Cloaking

Amal Alphonse, Simon Bignold, Andrew Duncan, Matthew Thorpe, Maria Veretennikova

Mathematics Institute
University of Warwick

21/11/2012

Introduction

We study the following one-dimensional version of the cloaking problem.

$$
\begin{align*}
\phi_{x x}(x)+(k(x))^{2} \phi(x) & =0, & x \in(0,1), \tag{1}\\
\phi(x) & =1, & x=0 \tag{2}\\
\phi^{\prime}(x) & =i k_{0}, & x=0, \tag{3}\\
\phi(x) & =0, & x=1 . \tag{4}
\end{align*}
$$

where $k(x)$ is the refractivity index of the cloaking medium in $(0,1)$. For the right-hand side boundary condition to be satisfied we expect $k(1)=\infty$.

First attempt: $k(x)=M(1-x)^{-1}$

Solutions are determined by roots λ_{1} and λ_{2} of $\lambda^{2}-\lambda+M^{2}=0$. In case there are two distinct real roots, $1-4 M^{2}>0$, the solution is

$$
\phi(x)=\frac{\lambda_{2}+i k_{0}}{\lambda_{2}-\lambda_{1}}(1-x)^{\lambda_{1}}-\frac{\lambda_{1}+i k_{0}}{\lambda_{2}-\lambda_{1}}(1-x)^{\lambda_{2}} .
$$

In case there are two complex roots, $1-4 M^{2}<0$, the solution is

$$
\phi(x)=\sqrt{1-x}\left(\cos (C \ln (1-x))+\frac{2 i k_{0}+1}{2 C} \sin (C \ln (1-x))\right),
$$

where $C=\frac{\sqrt{4 M^{2}-1}}{2}$.

First attempt: $k(x)=M(1-x)^{-1}$

Figure: Plot of $\operatorname{Re}[\phi(x)]$ for $k_{0}=20$,

Figure: Plot of $\operatorname{Im}[\phi(x)]$ for $k_{0}=20$,

Second attempt: $k(x)=M(1-x)^{-2}$

We are very lucky to have an explicit solutions for the fundamental solutions:

$$
\phi_{1}(x)=(x-1) \sin \left(\frac{x}{x-1}\right) \quad \phi_{2}(x)=(x-1) \cos \left(\frac{x}{x-1}\right)
$$

Solution given by

$$
\phi(x)=\left(1+i k_{0}\right) \phi_{1}(x)-(x-1) \phi_{2}(x)
$$

Figure: Plot of $\operatorname{Re}[\phi(x)]$ for $k_{0}=20$,

Figure: Plot of $\operatorname{Im}[\phi(x)]$ for $k_{0}=20$,

MAS DOC

Regularisation of $k(x)$

To avoid the singularity in $k(x)$ we wish to perturb the problem such that $k(x) \rightarrow \frac{1}{\epsilon}$ as $x \rightarrow 1$, and measure the error introduced in this perturbation. To this end, we consider $k(x)=M(1+\epsilon-x)^{-n}$. We want to solve

$$
\phi_{x x}+\frac{M^{2}}{(1+\epsilon-x)^{2 n}} \phi=0
$$

For $n=1$ we observe that a general solution will be of the form

$$
\phi(x)=A(1-x+\epsilon)^{\lambda_{+}}+B(1-x+\epsilon)^{\lambda_{-}}
$$

where $\lambda_{ \pm}=\frac{1 \pm p}{2}$.

- For two distinct real roots $(p>0)$, we observe that

$$
|\phi(1)| \approx\left|k_{0}\right| \epsilon^{\frac{1-p}{2}}
$$

- For two distinct complex roots $(p<0)$ we observe that

$$
|\phi(1)| \approx\left|k_{0}\right| \epsilon^{\frac{1}{2}}
$$

Regularisation of $k(x)$

- Similarly for

$$
k(x)=M(1-x+\epsilon)^{-2}
$$

we observe that

$$
|\phi(1)| \approx\left|k_{0}\right| \epsilon
$$

What about bounded $k(x)$?

It would very surprising if there was some bounded, continuous $k(x)$ on $[0,1]$, having a solution satisfying the boundary conditions. Suppose there was such a $k(x)$ with solution

$$
\phi(x)=\phi_{r}(x)+i \phi_{i}(x)
$$

that satisfied the boundary conditions.

- Sturm-Picone separation theorem $\Rightarrow \phi_{r}$ and ϕ_{i} have infinitely many roots on $[0,1]$.
- Let $\|k\|_{\infty}<K$, the Sturm Picone comparison theorem would then imply that $\cos (K x)$ and $\sin (K x)$ have infinitely many roots on $[0,1]$ which is clearly a contradition.

Frobenius method: $k(x)=M(1-x)^{-\frac{1}{2}}$

It would be interesting to try weaker singularities. So consider $k(x)=(1-x)^{-\frac{1}{2}}$. We use the Frobenius method to identify two linearly independent solutions to the problem, and then show how the solutions cannot satisfy all the boundary conditions.

Changing variables $x \rightarrow(1-x)$ we get

$$
\begin{align*}
\phi_{x x}(x)+M^{2} x^{-1} \phi(x) & =0 \tag{5}\\
\phi(0) & =0, \tag{6}\\
\phi(1) & =1, \tag{7}\\
\phi^{\prime}(1) & =i k_{0} . \tag{8}
\end{align*}
$$

We look for series solutions of the form $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k+r}$, for some $r \in \mathbb{C}$. Substituting in (5), we get a series of relationships between the coefficients and r.

Frobenius method: $k(x)=(1-x)^{-\frac{1}{2}}$

The indicial equation is $r(r-1)=0$, so that $r=0$ or $r=1$.

- For $r=1$ we obtain

$$
\begin{equation*}
y_{1}(x)=a_{0} \sum_{k=0}^{\infty} \frac{\left(-M^{2}\right)^{k} x^{k+1}}{k!(k+1)!} \tag{9}
\end{equation*}
$$

- Second independent solution has the form

$$
y_{2}(x)=\alpha y_{1}(x) \ln (x)+x^{0}\left(1+\sum_{k=1}^{\infty} b_{k} x^{k}\right)
$$

For $x \approx 0, y_{1}(x) \approx x$ and $\lim _{x \rightarrow 0} y_{1}(x) \ln (x)=0$ (L'Hopital's rule). Thus $\lim _{x \rightarrow 0} y_{2}(x)=1 \neq 0$.

- Thus, y_{2} does not satisfy the boundary conditions.
- General solution is of the form $y=A y_{1}$, but this cannot satisfy BOTH of the remaining boundary conditions.

Faster singularities: $k(x)=M(1-x)^{-n}, n \geq 2$

We do a WKB approximation around the the irregular singular point.

- We get that for x close to 1

$$
\phi(x)=A(1-x)^{\frac{n}{2}} e^{\frac{i m(1-x)^{1-n}}{1-n}}+B(1-x)^{\frac{n}{2}} e^{-\frac{i M(1-x)^{1-n}}{1-n}}
$$

- If we consider the corresponding regularised problem where $k(x)=M(1-x+\epsilon)^{-n}$, then we can see that

$$
|\phi(1)|=O\left(\epsilon^{\frac{n}{2}}\right)
$$

- Note we don't know how the constant depends on k_{0}, but we expect the dependence to be linear.

Conclusions

- We considered a very basic 1-D model.
- Our choice of $k(x)$ is quite arbitrary. Other choices of $k(x)$ have other interesting properties $k(x)=M\left(1-x^{2}\right)^{-2}$ for example
- Would be interesting to see how the above could be applied to $2 D, 3 D$.

Thank you for listening!

