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Abstract

We principally examine the sphere and the 3-sphere, and the link

between them in the form of the Hopf map. We prove the result that

points on the 3-sphere correspond to circles on the sphere, and from

this we are able to construct the Hopf fibration, S1 ↪→ S3 π→ S2, which

we establish to be both a fibre bundle, and further a principal bundle.

We also generalise the Hopf fibration to other dimensional cases such

as S1 ↪→ S2n+1 π→ CPn.

We extensively cover holonomy on the sphere and the generalisa-

tions of this. We firstly demonstrate in the context of classical dif-

ferential geometry, that vectors that are parallel transported on the

sphere are rotated due to the curvature of the sphere upon return to

their original position. We then generalise this to the Hopf bundle as

a principal bundle, using the Ehresmann connection, which is a decon-

struction of the tangent space of the 3-sphere into the horizontal and

vertical subspaces. We then redefine the notion of parallel transport

in terms of the horizontal space of the 3-sphere. In the last couple of

sections, we look at how this extends to Hermitian matrices, namely

the effect of holonomy on the eigenvectors of a matrix, and an appli-

cation of this in quantum mechanics in the form of the Berry phase is

discussed.

We further explore other properties of n-spheres such as the iso-

morphism between Rn and Sn using stereographic projection, and how

we can use this to project the Hopf fibration on to R3, which we show

gives a series of nested tori. We will also examine geodesics on Sn,

namely showing that geodesics lie on great circles. Throughout this

project, the link of various concepts to quaternions is discussed, in

particular that unit quaternions are isomorphic to the 3-sphere.
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1 Introduction

In this project I will be investigating primarily the properties of the 3-sphere,

as well as the ordinary sphere, and the many interesting geometrical proper-

ties they can be shown to have. The 3-sphere is an intriguing mathematical

object to study, since it is very easily defined (as a locus of points around the

origin), and is one of the simplest examples of a 3-dimensional manifold, and

yet it does not even exist in the world we live in, R3. Throughout the course

of this project, I will be introducing the tools necessary for understanding

the geometry of the 3-sphere, including the Hopf mapping, stereographic

projection and connections, and how they can be derived.

One of the first things we look at is holonomy, which is essentially the idea

that the curvature of the sphere (or 3-sphere) causes vectors that are parallel

transported (i.e. moved preserving the direction of the vector) around the

sphere, will nonetheless end up pointing a different direction upon return

to their original point. An example of this is the rolling ball phenomenon

described by Hanson in [2, p. 123-132], which can be observed by placing

one’s hand on a ball, and moving it parallel to the floor in small “rubbing”

circles. What you will find is that the ball will end up being rotated despite

not rotating one’s hand at all, which is essentially an example of holonomy

at work.

Another key concept we will cover is the Hopf fibration, which uses the

Hopf map (a map from the 3-sphere to the sphere), to describe the 3-sphere

in terms of the sphere and circles (which we will call fibres). We will go on

to show that this is an example of a fibre bundle, a structure that we can

examine by using stereographic projection (a way of mapping an n-sphere to

Rn). In later sections we will go even further and show that with additional

structure it is an example of a principal bundle, and we will see that with the

help of connections, we can revisit holonomy on the 3-sphere as a principal

bundle.
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Finally we will see how the idea of holonomy applies to parameter de-

pendent Hermitian matrices, which it can be shown have a relation to the

3-sphere and to quaternions. We will look at how the eigenvectors of the

matrix undergo a phase shift when the parameters are moved along a closed

curve, and what happens when we restrict the case to symmetric matrices.

We then look at an application of this in quantum mechanics with the Berry

phase, which essentially looks at what happens when the time-evolution of

the eigenvectors is described by the Schrödinger equation.

2 Quaternions

We first introduce the Quaternions, denoted by H, a natural extension to

the complex numbers C that correspond to R4 as opposed to R2. Whereas

complex numbers are written in the form z = x + yi or as a vector (x, y),

quaternions are written in the form q = a + bi + cj + dk or as a 4-vector

(a, b, c, d).

As we know, complex numbers can be multiplied together by observing

the property i2 = −1, e.g.

(x1 + y1i)(x2 + y2i) = x1x2 + y1y2i
2 + x1y2i+ x2y1i

= (x1x2 − y1y2) + (x1y2 + x2y1)i

Similarly, quaternions can be multiplied together by simply defining the mul-

tiplication rules between i, j and k. We have

i2 = j2 = k2 = −1

ij = k, jk = i, ki = j

This definition of multiplication, whilst closed, is non-commutative and

for instance

ji = −k = −ij
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More explicitly, we can write out the product of two quaternions in terms

of their components. A useful way to do this is to split a quaternion into its

first entry (the real part) and its (i, j, k) part as q = (a,u) where u = (b, c, d).

Then with another quaternion p = (w,v), with v = (x, y, z), we have the

following relation.

q ∗ p = (aw − u · v, av + wu + u× v) (1)

Another standard operation on quaternions is the dot product. As for any

vector, the dot product of two quaternions is the summation of each pair of

entries multiplied together. i.e. for the quaternions defined above, we have

q · p = aw + bx+ cy + dz

= aw + u · v.

This allows us to define the length or norm ‖q‖ of a quaternion. Just as for

complex numbers, this is found by taking the dot product of q with itself,

i.e.

‖q‖2 = q · q = a2 + b2 + c2 + d2

We will pretty much exclusively be dealing with unit quaternions in this

report, i.e. quaternions q such that ‖q‖ = 1.

In C, we define the complex conjugate of a complex number z = x + yi

to be z = x− yi. Similarly we can take the conjugate of a quaternion in the

following way.

q = a− bi− cj − dk (2)

This is defined to be such so that

q ∗ q = (q · q,0)

It can be shown that complex numbers can be written in terms of ma-

trices. For example an arbitrary complex number z = x + yi is equivalent
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to:

z = x

(
1 0

0 1

)
+ y

(
0 −1

1 0

)

Similarly, quaternions can be represented in terms of matrices. For a

quaternion q = a + bi + cj + dk, we have

q = a


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

+ b


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0



+ c


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

+ d


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0


or more concisely

q = aI + bJ1 + cJ2 + dJ3 (3)

It can even be shown that these matrices possess the same qualities as

the quaternion basis components i, j and k. For instance, we have that

J2
1 = J2

2 = J2
3 = −I,

and that

J1J2 = J3, J2J3 = J1, J3J1 = J2.

A more succinct way to write this relation, which we may make use of

later on, is the following. For i, j = 1, 2, 3, we have

JiJj =
3∑

k=1

εijkJk

where εijk is the Levi-Civita symbol (an antisymmetric scalar).
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3 The Sphere and the Hypersphere

This report will deal primarily with the unit sphere S2 and the unit 3-sphere

S3, which are defined as follows.

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}

S3 = {(a, b, c, d) ∈ R4 : a2 + b2 + c2 + d2 = 1}

Note the usage of a, b, c and d to refer to the entries of an element

∈ S3, the same notation as that used in section 2 to refer to quaternions.

The reason behind this is that the space of unit quaternions is essentially

identical to S3. Indeed, as stated in [2, p. 80], if a quaternion given by

q = (a, b, c, d) obeys the constraint q · q = 1, then the locus of these points is

the 3-sphere S3.

In general, although we will primarily deal with the 3-sphere, a hyper-

sphere is any n-dimensional sphere where n is greater than 2. The equation

for an n-sphere is simply:

Sn = {x ∈ Rn+1 : ‖x‖ = 1}

There also exists another way of defining an n-sphere (when n is an odd

number) using complex numbers that we will want to use later on. Namely

we have:

S2n+1 = {z ∈ Cn+1 : ‖z‖ = 1}

We can see that this is consistent with the first definition, since each

entry in an (n+ 1)-vector z ∈ Cn+1, i.e. an element of the form x+ iy where

x, y ∈ R, corresponds to two entries x and y in x ∈ R2n+2.

4 Holonomy

In this section, we will introduce the idea of holonomy that we will go into

more detail in in later sections, using the sphere as a basis to understand
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this concept. Since we will be working in R3, results that we can obtain from

classical differential geometry, i.e. the study of 2D surfaces in R3, will prove

to be useful. For this reason I’ll start this section by defining the tools we

want to work with, namely coordinate charts, tangent spaces and Christoffel

symbols.

Let M be a manifold embedded in R3, and let U be a subset of R2. Then

we define a chart of a surface in M to be X(u, v) : U →M where (u, v) ∈ U .

Furthermore the tangent space Tp(M) at each point p ∈M is given by:

Tp(M) = span{Xu,Xv} (4)

Where Xu and Xv are the derivatives of X with respect to u and v. We can

also define the normal n to the surface to be:

n =
Xu ×Xv

‖Xu ×Xv‖

This definition of n allows us to form a moving frame along the surface,

span{Xu,Xv,n}, that is a basis for R3 at each point ∈M . This is important

to know, since it means that any vector ∈ R3 can be written as a linear

combination of the basis. In particular, we can use this fact to write out

an expression for the second derivatives of X in terms of the moving frame.

Since it will be useful for us to do so, rather than using arbitrary letters for

the coefficients, we will use Christoffel symbols which take the form Γijk.

Xuu = Γ1
11Xu + Γ2

11Xv + Ln (5)

Xuv = Γ1
12Xu + Γ2

12Xv +Mn (6)

Xvv = Γ1
22Xu + Γ2

22Xv +Nn (7)

As we can see, the upper index of the Christoffel symbol corresponds to

which first derivative it is a coefficient of, and the lower indices correspond

to the partial derivatives of the second derivative. Note that n doesn’t use

Christoffel symbols since we ideally want to exclude these terms, as we will

see when we introduce the covariant derivative later. Also note the property
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that Γijk = Γikj, since smooth partial differentiation is not dependent on the

order.

As the name of this section implies, we now want to deal with holonomy

on the sphere, which is essentially the idea that a vector moved around the

sphere in a parallel fashion will have its direction altered due to the curvature

of the sphere. As illustrated in figure 1 below, a vector can be transported

from a point A, around a closed curve without rotating it, and yet when it

returns to A, it points in a different direction.

Figure 1: Example of holonomy on the sphere

To study this phenomenon we will first need to define the covariant deriva-

tive of a tangent vector field w ∈ Tp(M) in the direction of a tangent vector

v ∈ Tp(M) on a surface. Note that w and v are of the form.

w(u, v) = w1(u, v)Xu + w2(u, v)Xv

v(u, v) = v1(u, v)Xu + v2(u, v)Xv

Since they belong to the tangent space defined in (4). We define the covariant

derivative ∇vw : Tp(M)→ Tp(M) as follows.

∇vw = wv − 〈wv,n〉n
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Where 〈, 〉 is the inner product in our space. The expression wv, which

is actually taking the derivative of a tangent vector field with respect to a

tangent vector, is defined as the following.

wv = (
∂w1

∂u
v1 +

∂w1

∂v
v2)Xu + (

∂w2

∂u
v1 +

∂w2

∂v
v2)Xv

+w1(Xuuv1 +Xuvv2) + w2(Xvuv1 +Xvvv2)

We will see that this expression can easily be simplified using Christoffel

symbols.

The way to understand this definition is that we want to take away any

derivatives in the direction n when we define the covariant derivative. For

instance let us examine the expression we had for the derivative with respect

to u of Xu in (5).

Xuu = Γ1
11Xu + Γ2

11Xv + Ln

Supposing we want to exclude the n part of this expression, we would

need to take away Ln. L can be computed explicitly using the inner product

〈, 〉 in the following way.

〈Xuu,n〉 = Γ1
11〈Xu,n〉+ Γ2

11〈Xv,n〉+ L〈n,n〉

〈Xuu,n〉 = L

Where we have used the fact that n ·Xu = n ·Xv = 0. Thus we can see

that in this case the formula for the covariant derivative where we take away

〈(Xu)u,n〉n is appropriate.

After having defined the covariant derivative, I now want to define the

notion of a vector being parallel along a curve. Let γ(t) = X(u(t), v(t)) be

a curve in M, and let w(t) = w1(t)Xu + w2(t)Xv be a tangent vector field.

Then w is parallel along γ if:

∇γ̇w = 0
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The idea of this definition, is that we can parallel transport a vector along

a curve, by requiring that the vector remains parallel to the curve at all times

(i.e. obeys the above equation). Furthermore we can also define that γ is a

geodesic if:

∇γ̇ γ̇ = 0

Geodesics can be thought of as the shortest path between two points on

a surface. In the context of a sphere, we will see that this means the curve

must lie on a circle. For now we will just use the first definition and try to

understand it. Directly applying the formula, we get for an arbitrary w:

∇γ̇w =
d

dt
(w1Xu + w2Xv)− 〈ẇ,n〉n

= ẇ1Xu + ẇ2Xv + w1(Xuuu̇+ Xuvv̇) + w2(Xvuu̇+ Xvvv̇)− 〈ẇ,n〉n

Now we will use equations (5), (6) and (7) to simplify the second derivatives

in this expression, thus obtaining the following expression in terms of Xu and

Xv (n terms will disappear by definition).

∇γ̇w = (ẇ1 + Γ1
11w1u̇+ Γ1

12(w1v̇ + w2u̇) + Γ1
22w2v̇)Xu (8)

+(ẇ2 + Γ2
11w1u̇+ Γ2

12(w1v̇ + w2u̇) + Γ2
22w2v̇)Xv

Since Xu and Xv are linearly independent, this expression vanishes iff its

coefficients are zero. This gives us a pair of simultaneous equations to solve

if we want w to be parallel.

Example: Suppose γ(t) is a curve of constant latitude v(t) = v0 on the

sphere and u(t) = t. i.e.

γ(t) = X(u(t), v(t)) =

 r cos t sin v0

r sin t sin v0

r cos v0

 , 0 ≤ u ≤ 2π, 0 < v < π

Note that v cannot take values of 0 or π since the chart would cease to
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be regular. To compute the Christoffel symbols of this chart, we need to

compute the first and second derivatives with respect to u and v of X. We

get:

Xu =

 −r sinu sin v

r cosu sin v

0

 ,Xv =

 r cosu cos v

r sinu cos v

−r sin v

 ,

Xuu =

 −r cosu sin v

−r sinu sin v

0

 ,Xuv =

 −r sinu cos v

r cosu cos v

0

 ,Xvv =

 −r cosu sin v

−r sinu sin v

−r cos v


Then we use the same trick we used earlier in this section with the inner

product, using the linear independence of {Xu,Xv,n}. Namely we have:

Γ1
11 =

Xuu ·Xu

Xu ·Xu

= 0, Γ1
12 =

Xuv ·Xu

Xu ·Xu

= cot v, Γ1
22 =

Xvv ·Xu

Xu ·Xu

= 0

Γ2
11 =

Xuu ·Xv

Xv ·Xv

= − sin v cos v, Γ2
12 =

Xuv ·Xv

Xv ·Xv

= 0, Γ2
22 =

Xvv ·Xv

Xv ·Xv

= 0

With these Christoffel symbols, we can simply put them in (8) to obtain

our two simultaneous equations (and we use that v = v0, u = t, v̇ = v̇0 =

0, u̇ = ṫ = 1):

ẇ1 + w2 cot v0 = 0

ẇ2 − w1 sin v0 cos v0 = 0

By differentiating the first equation and substituting in the second, we

can get an ODE in terms of w1 (which we can then easily solve).

0 = ẅ1 + cos2 v0w1

⇒ w1 = w11 cosωt+ w12 sinωt

w2 = w21 cosωt+ w22 sinωt
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Where ω = | cos v0|, and w11, w12, w21 and w22 are arbitrary constants.

In conclusion we see the result of holonomy on a sphere, namely that for

any v0 6= π
2

(the equator of the sphere), w(0) 6= w(2π), and so any tangent

vector w traveling around the sphere on γ will not be equal upon return to

its original position.

5 Geodesics

In section 4 we briefly mentioned the condition a curve must have to be a

geodesic in relation to the covariant derivative. In this section we will be

examining this concept further, and since it is easily generalisable, we will

be able to look at geodesics on Sn (recall from chapter 3, Sn = {x ∈ Rn+1 :

‖x‖ = 1}). Since it is easier to do so, we will use an alternate definition for a

geodesic in terms of the regular derivative as follows. Let γ(t) be a curve on

a surface, let n(t) be a unit vector normal to the surface, and let λ(t) ∈ R.

Then γ is a geodesic if:

γ̈ = λn

We can simplify this equation in the case of Sn by noting that any vector

∈ Sn is normal to Sn at that point since it points directly out from the origin

(and is additionally of unit length). Since γ ∈ Sn, we can thus substitute in

γ for n to get:

γ̈ = λγ (9)

In order to solve this equation, we use the property of γ being unit length

(since it belongs to Sn). In other words, 〈γ, γ〉 = 1. By differentiating this

expression (twice), we get:

〈γ̇, γ〉 = 0 (10)

⇒ 〈γ̇, γ̇〉+ 〈γ̈, γ〉 = 0 (11)

From equation (9), we can take the inner product with γ on the right to

get:
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〈γ̈, γ〉 = λ〈γ, γ〉 = λ

Then we use equation (11) to get:

λ = −〈γ̇, γ̇〉

It is possible to prove that 〈γ̇, γ̇〉 is in fact a constant (not automatic) by

differentiating it:

d

dt
〈γ̇, γ̇〉 = 2〈γ̈, γ̇〉 = 2λ〈γ, γ̇〉 = 0

Where we have used (9) followed by (10). After deducing that 〈γ̇, γ̇〉 is a

constant, say α2, we can easily solve equation (9):

γ(t) = a cos(αt) + b sin(αt)

Where a and b are constant vectors ∈ Rn constrained by a ·a = b ·b = 1,

and a · b = 0 due to γ ∈ Sn. This leads to the result that a geodesic on any

n-sphere lies on a great circle.

Figure 2: Geodesics on a sphere

As can be seen in figure 2 above, geodesics also represent the shortest
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distance between two points on the sphere, e.g. the shortest distance between

A and B in the diagram is the great circle arc c.

6 Stereographic Projection

Having looked at some results on the ordinary sphere, we now want to turn

our attention to S3, however the problem immediately presents itself that we

cannot see an object embedded in R4. If we want to gauge an idea of what

S3 looks like in R3, i.e. the real world, then stereographic projection is one

way to go about doing this, as it is the method of mapping an n-sphere Sn

to Rn.

To explain how stereographic projection works, we first examine the case

of the 2-D counterpart which maps S2 (the sphere) to R2.

The general idea starts by taking a fixed point on the sphere (for this

example we’ll take the north pole). Then for each point we want to apply

the map to, we draw a line through it and the north pole, and take this line’s

intersection with the x-y plane (which is essentially R2). Simply using the

equation for a straight line, we can compute that this map f1 : S2/(0, 0, 1)→
R2 is given precisely by the following equation.

f1(x, y, z) =

(
x

1− z
,

y

1− z

)
A diagram of how stereographic projection works on the sphere is shown

in figure 3 below.

It is necessary to note that the stereographic projection must exclude the

fixed point you project from (in this case (0, 0, 1)) and so you would need

two different maps to map the entirety of S2 to R2. One simple way to add

another stereographic map is to simply choose a different point on the sphere

as a reference point. For instance we could cover S2 entirely by also mapping

from the south pole (0, 0,−1). The function f2 : S2/(0, 0,−1) → R2 would

be as follows.

f2(x, y, z) =

(
x

1 + z
,

y

1 + z

)
16



Figure 3: Diagram of stereographic projection on S2

As it turns out, on the intersection of the two domains of f1 and f2, i.e.

S2/{(0, 0, 1)(0, 0,−1)}, f1 and f2 can be written as smooth functions of each

other. For instance

f1(x, y, z) =

(
x

1− z
,

y

1− z

)
=

(
x

1 + z
,

y

1 + z

)
· 1 + z

1− z
= f2(x, y, z) · 1 + z

1− z

This is essentially the basis behind why S2 is a smooth manifold. We

will use this fact in a later section when we mention fibre bundles. It is also

possible to form the inverse map f−1
1 : R2 → S2/(0, 0, 1) with the following

equation.

f−1
1 (x, y) =

(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
The reason we can’t include the north pole in this inverse map, is that if

we set x = y = 0, we would get (0, 0,−1) instead. The same would happen

with the south pole if we took the inverse of f2.

The stereographic projection for R3 is just an extension of this case. It is

harder to visualise how it works since S3 only exists in R4, but the equations

are pretty much the same. The map f : S3/(1, 0, 0, 0)→ R3 is given by:

f(w, x, y, z) =

(
x

1− w
,

y

1− w
,

z

1− w

)
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As before, this can also be done using the opposite pole as well. Together

with both maps, we then end up with the same result that all of S3 can

be mapped to R2 using this stereographic projection, and from there it can

be shown that S3 is also a smooth manifold. It is also possible to form the

inverse map f−1 : R3 → S3 with the following equation.

f−1(x, y, z) =
1

1 + x2 + y2 + z2
(x2 + y2 + z2 − 1, 2x, 2y, 2z) (12)

Finally, the general form for stereographic projection of the n-sphere to

Rn−1, with x ∈ Sn/(1, 0, 0, ..., 0), is the following

f(x) =
x

1− x

As you would expect, from this we can determine that any Sn is in fact

a smooth manifold.

7 The Hopf Map

Another idea we can apply to S3 is relate it to S2, which is of course embedded

in R3. Namely, it is possible to form a mapping π : S3 → S2, which we call

the Hopf map. It is defined as follows, in [1, p. 87].

π(a, b, c, d) = (a2 + b2 − c2 − d2 , 2(bc+ ad) , 2(bd− ac)) (13)

It is actually possible to derive this equation using quaternions. To show

this, we start by taking a unit quaternion q = (a, b, c, d) such that q ∈ S3.

Then we take another quaternion with first entry equal to zero and the rest

denoted by a vector w such that W = (0,w) ∈ S3 where w ∈ S2. We then

examine the following expression which uses quaternion multiplication.

w 7→ q ∗W ∗ q

Where we have defined q in (2). I now wish to prove that this map is

equivalent to w 7→ (0, Qw) where Q ∈ SO(3) is a rotation matrix, and that
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in fact it is possible to extract the Hopf map from this rotation matrix. I will

show this by doing the calculations step by step below. For the purpose of

convenience, let us follow the notation used in (1) and denote the last three

entries of q (i.e. (b, c, d)) by u. Then we have:

W ∗ q = (0,w) ∗ (a,−u)

= (0 + u ·w, aw + u×w)

q ∗W ∗ q = (a,u) ∗ (u ·w, aw + u×w)

= (au · v − au · v, a2w + au×w + (u ·w)u + au×w + u× (u×w))

= (0, a2w + 2au×w + (u ·w)u + u× (u×w))

We will use the following identity.

u× (u×w) = (u ·w)u− (u · u)w

To obtain:

q ∗W ∗ q = (0, a2w + 2au×w + 2(u ·w)u− (u · u)w)

As mentioned above, I want to show that this is equivalent to (0, Qw).

We have already shown that the first entry is equal to zero, so now it remains

to show that the second part is equivalent to a rotation matrix acting on w.

To show this we will utilise the following alternate ways of writing the terms.

(u ·w)u = uuTw

u×w =

 cw3 − dw2

dw1 − bw3

bw2 − cw1

 =

 0 −d c

d 0 −b
−c b 0


 w1

w2

w3

 = ûw

Additionally, recall that we required q ∈ S3, so we have:

|q|2 = a2 + u · u = 1
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Thus we are able to rewrite the above expression as follows.

q ∗W ∗ q = (0, (2a2 − 1)w + 2aûw + 2uuTw)

= (0, Qw)

Where Q = (2a2 − 1)I + 2aû + 2uuT . Explicitly we can write out this

matrix Q in terms of the components of q.

Q =

 a2 + b2 − c2 − d2 2(bc− ad) 2(bd+ ac)

2(bc+ ad) a2 − b2 + c2 − d2 2(cd− ab)
2(bd− ac) 2(cd+ ab) a2 − b2 − c2 + d2


It is then verifiable that QTQ = I and detQ = +1, and so Q ∈ SO(3) as

we set out to prove. Furthermore, we can see that the first column of this

matrix is equivalent to the formula for the Hopf map that was stated in (13).

As Q is an orthogonal matrix, it has the property that all three columns

and all three rows have norm equal to one, which means that they belong to

S2, and so this matrix essentially gives us six different maps from S3 → S2.

In fact there is a correspondence between the columns and the rows to

each other that can be seen through the use of a rotation on q = (a, b, c, d).

For instance:

q̂ =


−1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




a

b

c

d


This map would send the second column to a permutation of the first.

This can be quite easily seen from the inherent symmetry of the matrix.

7.1 Properties of the Hopf Map

Now that we have a relation between S3 and S2, we want to examine the

properties of this linking. Since the Hopf map is surjective, i.e. its image is

the whole of S2, we can form the inverse map π−1 : S2 → S3. From (13),
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taking an arbitrary point w = (w1, w2, w3) ∈ S2, we have:

a2 + b2 − c2 − d2 = w1 (14)

2(bc+ ad) = w2 (15)

2(bd− ac) = w3 (16)

a2 + b2 + c2 + d2 = 1 (17)

Where the last equation is a consequence of q ∈ S3. We can solve these

equations for a, b, c and d to obtain an expression for the inverse map.

(17)− (14) : c2 + d2 =
1− w1

2

We can put (15) and (16) into matrix form to obtain:(
d c

−c d

)(
a

b

)
=

1

2

(
w2

w3

)

The determinant of this matrix is c2 + d2 which we calculated in the line

above. If w1 = 1 then the determinant is zero and we have the special case

of the north pole of S2, in which c = d = 0 and a2 + b2 = 1. In that case the

inverse Hopf map defines a circle in S3. Otherwise we can invert the matrix

as follows. (
a

b

)
=

1

2
·
(

2

1− w1

)(
d −c
c d

)(
w2

w3

)

⇒ (1− w1)

(
a

b

)
=

(
d −c
c d

)(
w2

w3

)
This gives us two linear equations for a, b, c and d in terms of w1, w2 and

w3 which we rewrite below.

(1− w1)a+ w3c− w2d = 0

(1− w1)b− w2c− w3d = 0
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Note that these equations are of the form x · q = 0 and y · q = 0 where x and

y are the following.

x =


1− w1

0

w3

−w2

 ,y =


0

1− w1

−w2

−w3


These vectors are clearly linearly independent as their first and second

entries respectively are non-zero by our assumption. This means that to-

gether, x · q = 0 and y · q = 0 form the equation for a 2-dimensional subspace

of R4 i.e. a plane.

To see how this plane sits in S3, consider an alternate yet equivalent form

for a plane in R4, q = αu + βv, where u and v are linearly independent

vectors lying inside the plane and α, β ∈ R. In other words, since x and y

are normal vectors to the plane, we are choosing orthogonal vectors u and v

to these. i.e. x · u = y · u = x · v = y · v = 0.

Additionally we can choose these vectors to be orthonormal to each other,

i.e. u · u = v · v = 1 and u · v = 0.

Now once again we enforce the condition that q ∈ S3 to see how this

plane intersects S3. We have:

q · q = α2u · u + αβu · v + β2v · v = α2 + β2 = 1

Just as we saw in the first case above, this is the equation for a circle.

Recall that this inverse Hopf map acts on an arbitrary point ∈ S2. Thus we

discover the interesting property that the inverse Hopf map sends any single

point on S2 to a great circle on S3, i.e. a plane through the origin intersecting

the 3-sphere.

7.2 The Hopf Fibration

The significance of the fact that the Hopf map sends an arbitrary point in

S2 to a circle in S3, is that it allows us to create a correspondence between
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S1, S2 and S3. We call this structure the Hopf fibration, and it is an example

of a fibre bundle, which we will define momentarily. To explain this concept

loosely, it allows us to describe the 3-sphere in terms of the sphere and circles.

That is to say locally, we have the property that S3 = S2×S1, because each

point in S3 is the same as a point on S2 and the whole of S1. It should be

noted that globally, we do not have the same structure1, and in fact this will

always be true for any non-trivial fibre bundle.

To solidify this idea, we define that a fibre bundle is a structure (P,M,G, π),

where P,M and G are topological spaces, and π : P →M is a surjective map

(called the projection), which locally satisfies the above quality. We call P

the total space, M the base space, and G the fibre space. A way to succinctly

write a fibre bundle is the following

G ↪→ P
π→M

We can see that the Hopf fibration does indeed satisfy these qualities,

where the fibre space S1 is embedded in the total space S3, and π : S3 → S2

is a surjective map from S3 on to the base space S2. It can be shown that

all of the components are topological spaces (in fact as shown in section 6,

any Sn is a smooth manifold).

In terms of the fibre bundle notation, we have the following structure.

S1 ↪→ S3 π→ S2

In later chapters we will come back to this idea in the context of principal

bundles, and show that the Hopf fibration has even further structure.

1It can be shown that S3 is not homeomorphic to S2×S1, by pointing out for instance
that

π1(S3) = 0, π1(S2 × S1) = Z

where π1(·) is the first fundamental group. Thus they do not have the same structure and
are not homeomorphic.
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7.3 Generalisations of the Hopf Fibration

After noticing the fibre bundle structure between S3, S2 and S1 that we get

as a result of the Hopf mapping, a natural question would be whether or not

we can generalise this result to other n-spheres. As it turns out there are

indeed other forms of the Hopf fibration, which I will list below (also see [2,

p. 386-390] for further details).

S0 ↪→ S1 π→ S1 (18)

S3 ↪→ S7 π→ S4 (19)

S7 ↪→ S15 π→ S8 (20)

Here, (18) is actually an example of the Möbius strip, i.e. a surface with only

one side. To see this, first of all we identify that in this case S1 is the full

space, and is mapped by π to another copy of S1 which is the base space. If

we let (x1, x2) ∈ S1 (i.e. (x1)2 + (x2)2 = 1) then the mapping π is given by.

π(x1, x2) = ((x1)2 − (x2)2, 2x1x2) = (v1, v2)

This mapped vector (v1, v2) does indeed belong to S1 since (v1)2 +(v2)2 =

((x1)2 + (x2)2)2 = 1. The important thing to note, is that just as we noticed

in the S3 case, the inverse map sends a single point in S1 to multiple (in

this case two) points in the total space S1. Since S0 is simply composed of

two points in R, this means we once again retrieve the property of the total

space being a product of the base space and the fibre space, i.e. locally:

S1 = S1 × S0.

Visually we can think of the total space being a Möbius strip, where the

mapping π sends two points on either side of the strip to each individual

point on the circle.

As for the bundles (19) and (20), we can think of these as being quater-

nionic and octonionic extensions of the original example (we can express

the S3 example in terms of complex numbers by using the construction

S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1}, see section 10).
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Finally, there exists a further generalisation of the above of the form.

S1 ↪→ S2n+1 π→ CPn

Where CPn is the complex projective space. This generalisation is in fact

identical to our original result when n = 1, since CP1 ∼= S2.

8 Stereographic Projection of the Hopf Fi-

bration

We now know from section 7 that via the Hopf map, a point on S2 corre-

sponds to a circle on S3, but we do not know what this looks like since S3 is

embedded in R4. However we now have a way of mapping S3 to R3 using the

stereographic projection, which will allow us to form a picture of this. Recall

the inverse stereographic map f−1 : R3 → S3 we mentioned in equation (12).

This allows us to write an arbitrary point X = (X1, X2, X3, X4) ∈ S3 in

terms of x = (x, y, z) ∈ R3 as follows.

X1 =
2x

x2 + y2 + z2 + 1
, X2 =

2y

x2 + y2 + z2 + 1
(21)

X3 =
2z

x2 + y2 + z2 + 1
, X4 =

x2 + y2 + z2 − 1

x2 + y2 + z2 + 1
(22)

We want to vary X ∈ S3 along a circle and see what the picture looks like in

R3. To do this we use the complex number form of S3 = {z = (z1, z2) ∈ C2 :

|z1|2 + |z2|2 = 1}, which is an equivalent way of writing S3 mentioned at the

end of chapter 3. z1 and z2 are complex numbers, so using polar coordinates,

they can be written as z1 = r1e
iφ1 and z2 = r2e

iφ2 , where r1, r2 > 0, and

0 ≤ φ1, φ2 < 2π. Then we notice that by varying φ1 or φ2 through 0 to 2π,

we describe a circle in S3, which is what we want to happen. Due to the

condition that |z1|2 + |z2|2 = 1, we have that r2
1 + r2

2 = 1, which leads to the

following further parameterisation of z.

z1 = cos(θ/2)eiφ1
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z2 = sin(θ/2)eiφ2 0 ≤ θ ≤ π

The choice of range of θ means that r1 and r2 are always between 0 and 1.

Now we want to find an expression for (x, y, z) ∈ R3 in terms of z1 and z2.

We see that |z1|2 = X2
1 + X2

2 = cos2(θ/2), so from the equations in (21), we

get the following

4(x2 + y2)

(x2 + y2 + z2 + 1)2
= |z1|2 = cos2(θ/2)

It should be noted that by taking the modulus of z1, we are now consid-

ering all points lying on a circle in C. We can rewrite this equation in the

following form, provided we assume θ 6= 0, π.

4R2(x2 + y2) = (x2 + y2 + z2 +R2 − r2)2

Where R = 1/ cos(θ/2), and r = tan(θ/2) for a given θ (can be seen by

using the equation 1 + tan2(θ) = 1/ cos2(θ)). This is the quartic form of

the equation for a torus about the z-axis, specifically where R is the distance

from the centre of the tube to the centre of the torus (the z-axis), and r is the

radius of the tube. Thus we obtain the result that a circle in S3 corresponds

to a torus in R3.

Since θ can vary between 0 and π, this means we get a different torus for

each value of θ, since R and r are dependent on θ. We can see that close to

θ = 0, the tori have radii approaching 0 (since r = tan(θ/2)), and distance

from the origin approaching 1 from above (since R = 1/ cos(θ/2)). In fact at

θ = 0 we just get the equation for a circle around the z-axis with radius 1. As

θ increases, both R and r increase, and will tend to infinity as θ approaches

π. These tori are nested within each other, i.e. the larger ones contain the

smaller ones inside them, and concentric, since they are all centred around

the z-axis.

A visualisation of how this allows us to map the Hopf fibration to R3 is

shown in figure 4 below.

We have this picture since the fibres in S3 are copies of S1, i.e. circles,
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Figure 4: Visualisation of stereographic projection of the Hopf fibration

and we have just shown that in R3 these circles are tori. We can see that the

larger tori converge to the z-axis, since the distance from the inner ring to

the z-axis is given by R − r = (1 − sin(θ/2))/ cos(θ/2), which tends to zero

as θ approaches π (can be seen by using l’Hôpital’s rule).

9 Ehresmann Connection

Recall that we obtained a correspondence between single points ∈ S2 and S3

using the Hopf mapping in section 7. I now want to explore how we can lift

curves on S2 to S3. We can do this using the Ehresmann connection.

Generally when we talk about this connection, it can apply to any fibre

bundle (P,M,G, π) provided π : M → N is a submersion, but we want to

specifically look at the Hopf fibration for S3, with π : S3 → S2,2 which we

looked at in section (13).

Since we want to look at curves being mapped by the Hopf map, we let

ξ(t) be a curve ∈ S3, and γ(t) = π(ξ(t)) be the corresponding curve ∈ S2.

2Proof that the Hopf map is a submersion is detailed in the appendix A.1.
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Then note that the Jacobian of π is a map between the tangent spaces of S2

and S3, that it to say dpπ : TpS
3 → Tπ(p)S

2. Thus using our notation, we

have that γ̇(t) = dpπ(ξ̇(t)) where ξ̇ ∈ TpS3 and γ̇ ∈ Tπ(p)S
2.

The Ehresmann connection is a way of decomposing the tangent space

TpS
3 into two complementary subspaces, the vertical and horizontal spaces,

using π. Firstly, we define VpP = Ker(dpπ). Clearly VpP is a subspace of

TpS
3 since the kernel of any map is a subspace of its domain. Then we define

HpP to be the complement to VpP in TpS
3. This automatically ensures the

following.

TpS
3 = VpP ⊕HpP

Thus we have split the tangent space into two spaces, with one, VpP ,

being tangent to the fibre S1, and the other, HpP , being transverse to the

fibre. Any tangent vector in TpS
3 is thus the sum of a vertical component

and a horizontal component. The purpose of defining this connection, as we

will later see in section 10.2, is that the tangent vectors of the horizontal lift

of a curve always remain in the horizontal space. Therefore we will be able

to specify how a curve being lifted from S2 to S3 can move.

An equivalent condition to the one above (i.e. where we require that

HpP is the complement to VpP ), is to require that dpπ(HpP ) = Tπ(p)S
2.

To intuitively understand why this is the case, consider that ordinarily,

dpπ(TpS
3) = Tπ(p)S

2, since dpπ is surjective as we required earlier. Since

we define VpP = Ker(dpπ), we know that dpπ(VpP ) = 0, thus if HpP is the

remaining part of TpS
3 by virtue of being the complement to VpP , it must

map to the entirety of Tπ(p)S
2.

However we can also show this explicitly if we derive expressions for VpP

and HpP , and apply dpπ to the result. Firstly we find dpπ (the Jacobian of
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π) as follows (using the notation from equations (14), (15) and (16))

 dw1

dw2

dw3

 = 2

 a b −c −d
d c b a

−c d −a b




da

db

dc

dd

 (23)

Where dpπ is the 3 x 4 matrix. Firstly we want to compute VpP , i.e. the

kernel (or null space) of the matrix. Through linear algebra, or just by

inspection and noticing that the kernel must be 1 dimensional, we find:

VpP = Ker(dpπ) = span




b

−a
−d
c




Now in order to find HpP , we have to take the complement of VpP in TpS
3

as we defined earlier. To do this, I will utilise the result (proved in appendix

A.2) that TpS
3 = span{J1n, J2n, J3n} where we defined the Ji in equation

(3), and n is a normal vector to S3. We can easily see that VpP = span{J1n},
and so HpP = span{J2n, J3n} by consequence, which turns out to be the

following.

HpP = span




c

d

−a
−b

 ,


d

−c
b

−a




Recall we want to show that dpπ(HpP ) = Tπ(p)S
2. Directly putting in

what we just calculated for dpπ and HpP , we get:

 a b −c −d
d c b a

−c d −a b




c d

d −c
−a b

−b −a

 =

 2(ac+ bd) 2(ad− bc)
2(cd− ab) −a2 + b2 − c2 + d2

a2 − b2 − c2 + d2 2(−cd− ab)


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So we want to show that these columns (let them be ξ1 and ξ2) span

Tπ(p)S
2. To do this we have to prove that:

1. The two columns are linearly independent, i.e. ξ1 × ξ2 6= 0, ∀ q ∈ S3.

2. w · ξ1 = w · ξ2 = 0 where the entries of w were defined in (14), (15)

and (16).

To show the first, we simply compute this cross product and find that it

is:  (a2 + b2)2 − (c2 + d2)2

2(ad+ bc)

2(bd− ac)


For this vector to be zero, all three entries must be zero, which gives us

three simultaneous equations:

a2 + b2 = c2 + d2

ad = −bc

ac = bd

It is fairly easy to see that these equations have no solution for q ∈ S3, and

so ξ1 and ξ2 must be linearly independent.

The second requirement is a straightforward calculation, albeit lengthy.

We have

w · ξ1 =

 a2 + b2 − c2 − d2

2(bc+ ad)

2(bd− ac)

 ·
 2(ac+ bd)

2(cd− ab)
a2 − b2 − c2 + d2


= 2(a3c+ ab2c− ac3 − acd3 + a2bd+ b3d− bc2d− bd3) + 4(acd2

−ab2c− a2bd+ a2bd) + 2(a2bd− b3d− bc2d− bcd + bd3 − a3c

+ab2c+ ac3 − acd2)

= 0
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Similarly for ξ2, we have w · ξ2 = 0. Thus we have indeed shown that

dpπ(HpP ) = Tπ(p)S
2.

10 Principal Bundles

As we mentioned at the end of section 7, the Hopf fibration (or Hopf bundle)

is an example of a fibre bundle. We now want to extend this definition and

show that it has the structure of a principal bundle as well, and that we can

study it with regards to this.

For ease of notation a bit later on, we can rewrite S3 and the Hopf map

in terms of complex numbers i.e. let S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1}.
Then the Hopf map can be written in the following way.

π(z1, z2) = (|z1|2 − |z2|2 , −(z1z2 + z1z2) , (z1z2 − z1z2)i)

To show that this is equivalent to equation (13), let z1 = a + bi and

z2 = c+ di. Then we can see that:

|z1|2 − |z2|2 = |a+ bi|2 − |c+ di|2

= a2 + b2 − c2 − d2

(z1z2 − z1z2)i = ((a− bi)(c− di)− (a+ bi)(c+ di))i

= (ac− bci− adi− bd− ac− bci− adi+ bd)i

= −2(bc+ ad)i2

= 2(bc+ ad)

−(z1z2 + z1z2) = −(a+ bi)(c+ di)− (a− bi)(c− di)

= −ac+ bci+ adi+ bd− ac− bci− adi+ bd

= 2(bd− ac)

So the two equations are indeed equivalent.

Now, a principal bundle is a form of fibre bundle, with additional structure

attached. Before, we merely required the fibre G to be a topological space,

but we now require it to be a group, and that this group has a group action
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on the total space P . Specifically we want to define this group action to be

a diffeomorphism.

We define that a principal bundle is a structure (P,M,G, π), just as for

a fibre bundle, with the following properties.

1. P is locally equal to the product space M × G (where M is the base

space and G is a group).

2. It is equipped with a projection (i.e. a mapping) π : P →M .

3. For each g ∈ G, there exists a diffeomorphism Rg : P → P such that

Rg(p) = pg, ∀ p ∈ P .

Under this new notation for a principal bundle, we note that the Hopf

fibration does satisfy such qualities, if we let the total space P be S3, the

base space M be S2, the group G be S1 and the projection π be the Hopf

mapping, and when we define a diffeomorphism as follows. Let p ∈ S3, and

g = eiθ ∈ S1, where θ ∈ R. Then the diffeomorphism is defined to be

Rg(p) = (z1, z2)eiθ

As required, this diffeomorphism maps any p ∈ S3 to another point on

S3 since it preserves the norm of p. We can easily see this since

‖Rg(z1, z2)‖2 = ‖(z1, z2)eiθ‖2 = (|z1|2 + |z2|2)2|eiθ|2 = 1

Note that G acts freely on P in this way, which is to say that for any

θ 6= 2nπ (where n ∈ N), p will be moved from its original position (specifically

along a circle). Thus we can say that we can think of S1 acting on S3 by

sending points on S3 along a particular fibre.

Below in figure 5 from [6, p. 8] is a visualisation of how a principal bundle

works. Note the slight difference in notation in that Φg is used instead of Rg.

It is important to note that the projection π is invariant under the given

diffeomorphism, i.e. it is the same whether or not we apply the diffeomor-
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Figure 5: Visualisation of a principal bundle

phism to it. That is to say.

π(Rg(p)) = π(peiθ) = π(p) (24)

Where we have used the fact that each point on a given circle in S3 gets

sent via the Hopf map to the same point in S2.3

10.1 Principal Connections

Another topic we can revisit with regards to principal bundles is that of

connections. Namely, we can talk about a special case of the Ehresmann

connection called a principal connection for a principal bundle P . Just as

we did for the Ehresmann connection, we start by decomposing the tangent

space of P , TpP into two complementary subspaces. In an identical way to

the previous case, we define VpP = Ker(dpπ), and specify that:

3 Another way of putting this, is that we can think of the inverse Hopf map’s property
of mapping a point to a circle in the following way.

π−1(m) = (m, g) ∀ m ∈M

Where (m, g) ∈ S3 and g can be any point on S1.
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TpP = VpP ⊕HpP

We then additionally require a condition on HpP which incorporates the

group G of a principal bundle into this definition. Namely, we have the

following.

dRg(HpP ) = Hpg

Intuitively we would expect this to be correct. Recall that we defined

Rg to act on P in such a way that Rg(p) = pg. It naturally follows that

if we take the Jacobian of Rg, i.e. dRg, it would have the same effect on

a subspace of the tangent space TpP . It is also worth noting that this is a

similar property to the one we derived for the Ehresmann connection, where

dpπ(HpP ) = Tπ(p)S
2.

Recall in section 9 that due to the way we defined VpP , VpP is tangent

to the fibre S1. We can show this is consistent with S1 as a part of the

principal bundle, i.e. that VpP is tangent to the diffeomorphism Rg defined

by S1 (at the identity). We do this by using the complex number form of

S3 = {z ∈ C2 : ‖z‖ = 1} which we used at the start of this section. Recall

that we found VpP to be

VpP = Ker(dpπ) = span




b

−a
−d
c




To show how a vector in S3 is equivalent to one in C2, we use the quater-

nions H since they are isomorphic to S3. Thus the above vector in the span
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is equal to the following with respect to the quaternionic basis (1, i, j, k).
b

−a
−d
c

 = b− ai− dj + ck

= 1(b− ai) + k(c− di)

Here we can see that if we let k correspond to the usual i ∈ C, this is the

form an element of C2 takes, since it is a complex linear combination of the

basis (1, k). Thus using this notation, VpP can be rewritten as follows.

VpP = span

{(
b

c

)
, i

(
−a
−d

)}

Note that the span is defined to be a real linear combination of vectors,

so i is separate from this. Thus we are free to multiply both vectors by −1

say, to get.

VpP = span

{(
−b
−c

)
, i

(
a

d

)}

= span

{
i

(
i

(
b

c

)
,

(
a

d

))}
= span{i(z1, z2)}

Where z1, z2 ∈ C. Recall that we defined the diffeomorphism for the principal

bundle to be Rg(p) = (z1, z2)eiθ. The tangent to this is

d

dθ
((z1, z2)eiθ) = i(z1, z2)eiθ

Thus, evaluated at the identity, i.e. when θ = 0, we have that the tangent

to Rg(p) is i(z1, z2). Since VpP is the span of this, we do indeed get the result

that VpP is tangent to Rg at the identity.
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10.2 Holonomy on a Principal Bundle

Previously when we talked about holonomy on the sphere, we used classical

differential geometry to do so, and we defined the covariant derivative so that

we could find a condition for a vector to be parallel transported along the

sphere. Now that we have defined the notion of a principal bundle, we can

instead use our principal connection that we have just defined, to specify that

instead of parallel transporting the vectors directly, that they be transported

along the fibres of the bundle. We can do this since, as we mentioned in

section 9, VpP is tangent to the fibres, whilst HpP is orthogonal to them.

Thus as we will see later in this section, we can specify that the lift, which is

a path in the tangent bundle P , be horizontal. An idea of what a horizontal

lift looks like is shown in figure 6 from [6, p. 16] below. Note how in the

diagram, q̇(t) is always in the horizontal plane denoted Hq(t)P .

Figure 6: Diagram of a horizontal lift q(t) through the principal bundle

In order to specify that a path is horizontal, we first need to define the

idea of a connection 1-form. Now we know VpP is tangent to the fibres,

which are copies of S1. Note also that the Lie algebra g of a Lie group G

is equivalent to the tangent space to G by definition. In this case, the Lie
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group is G = S1 (can be shown that this is a Lie group), and it can be shown

that g = iR. Thus there is a one-to-one correspondence between VpP and

the Lie algebra g of S1, i.e. VpP ∼= iR. Since VpP is a subset of the entire

tangent space TpP , this means that there is a linear map TpP → iR, which

we will call the connection 1-form.

Let p ∈ P and v ∈ TpP . Then the canonical connection 1-form ωp :

TpP → iR is a G-equivariant differential 1-form defined as follows.

ωp(v) = p†v

Where † is the adjoint operator (the conjugate transpose). It can be

shown, e.g. in [6, p. 27], that the image of this map is indeed iR. It is easy

to show at least that the outcome is a scalar, because we are multiplying a

1 x n vector by an n x 1 vector. G-equivariant means that ωp is equivariant

with regards to G = S1 i.e. ∀ g ∈ G and ∀ v ∈ TpP , ωp(v · g) = ωp(v) · g.

The proof of this is essentially trivial since g is a scalar, i.e.

ωp(v · g) = p†(v · g) = p†(v) · g = ωp(v) · g

Now since we know that VpP ∼= iR, we have that ωp(VpP ) = iR. Recall

that TpP = VpP ⊕ HpP , thus since ωp : TpP → iR, we automatically have

the result that ωp(HpP ) = 0. That is equivalently the following.

HpP = Ker(ωp)

Thus we now have a way of specifying that a lift is horizontal, by referring

to this requirement.

Now, due to the fact we have used the generalised concept of a principal

bundle (aside from assuming that G = S1) up to this point. We are actually

able to use for the rest of this section the generalised Hopf bundle which we

mentioned at the end of section 7.3:

S1 ↪→ S2n+1 π→ CPn
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Suppose we want to talk about holonomy on CPn, a generalisation of the

sphere. If we let γ(t) be a curve in CPn, then there should be a curve in

the principal bundle S2n+1 that is mapped to this curve by π. In fact there

exists a whole equivalence class of curves in S2n+1, such that for each ξ(t) in

the class, we have:

π(ξ(t)) = γ(t)

We call any such ξ(t) a lift of the curve γ(t). The fact that we have an

equivalence class of curves being mapped to the same curve γ is analogous

to the property we observed in the Hopf fibration of multiple points in S3

corresponding to the same point in S2.

We can use property (24) in this case, if we generalise it to S2n+1.4 That

is to say we can use the fact π is invariant under the diffeomorphism Rg, and

multiply ξ on the right by eiθ. Thus any two lifts ξ of γ are part of the same

equivalence class if they differ by a factor of eiθ. In this sense θ is called the

phase, and it is a measure of the separation of two different lifts. This allows

us to rewrite the above equation as follows.

π(ξ(t)eiθ(t)) = γ(t)

Let q(t) = ξ(t)eiθ(t). Then by varying θ(t), q(t) can be equal to any

particular ξ in the equivalence class. We can think of q(t) as being a function

of θ, with the outcome being the lifts of γ.

As mentioned earlier, we want to achieve what we did in the section about

holonomy but now with regards to CPn, i.e. we want to parallel transport

the vectors around CPn and see whether they are changed or not, and if so,

how they are changed. However we can do this in a different way to before by

using the connection form, by specifying that the lift of the curve from CPn

to S2n+1 is horizontal. We define this to mean that q(t) ∈ S2n+1 is horizontal

if:

4 i.e. let ξ(t) ∈ Cn+1 ∩S2n+1 so that we can apply the diffeomorphism we defined. We
also assume that π has the same property it does in the S3 bundle of mapping circles in
S2n+1 to points in CPn.
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q̇(t) ∈ Hq(t)

In other words we want the tangent vector of our lift of γ to belong to

the horizontal space of S2n+1. Using our requirement for a vector to belong

to HpP , i.e. Hq(t) = Ker(ωq(t)), this is equivalent to the following.

ωq(t)(q̇(t)) = 0

⇔ q(t)†q̇(t) = 0

We want θ(t) to be such that the lift is horizontal, thus we want to solve

the above equation for θ(t). Thus we have.

q(t)†q̇(t) = e−iθξ†(eiθξ̇ + ieiθθ̇ξ)

= ξ†ξ̇ + iθ̇ξ†ξ

= ωξ(ξ̇) + iθ̇ (ξ ∈ S2n+1 ⇒ ξ†ξ = 1)

= 0

⇒ θ̇ = iωξ(ξ̇)

Therefore we are able to find a requirement of θ(t) for q(t) to be horizontal.

From this, it is possible to calculate the change in θ(t) along the curve, which

we will denote by ∆θ, by simply integrating our expression for θ̇. Suppose we

have a closed curve on CPn, i.e. γ(t+T ) = γ(t) (where T is a fixed number).

Then we find that

∆θ = θ(T )− θ(0) =

∫ T

0

iωξ(ξ̇) dt (25)

What we can deduce from this is that the change in θ is usually non-zero,

even when the lift corresponds to a closed curve γ (i.e. one that returns to

its original position). That is, for a lift q(t) = ξ(t)eiθ(t) to remain horizontal,

it will actually be rotated by a holonomy angle ∆θ. Thus we recover a

similar result to the one we found at the end of the section on holonomy.
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Namely that a curve (previously a vector), that is transported horizontally

(previously parallel) and returned to its original position, will end up being

rotated by an angle.

11 Hermitian Matrices

In the section about holonomy, we looked at the idea of a vector being parallel

transported on the sphere, and ending up rotated by an angle due to the

curvature of the sphere. We then did a similar thing for the principal bundle

in the previous section. In this chapter we consider another analogue to this

idea, where we take a parameter-dependent Hermitian matrix, and consider

how, as the parameters travel along a path, the eigenvectors of this matrix

are rotated by an angle.

A specific example of this in quantum mechanics is the Berry phase,

which we will examine in more detail in a later section.

Let H(R(t)) be an n x n complex Hermitian matrix, where R(t) =

(R1(t), R2(t), ..., Rn2(t)) is a vector of n2 time-dependent real parameters

(there are n2 parameters since H has dimension n2 over R). The eigenvectors

ξ(R(t)) ∈ Cn of H are given by the usual eigenvector equation.

Hξ = λξ

Where λ(R(t)) ∈ R denotes the corresponding eigenvalues. Since the

lengths of the eigenvectors do not matter, we can assume ξ to be of unit

length, i.e. let ξ ∈ S2n−1 ⊂ Cn. Then we observe that we can multiply ξ

by eiθ for any θ ∈ R (since eiθ is just a scalar in Cn) and it will still be an

eigenvector in S2n−1. Thus we can once again introduce q(t) to denote the

variation of these eigenvectors as follows.

q(t) = eiθ(t)ξ(t), q(0) = ξ(R(0)) (26)

This is identical to when we used property (24) in section 10.2. Therefore

from here it is possible to calculate the phase shift θ(t) in the eigenvectors of
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a Hermitian matrix in the same way we did before, by letting the parameters

vary along a curve, C say, in parameter space. In the next section we will be

looking at a specific case of this, when we consider variations around diabolic

points.

11.1 Diabolic Points

When H(R) has a single eigenvalue with algebraic multiplicity 2 at a point

R, we call this point a diabolic point. We wish to consider variations of the

eigenvectors around these points, in order to calculate the phase changes.

For this section we will work with 2 x 2 matrices instead of the general n x

n case in order to simplify things. A complex 2 x 2 Hermitian matrix with

so-called double eigenvalue d must take the following form.5(
d 0

0 d

)
, d ∈ R

For convenience, we can set d = 0, so that the diabolic point is at R = 0

in parameter space. To consider variation centred around this point, we want

our eigenvalues to be ±r for some r ∈ R. In order to do this, we vary the

parameters R(t) that H is dependent on in such a way that we satisfy this

restriction on the eigenvalues. Suppose we take a Hermitian matrix of the

following form.

H =

(
a b+ ic

b− ic −a

)
, a, b, c ∈ R (27)

Here the parameters we are varying are a(t), b(t) and c(t) to maintain the

symmetry (however in general a 2 x 2 Hermitian matrix would be dependent

upon 4 parameters). Then it can be shown that the eigenvalues of this matrix

are ±
√
a2 + b2 + c2 = ±r, which is what we required.

5This is shown in appendix A.3
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Aside: As it turns out, this matrix can be obtained via a sum of the Pauli

matrices. i.e.

H = aσ3 + bσ1 + cσ2

= a

(
1 0

0 −1

)
+ b

(
0 1

1 0

)
+ c

(
0 i

−i 0

)

All of the Pauli matrices {I, σ1, σ2, σ3} are also Hermitian, i.e. they are all

equal to their conjugate transpose, which is easy to see. Another interesting

point about the Pauli matrices, is that their span is isomorphic to the space

of quaternions H. This can be shown by the following isomorphism relations

of the basis elements.

1 7→ I, i 7→ iσ3, j 7→ iσ2, k 7→ iσ1

Essentially the reason behind this is they possess the same multiplication

relations. For instance ij = k corresponds to iσ3iσ2 = −(−iσ1) = iσ1, and

i2 = −1 corresponds to (iσ3)2 = −I.

For ease of computation, we can re-parameterise the matrix in terms of

spherical coordinates (noting that the eigenvalue r is consistent with the

parameter r due to the above). We have

a = r cosφ

b = r sinφ cos θ

c = r sinφ sin θ 0 ≤ θ < 2π, 0 < φ < π

Thus we can compute the eigenvectors ξ1 and ξ2 of H with respect to r, θ

and φ. We solve (H − rI)ξ = 0 to get

ξ1,2 =

(
a± r
b− ic

)
=

(
r(cosφ± 1)

r sinφe−iθ

)

Naturally, we can choose to normalise these eigenvectors. Note that we
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can rewrite ξ1 as follows.

ξ1 = 2r cos(φ/2)

(
cos(φ/2)

sin(φ/2)e−iθ

)

Where we have used the double angle formulae, cos 2φ+ 1 = 2 cos2 φ and

sin 2φ = 2 cosφ sinφ. Similarly using cosφ− 1 = −2 sin2 φ, we can see that

ξ2 = 2r sin(φ/2)

(
− sin(φ/2)

cos(φ/2)e−iθ

)
.

So in normalised form, the two eigenvectors are as follows.

ξ1 =

(
cos(φ/2)

sin(φ/2)e−iθ

)
, ξ2 =

(
− sin(φ/2)

cos(φ/2)e−iθ

)

Note that we talk about normalised in the sense of the complex inner

product, i.e. ‖ξ1‖2 = ξ1 · ξ1. So for instance we have

‖ξ1‖2 =

(
cos(φ/2)

sin(φ/2)e−iθ

)
·

(
cos(φ/2)

sin(φ/2)eiθ

)
= cos2(φ/2) + sin2(φ/2) = 1

And similarly for ξ2. Recall from section 10.2 that the condition for the

lift of a curve to be horizontal (which was equivalent to parallel transporting

a vector) was q†q̇ = 0. We want to apply this to the eigenvectors of H, so to

do this we first of all need to calculate ξ̇1 and ξ̇2.

ξ̇1 =
1

2
φ̇

(
− sin(φ/2)

cos(φ/2)e−iθ

)
− iθ̇

(
0

sin(φ/2)e−iθ

)

ξ̇2 = −1

2
φ̇

(
cos(φ/2)

sin(φ/2)e−iθ

)
− iθ̇

(
0

cos(φ/2)e−iθ

)

Then we can calculate ξ†1ξ̇1 and ξ†2ξ̇2. We get the following.

ξ†1ξ̇1 =
(
cos(φ/2), sin(φ/2)eiθ

)(1

2
φ̇

(
− sin(φ/2)

cos(φ/2)e−iθ

)
− iθ̇

(
0

sin(φ/2)e−iθ

))
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= 0− iθ̇ sin2(φ/2)

=
i

2
θ̇(cosφ− 1)

ξ†2ξ̇2 = − i
2
θ̇(cosφ+ 1)

We use the same substitution as we used in (26) (i.e. q(t) = eiγ(t)ξ). Then

following the same method we used in section 10.2, we obtain

q†q̇ = ξ†ξ̇ + iγ̇

= 0

⇒ γ̇ = −1

2
θ̇(1± cosφ).

Thus we obtain an equation for γ̇, which allows us to calculate the phase

shift γ explicitly if we know θ and φ. i.e. we have

γ(t) = −1

2

∮
C

θ̇(1± cosφ)dt

Where C(t) = R(t) is the curve describing the motion of the parame-

ters. Since we are considering variation around the diabolic point, this curve

surrounds the diabolic point. To illustrate how holonomy happens in this

instance, we could for example look at the same curve we used in section 4

(i.e. a curve of constant latitude on the sphere, where φ(t) = φ0, θ(t) = t).

Then we would get (if we assume γ(0) = 0)

γ(t) = −1

2
(1± cosφ0)t.

In this case the holonomy angle if we went around a full rotation on the

sphere is γ(2π)− γ(0) = −π(1± cos(φ0)). This is nonzero for any φ0 6= 0 or

π, which is what we would expect, since it coincides with the first example.

11.2 Symmetric Matrices

Suppose we want to restrict the above case to real Hermitian matrices H

only. Clearly a real Hermitian matrix is just a symmetric matrix, since the
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conjugate of a real number is itself, so we would effectively be examining real

symmetric matrices. Starting off from a general 2 x 2 real symmetric matrix

H, assuming we have a double eigenvalue, we have the exact same form as

before. (
d 0

0 d

)
, d ∈ R

This is apparent when you consider the proof in the appendix works

exactly the same for a real matrix, since b just becomes b. We once again

choose to set d = 0 to make things easier, and then we consider variation

around this point, using a similar approach to before.(
a b

b −a

)
, a, b, d ∈ R

Clearly this time, we are somewhat restricted in that the off-diagonal

entries cannot vary by ±ic. The eigenvalues of this matrix are now just

±
√
a2 + b2 = ±r, so we have one less degree of freedom than the first time.

Then we once again swap a and b for a different coordinate system, but now

we use polar coordinates instead of spherical coordinates. i.e.

a = r cosφ

b = r sinφ 0 ≤ φ < 2π

We can then solve (H − rI)ξ = 0 to get the eigenvectors.

ξ1,2 =

(
a± r
b

)
=

(
r(cosφ± 1)

r sinφ

)
.

Note that the eigenvectors take the same form as before, except for the

missing factor of eiθ. These eigenvectors can be normalised in the same way

to get:
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ξ1 =

(
cos(φ/2)

sin(φ/2)

)
, ξ2 =

(
− sin(φ/2)

cos(φ/2)

)

From which we can compute ξ̇1 and ξ̇2 as follows.

ξ̇1 =
1

2
φ̇

(
− sin(φ/2)

cos(φ/2)

)
, ξ̇2 = −1

2
φ̇

(
cos(φ/2)

sin(φ/2)

)

Thus in this case, due to the missing θ terms when we differentiate, we

end up with the result that ξ†1ξ̇1 = ξ†2ξ̇2 = 0. As it turns out, this does not

necessarily end up with a trivial result however, since we have yet to compute

q†q̇. In fact we find that

q†q̇ = iγ̇ = 0

⇒ γ̇ = 0

⇒ γ(t) = c

By inspection, we can see that ξ1(φ+2π) = −ξ1(φ) and ξ2(φ+2π) = −ξ2(φ).

Thus since eiπ = −1, we can see that the phase shift γ = π around a diabolic

point, a result that was first discovered by Longuet-Higgins in [8].

A diagram of what this looks like is shown in figure 7(b) below from [5].

Figure 7: Values of γ for closed curves around a diabolic point for (a) complex
and (b) real Hermitian matrices
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We can see that if C goes round the diabolic point, denoted by XDP , the

value of γ = π but if C lies outside the diabolic point, γ = 0.

For figure 7(a) which we covered in the previous section, γ is shown to

depend upon the solid angle Ω that C creates around the diabolic point.

Note that the parameter space has 3 dimensions in this case, and only 2

dimensions in case (b), which is consistent with what we have done.

11.3 Relation to 3-sphere

At the start of this section we introduced hermitian matrices as a separate

concept to the rest of the report. Now I would like to explain the link between

them and what we have studied previously, specifically how 2 x 2 hermitian

matrices are related to the 3-sphere. Once again we use the complex number

form of S3, i.e S3 = {z = (z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1}. We note that in

this form, it is possible to form a 2 x 2 matrix from the components of z, z1

and z2, as follows.

ρ = zz† =

(
z1z1 z1z2

z2z1 z2z2

)

This matrix, referred to as the density matrix in [7], is in fact Hermitian

(since z1z2 = z2z1), and it also has unit trace (since z1z1+z2z2 = |z1|2+|z2|2 =

1). Furthermore it can be shown that ρ2 = ρ since

ρ2 = (zz†)(zz†)

= z(z†z)z†

= zz† (z†z = (z1, z2)

(
z1

z2

)
= z1z1 + z2z2 = 1)

= ρ

To show how this matrix is essentially equivalent to the one we looked at,

consider the form we first analysed in equation (27) before we decided to set

the eigenvalue d = 0. i.e. we have
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H =

(
d+ a b+ ic

b− ic d− a

)
, a, b, c, d ∈ R

To satisfy the unit trace and ρ2 = ρ requirements, we can choose to set

d = 1
2
, and to scale all the parameters by 1

2
to get

H =
1

2

(
1 + a b+ ic

b− ic 1− a

)
, a, b, c ∈ R

Then provided we make a further assumption that R = (a, b, c) ∈ S2 ⊂
R3, we can quite easily see that H does satisfy these qualities. For instance

we have

H2 =
1

4

(
1 + 2a+ a2 + b2 + c2 2(b+ ic)

2(b− ic) 1− a+ a2 + b2 + c2

)
= H

Thus we can think of H as a parameterisation of the density matrix ρ.

12 Berry Phase

We continue from where we left off in section 11, where we had an n x n

Hermitian matrix H(R(t)) and eigenvectors ξ(R(t)) (which we generalised as

q(t)). This section closely follows [4] in content, and is a quantum mechanical

example of what we did with holonomy in previous sections. Note that in this

circumstance, H refers to the Hamiltonian (the total energy) of the system,

the eigenvectors ξ are the eigenstates, and the corresponding eigenvectors

λ(t) are the energy levels at each given eigenstate. We also assume that the

evolution is cyclic, i.e. R(0) = R(T ) for some final time T , which means

that H(R(0)) = H(R(T )), so H takes the same form at the start that it

does at the end. As before, the parameters travel along the closed curve

C : t ∈ [0, T ] 7→ R(t), and so by extension the eigenvectors are described by

this curve.
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The evolution of our eigenstates q(t) in a quantum mechanical system are

given by the Schrödinger equation.

i~
d

dt
q = Hq (28)

Recall our expression we had for q in equation (26) in terms of ξ. We can

substitute this into (28), to obtain an equation which is in terms of ξ(t) and

θ(t).

i~eiθ(iθ̇ξ + ξ̇) = Heiθξ

= λeiθξ

Where we have used that ξ is an eigenvector of H. By multiplying on the

left by ξ†e−iθ(t), and using the fact that ξ†ξ = 1, we get:

−~θ̇ + i~ξ†ξ̇ = λ

⇒ θ̇ = −1

~
λ+ iξ†ξ̇

We assume we are on a loop, i.e. ξ(0) = ξ(T ), so we can integrate this

equation from t = 0 to t = T to get an equation for θ(t). Set θ(0) = 0 and

we have:

θ(T ) = −1

~

∫ T

0

λ dt+ i

∫ T

0

ξ†ξ̇ dt

At this point it’s worth noting that the second integral is equivalent to

what we found in equation (25), if we were to assume θ(0) = 0 in that

case. The first term only comes about as a result of the introduction of the

Schrödinger equation, but otherwise the two equations are identical.

By recalling that ξ is a function of R(t) = (R1(t), R2(t), ..., Rn2(t)), i.e.

it is not an explicit function of t, we can apply the chain rule and write out

ξ̇ in terms of R(t) as follows.

ξ̇ =
dξ

dt

49



=
n2∑
i=1

∂ξ

∂Ri

dRi

dt

= ∇Rξ ·
dR

dt

Where∇Rξ denotes the grad of ξ, a vector, i.e. ∇Rξ =
(

∂ξ
∂R1

, ∂ξ
∂R2

, ..., ∂ξ
∂Rn2

)T
.

Thus we are able to use that dR
dt
dt = dR, and the fact that R(t) travels

along a closed curve C is parameter space, to rewrite the second integral

as a line integral along C. We also make the choice of initial conditions

ξ(R(0)) = ξ(R(T )).

θ(T ) = −1

~

∫ T

0

λ dt+ i

∮
C

ξ†∇Rξ · dR (29)

This expression can be split into two parts, the first part called the dy-

namical phase and the second called the Berry phase. The dynamical phase

corresponds to the usual expression of the phase accumulated by a system

in a state with energy λ for a time T [4, p. 4]. As previously mentioned, the

Berry phase corresponds to the extra phase factor acquired that is effectively

the holonomy of the system.

12.1 Properties of Berry Phase

It can be shown that the Berry phase is independent of the speed at which

the closed curve C is traversed provided the total time is the same, i.e. the

phase factor will be the same if say, the system travels faster at the start and

slower at the end. To show this, we can insert the substitution t 7→ τ(t) into

the integral and show that it is equivalent. i.e.

i

∫ T

0

ξ†(R(t))
d

dt
ξ(R(t)) dt = i

∫ τ(T )

τ(0)

ξ†(R(τ))
dτ

dt

d

dτ
ξ(R(τ))

dt

dτ
dτ

= i

∫ τ(T )

τ(0)

ξ†(R(τ))
d

dτ
ξ(R(τ)) dτ
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Then the integral is the same, provided we assume τ(0) = 0 and τ(T ) = T ,

which should be the case since we are just rescaling the time in between.

The Berry phase is also invariant, up to a multiple of 2π, of the phase of

our eigenvectors. Say for instance we chose ξ′ = eiγ(t)ξ instead of ξ. Then we

would have for the Berry phase

i

∫ T

0

ξ′†
d

dt
ξ′ dt = i

∫ T

0

eiγ(t)ξ†
d

dt
(eiγ(t)ξ) dt

= i

∫ T

0

e−iγ(t)ξ†(eiγ(t) d

dt
ξ + i

d

dt
γ(t)eiγ(t)ξ) dt

= i

∫ T

0

ξ′†
d

dt
ξ′ dt−

∫ T

0

d

dt
γ(t) dt

= i

∫ T

0

ξ′†
d

dt
ξ′ dt+ γ(0)− γ(T )

Where we have used that ξ†ξ = 1. Now note that since ξ(R(0)) = ξ(R(T )) by

our assumption at the start of this section, and similarly ξ′(R(0)) = ξ′(R(T )).

This means that eiγ(0) = eiγ(T ), because eiγ(t) is the phase difference between

these two eigenvectors, and they are the same at the start as they are at

the end. Thus γ(0) − γ(T ) = 0 (modulo 2π) and so the Berry phase is

indeed independent of how we scale the eigenvectors (up to modulo 2π).

This property is called gauge invariance.

One further thing we can do with the Berry phase is transform it into a

surface integral from a line integral. This is most easily demonstrated when

the parameter space is 3-dimensional, by using Stokes’ theorem, although it

is possible in higher dimensions. First we note Stokes’ theorem for a surface

Ω where ∂Ω = C, the curve in parameter space.∮
C

F · dR =

∫
Ω

∇× F · dS

Then we can transform the Berry phase used in equation (29) to get

i

∫
Ω

∇× ξ†∇ξ · dS
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A Appendix

A.1 Proof that the Hopf Map is a Submersion

To prove that the Hopf map is indeed a submersion, we have to show that

its Jacobian (dpπ : TpS
3 → Tπ(p)S

2) is surjective. The Jacobian, which we

also wrote down in (23) is as follows.

 dw1

dw2

dw3

 = 2

 a b −c −d
d c b a

−c d −a b




da

db

dc

dd


Where the Jacobian is the 3 x 4 matrix. One way to show that it is

surjective is to compute the minors of the matrix, namely the Jacobian is

surjective if at least one 3x3 minor is non-zero. The formula for the minors

are as follows.

m1 =

∣∣∣∣∣∣∣
a b −c
d c b

−c d −a

∣∣∣∣∣∣∣ , m2 =

∣∣∣∣∣∣∣
a b −d
d c a

−c d b

∣∣∣∣∣∣∣ ,

m3 =

∣∣∣∣∣∣∣
a −c −d
d b a

−c −a b

∣∣∣∣∣∣∣ , m4 =

∣∣∣∣∣∣∣
b −c d

c b a

d −a b

∣∣∣∣∣∣∣
Through some lengthy calculations, we can compute these minors. We

get:

m1 = ab2 + a3 + ac2 + ad2

m2 = b3 + a2b+ bc2 + bd2

m3 = −a2c− b2c− cd2 − c3

m4 = −a2d− b2d− d3 − c2d

Then we notice the following:

52



m2
1 +m2

2 +m2
3 +m2

4 = a2(a2 + b2 + c2 + d2)2 + b2(a2 + b2 + c2 + d2)2

+c2(−a2 − b2 − c2 − d2)2 + d2(−a2 − b2 − c2 − d2)2

= 1

Where we have used the fact that a2 + b2 + c2 + d2 = 1. Thus we have

shown that indeed at least one minor must be non-zero. Therefore the matrix

is surjective, and the Hopf map is a submersion.

A.2 Proof that TpS
3 = span{J1n, J2n, J3n}

First of all, notice that for any vector n ∈ S3 ⊂ R4, n is normal to S3, since

it is a vector pointing from the origin to the surface of S3. Thus it stands

to reason that the tangent space of S3 is spanned by 3 orthogonal vectors

in R4 that are orthogonal to n (orthogonality implies they form a linearly

independent set), since S3 is a surface in R4. This can apply to any 3 such

vectors in R4, but in particular it applies to the set {J1n, J2n, J3n}. To

show this, consider the inner product of each of these vectors with n. For

i = 1, 2, 3, we have

〈n, Jin〉 = 〈J†i n,n〉 (using the definition of the adjoint operator)

= 〈JTi n,n〉 (since we are in R4)

= −〈Jin,n〉 (due to the fact Ji is antisymmetric)

= −〈n, Jin〉 (since the inner product is symmetric)

= 0

So the set {J1n, J2n, J3n} is orthogonal to n, and it remains to show that

the set is orthogonal to itself. We have for i 6= j

〈Jin, Jjn〉 = 〈n, JTi Jjn〉

= −〈n, JiJjn〉
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= −
3∑

k=1

εijk〈n, Jkn〉 (where εijk is a scalar)

= 0 (by the above result)

It can also be shown they are orthonormal since ‖Jin‖ = 1 for i = 1, 2, 3.

Thus we have proven that TpS
3 = span{J1n, J2n, J3n}.

A.3 Form of a Hermitian Matrix with a Double Eigen-

value

The general form of a 2 x 2 complex Hermitian matrix H is the following.

H =

(
a b̄

b d

)
, a, d ∈ R, b ∈ C

The eigenvalues of H are solutions of the characteristic equation, which

is

(a− λ)(d− λ)− |b|2 = 0

λ2 − (a+ d)λ+ ad− |b|2 = 0

⇒ 2λ = a+ d±
√

(a− d)2 + 4|b|2

Therefore H only has a double eigenvalue when the square root is zero, i.e.

when (a− d)2 + 4|b|2 = 0, which means that a = d and b = 0. Thus the form

in section 11.1 is chosen. In such a case, the eigenvalue λ of H is d.
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