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Introduction
Mathematical modelling

Goal for the talk:

To demonstrate the power of using a mathematical tool (phase fields) on
modelling fluid problems with free boundaries, and the flexibility of this
framework allowing modelling of surfactant effects.

In this talk:

1. Introduce free boundary problems and a multi fluid model. The “sharp”
problem.

2. Introduce and incorporate surfactants into this model. The soap!

3. Introduce phase field modelling, a technique to study an approximation of
the above. The “diffuse” approximation.

4. Discuss discretisation and present some simulations solutions to the phase
field problem.The simulation!
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Multi Fluid Bubble Cluster
Free boundary problem

A free boundary problem is partial differential equation for a function of
interest, posed in a domain which contains geometry that is also an unknown
to be solved for.

Unknown Ω(i), Γ Unknown Ω(i), Γ(i,j),T(i,j,k)

Applications: Phase change in materials (Stefan problem), fluid dynamics
(two/multi-phase flow, wetting phenomena), obstacle problems, tumour
growth
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Multi Fluid Bubble Cluster
Multi phase flow

Quantities of interest

I velocity v(i)

I (constant) density,viscosity
ρ(i) η(i)

I surface tension σi,j of Γ(i,j)

I curvature κ(i,j) of Γ(i,j)

In each Ω(i)(t):

I Incompressible Navier Stokes equations:

∇ · v(i) = 0

∂t(ρ
(i)v(i)) +∇ · (ρ(i)v(i) ⊗ v(i)) = ∇ · (pI + 2η(i)D(v(i)))

On each Γ(i,j)(t):

I Young-Laplace law, [pI + 2η(·)D(v(·))]ij · ν(i,j) = σi,jκ
(i,j)ν(i,j),

All Γ(i,j)(t), T(i,j,k)(t):
Transported with the flow.



Multi Fluid Bubble Cluster
Multi phase flow

Quantities of interest

I velocity v(i)

I (constant) density,viscosity
ρ(i) η(i)

I surface tension σi,j of Γ(i,j)

I curvature κ(i,j) of Γ(i,j)

In each Ω(i)(t):

I Incompressible Navier Stokes equations:

∇ · v(i) = 0

∂t(ρ
(i)v(i)) +∇ · (ρ(i)v(i) ⊗ v(i)) = ∇ · (pI + 2η(i)D(v(i)))

On each Γ(i,j)(t):

I Young-Laplace law, [pI + 2η(·)D(v(·))]ij · ν(i,j) = σi,jκ
(i,j)ν(i,j),

All Γ(i,j)(t), T(i,j,k)(t):
Transported with the flow.



Multi Fluid Bubble Cluster
Multi phase flow

Quantities of interest

I velocity v(i)

I (constant) density,viscosity
ρ(i) η(i)

I surface tension σi,j of Γ(i,j)

I curvature κ(i,j) of Γ(i,j)

In each Ω(i)(t):

I Incompressible Navier Stokes equations:

∇ · v(i) = 0

∂t(ρ
(i)v(i)) +∇ · (ρ(i)v(i) ⊗ v(i)) = ∇ · (pI + 2η(i)D(v(i)))

On each Γ(i,j)(t):

I Young-Laplace law, [pI + 2η(·)D(v(·))]ij · ν(i,j) = σi,jκ
(i,j)ν(i,j),

All Γ(i,j)(t), T(i,j,k)(t):
Transported with the flow.



Table of Contents

Multi Fluid Bubble Cluster

Incorporating Surfactants

Phase Field Modelling

Discretisation and Simulation



Incorporating Surfactants
Surfactant introduction

What are surfactants?
Surfactants (surface active agents) are compounds that lower the surface
tension (or interfacial tension) between two liquids or between a liquid and a
solid

Why do we study them?
Properties: Detergency/foaming, molecule macrostructures, emulsification,
wetting agents, . . .
Industries: Detergents, cosmetics, oil/petroleum industry, pharmaceuticals,. . .

The -philic/-phobic structure causes adsorbtion to interfaces between fluids
=⇒ gives a loss of surface tension.

[http://www.ilpi.com/genchem/demo/tension/, https://people.maths.ox.ac.uk/griffit4/surfactant.html]
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Incorporating Surfactants
Effects

Demonstration of an effect of surfactants

This is the Marangoni effect, caused by tangential surface forces. Captured by
a new interfacial condition:

[pI + 2η(·)D(v(·))]ijν
(i,j) = σi,j(c (i,j))κ(i,j)ν(i,j)+∇Γ(i,j)σi,j(c (i,j))

[https://www.youtube.com/watch?v=leVA0ZcW5Ik]



Incorporating Surfactants
Multi phase flow with Surfactant

(More!) quantities of interest

I Surfactant concentration
c (i) in Ω(i)

I Surfactant concentration
c (i,j) on Γ(i,j)

Balance of mass of the surfactant:

In each Ω(i)(t):

∂•t c (i) = ∇ · J(i)
c

On each Γ(i,j)(t):

∂•t c (i,j) + c (i,j)∇Γ(i,j) · v(i) = ∇Γ(i,j) · J(i,j)
c + Adsorption

On T(i,j,k)(t):
No mass is deposited.
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Incorporating Surfactants
Energetic framework

(More!) quantities of interest

I Surfactant concentration
c (i) in Ω(i)

I Surfactant concentration
c (i,j) on Γ(i,j)

Total system energy:

E :=
∑
i

∫
Ω(i)

( ρ(i)|v(i)|2

2︸ ︷︷ ︸
Fluid

+ Gi (c (i))
)

+
∑
i<j

∫
Γ(i,j)

γi,j(c (i,j))︸ ︷︷ ︸
surfactant

How to choose Gi ,γi,j?

σi,j(c (i,j)) = γi,j(c (i,j))− c (i,j)γ′i,j(c (i,j)) well defined



Incorporating Surfactants
Energetic framework

(More!) quantities of interest

I Surfactant concentration
c (i)(q) in Ω(i)

I Surfactant concentration
c (i,j)(q) on Γ(i,j)

Total system energy:

E :=
∑
i

∫
Ω(i)

( ρ(i)|v(i)|2

2︸ ︷︷ ︸
Fluid

+ Gi (c (i)(q))
)

+
∑
i<j

∫
Γ(i,j)

γi,j(c (i,j)(q))︸ ︷︷ ︸
surfactant

Simplifying assumption:

I Instantaneous adsorption: continuous chemical potential q.

I σ̃i,j(q) = γi,j(c (i,j)(q))− c (i,j)(q)q well defined

I Equilibrium relation (Isotherm): e.g Langmuir c (i)(q) = Kc(i,j)(q)

c
(i,j)
max −c(i,j)(q)



Incorporating Surfactants
Surfactant equations

(More!) quantities of interest

I Surfactant concentration
c (i)(q) in Ω(i)

I Surfactant concentration
c (i,j)(q) on Γ(i,j)

Choose fluxes J(i)
c , J(i,j)

c :
In each Ω(i)(t):

∂•t c (i)(q) = ∇ ·
(
M(i)

c ∇G ′i (c (i)(q))
)

On each Γ(i,j)(t):

∂•t c (i,j)(q) + c (i,j)(q)∇Γ(i,j) ·v(i) = ∇Γ(i,j) ·
(

M(i,j)
c ∇Γ(i,j)γ

′
ij(c (i,j)(q))

)
+ Adsorption

This choice =⇒ Energy dissipation: d
dt

E ≤
∫
∂Ω

(working terms)



Incorporating Surfactants
Full system

The fluid mass and momentum equations

∇ · v(i) = 0 in Ω(i)(t)

∂t(ρ
(i)v(i)) +∇ · (ρ(i)v(i) ⊗ v(i)) = ∇ ·

(
pI + 2η(i)D(v(i))

)
in Ω(i)(t)

[v(·)]ji = 0, uΓ(i,j) = v(i) · ν(i,j) on Γ(i,j)(t)

The surfactant balances in bulk and interface

∂•t c (i)(q) =∇ ·
(
M(i)

c ∇G ′i (c (i)(q))
)

in Ω(i)(t)

∂•t c (i,j)(q) + c (i,j)(q)∇Γ(i,j) · v(i) =∇Γ(i,j) ·
(

M(i,j)
c ∇Γ(i,j)γ

′
ij(c (i,j)(q))

)
on Γ(i,j)(t)

− [M(·)
c ∇G ′· (c (·)(q))]ij · ν(i,j)

Force balance on interfaces and triple junctions

[pI + 2η(·)D(v(·))]ijν
(i,j) = σ̃i,j(q)κ(i,j)ν(i,j) +∇Γ(i,j) σ̃i,j(q) on Γ(i,j)(t)

0 = σ̃i,j(q)µ(i,j,k) + σ̃j,k(q)µ(j,k,i) + σ̃k,i (q)µ(k,i,j) on T (i,j,k)(t)
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Phase Field Modelling
Issues direct models

Issues with interface tracking of free boundary problems

I For many regions, there are can be large systems of coupled equations,

I We must solve for the free boundaries as we must solve equations on them,

I Solving across two/three different dimensions, (bulk,boundary and
boundary intersections)

I Only able to model a narrow range of effects, the geometry tracking is
highly sensitive to topological change

I Discretisation errors associated with discretising the free boundaries

I Grid complexity (match grid to the free boundaries or not)

I ...

=⇒ More difficult for analysis and simulation.



Phase field modelling
Phase field model

The idea: Interface capturing.

Regularise quantities we care about, by converting:

infinitesimal interfaces→ interfacial layer width ε > 0

then smoothly change quantities over these strips.

−→

Some questions
How do we characterise the bulk domains and interfacial strips?
How do we preserve structures as ε→ 0?
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Phase field modelling
More Precisely

Define

ΣM :=
{

u = (u(1), . . . , u(M)) ∈ RM :
M∑
i=1

u(i) = 1, where 0 ≤ u(i) ≤ 1
}

Then the phase field variables (or order parameters) are functions

ϕ = (ϕ(1), . . . , ϕ(M)) : Ω→ ΣM

Essentially: The ϕ(i)’s “represent the presence
of fluid i” at the state (x , t), and

ϕ(i)(x , t) = 1 =⇒ x ∈ Ω(i) at time t

0 < ϕ(i)(x , t) < 1 =⇒ x ∈ Γ(i,j) at time t

Key question: What equations should ϕ(i) satisfy?
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Phase field modelling
Energetic framework

For 2 phases: Define the Ginzburg Landau energy functional: For certain
potentials F

Eε(ϕ,∇ϕ) :=

∫
Ω

1

ε
F (ϕ) +

ε

2
|∇ϕ|2dx

This energy contains the gradient part |∇ϕ|2 and the potential part F (ϕ).

Takes the limit as ε→ 0 then:

Eε(ϕ,∇ϕ)
ε→0→

∫
Γ

1dx = AreaΓ(x , t)

→ represents the notion of de Giorgi’s Gamma-Convergence for functionals.

=⇒ Minimizers of Eε(ϕ,∇ϕ) converge to minimizers of AreaΓ as ε→ 0.

Two gradient flows of this energy:

I L2 flow: the Allen-Cahn

I H−1 flow: the Cahn-Hilliard
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Phase field modelling
Two important PDEs

For 2 phases, ϕ(1) = ϕ and ϕ(2) = 1− ϕ, consider:

The Allen-Cahn Equation

ϕt = ε∆ϕ+
1

ε
F ′(ϕ)

The Cahn-Hilliard Equation

ϕt = ∆µ, µ = ε∆ϕ+
1

ε
F ′(ϕ)

F is the phase field potential: Typically a double well, double obstacle or
approximation of this:

Behaviour: “F” forces the ϕ’s to sit in the wells of the potential, and ∆ϕ
induces continuity of ϕ across the interface as it changes wells.
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Phase Field Modelling
Multi fluid problem

Approximating the multi fluid problem

I We change variables so they depend on ϕ :{
v(i), ρ(i), η(i) ∀i

}
→

{∑
i

v(i)ϕ(i)

︸ ︷︷ ︸
v

,
∑
i

ρ(i)ϕ(i)

︸ ︷︷ ︸
ρ(ϕ)

,
∑
i

η(i)ϕ(i)

︸ ︷︷ ︸
η(ϕ)

}

I Preserved energy framework =⇒ Forced Navier-Stokes:

∇ · v = 0

∂t(ρv) +∇ · (ρv ⊗ v) = ∇ ·
(

v ⊗ (
∑
k,l

L(k,l)ρ(k)∇µ(l))− pI + 2ηD(v)
)

and transported multiphase Cahn-Hilliard: For k = 1, . . . ,M

∂t(ϕ
(k)) +∇ · (ϕ(k)v) = ∇ ·

( M∑
l=1

L(k,l)(ϕ)∇µ(l)
)

µ(k) = Dϕ(k),∇ϕ(k)

[
εa(ϕ,∇ϕ) +

1

ε
F (ϕ)

]
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v(i), ρ(i), η(i) ∀i

}
→

{∑
i

v(i)ϕ(i)

︸ ︷︷ ︸
v

,
∑
i

ρ(i)ϕ(i)

︸ ︷︷ ︸
ρ(ϕ)

,
∑
i

η(i)ϕ(i)

︸ ︷︷ ︸
η(ϕ)

}

I Preserved energy framework =⇒ Forced Navier-Stokes:

∇ · v = 0

∂t(ρv) +∇ · (ρv ⊗ v) = ∇ ·
(

v ⊗ (
∑
k,l

L(k,l)ρ(k)∇µ(l))− pI + 2ηD(v)
)

and transported multiphase Cahn-Hilliard: For k = 1, . . . ,M

∂t(ϕ
(k)) +∇ · (ϕ(k)v) = ∇ ·

( M∑
l=1

L(k,l)(ϕ)∇µ(l)
)

µ(k) = Dϕ(k),∇ϕ(k)

[
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Phase Field Modelling
Incorporating surfactants

Approximating the surfactants

I We approximate the characteristic functions of bulk (χΩ(i) ) and interfacial
(χΓ(i,j) ) regions by smoothed distributions (ξi (ϕ) and δij(ϕ,∇ϕ)).

I New quantities of interest depend on ϕ :{
c (i)(q), c (i,j)(q) ∀i , j

}
→

{(∑
i

ξi (ϕ)c (i)(q) +
∑
i<j

δij(ϕ,∇ϕ)c (i,j)(q)
)}

I New system energy

Eε :=

∫
Ω

(
ρ(ϕ)|v|2

2
+ eG (q, ϕ)

)
+ eγ(ε, q, ϕ,∇ϕ)

Where
I eG =

∑
i ξiGi , eγ(ϕ) =

∑
i<j δijγi,j

I δij := ε(gradient part) + 1
ε

(multi well potential)



Phase Field Modelling
Incorporating surfactants

Approximating the surfactants

I We approximate the characteristic functions of bulk (χΩ(i) ) and interfacial
(χΓ(i,j) ) regions by smoothed distributions (ξi (ϕ) and δij(ϕ,∇ϕ)).

I New quantities of interest depend on ϕ :{
c (i)(q), c (i,j)(q) ∀i , j

}
→

{(∑
i

ξi (ϕ)c (i)(q) +
∑
i<j

δij(ϕ,∇ϕ)c (i,j)(q)
)}

I New system energy

Eε :=

∫
Ω

(
ρ(ϕ)|v|2

2
+ eG (q, ϕ)

)
+ eγ(ε, q, ϕ,∇ϕ)

Where
I eG =

∑
i ξiGi , eγ(ϕ) =

∑
i<j δijγi,j

I δij := ε(gradient part) + 1
ε

(multi well potential)



Phase Field Modelling
Incorporating surfactants

Approximating the surfactants

I We approximate the characteristic functions of bulk (χΩ(i) ) and interfacial
(χΓ(i,j) ) regions by smoothed distributions (ξi (ϕ) and δij(ϕ,∇ϕ)).

I New quantities of interest depend on ϕ :{
c (i)(q), c (i,j)(q) ∀i , j

}
→

{(∑
i

ξi (ϕ)c (i)(q) +
∑
i<j

δij(ϕ,∇ϕ)c (i,j)(q)
)}

I New system energy

Eε :=

∫
Ω

(
ρ(ϕ)|v|2

2
+ eG (q, ϕ)

)
+ eγ(ε, q, ϕ,∇ϕ)

Where
I eG =

∑
i ξiGi , eγ(ϕ) =

∑
i<j δijγi,j

I δij := ε(gradient part) + 1
ε

(multi well potential)



Phase Field Modelling
Incorporating surfactants

Approximating the surfactants

I We approximate the characteristic functions of bulk (χΩ(i) ) and interfacial
(χΓ(i,j) ) regions by smoothed distributions (ξi (ϕ) and δij(ϕ,∇ϕ)).

I New quantities of interest depend on ϕ :{
c (i)(q), c (i,j)(q) ∀i , j

}
→

{(∑
i

ξi (ϕ)c (i)(q) +
∑
i<j

δij(ϕ,∇ϕ)c (i,j)(q)
)}

I New system energy

Eε :=

∫
Ω

(
ρ(ϕ)|v|2

2
+ eG (q, ϕ)

)
+ eγ(ε, q, ϕ,∇ϕ)

Where
I eG =

∑
i ξiGi , eγ(ϕ) =

∑
i<j δijγi,j

I δij := ε(gradient part) + 1
ε

(multi well potential)



Phase Field Modelling
The full system

The Diffuse interface approximation.

∇ · v = 0

∂t(ρv) +∇ · (ρv ⊗ v) = ∇ ·
(∑

i<j

σij

(
δijI −

∑
k

∇ϕ(k) ⊗ aij ,∇ϕ(k)

)
− v ⊗ J− pI + 2ηD(v)

)
For k = 1, . . . ,M

∂t(ϕ
(k)) +∇ · (ϕ(k)v) = ∇ ·

( M∑
l=1

L(k,l)(ϕ, q)∇µ(l)
)

µ(k) =
∑
i<j

−ε∇ · (σ̃ijaij ,∇ϕ(k) ) + εσ̃ijaij ,ϕ(k)

+
1

ε
σ̃ijwij,ϕ(k) + ξ′k(Gk − c (k)q)

∂t
(∑

i

ξic
(i)(q) +

∑
i<j

δijc
(i,j)(q)

)
+∇ ·

((∑
i

ξic
(i)(q) +

∑
i<j

δijc
(i,j)(q)

)
v
)

= ∇ ·
(∑

i

ξiM
(i)
c ∇q +

∑
i<j

δijM
(i,j)
c ∇q

)
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Discretisation and Simulation
Fractional−θ scheme

The motivation:

I Literature: ‘good’ CH scheme which is coupled to NS

I Here: ‘good’ NS scheme which is coupled to CH

The framework:
Use a fractional−θ scheme:

Consider, ∂tw + F (w) = 0, and split F (w) = αF1(w) + βF2(w), with
α + β = 1. Discretise in time as follows with θ ∈ [0, 1

3
].

Template problem:

Find wn+θ by solving
wn+θ − wn

θ∆t
+ αF1(wn+θ) = −βF2(wn)

Find wn+1−θ by solving
wn+1−θ − wn+θ

(1− 2θ)∆t
+ βF2(wn+1−θ) = −αF1(wn+θ)

Find wn+1 by solving
wn+1 − wn+1−θ

θ∆t
+ αF1(wn+1) = −βF2(wn+1−θ)
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Discretisation and Simulation
Fractional θ for CHNS

Example: (2 phase) Cahn-Hilliard Navier-Stokes:

w = (v, p, ϕ, µ)T , Fi = (Gi ,Hi )
T for i = 1, 2

Gi are fluid operators, Hi are Cahn-Hilliard operators.

Decouples into 6 substeps:

1. (1a) Stokes - (1b) CH.
Given (vn, pn, ϕn, µn), solve for (vn+θ, pn+θ, ϕn+θ, µn+θ)

2. (2a) CH - (2b) Burgers.
Given (vn+θ, pn+θ, ϕn+θ, µn+θ), solve for (vn+1−θ, pn+1−θ, ϕn+1−θ, µn+1−θ)

3. (3a) Stokes - (3b) CH
Given (vn+1−θ, pn+1−θ, ϕn+1−θ, µn+1−θ) solve for (vn+1, pn+1, ϕn+1, µn+1)

Benefits of this θ scheme

I Optimal θ can be found. This yields a second order in time scheme,
A-stable for α > 0.5.

I Separates nonlinear terms (advection and incompressibility) - Fast solvers.

I I have shown conditional stability using energy methods for this system.
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Discretisation and Simulation
Discretisation in space

Finite element framework:

I Triangulate the domain.

I Choose an FE space of functions to
approximate your solution

I Approximating problem using basis
functions ψi and representation
u =

∑
i uiψi

I Solve the sparse linear system for ui . [http://mooseframework.org/wiki/MooseTraining/FEM/ShapeFunctions/]

We use:

I P1 elements for ϕ, µ, q

I Taylor-Hood P2 − P1 or MINI for the fluid (v, p)

Created in the DUNE-FEM C++ package and uses UMFPACK,PETSC, solvers
and Alugrid grid manager.
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Discretisation and Simulation
Surfactants supplied on left. Highly viscous fluid

Demonstrates recovery of
0 = σi,j(q)µ(i,j,k) + σj,k(q)µ(j,k,i) + σk,i (q)µ(k,i,j) on T (i,j,k)(t)



Discretisation and Simulation
Marangoni force with surfactants(low fluid viscosity)

Demonstrates recovery of [T(·)]ijν
(i,j) = σ̃i,j(q)κ(i,j)ν(i,j) +∇Γ(i,j) σ̃i,j(q)︸ ︷︷ ︸

Marangoni force

on Γ(i,j)



Discretisation and Simulation
Wetting effects

Example of an effect not satisfied in the sharp interface model.



It’s all over!

Thank you for listening!
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