mathcal{F}') \) is \(\mathcal{F} - \mathcal{F}' \) measurable and
\(Z : \Omega \to \mathbb{R} \) then \(Z \) is \(\sigma(Y) \) measurable iff
\(\exists g : (\Omega', \mathcal{F}') \to (\mathbb{R}, \mathcal{B}(\mathbb{R})) \) s.t. \(Z = g \circ Y \)

Proof:
Clearly if \(\exists g : (\Omega', \mathcal{F}') \to (\mathbb{R}, \mathcal{B}(\mathbb{R})) \) s.t. \(Z = g \circ Y \) then \(Z \) is \(\sigma(Y) \) measurable since the composition of measurable functions is measurable.
Suppose
\[
Z = \sum_{k=1}^{n} \alpha_k 1_{A_k}
\]
for \(\{A_k\}_{k=1}^{n} \in \sigma(Y) \)
notice that \(\sigma(Y) = \{Y^{-1}(A'_k) : A'_k \in \mathcal{F}'\} \)
hence \(A_k = Y^{-1}(A'_k) \) for some \(A'_k \in \mathcal{F}' \)
so
\[
Z = \sum_{k=1}^{n} \alpha_k 1_{A_k} \\
= \sum_{k=1}^{n} \alpha_k 1_{Y^{-1}(A'_k)} \\
= \sum_{k=1}^{n} \alpha_k (1_{A'_k} \circ Y) \\
= \left(\sum_{k=1}^{n} \alpha_k 1_{A'_k} \right) \circ Y \\
= g \circ Y
\]
where clearly \(g \) is \(\mathcal{F}' - \mathcal{B}(\mathbb{R}) \) measurable since \(\{A'_k\}_{k=1}^{n} \in \mathcal{F}' \)
Suppose \(Z \) is positive.
then \(\exists \{Z_n\}_{n=1}^{\infty} \) simple increasing functions s.t. \(\lim_{n \to \infty} Z_n = Z \)
then \(\exists \{g_n\}_{n=1}^{\infty} \) s.t. \(Z_n = g_n \circ Y \)
then define \(g = \sup_n g_n \) is clearly \(\mathcal{F}' - \mathcal{B}(\mathbb{R}) \) measurable and \(Z = g \circ Y \)
For general Z write $Z = Z_+ - Z_-$
then $\exists g_+, g_- : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ s.t. $Z_+ = g_+ \circ Y$, $Z_- = g_- \circ Y$
so write $g = g_+ - g_-$

hence

$$Z = (g_+ - g_-) \circ Y = g \circ Y$$

Definition: Factorised Conditional Expectation

$f : (\mathbb{R}, \mathcal{B}(\mathbb{R})) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is a FCE of the r.v. X given the r.v. $Y : \Omega \to \mathbb{R}$ if

$f \circ Y$ is a version of the conditional expectation of X given Y

i.e.

$$\mathbb{E}[X|Y] = \mathbb{E}[X|\sigma(Y)] = f(Y)$$

Corollary:

Let $Y : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$

then

$\exists f$ FCE of X given Y and

$$\int_A f d\mathbb{P}_Y = \mathbb{E}[1_{Y^{-1}(A)} X]$$

Proof:

By the previous lemma

write $Z = \mathbb{E}[X|Y]$ which is $\sigma(Y)$ measurable hence indeed

$\exists f$ FCE of X given Y

moreover

$$\int_A f d\mathbb{P}_Y = \int A 1_{Y^{-1}(A)} X d\mathbb{P}$$

$$= \mathbb{E}[1_{Y^{-1}(A)} X]$$

Remark:

$\mathbb{E}[X|Y = y]$ is unique \mathbb{P}_Y-a.s.

Theorem:

Let $Y : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$

If λ, μ are σ-finite measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ s.t. (X, Y) has density g w.r.t. $\lambda \otimes \mu$

then

$$f(Y) := \frac{\int_{\mathbb{R}} xg(x, y)d\lambda(x)}{\int_{\mathbb{R}} g(x, y)d\lambda(x)}$$

is an FCE of X given Y

Proof:

recall that

$$\mathbb{P}((X, Y) \in A_1 \times A_2) = \int_{A_1 \times A_2} g(x, y)d(\lambda \otimes \mu)(x, y)$$

$$\mathbb{E}[h(X, Y)] = \int_{\mathbb{R}^2} h(x, y)g(x, y)d(\lambda \otimes \mu)(x, y)$$

Suppose f takes the required form, hence clearly it is Borel measurable.
Let \(A \in \mathcal{B}(\mathbb{R}) \)

\[
\mathbb{E}[1_A Y - 1_{(A)}] = \int x 1_A(y) g(x, y) d(\lambda \otimes \mu)(x, y) \\
= \int 1_A(y) \int x g(x, y) d\lambda(x) d\mu(y) \\
= \int 1_A(y) f(y) \int g(x, y) d\lambda(x) d\mu(y) \\
= \int 1_A(y) f(y) g(x, y) d(\lambda \otimes \mu)(x, y) \\
= \mathbb{E}[1_A(y) f(y)]
\]

hence indeed \(f(y) = \mathbb{E}[1_A Y] \)

5 Martingales

Definition: Filtration

If \((\Omega, \mathcal{F})\) is a measurable space then \(\{\mathcal{F}_i\}_{i=1}^{\infty} \) sub-\(\sigma \)-algebras of \(\mathcal{F} \) are a filtration if \(\mathcal{F}_i \subseteq \mathcal{F}_{i+1} \subseteq \mathcal{F} \quad \forall i \)

Definition: Adapted

A sequence of random variables \(\{X_i\}_{i=1}^{\infty} \) is called adapted to \(\{\mathcal{F}_i\}_{i=1}^{\infty} \) if \(X_n \) is \(\mathcal{F}_n \)-measurable \(\forall n \)

Definition: Martingale

If \((\Omega, \mathcal{F}, \mathbb{P})\) is a probability space and \(\{\mathcal{F}_i\}_{i=1}^{\infty} \) is a filtration of \((\Omega, \mathcal{F})\) then \(\{X_n\}_{n=1}^{\infty} \) is a martingale if:

- \(\mathbb{E}[|X_n|] < \infty \quad \forall n \)
- \(\{X_n\}_{n=1}^{\infty} \) are adapted to \(\{\mathcal{F}_n\}_{n=1}^{\infty} \)
- \(\mathbb{E}[X_{n+1}|\mathcal{F}_n] = X_n \)

Remark:

If \(\{X_n\}_{n=1}^{\infty} \) has the first three properties of a martingale but

- \(\mathbb{E}[X_{n+1}|\mathcal{F}_n] \geq X_n \) then \(\{X_n\}_{n=1}^{\infty} \) is a sub-martingale
- \(\mathbb{E}[X_{n+1}|\mathcal{F}_n] \leq X_n \) then \(\{X_n\}_{n=1}^{\infty} \) is a super-martingale

Lemma:

If \(\{X_n\}_{n=1}^{\infty} \) is a martingale w.r.t. \(\{\mathcal{F}_n\}_{n=1}^{\infty} \) then

\(\mathbb{E}[X_{n+m}|\mathcal{F}_n] = 0 \)

Proof:

\[
\mathbb{E}[X_{n+m}|\mathcal{F}_n] = \mathbb{E}[\mathbb{E}[X_{n+m}|\mathcal{F}_n \cap \mathcal{F}_{n+m-1}]] \\
= \mathbb{E}[\mathbb{E}[X_{n+m}|\mathcal{F}_{n+m-1}]|\mathcal{F}_n] \\
= \mathbb{E}[X_{n+m-1}|\mathcal{F}_n] \\
= \mathbb{E}[X_{n+1}|\mathcal{F}_n] \\
= X_n
\]

Theorem:

If \(\{X_n\}_{n=1}^{\infty} \in \mathcal{L}^2 \) is a martingale w.r.t. \(\{\mathcal{F}_n\}_{n=1}^{\infty} \) and \(r \leq s \leq t \) then

- \(\mathbb{E}[X_r(X_s - X_r)|\mathcal{F}_r] = 0 \)
- \(\mathbb{E}[X_r(X_t - X_s)|\mathcal{F}_s] = 0 \)
\(\mathbb{E}[(X_t - X_s)(X_s - X_r)|\mathcal{F}_s] = 0 \)

\(\mathbb{E}[X_r (X_s - X_r)] = 0 \)

\(\mathbb{E}[X_r (X_t - X_s)] = 0 \)

\(\mathbb{E}[(X_t - X_s)(X_s - X_r)] = 0 \)

Proof:

\[
\mathbb{E}[X_r (X_s - X_r)|\mathcal{F}_r] = \mathbb{E}[X_r X_s - X_r^2|\mathcal{F}_r] \\
= \mathbb{E}[X_r X_s|\mathcal{F}_r] - \mathbb{E}[X_r^2|\mathcal{F}_r] \\
= X_r \mathbb{E}[X_s|\mathcal{F}_r] - X_r^2 \\
= 0
\]

\[
\mathbb{E}[X_r (X_t - X_s)|\mathcal{F}_s] = \mathbb{E}[X_r X_t - X_r X_s|\mathcal{F}_s] \\
= \mathbb{E}[X_r X_t|\mathcal{F}_s] - \mathbb{E}[X_r X_s|\mathcal{F}_s] \\
= X_r \mathbb{E}[X_t|\mathcal{F}_s] - X_r \mathbb{E}[X_s|\mathcal{F}_s] \\
= X_r X_t - X_r X_s \\
= 0
\]

\[
\mathbb{E}[(X_t - X_s)(X_s - X_r)|\mathcal{F}_s] = \mathbb{E}[X_t X_s - X_t X_s + X_s X_r + X_s^2|\mathcal{F}_s] \\
= \mathbb{E}[X_t X_s|\mathcal{F}_s] - \mathbb{E}[X_s^2|\mathcal{F}_s] - \mathbb{E}[X_t X_s|\mathcal{F}_s] + \mathbb{E}[X_s X_r|\mathcal{F}_s] \\
= X_t \mathbb{E}[X_s|\mathcal{F}_s] - X_s^2 - X_r \mathbb{E}[X_t|\mathcal{F}_s] + X_s X_r \\
= X_s^2 - X_s^2 - X_r X_s + X_s X_r \\
= 0
\]

\[
\mathbb{E}[X_r (X_s - X_r)] = \mathbb{E}[\mathbb{E}[X_r (X_s - X_r)|\mathcal{F}_r]] \\
= \mathbb{E}[0] \\
= 0
\]

\[
\mathbb{E}[X_r (X_t - X_s)] = \mathbb{E}[\mathbb{E}[X_r (X_t - X_s)|\mathcal{F}_s]] \\
= \mathbb{E}[0] \\
= 0
\]

\[
\mathbb{E}[(X_t - X_s)(X_s - X_r)] = \mathbb{E}[\mathbb{E}[(X_t - X_s)(X_s - X_r)|\mathcal{F}_s]] \\
= \mathbb{E}[0] \\
= 0
\]
Definition: \mathcal{L}^n Bounded
A set of r.vs C is \mathcal{L}^n bounded if
$$\sup_{X \in C} \mathbb{E}[|X|^n] < \infty$$

Theorem:
Every \mathcal{L}^2 bounded martingale $\{X_n\}_{n=1}^\infty$ w.r.t. $\{\mathcal{F}_n\}_{n=1}^\infty$ converges in \mathcal{L}^2
i.e. $\exists Y \in \mathcal{L}^2$ s.t. $\lim_{n \to \infty} \mathbb{E}[|X_n - Y|^2] = 0$

Proof:
\mathcal{L}^2 is complete hence every cauchy sequence converges

$$\sum_{k=1}^{n-1} \mathbb{E}[(X_{k+1} - X_k)^2] = \sum_{k=1}^{n-1} \mathbb{E}[(X_{k+1}^2 + X_k^2 - 2X_kX_{k+1})]$$
$$= \sum_{k=1}^{n-1} \mathbb{E}[(X_{k+1}^2 + X_k^2 - 2X_kX_{k+1})]$$
$$= \mathbb{E}[(X_n - X_1)^2]$$
by a telescoping sum, orthogonality of increments
$$\leq 2c$$
since X_n is \mathcal{L}^2 bounded

$$\lim_{k \to \infty} \sup_{m \geq k} \mathbb{E}[(X_m - X_n)^2] = \lim_{n \to \infty} \sup_{m \geq k} \sum_{l=n}^{m-1} \mathbb{E}[(X_{l+1} - X_l)^2]$$
$$\leq \lim_{k \to \infty} \sup_{m \geq k} \sum_{l=k}^{\infty} \mathbb{E}[(X_{l+1} - X_l)^2]$$
$$= 0$$

Remark:
The previous theorem also gives us that $Y \in \mathcal{L}^2(\Omega, \mathcal{F}_\infty, \mathbb{P})$
where $\mathcal{F}_\infty := \sigma(\bigcup_{k=1}^\infty \mathcal{F}_k)$

Theorem: Levy
Let $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and $\{\mathcal{F}_k\}_{k=1}^\infty$ a filtration
define $X_n := \mathbb{E}[X|\mathcal{F}_n]$
then $X_n \to \mathbb{E}[X|\mathcal{F}_\infty]$ in \mathcal{L}^2

Proof:
We have that X_n converges in \mathcal{L}^2 so let $X_n \to Y$
We want to show that $\mathbb{E}[Y1_A] = \mathbb{E}[X1_A] \quad \forall A \in \mathcal{F}_n$
let $A \in \mathcal{F}_n$ and $m \geq n$ then notice that
$$\mathbb{E}[X_m1_A] = \mathbb{E}[\mathbb{E}[X|\mathcal{F}_m]1_A]$$
$$= \mathbb{E}[X1_A]$$
since $X_m \to Y$ in \mathcal{L}^2 we have that

$$\lim_{m \to \infty} |\mathbb{E}[X_m1_A - Y1_A]| \leq \lim_{m \to \infty} (\mathbb{E}[X_m - Y]^21_A)^{1/2}$$
by the Cauchy-Schwarz inequality
$$= 0$$

hence indeed we have that $\mathbb{E}[X1_A] = \mathbb{E}[Y1_A] \quad \forall A \in \mathcal{F}_n$
We need this $\forall A \in \mathcal{F}_\infty$
5 MARTINGALES

define

\[\mathcal{D} := \{ A \in \mathcal{F}_\infty : E[X_1|A] = E[Y_1|A] \} \]

We want to show that \(\mathcal{D} \) is a dynkin system.
\(\Omega \in \mathcal{D} \) holds trivially since \(\Omega \in \mathcal{F}_n \) \(\forall n \)

Let \(A \in \mathcal{D} \)

\[
E[Y_1|A^c] = E[Y_1|\Omega] - E[Y_1|A]
= E[X_1|\Omega] - E[X_1|A]
= E[X_1|A^c]
\]

as required.

Suppose \(\{A_i\}_{i=1}^\infty \in \mathcal{D} \) are disjoint and \(A := \bigcup_{i=1}^\infty A_i \)

\[
E[Y_1|A] = E \left[Y \lim_{n \to \infty} \sum_{k=1}^n 1_{A_k} \right]
= \lim_{n \to \infty} E \left[Y \sum_{k=1}^n 1_{A_k} \right] \quad \text{by DCT}
= \lim_{n \to \infty} \sum_{k=1}^n E[Y_1|A_k]
= \lim_{n \to \infty} \sum_{k=1}^n E[X_1|A_k]
= \lim_{n \to \infty} E \left[X \sum_{k=1}^n 1_{A_k} \right]
= E \left[X \lim_{n \to \infty} \sum_{k=1}^n 1_{A_k} \right]
= E[X_1|A]
\]

Since \(\mathcal{D} \) is a Dynkin system if \(I \subset \mathcal{D} \) is a \(\pi \)-system then \(\sigma(I) \subset \mathcal{D} \)
\(I := \bigcup_{n=1}^\infty \mathcal{F}_n \subset \mathcal{D} \) is a \(\pi \)-system since
\(\{A_i\}_{i=1}^\infty \in I \) then \(\forall i \exists k_i \text{ s.t. } A_i \in \mathcal{F}_{k_i} \)
hence since finite \(\exists K = \max\{k_i\} \)
then since \(\{\mathcal{F}_n\}_{n=1}^\infty \) is a filtration \(A_i \in \mathcal{F}_K \) \(\forall i \)
hence since \(\mathcal{F}_K \) is a \(\sigma \)-algebra \(\bigcap_{i=1}^n A_i \in \mathcal{F}_K \)
thus \(\mathcal{F}_\infty = \sigma(I) \subset \mathcal{D} \subset \mathcal{F}_\infty \)

Lemma: DOOB

Let \(\{\mathcal{F}_n\}_{n=1}^\infty \) be a filtration of \((\Omega, \mathcal{F}, \mathbb{P})\) and \(\{X_n\}_{n=1}^\infty \in \mathcal{L}^2 \) an adapted sequence of \(\{\mathcal{F}_n\}_{n=1}^\infty \) then

- \(\exists \{A_n\}_{n=1}^\infty \subset \mathcal{L}^1 \) and martingale \(\{M_n\}_{n=1}^\infty \subset \mathcal{L}^1 \) with
 - \(A_1 = 0 \)
 - \(A_{n+1} \) \(\mathcal{F}_n \)-measurable
 - \(X_n = M_n + A_n \)
which is a \(\mathbb{P} \)-a.s. unique decomposition
- For \(X_n = M_n + A_n \) above we have that \(\{X_n\}_{n=1}^\infty \) is a sub-martingale iff \(\{A_n\}_{n=1}^\infty \) is increasing \(\mathbb{P} \)-a.s.
Proof:

- If we construct the sequence recursively then the sequence will be \(\mathbb{P} \)-a.s unique
 \[A_1 = 0 \implies M_1 = X_1 \]
 \[X_{n+1} = M_{n+1} + A_{n+1} \]
 \[\mathbb{E}[X_{n+1} | \mathcal{F}_n] = \mathbb{E}[M_{n+1} | \mathcal{F}_n] + \mathbb{E}[A_{n+1} | \mathcal{F}_n] \]
 \[= M_n + A_{n+1} \]
 \[A_{n+1} = \mathbb{E}[X_{n+1} | \mathcal{F}_n] - M_n \]

 is clearly \(\mathcal{F}_n \) measurable.

 \[\mathbb{E}[M_{n+1} | \mathcal{F}_n] = \mathbb{E}[X_{n+1} - A_{n+1} | \mathcal{F}_n] \]
 \[= \mathbb{E}[X_{n+1} | \mathcal{F}_n] - \mathbb{E}[A_{n+1} | \mathcal{F}_n] \]
 \[= A_{n+1} + M_n - A_{n+1} \]
 \[= M_n \]

 hence \(\{M_n\}_{n=1}^\infty \) is a martingale.

- \[A_{n+1} - A_n = \mathbb{E}[X_{n+1} | \mathcal{F}_n] - M_n - A_n \]
 \[= \mathbb{E}[X_{n+1} | \mathcal{F}_n] - X_n \]

 which is positive iff \(X_n \leq \mathbb{E}[X_{n+1} | \mathcal{F}_n] \)
 i.e. \(\{X_n\}_{n=1}^\infty \) is a sub-martingale.

Definition: Stopping Time

Let \(\{\mathcal{F}_n\}_{n=1}^\infty \) be a filtration on \((\Omega, \mathcal{F}, \mathbb{P})\) and let \(Y : \Omega \to \mathbb{N} \cup \{\infty\} \) be a random variable

then \(T \) is a stopping time if

\[\{T \leq n\} \in \mathcal{F}_n \quad \forall n \]

Lemma:

Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a probability space with stopping time \(T \) on filtration \(\{\mathcal{F}_n\}_{n=1}^\infty \)

then \(T \cap S := \min(T, S), T \cup S := \max(T, S) \) are stopping times.

Proof:

Clearly \(T \cap S, T \cup S \) are r.v.s

\[\{T \cap S \leq n\} = \{T \leq n\} \cup \{S \leq n\} \]
\[\{T \cup S \leq n\} = \{T \leq n\} \cap \{S \leq n\} \]

Since \(T, S \) are stopping times \(\{T \leq n\}, \{S \leq n\} \in \mathcal{F}_n \)

hence \(\{T \cap S \leq n\}, \{T \cup S \leq n\} \in \mathcal{F}_n \)

Lemma:

Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a probability space with stopping time \(T \) on filtration \(\{\mathcal{F}_n\}_{n=1}^\infty \)

then the set of events which are observable up top time \(T \)

\[\mathcal{F}_T := \{A \in \mathcal{F} : A \cap \{T \leq n\} \in \mathcal{F}_n \quad \forall n\} \]

is a \(\sigma \)-algebra.

Lemma:

Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a probability space with stopping time \(T \) on filtration \(\{\mathcal{F}_n\}_{n=1}^\infty \)

If \(\{X_n\}_{n=1}^\infty \) is adapted to \(\{\mathcal{F}_n\}_{n=1}^\infty \) then
\[X_T(\omega) := \begin{cases} X_{T(\omega)}(\omega) & T(\omega) < \infty \\ 0 & \text{o/w} \end{cases} \]

is \(F_T \) measurable.

Proof:

Let \(X_n : (\Omega, F) \to (\Omega', F') \)

and let \(A \in F' \)

\[\{ X_T \in A \} = \{ 0 \in A, T = \infty \} \cup \bigcup_{n=1}^{\infty} \{ X_n \in A \} \cap \{ T = n \} \in F \]

hence \(X_T \) is a random variable.

Moreover

\[\{ X_T \in A \} \cap \{ T = n \} = \{ X_n \in A \} \cap \{ T = n \} \in F_n \]

since \(X_n \) adapted and \(T \) is a stopping time.

hence \(\{ X_T \in A \} \in F_T \)

Lemma:

Let \(\{ X_n \}_{n=1}^{\infty} \) be a martingale on \(\{ F_n \}_{n=1}^{\infty} \) and \(T \) stopping time s.t. \(T \leq m \) a.s.

then \(\mathbb{E}[X_m | T] = X_T \) \(\mathbb{P} \)-a.s.

Proof:

\(X_T \) is \(F_T \) measurable.

for \(k \in \mathbb{N}_{[1,m]} \) and \(A \in F_T \)

\[
\mathbb{E}[X_T 1_{A T=k}] = \mathbb{E}[X_k 1_{A \cap (T=k)}] \\
= \mathbb{E}[\mathbb{E}[X_m | F_k] 1_{A \cap (T=k)}] \\
= \mathbb{E}[\mathbb{E}[X_m 1_{A \cap (T=k)} | F_k]] \\
= \mathbb{E}[X_m 1_{A \cap (T=k)}] \\
\]

\[
\mathbb{E}[X_T 1_A] = \sum_{k=1}^{m} \mathbb{E}[X_T 1_{A T=k}] \\
= \sum_{k=1}^{m} \mathbb{E}[X_m 1_{A T=k}] \\
= \mathbb{E}[X_m 1_A] \\
\]

hence \(X_T = \mathbb{E}[X_m | F_T] \)

Lemma:

Let \(S \leq T \) be stopping times on \(\{ F_n \}_{n=1}^{\infty} \) then

\(F_S \subseteq F_T \)

Proposition: Optimal Stopping

Let \(S \leq T \) be two bounded stopping times on \(\{ F_n \}_{n=1}^{\infty} \)

and \(\{ X_n \}_{n=1}^{\infty} \) be a martingale on the same filtration.

then \(\mathbb{E}[X_T | F_S] = X_S \) \(\mathbb{P} \)-a.s.

Proof:

\(T \leq m \) hence

\[
\mathbb{E}[X_T | F_S] = \mathbb{E}[\mathbb{E}[X_m | F_T] | F_S] \\
= \mathbb{E}[X_m | F_S] \\
= X_S \\
\]
Proposition:
Let $S \leq T$ be \mathbb{P}-a.s. finite stopping times and $\{X_n\}_{n=1}^{\infty}$ a sub-martingale then
\[
\mathbb{E}[X_T | \mathcal{F}_S] \geq X_S
\]

Proposition:
Let $S \leq T$ be \mathbb{P}-a.s. finite stopping times and $\{X_n\}_{n=1}^{\infty}$ a super-martingale then
\[
\mathbb{E}[X_T | \mathcal{F}_S] \leq X_S
\]

Theorem: First DOOB Inequality
Let $\{X_n\}_{n=1}^{\infty}$ be a sub-martingale, $X_n := \max_{i \leq n} X_i$ and $a > 0$ then
\[
a \mathbb{P}(X_n \geq a) \leq \mathbb{E}[X_n 1_{\{X_n \geq a\}}]
\]

Proof:
Let $T = \inf \{n \in \mathbb{N} : X_n \geq a\}$
which is a stopping time.
Then
\[
\{X_n \geq a\} = \{T \leq n\} = \{X_{T \land n} \geq a\}
\]

hence
\[
a \mathbb{P}(X_n \geq a) = a \mathbb{P}(X_{T \land n} \geq a)
\]
\[= a \mathbb{E}[1_{T \land n}]
\[= \mathbb{E}[a 1_{T \land n}]
\[\leq \mathbb{E}[X_{T \land n} 1_{T \land n}]
\[\leq \mathbb{E}[\mathbb{E}[X_n | \mathcal{F}_{T \land n}] 1_{T \land n}]
\[= \mathbb{E}[\mathbb{E}[X_n 1_{T \land n} | \mathcal{F}_{T \land n}]]
\[= \mathbb{E}[X_n 1_{T \land n}]
\]

Corollary:
If $\{X_n\}_{n=1}^{\infty}$ is a non-negative sub-martingale then $\forall a \geq 0, p \geq 1$
\[
a^p \mathbb{P}(X_n \geq a) \leq \mathbb{E}[X_n^p]
\]

Theorem: Second DOOB Inequality
If $\{X_n\}_{n=1}^{\infty}$ is a non-negative sub-martingale and $p > 1$ then
\[
\mathbb{E}[X_n^p] \leq \left(\frac{p}{p-1} \right)^p \mathbb{E}[X_n]
\]

Definition: Crosses
The sequence $\{X_n\}_{n=1}^{\infty}$ crosses the interval $[a, b]$ if $\exists i, j$ s.t. $X_i < a < b < X_j$

Lemma:
Let $\{X_n\}_{n=1}^{\infty}$ which crosses any rational interval only finitely often.
Then $\{X_n\}_{n=1}^{\infty}$ converges in $\mathbb{R} \cup \{\pm \infty\}$

Proof:
Suppose $\liminf_n X_n < \limsup_n X_n$
then $\exists a, b \in \mathbb{Q}$ s.t. $\liminf_n X_n < a < b < \limsup_n X_n$
then $\{X_n\}_{n=1}^{\infty}$ crosses $[a, b]$ i.o.

Definition: Up-Crossing
If $\{X_n\}_{n=1}^{\infty}$ is an adapted sequence of $\{\mathcal{F}_n\}_{n=1}^{\infty}$ and $a < b$ then
define $T_0 := 0$ and recursively
$S_k := \inf \{n \geq T_{k-1} : X_n \leq a\}$
$T_k := \inf \{n \geq S_k : X_n \geq b\}$
Then \(\{X_n\}_{n=S_k}^T \) is the \(k \)th up-crossing of \([a, b]\)

Remark:
We write the number of up-crossings of \([a, b]\) by time \(n \) as

\[
U_{a,b}^n := \sum_{k=1}^{n} 1_{T_k \leq n}
\]

Lemma:
Let \(\{X_n\}_{n=1}^\infty \) be a martingale then

\[
\mathbb{E}[U_{a,b}^n] \leq \frac{\mathbb{E}[(X_n - a)_-]}{b - a}
\]

Proof:
Let

\[
Z := \sum_{k=1}^{\infty} (X_{T_k \cap n} - X_{S_k \cap n})
\]

then

\[
\mathbb{E}[(X_{T_k \cap n} - X_{S_k \cap n})] = \mathbb{E}[X_{T_k \cap n}] - \mathbb{E}[X_{S_k \cap n}]
\]

\[
= \mathbb{E}[\mathbb{E}[X_{T_k \cap n} | \mathcal{F}_{S_k \cap n}]] - \mathbb{E}[X_{S_k \cap n}]
\]

\[
= \mathbb{E}[X_{S_k \cap n}] - \mathbb{E}[X_{S_k \cap n}]
\]

\[
= 0
\]

\[
\mathbb{E}[Z] = 0
\]

Suppose \(U_{a,b}^n = m \) then

\[
Z \geq m(b - a) + (X_n - X_{S_m+1 \cap n})
\]

since \(Z \) crosses \([a, b] \) \(m \) times and there could be one uncompleted crossing, \(X_n - X_{S_m+1 \cap n} \geq X_n - a \) hence

\[
Z \geq \sum_{m=0}^{\infty} (1_{U_{a,b}^n = m} m(b - a) + 1_{U_{a,b}^n = m} (X_n - a))
\]

\[
0 = \mathbb{E}[Z]
\]

\[
\geq \sum_{m=0}^{\infty} \mathbb{P}(U_{a,b}^n = m) m(b - a) - \mathbb{E}[(X_n - a)_-]
\]

\[
= \mathbb{E}[U_{a,b}^n](b - a) - \mathbb{E}[(X_n - a)_-]
\]

hence we have the required result.

Theorem: Martingale Convergence Theorem
Let \(\{X_n\}_{n=1}^\infty \) be a martingale s.t. \(\sup_n \mathbb{E}[(X_n)_-] < \infty \)
then \(X_\infty := \lim_{n \to \infty} X_n \) exists \(\mathbb{P} \)-a.s.
moreover \(X_\infty \) is \(\mathcal{F}_\infty \) measurable and \(X_\infty \in \mathcal{L}^1 \)

Proof:
By the previous lemma

\[
\mathbb{E}[U_{a,b}^n] \leq \frac{\mathbb{E}[(X_n - a)_-]}{b - a} < \infty
\]

by monotone convergence of expectations we have

\[
\mathbb{E}[U_{a,b}^\infty] < \infty
\]

but \(\mathbb{E}[U_{a,b}^\infty] \geq 0 \) hence \(\mathbb{E}[U_{a,b}^\infty] < \infty \) \(\mathbb{P} \)-a.s.
Since $a, b \in \mathbb{Q}$ there are only a countable number of intervals hence
\[\exists N \in \mathcal{F} \text{ s.t. } \mathbb{P}(N) = 0 \]
and $\forall a < b \in \mathbb{Q}, \forall \omega \in \Omega \setminus N$
we have that $\mathbb{E}[U_{a,b}] < \infty$
moreover $\lim_{n \to \infty} X_n(\omega)$ exists on $\mathbb{R} \cup \{\pm \infty\}$ $\forall \omega \in \Omega \setminus N$
$Y := \lim_{n \to \infty} X_n$ is \mathcal{F}_∞ since $\{X_n\}_{n=1}^\infty$ is adapted to $\{\mathcal{F}_n\}_{n=1}^\infty$

\[
\mathbb{E}[Y_+] = \mathbb{E}[\liminf (X_n)_+] \\
\leq \liminf \mathbb{E}[(X_n)_+] \\
\leq \mathbb{E}[(X_0)_+] \\
< \infty \quad \text{by Fatou’s lemma}
\]

\[
\mathbb{E}[Y_-] = \mathbb{E}[\liminf (X_n)_-] \\
\leq \liminf \mathbb{E}[(X_n)_-] \\
\leq \mathbb{E}[(X_0)_-] \\
< \infty \quad \text{by Jensen’s inequality}
\]

therefore $\mathbb{E}[Y] < \infty$ therefore $Y \in L^1$

Remark:

- The upcrossing lemma and martingale convergence theorem remain true for super martingales
- In general we do not have L^1 convergence

Theorem: Convergence For Uniformly Integrable Martingales

Suppose that $\{X_n\}_{n=1}^\infty$ is a uniformly integrable super-martingale.
Then X_n converges \mathbb{P}-a.s. and in $L^1(\Omega, \mathcal{F}, \mathbb{P})$ to some r.v. $X_\infty \in L^1(\Omega, \mathcal{F}_\infty, \mathbb{P})$
and $\mathbb{E}[X_\infty|\mathcal{F}_n] \leq X_n$

Proof:

For a super-martingale $\{X_n\}_{n=1}^\infty$ by uniform integrability

\[
\lim_{k \to \infty} \sup_n \int_{\{|X_n| > k\}} |X_n|d\mathbb{P} = 0 \quad \text{and} \quad \lim_{k \to \infty} \int_{\{|X_n| > k\}} (X_n)_-d\mathbb{P} \leq \int |X_n|d\mathbb{P}
\]

\[
= \int_{\{|X_n| > k\}} |X_n|d\mathbb{P} + \int_{\{|X_n| \leq k\}} |X_n|d\mathbb{P}
\leq \int_{\{|X_n| > k\}} |X_n|d\mathbb{P} + k \int_{\{|X_n| \leq k\}} d\mathbb{P}
\leq \sup_n \int_{\{|X_n| > k\}} |X_n|d\mathbb{P} + k \mathbb{P}(|X_n| \leq k)
\leq \infty
\]

Then by the martingale convergence theorem $\lim_{n \to \infty} X_n = X_\infty$ \mathbb{P}-a.s.
and since a.s. convergence and uniform integrability ensure L^1 convergence we have convergence in $L^1(\Omega, \mathcal{F}, \mathbb{P})$
i.e. $\lim_{n \to \infty} \|X_\infty - X_n\| = 0$
\[||E[X_\infty|F_m] - E[X_n|F_m]|| = ||E[X_\infty - X_n|F_m]|| \leq ||X_\infty - X_n|| \]
\[\lim_{m \to \infty} ||E[X_\infty|F_m] - E[X_n|F_m]|| = 0 \]

Corollary:
Suppose that \(\{X_n\}_{n=1}^\infty \) is a uniformly integrable sub-martingale.
Then \(X_n \) converges \(\mathbb{P} \)-a.s. and in \(L^1(\Omega, \mathcal{F}, \mathbb{P}) \) to some r.v. \(X_\infty \in L^1(\Omega, \mathcal{F}_\infty, \mathbb{P}) \) and \(E[X_\infty|F_n] \geq X_n \).

Corollary:
Suppose that \(\{X_n\}_{n=1}^\infty \) is a uniformly integrable martingale.
Then \(X_n \) converges \(\mathbb{P} \)-a.s. and in \(L^1(\Omega, \mathcal{F}, \mathbb{P}) \) to some r.v. \(X_\infty \in L^1(\Omega, \mathcal{F}_\infty, \mathbb{P}) \) and \(E[X_\infty|F_n] = X_n \).

Theorem: Backwards Martingale Theorem
Let \((\Omega, \mathcal{F}, \mathbb{P}) \) be a probability space and \(\{G_{-n} : n \in \mathbb{N}\} \) sub-\(\sigma \)-algebras of \(\mathcal{F} \) s.t.
\[G_\infty := \bigcap_{k \in \mathbb{N}} G_{-k} \subseteq G_{-(n+1)} \subseteq G_n \subseteq G_{-1} \]
For \(X \in L^1(\Omega, \mathcal{F}, \mathbb{P}) \) define
\[X_{-n} := E[X|G_{-n}] \]
then \(\lim_{n \to \infty} X_{-n} \) exists \(\mathbb{P} \)-a.s. and in \(L^1 \).

Theorem: Strong Law Of Large Numbers
Let \(\{X_i\}_{i=1}^\infty \) be i.i.d r.v.s with \(E[|X_i|] < \infty, \mu = E[X_i] \) and \(S_n = \sum_{i=1}^n X_i \) then \(S_n/n \to \mu \) \(\mathbb{P} \)-a.s.

Proof:
Define \(G_{-n} := \sigma(\{S_i\}_{i=n}^\infty) \) and \(G_{-\infty} = \bigcap_{n=1}^\infty G_{-n} \)
then \(E[X_1|G_{-n}] = E[X_1|S_n] = S_n/n \)
since \(G_{-n} = \sigma(S_n,\{X_i\}_{i=n+1}^\infty) \) and independence of \(\{X_i\}_{i=1}^\infty \)
hence
\[L := \lim_{n \to \infty} \frac{S_n}{n} \]
exists \(\mathbb{P} \)-a.s. and in \(L^1 \)
moreover
\[L = \limsup_n \frac{\sum_{i=1}^n X_i}{n} = \limsup_n \frac{\sum_{i=k}^{n+k} X_i}{n} \]
is measurable w.r.t. \(\tau_k = \sigma(\{X_i\}_{i=k}^\infty) \)
hence is measurable w.r.t. \(\tau = \bigcap_{k=1}^n \tau_k \)
hence by Komogorov’s zero-one law \(\exists c \) s.t. \(\mathbb{P}(L = c) = 1 \)
moreover \(\mu := E[S_n/n] \) and \(\lim_{n \to \infty} E[S_n/n] = E[L] = c \)
hence indeed \(\mu \) must be the limit.

Theorem: Central Limit Theorem
Let \(\{X_k\}_{k=1}^\infty \in L^2 \) be i.i.d random variables
denote \(\mu := E[X_i], \nu := Var[X_i] \)
then
\[S_n := \sum_{k=1}^n \frac{X_k - \mu}{\sqrt{\nu n}} \to N(0,1) \]
weakly

Proof:
WLOG let \(\mu = 0, \nu = 1 \) since otherwise we can use the transformation \(X = X + \sqrt{\nu}Z \) where \(Z \sim N(0,1) \) then
\[\sum_{k=1}^n \frac{X_k - \mu}{\sqrt{n}} = \sqrt{n} \sum_{k=1}^n \frac{Z_k}{\sqrt{n}} \]
hence indeed it suffices to show for $\mu = 0, \nu = 1$

We need to show that $\forall f \in C_b(\mathbb{R})$ that

$$
\lim_{n \to \infty} E[f(S_n)] = \int \frac{e^{x^2/2} f(x)}{\sqrt{2\pi}} dx
$$

however any $f \in C_b(\mathbb{R})$ can be approximated by some $f \in C_b(\mathbb{R})$ which has bounded and uniformly continuous first and second derivatives.

Let $\{Y_k\}_{k=1}^\infty \sim i.i.d N(0, 1)$ be independent of $\{X_k\}_{k=1}^\infty$

then it suffices to show that for $T_n := \sum_{k=1}^n Y_k / \sqrt{n}$

we have that

$$
\lim_{n \to \infty} \left| E[f(S_n)] - E[f(T_n)] \right| = 0
$$

denote $X_{k,n} = X_k / \sqrt{n}, Y_{k,n} = Y_k / \sqrt{n}$

and define

$$
W_{k,n} = \sum_{j=1}^{k-1} Y_{j,n} + \sum_{j=k+1}^n X_{j,n}
$$

Then

$$
f(S_n) - f(T_n) = \sum_{k=1}^n f(W_{k,n} + X_{k,n}) - f(W_{k,n} + Y_{k,n})
$$

by a telescoping sum, hence by Taylor’s theorem we have

$$
\begin{align*}
&f(W_{k,n} + X_{k,n}) = f(W_{k,n}) + f'(W_{k,n})X_{k,n} + \frac{1}{2} f''(W_{k,n})X_{k,n}^2 + R_{X_{k,n}} \\
&f(W_{k,n} + Y_{k,n}) = f(W_{k,n}) + f'(W_{k,n})Y_{k,n} + \frac{1}{2} f''(W_{k,n})Y_{k,n}^2 + R_{Y_{k,n}} \\
&f(W_{k,n} + X_{k,n}) - f(W_{k,n} + Y_{k,n}) = f'(W_{k,n})(X_{k,n} - Y_{k,n}) + \frac{1}{2} f''(W_{k,n})(X_{k,n}^2 - Y_{k,n}^2) + R_{X_{k,n}} - R_{Y_{k,n}} \\
&\left| E[f(W_{k,n} + X_{k,n}) - f(W_{k,n} + Y_{k,n})] \right| \leq \\
&\left| E[f'(W_{k,n})(X_{k,n} - Y_{k,n})] \right| + E[|f''(W_{k,n})(X_{k,n}^2 - Y_{k,n}^2)/2|] + \left| E[R_{X_{k,n}}] + |R_{Y_{k,n}}| \right|
\end{align*}
$$

also from Taylor’s theorem we have

$$
|R_{X_{k,n}}| \leq X_{k,n}^2 ||f''||_{\infty}
$$

so by uniform continuity we have that

$\forall \varepsilon > 0 \exists \delta > 0$ s.t.

$$
|R_{X_{k,n}}| \leq X_{k,n}^2 \varepsilon \quad \forall |X_{k,n}| < \delta
$$

thus

$$
|R_{X_{k,n}}| \leq X_{k,n}^2 \varepsilon 1_{\{|X_{k,n}| < \delta\}} + X_{k,n}^2 ||f''||_{\infty} 1_{\{|X_{k,n}| \geq \delta\}}
$$
moreover

\[E \left[\sum_{k=1}^{n} |R_{X_{k,n}}| + |R_{Y_{k,n}}| \right] \]

\[\leq \sum_{k=1}^{n} E[X_{k,n}^2 (\varepsilon 1_{\{X_{k,n} < \delta\}} + ||f''||_\infty 1_{\{X_{k,n} \geq \delta\}}) + Y_{k,n}^2 (\varepsilon 1_{\{Y_{k,n} < \delta\}} + ||f''||_\infty 1_{\{Y_{k,n} \geq \delta\}})] \]

\[= \frac{1}{n} \sum_{k=1}^{n} E[X_{k,n}^2 (\varepsilon 1_{\{X_{k,n} < \delta\}} + ||f''||_\infty 1_{\{X_{k,n} \geq \delta\}}) + Y_{k,n}^2 (\varepsilon 1_{\{Y_{k,n} < \delta\}} + ||f''||_\infty 1_{\{Y_{k,n} \geq \delta\}})] \]

\[\leq 2 \varepsilon E[X_1^2] + \frac{1}{n} \left(\sum_{k=1}^{n} E[X_{k,n}^2 ||f''||_\infty 1_{\{X_{k,n} \geq \delta\}}] + \sum_{k=1}^{n} E[Y_{k,n}^2 ||f''||_\infty 1_{\{Y_{k,n} \geq \delta\}}] \right) \]

\[= 2 \varepsilon E[X_1^2] + 2E[X_1^2 ||f''||_\infty 1_{\{X_n \geq \delta \sqrt{n} \}}] \rightarrow_{n \to \infty} 0 \]

By the dominated convergence theorem,

it remains to show that the first two terms are null

\[E[f'(W_{k,n})X_{k,n}] = E[f'(W_{k,n})]E[X_{k,n}] \]

by independence

\[= 0 \]

\[E[f'(W_{k,n})Y_{k,n}] = E[f'(W_{k,n})]E[Y_{k,n}] \]

by independence

\[= 0 \]

\[E[f''(W_{k,n})(X_{k,n}^2 - Y_{k,n}^2)] = E[f''(W_{k,n})]E[X_{k,n}^2 - Y_{k,n}^2] \]

\[= E[f''(W_{k,n})] \left(\frac{1}{n} - \frac{1}{n} \right) \]

\[= 0 \]

hence indeed the theorem holds.