Soap to Simulation: A phase field story

Oliver Dunbar MASDOC, Warwick Mathematics Institute

Postgraduate Seminar, Wednesday 30/11/16

EPSRC

Pioneering research and skills

Goal for the talk:

To demonstrate the power of using a mathematical tool (phase fields) on modelling fluid problems with free boundaries, and the flexibility of this framework allowing modelling of surfactant effects.

Goal for the talk:

To demonstrate the power of using a mathematical tool (phase fields) on modelling fluid problems with free boundaries, and the flexibility of this framework allowing modelling of surfactant effects.

In this talk:

1. Introduce free boundary problems and a multi fluid model. The "sharp" problem.

Goal for the talk:

To demonstrate the power of using a mathematical tool (phase fields) on modelling fluid problems with free boundaries, and the flexibility of this framework allowing modelling of surfactant effects.

In this talk:

- 1. Introduce free boundary problems and a multi fluid model. The "sharp" problem.
- 2. Introduce and incorporate surfactants into this model. The soap!

Goal for the talk:

To demonstrate the power of using a mathematical tool (phase fields) on modelling fluid problems with free boundaries, and the flexibility of this framework allowing modelling of surfactant effects.

In this talk:

- 1. Introduce free boundary problems and a multi fluid model. The "sharp" problem.
- 2. Introduce and incorporate surfactants into this model. The soap!
- 3. Introduce phase field modelling, a technique to study an approximation of the above. **The "diffuse" approximation.**

Goal for the talk:

To demonstrate the power of using a mathematical tool (phase fields) on modelling fluid problems with free boundaries, and the flexibility of this framework allowing modelling of surfactant effects.

In this talk:

- 1. Introduce free boundary problems and a multi fluid model. The "sharp" problem.
- 2. Introduce and incorporate surfactants into this model. The soap!
- 3. Introduce phase field modelling, a technique to study an approximation of the above. **The "diffuse" approximation.**
- 4. Discuss discretisation and present some simulations solutions to the phase field problem. **The simulation!**

Table of Contents

Multi Fluid Bubble Cluster

Incorporating Surfactants

Phase Field Modelling

Discretisation and Simulation

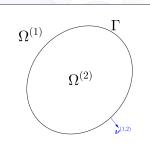
Free boundary problem

A **free boundary problem** is partial differential equation for a function of interest, posed in a domain which contains geometry that is also an unknown to be solved for.

Free boundary problem

A **free boundary problem** is partial differential equation for a function of interest, posed in a domain which contains geometry that is also an unknown to be solved for.

Unknown $\Omega^{(i)}, \Gamma$

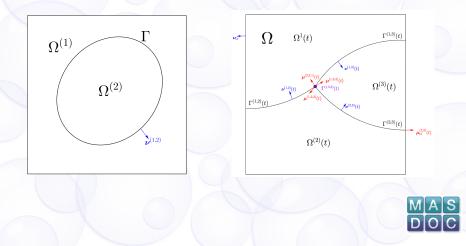


Free boundary problem

A **free boundary problem** is partial differential equation for a function of interest, posed in a domain which contains geometry that is also an unknown to be solved for.

Unknown $\Omega^{(i)}, \Gamma$

Unknown $\Omega^{(i)}, \Gamma^{(i,j)}, \mathbf{T}^{(i,j,k)}$

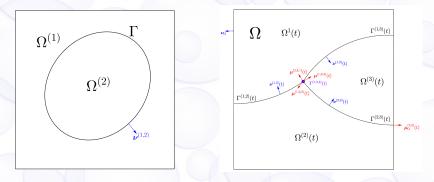


Free boundary problem

A **free boundary problem** is partial differential equation for a function of interest, posed in a domain which contains geometry that is also an unknown to be solved for.

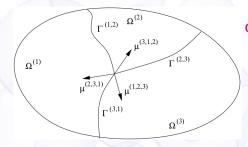
Unknown $\Omega^{(i)}, \Gamma$

Unknown $\Omega^{(i)}, \Gamma^{(i,j)}, \mathbf{T}^{(i,j,k)}$



Applications: Phase change in materials (Stefan problem), fluid dynamics (two/multi-phase flow, wetting phenomena), obstacle problems, tumour growth

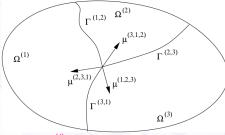
Multi phase flow



Quantities of interest

- velocity v⁽ⁱ⁾
- (constant) density, viscosity $\overline{\rho}^{(i)} \eta^{(i)}$
- surface tension $\sigma_{i,j}$ of $\Gamma^{(i,j)}$
- curvature $\kappa^{(i,j)}$ of $\Gamma^{(i,j)}$

Multi phase flow



Quantities of interest

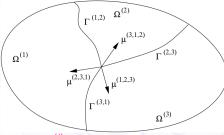
- velocity v⁽ⁱ⁾
- (constant) density, viscosity $\overline{\rho}^{(i)} \eta^{(i)}$
- surface tension $\sigma_{i,j}$ of $\Gamma^{(i,j)}$
- curvature $\kappa^{(i,j)}$ of $\Gamma^{(i,j)}$

In each $\Omega^{(i)}(t)$:

Incompressible Navier Stokes equations:

$$\nabla \cdot \mathbf{v}^{(i)} = \mathbf{0}$$
$$\partial_t(\overline{\rho}^{(i)}\mathbf{v}^{(i)}) + \nabla \cdot (\overline{\rho}^{(i)}\mathbf{v}^{(i)} \otimes \mathbf{v}^{(i)}) = \nabla \cdot (p\mathcal{I} + 2\eta^{(i)}D(\mathbf{v}^{(i)}))$$

Multi phase flow



Quantities of interest

- velocity v⁽ⁱ⁾
- (constant) density, viscosity $\overline{\rho}^{(i)} \eta^{(i)}$
- surface tension $\sigma_{i,j}$ of $\Gamma^{(i,j)}$
- curvature $\kappa^{(i,j)}$ of $\Gamma^{(i,j)}$

In each $\Omega^{(i)}(t)$:

Incompressible Navier Stokes equations:

$$\nabla \cdot \mathbf{v}^{(i)} = 0$$
$$\partial_t(\bar{\rho}^{(i)}\mathbf{v}^{(i)}) + \nabla \cdot (\bar{\rho}^{(i)}\mathbf{v}^{(i)} \otimes \mathbf{v}^{(i)}) = \nabla \cdot (\rho \mathcal{I} + 2\eta^{(i)} D(\mathbf{v}^{(i)}))$$

On each $\Gamma^{(i,j)}(t)$:

Young-Laplace law, $[p\mathcal{I} + 2\eta^{(\cdot)}D(\mathbf{v}^{(\cdot)})]_j^i \cdot \nu^{(i,j)} = \sigma_{i,j}\kappa^{(i,j)}\nu^{(i,j)}$, All $\Gamma^{(i,j)}(t)$, $\mathbf{T}^{(i,j,k)}(t)$:

Transported with the flow.

Table of Contents

Multi Fluid Bubble Cluster

Incorporating Surfactants

Phase Field Modelling

Discretisation and Simulation

Surfactant introduction

What are surfactants?

Surfactants (surface active agents) are compounds that lower the surface tension (or interfacial tension) between two liquids or between a liquid and a solid

Surfactant introduction

What are surfactants?

Surfactants (surface active agents) are compounds that lower the surface tension (or interfacial tension) between two liquids or between a liquid and a solid

Why do we study them?

Properties: Detergency/foaming, molecule macrostructures, emulsification, wetting agents, ...

Industries: Detergents, cosmetics, oil/petroleum industry, pharmaceuticals,...

Surfactant introduction

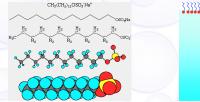
What are surfactants?

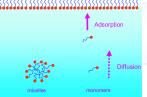
Surfactants (surface active agents) are compounds that lower the surface tension (or interfacial tension) between two liquids or between a liquid and a solid

Why do we study them?

 $\label{eq:properties: Detergency/foaming, molecule macrostructures, emulsification, wetting agents, \ldots$

Industries: Detergents, cosmetics, oil/petroleum industry, pharmaceuticals,...





The -philic/-phobic structure causes adsorbtion to interfaces between fluids \implies gives a loss of surface tension.

[http://www.ilpi.com/genchem/demo/tension/, https://people.maths.ox.ac.uk/griffit4/surfactant.html]

Effects

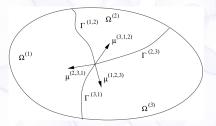
Demonstration of an effect of surfactants

This is the Marangoni effect, caused by tangential surface forces. Captured by a new interfacial condition:

 $[p\mathcal{I} + 2\eta^{(\cdot)}D(\mathbf{v}^{(\cdot)})]_{j}^{i}\nu^{(i,j)} = \sigma_{i,j}(\mathbf{c}^{(i,j)})\kappa^{(i,j)}\nu^{(i,j)} + \nabla_{\Gamma^{(i,j)}}\sigma_{i,j}(\mathbf{c}^{(i,j)})$

[https://www.youtube.com/watch?v=leVA0ZcW5lk]

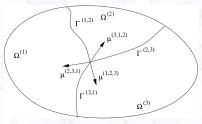
Multi phase flow with Surfactant



(More!) quantities of interest

- Surfactant concentration
 c⁽ⁱ⁾ in Ω⁽ⁱ⁾
- Surfactant concentration *c*^(i,j) on Γ^(i,j)

Multi phase flow with Surfactant



Balance of mass of the surfactant:

In each $\Omega^{(i)}(t)$:

$$\partial_t^{\bullet} c^{(i)} = \nabla \cdot \mathbf{J}_c^{(i)}$$

On each $\Gamma^{(i,j)}(t)$:

$$\partial_t^{\bullet} c^{(i,j)} + c^{(i,j)} \nabla_{\Gamma^{(i,j)}} \cdot \mathbf{v}^{(i)} = \nabla_{\Gamma^{(i,j)}} \cdot \mathbf{J}_c^{(i,j)} + \mathsf{Adsorption}$$

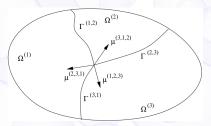
On $T^{(i,j,k)}(t)$:

No mass is deposited.

(More!) quantities of interest

- Surfactant concentration
 c⁽ⁱ⁾ in Ω⁽ⁱ⁾
- Surfactant concentration
 c^(i,j) on Γ^(i,j)

Energetic framework



(More!) quantities of interest

- Surfactant concentration $c^{(i)}$ in $\Omega^{(i)}$
- Surfactant concentration
 c^(i,j) on Γ^(i,j)

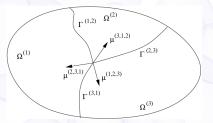
Total system energy:

$$E := \sum_{i} \int_{\Omega^{(i)}} \left(\underbrace{\frac{\overline{\rho}^{(i)} |\mathbf{v}^{(i)}|^2}{2}}_{\text{Fluid}} + \underbrace{G_i(\boldsymbol{c}^{(i)})\right) + \sum_{i < j} \int_{\Gamma^{(i,j)}} \gamma_{i,j}(\boldsymbol{c}^{(i,j)})}_{\text{surfactant}} \right)$$

How to choose $G_i, \gamma_{i,j}$?

 $\sigma_{i,j}(\boldsymbol{c}^{(i,j)}) = \gamma_{i,j}(\boldsymbol{c}^{(i,j)}) - \boldsymbol{c}^{(i,j)}\gamma_{i,j}'(\boldsymbol{c}^{(i,j)})$ well defined

Energetic framework



(More!) quantities of interest

- Surfactant concentration
 c⁽ⁱ⁾(q) in Ω⁽ⁱ⁾
- Surfactant concentration $c^{(i,j)}(q)$ on $\Gamma^{(i,j)}$

Total system energy:

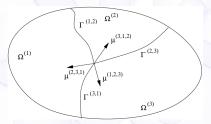
$$E := \sum_{i} \int_{\Omega^{(i)}} \Big(\underbrace{\frac{\overline{\rho}^{(i)} |\mathbf{v}^{(i)}|^2}{2}}_{\text{Fluid}} + \underbrace{\mathsf{G}_i(c^{(i)}(q))}_{\text{surfactant}} + \underbrace{\mathsf{S}_i(c^{(i,j)}(q))}_{\text{surfactant}} \Big)$$

Simplifying assumption:

- Instantaneous adsorption: continuous chemical potential q.
- $\tilde{\sigma}_{i,j}(q) = \gamma_{i,j}(c^{(i,j)}(q)) c^{(i,j)}(q)q$ well defined

• Equilibrium relation (Isotherm): e.g Langmuir $c^{(i)}(q) = \frac{\kappa c^{(i,j)}(q)}{c_{max}^{(i,j)} - c^{(i,j)}(q)}$

Surfactant equations



(More!) quantities of interest

- Surfactant concentration
 c⁽ⁱ⁾(q) in Ω⁽ⁱ⁾
- Surfactant concentration *c*^(i,j)(*q*) on Γ^(i,j)

Choose fluxes $\mathbf{J}_{c}^{(i)}$, $\mathbf{J}_{c}^{(i,j)}$: In each $\Omega^{(i)}(t)$:

$$\partial_t^{ullet} c^{(i)}(q) =
abla \cdot \left(M_c^{(i)}
abla G_i'(c^{(i)}(q)) \right)$$

On each $\Gamma^{(i,j)}(t)$:

$$\partial_t^{\bullet} \boldsymbol{c}^{(i,j)}(\boldsymbol{q}) + \boldsymbol{c}^{(i,j)}(\boldsymbol{q}) \nabla_{\Gamma^{(i,j)}} \cdot \boldsymbol{v}^{(i)} = \nabla_{\Gamma^{(i,j)}} \cdot \left(M_{\boldsymbol{c}}^{(i,j)} \nabla_{\Gamma^{(i,j)}} \gamma_{ij}'(\boldsymbol{c}^{(i,j)}(\boldsymbol{q})) \right) + \text{Adsorption}$$

This choice \implies Energy dissipation: $\frac{d}{dt}E \leq \int_{\partial\Omega} (\text{working terms})$

Full system

The fluid mass and momentum equations

$$\nabla \cdot \mathbf{v}^{(i)} = 0 \qquad \text{in } \Omega^{(i)}(t)$$
$$\partial_t(\overline{\rho}^{(i)}\mathbf{v}^{(i)}) + \nabla \cdot (\overline{\rho}^{(i)}\mathbf{v}^{(i)} \otimes \mathbf{v}^{(i)}) = \nabla \cdot (p\mathcal{I} + 2\eta^{(i)}D(\mathbf{v}^{(i)})) \qquad \text{in } \Omega^{(i)}(t)$$
$$[\mathbf{v}^{(\cdot)}]_i^j = 0, \qquad u_{\Gamma^{(i,j)}} = \mathbf{v}^{(i)} \cdot \nu^{(i,j)} \qquad \text{on } \Gamma^{(i,j)}(t)$$

Full system

The fluid mass and momentum equations

$$\nabla \cdot \mathbf{v}^{(i)} = 0 \qquad \text{in } \Omega^{(i)}(t)$$
$$\partial_t(\overline{\rho}^{(i)}\mathbf{v}^{(i)}) + \nabla \cdot (\overline{\rho}^{(i)}\mathbf{v}^{(i)} \otimes \mathbf{v}^{(i)}) = \nabla \cdot (\rho \mathcal{I} + 2\eta^{(i)} D(\mathbf{v}^{(i)})) \qquad \text{in } \Omega^{(i)}(t)$$
$$[\mathbf{v}^{(\cdot)}]_i^j = 0, \qquad u_{\Gamma^{(i,j)}} = \mathbf{v}^{(i)} \cdot \nu^{(i,j)} \qquad \text{on } \Gamma^{(i,j)}(t)$$

The surfactant balances in bulk and interface

$$\partial_t^{\bullet} c^{(i)}(q) = \nabla \cdot \left(M_c^{(i)} \nabla G'_i(c^{(i)}(q)) \right) \qquad \text{in } \Omega^{(i)}(t)$$
$$\partial_t^{\bullet} c^{(i,j)}(q) + c^{(i,j)}(q) \nabla_{\Gamma^{(i,j)}} \cdot \mathbf{v}^{(i)} = \nabla_{\Gamma^{(i,j)}} \cdot \left(M_c^{(i,j)} \nabla_{\Gamma^{(i,j)}} \gamma'_{ij}(c^{(i,j)}(q)) \right) \qquad \text{on } \Gamma^{(i,j)}(t)$$
$$- \left[M_c^{(\cdot)} \nabla G'_i(c^{(\cdot)}(q)) \right]_j^i \cdot \boldsymbol{v}^{(i,j)}$$

Full system

The fluid mass and momentum equations

$$\nabla \cdot \mathbf{v}^{(i)} = 0 \qquad \text{in } \Omega^{(i)}(t)$$
$$\partial_t(\overline{\rho}^{(i)}\mathbf{v}^{(i)}) + \nabla \cdot (\overline{\rho}^{(i)}\mathbf{v}^{(i)} \otimes \mathbf{v}^{(i)}) = \nabla \cdot (\rho \mathcal{I} + 2\eta^{(i)} D(\mathbf{v}^{(i)})) \qquad \text{in } \Omega^{(i)}(t)$$
$$[\mathbf{v}^{(\cdot)}]_i^j = 0, \qquad u_{\Gamma^{(i,j)}} = \mathbf{v}^{(i)} \cdot \nu^{(i,j)} \qquad \text{on } \Gamma^{(i,j)}(t)$$

The surfactant balances in bulk and interface

$$\partial_t^{\bullet} c^{(i)}(q) = \nabla \cdot \left(M_c^{(i)} \nabla G'_i(c^{(i)}(q)) \right) \qquad \text{in } \Omega^{(i)}(t)$$

$$\partial_t^{\bullet} c^{(i,j)}(q) + c^{(i,j)}(q) \nabla_{\Gamma^{(i,j)}} \cdot \mathbf{v}^{(i)} = \nabla_{\Gamma^{(i,j)}} \cdot \left(M_c^{(i,j)} \nabla_{\Gamma^{(i,j)}} \gamma'_{ij}(c^{(i,j)}(q)) \right) \qquad \text{on } \Gamma^{(i,j)}(t)$$

$$- \left[M_c^{(\cdot)} \nabla G'_i(c^{(\cdot)}(q)) \right]_j^i \cdot \nu^{(i,j)}$$

Force balance on interfaces and triple junctions

$$[p\mathcal{I} + 2\eta^{(\cdot)}D(\mathbf{v}^{(\cdot)})]_{j}^{i}\nu^{(i,j)} = \tilde{\sigma}_{i,j}(q)\kappa^{(i,j)}\nu^{(i,j)} + \nabla_{\Gamma^{(i,j)}}\tilde{\sigma}_{i,j}(q) \qquad \text{on } \Gamma^{(i,j)}(t)$$

$$0 = \tilde{\sigma}_{i,j}(q)\mu^{(i,j,k)} + \tilde{\sigma}_{j,k}(q)\mu^{(j,k,i)} + \tilde{\sigma}_{k,i}(q)\mu^{(k,i,j)} \qquad \text{on } \frac{\mathcal{T}^{(i,j,k)}(t)}{M[A]}$$

D

Table of Contents

Multi Fluid Bubble Cluster

Incorporating Surfactants

Phase Field Modelling

Discretisation and Simulation

Phase Field Modelling Issues direct models

Issues with interface tracking of free boundary problems

- For many regions, there are can be large systems of coupled equations,
- We must solve for the free boundaries as we must solve equations on them,
- Solving across two/three different dimensions, (bulk,boundary and boundary intersections)
- Only able to model a narrow range of effects, the geometry tracking is highly sensitive to topological change
- Discretisation errors associated with discretising the free boundaries
- Grid complexity (match grid to the free boundaries or not)

⇒ More difficult for analysis and simulation.

Phase field modelling

Phase field model

The idea: Interface capturing.

Phase field modelling

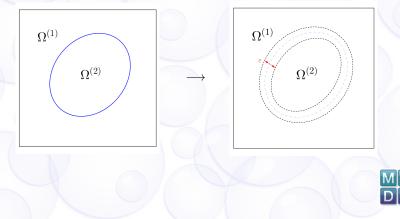
Phase field model

The idea: Interface capturing.

Regularise quantities we care about, by converting:

infinitesimal interfaces \rightarrow interfacial layer width $\epsilon > 0$

then smoothly change quantities over these strips.



Phase field modelling

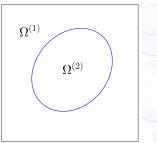
Phase field model

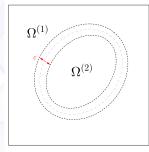
The idea: Interface capturing.

Regularise quantities we care about, by converting:

infinitesimal interfaces \rightarrow interfacial layer width $\epsilon > 0$

then smoothly change quantities over these strips.





Some questions

How do we characterise the bulk domains and interfacial strips? How do we preserve structures as $\varepsilon \to 0$?

Phase field modelling More Precisely

Define

$$\Sigma^{\mathcal{M}} \coloneqq \left\{ u = (u^{(1)}, \dots, u^{(\mathcal{M})}) \in \mathbb{R}^{\mathcal{M}} : \sum_{i=1}^{M} u^{(i)} = 1, ext{ where } 0 \leq u^{(i)} \leq 1
ight\}$$

Then the phase field variables (or order parameters) are functions

 $\varphi = (\varphi^{(1)}, \dots, \varphi^{(M)}) \colon \Omega \to \Sigma^M$

Phase field modelling More Precisely

Define

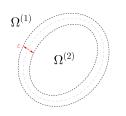
$$\Sigma^{M} \coloneqq \left\{ u = (u^{(1)}, \dots, u^{(M)}) \in \mathbb{R}^{M} : \sum_{i=1}^{M} u^{(i)} = 1, \text{ where } 0 \leq u^{(i)} \leq 1
ight\}$$

Then the phase field variables (or order parameters) are functions

 $\varphi = (\varphi^{(1)}, \dots, \varphi^{(M)}) \colon \Omega \to \Sigma^M$

Essentially: The $\varphi^{(i)}$'s "represent the presence of fluid *i*" at the state (x, t), and

$$arphi^{(i)}(x,t) = 1 \implies x \in \Omega^{(i)}$$
 at time t
 $0 < arphi^{(i)}(x,t) < 1 \implies x \in \Gamma^{(i,j)}$ at time t



Phase field modelling More Precisely

Define

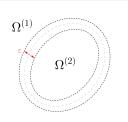
$$\Sigma^{M} \coloneqq \left\{ u = (u^{(1)}, \dots, u^{(M)}) \in \mathbb{R}^{M} : \sum_{i=1}^{M} u^{(i)} = 1, \text{ where } 0 \leq u^{(i)} \leq 1
ight\}$$

Then the phase field variables (or order parameters) are functions

 $\varphi = (\varphi^{(1)}, \dots, \varphi^{(M)}) \colon \Omega \to \Sigma^M$

Essentially: The $\varphi^{(i)}$'s "represent the presence of fluid *i*" at the state (x, t), and

$$\varphi^{(i)}(x,t) = 1 \implies x \in \Omega^{(i)}$$
 at time t
 $0 < \varphi^{(i)}(x,t) < 1 \implies x \in \Gamma^{(i,j)}$ at time t



Key question: What equations should $\varphi^{(i)}$ satisfy?

Phase field modelling Energetic framework

For 2 phases: Define the **Ginzburg Landau** energy functional: For certain potentials F

$$egin{aligned} & \mathcal{E}_arepsilon(arphi,
ablaarphi) \coloneqq \int_\Omega rac{1}{arepsilon} \mathcal{F}(arphi) + rac{arepsilon}{2} |
ablaarphi|^2 dx \end{aligned}$$

This energy contains the gradient part $|\nabla \varphi|^2$ and the potential part $F(\varphi)$.

Phase field modelling Energetic framework

For 2 phases: Define the **Ginzburg Landau** energy functional: For certain potentials F

$$E_{\varepsilon}(arphi,
abla arphi)\coloneqq \int_{\Omega}rac{1}{arepsilon}F(arphi)+rac{arepsilon}{2}|
abla arphi|^2dx$$

This energy contains the gradient part $|\nabla \varphi|^2$ and the potential part $F(\varphi)$. Takes the limit as $\varepsilon \to 0$ then:

$$E_{\varepsilon}(\varphi, \nabla \varphi) \stackrel{\varepsilon \to 0}{\to} \int_{\Gamma} 1 dx = \operatorname{Area}_{\Gamma}(x, t)$$

 \rightarrow represents the notion of de Giorgi's Gamma-Convergence for functionals.

 \implies Minimizers of $E_{\varepsilon}(\varphi, \nabla \varphi)$ converge to minimizers of Arear as $\varepsilon \to 0$.

Phase field modelling Energetic framework

For 2 phases: Define the **Ginzburg Landau** energy functional: For certain potentials F

$$E_{\varepsilon}(arphi,
abla arphi)\coloneqq \int_{\Omega}rac{1}{arepsilon}F(arphi)+rac{arepsilon}{2}|
abla arphi|^2dx$$

This energy contains the gradient part $|\nabla \varphi|^2$ and the potential part $F(\varphi)$. Takes the limit as $\varepsilon \to 0$ then:

$$E_{\varepsilon}(\varphi, \nabla \varphi) \stackrel{\varepsilon \to 0}{\to} \int_{\Gamma} 1 dx = \operatorname{Area}_{\Gamma}(x, t)$$

 \rightarrow represents the notion of de Giorgi's Gamma-Convergence for functionals.

 \implies Minimizers of $E_{\varepsilon}(\varphi, \nabla \varphi)$ converge to minimizers of Arear as $\varepsilon \to 0$.

Two gradient flows of this energy:

- L^2 flow: the Allen-Cahn
- H^{-1} flow: the Cahn-Hilliard

Phase field modelling Two important PDEs

For 2 phases, $\varphi^{(1)} = \varphi$ and $\varphi^{(2)} = 1 - \varphi$, consider:

The Allen-Cahn Equation

The Cahn-Hilliard Equation

$$arphi_t = arepsilon \Delta arphi + rac{1}{arepsilon} F'(arphi)$$

$$\varphi_t = \Delta \mu, \ \ \mu = \varepsilon \Delta \varphi + \frac{1}{\varepsilon} F'(\varphi)$$

Phase field modelling Two important PDEs

For 2 phases, $\varphi^{(1)} = \varphi$ and $\varphi^{(2)} = 1 - \varphi$, consider:

The Allen-Cahn Equation

$$arphi_t = arepsilon \Delta arphi + rac{1}{arepsilon} {\cal F}'(arphi)$$

$$arphi_t = \Delta \mu, \ \ \mu = arepsilon \Delta arphi + rac{1}{arepsilon} F'(arphi)$$

F is the **phase field potential**: Typically a double well, double obstacle or approximation of this:

Behaviour: "F" forces the φ 's to sit in the wells of the potential, and $\Delta \varphi$ induces continuity of φ across the interface as it changes wells.

Multi fluid problem

Approximating the multi fluid problem

Multi fluid problem

Approximating the multi fluid problem

 \blacktriangleright We change variables so they depend on φ :

$$\left\{\mathbf{v}^{(i)}, \overline{\rho}^{(i)}, \eta^{(i)} \forall i\right\} \to \left\{\underbrace{\sum_{i} \mathbf{v}^{(i)} \varphi^{(i)}}_{\mathbf{v}}, \underbrace{\sum_{i} \overline{\rho}^{(i)} \varphi^{(i)}}_{\rho(\varphi)}, \underbrace{\sum_{i} \eta^{(i)} \varphi^{(i)}}_{\eta(\varphi)}, \underbrace{\sum_{i} \eta^{(i)$$

Multi fluid problem

Approximating the multi fluid problem

• We change variables so they depend on φ :

$$\left\{\mathbf{v}^{(i)}, \overline{\rho}^{(i)}, \eta^{(i)} \forall i\right\} \rightarrow \left\{\underbrace{\sum_{i} \mathbf{v}^{(i)} \varphi^{(i)}}_{\mathbf{v}}, \underbrace{\sum_{i} \overline{\rho}^{(i)} \varphi^{(i)}}_{\rho(\varphi)}, \underbrace{\sum_{i} \eta^{(i)} \varphi^{(i)}}_{\eta(\varphi)}\right\}$$

▶ Preserved energy framework ⇒ Forced Navier-Stokes:

$$\nabla \cdot \mathbf{v} = 0$$

$$\partial_t(\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v}) = \nabla \cdot \left(\mathbf{v} \otimes \left(\sum_{k,l} \mathcal{L}^{(k,l)} \overline{\rho}^{(k)} \nabla \mu^{(l)} \right) - p\mathcal{I} + 2\eta D(\mathbf{v}) \right)$$

and transported multiphase Cahn-Hilliard: For k = 1, ..., M

$$\partial_{t}(\varphi^{(k)}) + \nabla \cdot (\varphi^{(k)}\mathbf{v}) = \nabla \cdot \left(\sum_{l=1}^{M} \mathcal{L}^{(k,l)}(\varphi) \nabla \mu^{(l)}\right)$$
$$\mu^{(k)} = D_{\varphi^{(k)}, \nabla \varphi^{(k)}} \left[\varepsilon \mathbf{a}(\varphi, \nabla \varphi) + \frac{1}{\varepsilon} F(\varphi)\right] \qquad \square$$

Approximating the surfactants

Approximating the surfactants

We approximate the characteristic functions of bulk (χ_Ω(i)) and interfacial (χ_Γ(i,j)) regions by smoothed distributions (ξ_i(φ) and δ_{ij}(φ, ∇φ)).

Approximating the surfactants

- We approximate the characteristic functions of bulk (χ_Ω(i)) and interfacial (χ_Γ(i,j)) regions by smoothed distributions (ξ_i(φ) and δ_{ij}(φ, ∇φ)).
- \blacktriangleright New quantities of interest depend on φ :

$$\left\{ oldsymbol{c}^{(i)}(oldsymbol{q}),oldsymbol{c}^{(i,j)}(oldsymbol{q}) \; orall i,j
ight\}
ightarrow \left\{ \left(\sum_i \xi_i(arphi)oldsymbol{c}^{(i)}(oldsymbol{q}) + \sum_{i < j} \delta_{ij}(arphi,
abla arphi)oldsymbol{c}^{(i,j)}(oldsymbol{q})
ight\}
ight.
ight\}$$

Approximating the surfactants

- We approximate the characteristic functions of bulk (χ_Ω(i)) and interfacial (χ_Γ(i,j)) regions by smoothed distributions (ξ_i(φ) and δ_{ij}(φ, ∇φ)).
- \blacktriangleright New quantities of interest depend on φ :

$$\left\{ oldsymbol{c}^{(i)}(oldsymbol{q}),oldsymbol{c}^{(i,j)}(oldsymbol{q}) \; orall i,j
ight\}
ightarrow \left\{ \left(\sum_i \xi_i(arphi) oldsymbol{c}^{(i)}(oldsymbol{q}) + \sum_{i < j} \delta_{ij}(arphi,
abla arphi) oldsymbol{c}^{(i,j)}(oldsymbol{q})
ight\}
ight\}$$

New system energy

$$E_arepsilon \coloneqq \int_\Omega \left(rac{
ho(arphi)|oldsymbol{v}|^2}{2} + e_G(q,arphi)
ight) + e_\gamma(arepsilon,q,arphi,
ablaarphi)$$

Where

- $e_G = \sum_i \xi_i G_i$, $e_\gamma(\varphi) = \sum_{i < j} \delta_{ij} \gamma_{i,j}$
- $\delta_{ij} := \varepsilon$ (gradient part) $+ \frac{1}{\varepsilon}$ (multi well potential)

The full system

The Diffuse interface approximation.

$$\nabla \cdot \mathbf{v} = 0$$

$$\partial_t(\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v}) = \nabla \cdot \left(\sum_{i < j} \sigma_{ij} \left(\delta_{ij} \mathcal{I} - \sum_k \nabla \varphi^{(k)} \otimes \mathbf{a}_{ij, \nabla \varphi^{(k)}} \right) - \mathbf{v} \otimes \overline{\mathbf{J}} - p \mathcal{I} + 2\eta D(\mathbf{v}) \right)$$

For $k = 1, \dots, M$
$$\partial_t(\varphi^{(k)}) + \nabla \cdot (\varphi^{(k)} \mathbf{v}) = \nabla \cdot \left(\sum_{l=1}^M \mathcal{L}^{(k,l)}(\varphi, q) \nabla \mu^{(l)} \right)$$

$$\mu^{(k)} = \sum_{i < j} -\varepsilon \nabla \cdot (\tilde{\sigma}_{ij} \mathbf{a}_{ij, \nabla \varphi^{(k)}}) + \varepsilon \tilde{\sigma}_{ij} \mathbf{a}_{ij, \varphi^{(k)}}$$

$$+ rac{1}{arepsilon} ilde{\sigma}_{ij} w_{ij,arphi^{(k)}} + \xi_k' (G_k - c^{(k)}q)$$

AS

Table of Contents

Multi Fluid Bubble Cluster

Incorporating Surfactants

Phase Field Modelling

Discretisation and Simulation

 $Fractional - \theta$ scheme

The motivation:

- Literature: 'good' CH scheme which is coupled to NS
- Here: 'good' NS scheme which is coupled to CH

 $\mathsf{Fractional} - \theta$ scheme

The motivation:

- Literature: 'good' CH scheme which is coupled to NS
- Here: 'good' NS scheme which is coupled to CH

The framework:

Use a fractional $-\theta$ scheme:

Consider, $\partial_t w + F(w) = 0$, and split $F(w) = \alpha F_1(w) + \beta F_2(w)$, with $\alpha + \beta = 1$. Discretise in time as follows with $\theta \in [0, \frac{1}{3}]$.

 $\mathsf{Fractional} - \theta$ scheme

The motivation:

- Literature: 'good' CH scheme which is coupled to NS
- Here: 'good' NS scheme which is coupled to CH

The framework:

Use a fractional $-\theta$ scheme:

Consider, $\partial_t w + F(w) = 0$, and split $F(w) = \alpha F_1(w) + \beta F_2(w)$, with $\alpha + \beta = 1$. Discretise in time as follows with $\theta \in [0, \frac{1}{3}]$.

Template problem:

Find
$$w^{n+\theta}$$
 by solving $\frac{w^{n+\theta}-w^n}{\theta\Delta t}+\alpha F_1(w^{n+\theta})=-\beta F_2(w^n)$

Fractional $-\theta$ scheme

The motivation:

- Literature: 'good' CH scheme which is coupled to NS
- Here: 'good' NS scheme which is coupled to CH

The framework:

Use a fractional $-\theta$ scheme:

Consider, $\partial_t w + F(w) = 0$, and split $F(w) = \alpha F_1(w) + \beta F_2(w)$, with $\alpha + \beta = 1$. Discretise in time as follows with $\theta \in [0, \frac{1}{3}]$.

Template problem:

F

Find
$$w^{n+\theta}$$
 by solving $\frac{w^{n+\theta} - w^n}{\theta \Delta t} + \alpha F_1(w^{n+\theta}) = -\beta F_2(w^n)$
Find $w^{n+1-\theta}$ by solving $\frac{w^{n+1-\theta} - w^{n+\theta}}{(1-2\theta)\Delta t} + \beta F_2(w^{n+1-\theta}) = -\alpha F_1(w^{n+\theta})$

 $\mathsf{Fractional} - \theta$ scheme

The motivation:

- Literature: 'good' CH scheme which is coupled to NS
- Here: 'good' NS scheme which is coupled to CH

The framework:

Use a fractional $-\theta$ scheme:

Consider, $\partial_t w + F(w) = 0$, and split $F(w) = \alpha F_1(w) + \beta F_2(w)$, with $\alpha + \beta = 1$. Discretise in time as follows with $\theta \in [0, \frac{1}{3}]$.

Template problem:

Find
$$w^{n+\theta}$$
 by solving $\frac{w^{n+\theta} - w^n}{\theta \Delta t} + \alpha F_1(w^{n+\theta}) = -\beta F_2(w^n)$
Find $w^{n+1-\theta}$ by solving $\frac{w^{n+1-\theta} - w^{n+\theta}}{(1-2\theta)\Delta t} + \beta F_2(w^{n+1-\theta}) = -\alpha F_1(w^{n+\theta})$
Find w^{n+1} by solving $\frac{w^{n+1} - w^{n+1-\theta}}{\theta \Delta t} + \alpha F_1(w^{n+1}) = -\beta F_2(w^{n+1-\theta})$

Discretisation and Simulation Fractional θ for CHNS

Example: (2 phase) Cahn-Hilliard Navier-Stokes:

$$w = (\mathbf{v}, \mathbf{p}, \varphi, \mu)^T$$
, $F_i = (G_i, H_i)^T$ for $i = 1, 2$

 G_i are fluid operators, H_i are Cahn-Hilliard operators.

Discretisation and Simulation Fractional θ for CHNS

Example: (2 phase) Cahn-Hilliard Navier-Stokes:

$$w = (\mathbf{v}, p, \varphi, \mu)^T$$
, $F_i = (G_i, H_i)^T$ for $i = 1, 2$

 G_i are fluid operators, H_i are Cahn-Hilliard operators.

Decouples into 6 substeps:

1. (1a) Stokes - (1b) CH. Given $(\mathbf{v}^n, p^n, \varphi^n, \mu^n)$, solve for $(\mathbf{v}^{n+\theta}, p^{n+\theta}, \varphi^{n+\theta}, \mu^{n+\theta})$

Discretisation and Simulation Fractional θ for CHNS

Example: (2 phase) Cahn-Hilliard Navier-Stokes:

$$w = (\mathbf{v}, p, \varphi, \mu)^T$$
, $F_i = (G_i, H_i)^T$ for $i = 1, 2$

 G_i are fluid operators, H_i are Cahn-Hilliard operators.

Decouples into 6 substeps:

1. (1a) Stokes - (1b) CH. Given $(\mathbf{v}^n, p^n, \varphi^n, \mu^n)$, solve for $(\mathbf{v}^{n+\theta}, p^{n+\theta}, \varphi^{n+\theta}, \mu^{n+\theta})$

2. (2a) CH - (2b) Burgers.
Given
$$(\mathbf{v}^{n+\theta}, p^{n+\theta}, \varphi^{n+\theta}, \mu^{n+\theta})$$
, solve for $(\mathbf{v}^{n+1-\theta}, p^{n+1-\theta}, \varphi^{n+1-\theta}, \mu^{n+1-\theta})$

Discretisation and Simulation Fractional θ for CHNS

Example: (2 phase) Cahn-Hilliard Navier-Stokes:

$$w = (\mathbf{v}, p, \varphi, \mu)^T$$
, $F_i = (G_i, H_i)^T$ for $i = 1, 2$

 G_i are fluid operators, H_i are Cahn-Hilliard operators.

Decouples into 6 substeps:

- 1. (1a) Stokes (1b) CH. Given $(\mathbf{v}^n, p^n, \varphi^n, \mu^n)$, solve for $(\mathbf{v}^{n+\theta}, p^{n+\theta}, \varphi^{n+\theta}, \mu^{n+\theta})$
- 2. (2a) CH (2b) Burgers. Given $(\mathbf{v}^{n+\theta}, p^{n+\theta}, \varphi^{n+\theta}, \mu^{n+\theta})$, solve for $(\mathbf{v}^{n+1-\theta}, p^{n+1-\theta}, \varphi^{n+1-\theta}, \mu^{n+1-\theta})$
- 3. (3a) Stokes (3b) CH Given $(\mathbf{v}^{n+1-\theta}, p^{n+1-\theta}, \varphi^{n+1-\theta}, \mu^{n+1-\theta})$ solve for $(\mathbf{v}^{n+1}, p^{n+1}, \varphi^{n+1}, \mu^{n+1})$

Discretisation and Simulation Fractional θ for CHNS

Example: (2 phase) Cahn-Hilliard Navier-Stokes:

$$w = (\mathbf{v}, \mathbf{p}, \varphi, \mu)^T$$
, $F_i = (G_i, H_i)^T$ for $i = 1, 2$

 G_i are fluid operators, H_i are Cahn-Hilliard operators.

Decouples into 6 substeps:

- 1. (1a) Stokes (1b) CH. Given $(\mathbf{v}^n, p^n, \varphi^n, \mu^n)$, solve for $(\mathbf{v}^{n+\theta}, p^{n+\theta}, \varphi^{n+\theta}, \mu^{n+\theta})$
- 2. (2a) CH (2b) Burgers. Given $(\mathbf{v}^{n+\theta}, p^{n+\theta}, \varphi^{n+\theta}, \mu^{n+\theta})$, solve for $(\mathbf{v}^{n+1-\theta}, p^{n+1-\theta}, \varphi^{n+1-\theta}, \mu^{n+1-\theta})$
- 3. (3a) Stokes (3b) CH Given $(\mathbf{v}^{n+1-\theta}, p^{n+1-\theta}, \varphi^{n+1-\theta}, \mu^{n+1-\theta})$ solve for $(\mathbf{v}^{n+1}, p^{n+1}, \varphi^{n+1}, \mu^{n+1})$

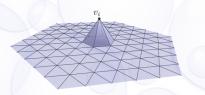
Benefits of this θ scheme

- Optimal θ can be found. This yields a second order in time scheme, A-stable for $\alpha > 0.5$.
- Separates nonlinear terms (advection and incompressibility) Fast solvers.
- I have shown conditional stability using energy methods for this system.

Discretisation and Simulation Discretisation in space

Finite element framework:

- Triangulate the domain.
- Choose an FE space of functions to approximate your solution
- Approximating problem using basis functions ψ_i and representation u = Σ_i u_iψ_i
- Solve the sparse linear system for u_i .

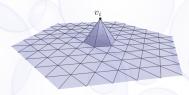


[http://mooseframework.org/wiki/MooseTraining/FEM/ShapeFunctions/]

Discretisation and Simulation Discretisation in space

Finite element framework:

- Triangulate the domain.
- Choose an FE space of functions to approximate your solution
- Approximating problem using basis functions ψ_i and representation u = Σ_i u_iψ_i



► Solve the sparse linear system for *u_i*. [http://mooseframework.org/wiki/MooseTraining/FEM/ShapeFunctions/]

We use:

- P^1 elements for φ, μ, q
- ► Taylor-Hood $P^2 P^1$ or MINI for the fluid (\mathbf{v}, p)

Created in the DUNE-FEM C++ package and uses UMFPACK, PETSC, solvers and Alugrid grid manager.

Discretisation and Simulation Surfactants supplied on left. Highly viscous fluid

Demonstrates recovery of $0 = \sigma_{i,j}(q)\mu^{(i,j,k)} + \sigma_{j,k}(q)\mu^{(j,k,i)} + \sigma_{k,i}(q)\mu^{(k,i,j)} \text{ on } T^{(i,j,k)}(t)$

Marangoni force with surfactants(low fluid viscosity)

Demonstrates recovery of $[\mathbf{T}^{(\cdot)}]_{j}^{i}\nu^{(i,j)} = \tilde{\sigma}_{i,j}(q)\kappa^{(i,j)}\nu^{(i,j)} + \nabla_{\Gamma^{(i,j)}}\tilde{\sigma}_{i,j}(q)$ on $\Gamma^{(i,j)}$

Discretisation and Simulation Wetting effects

Example of an effect not satisfied in the sharp interface model.

It's all over!

Thank you for listening!

