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Introduction

We study the following one-dimensional version of the cloaking
problem.

φxx(x) + (k(x))2φ(x) = 0, x ∈ (0, 1), (1)

φ(x) = 1, x = 0, (2)

φ′(x) = ik0, x = 0, (3)

φ(x) = 0, x = 1. (4)

where k(x) is the refractivity index of the cloaking medium in
(0, 1). For the right-hand side boundary condition to be satisfied
we expect k(1) =∞.



First attempt: k(x) = M(1− x)−1

Solutions are determined by roots λ1 and λ2 of λ2 − λ+ M2 = 0.

In case there are two distinct real roots, 1− 4M2 > 0, the solution
is

φ(x) =
λ2 + ik0
λ2 − λ1

(1− x)λ1 − λ1 + ik0
λ2 − λ1

(1− x)λ2 .

In case there are two complex roots, 1− 4M2 < 0, the solution is

φ(x) =
√

1− x

(
cos (C ln(1− x)) +

2ik0 + 1

2C
sin (C ln(1− x))

)
,

where C =
√
4M2−1
2 .



First attempt: k(x) = M(1− x)−1
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Figure: Plot of Re[φ(x)] for k0 = 20,
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Figure: Plot of Im[φ(x)] for k0 = 20,



Second attempt: k(x) = M(1− x)−2

We are very lucky to have an explicit solutions for the fundamental
solutions:

φ1(x) = (x − 1) sin

(
x

x − 1

)
φ2(x) = (x − 1) cos

(
x

x − 1

)
Solution given by

φ(x) = (1 + ik0)φ1(x)− (x − 1)φ2(x)

0.2 0.4 0.6 0.8 1.0

- 0.2

0.2

0.4

0.6

0.8

1.0

Figure: Plot of Re[φ(x)] for
k0 = 20,
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Figure: Plot of Im[φ(x)] for
k0 = 20,



Regularisation of k(x)

To avoid the singularity in k(x) we wish to perturb the problem
such that k(x)→ 1

ε as x → 1, and measure the error introduced in
this perturbation. To this end, we consider
k(x) = M(1 + ε− x)−n. We want to solve

φxx +
M2

(1 + ε− x)2n
φ = 0.

For n = 1 we observe that a general solution will be of the form

φ(x) = A(1− x + ε)λ+ + B(1− x + ε)λ− ,

where λ± = 1±p
2 .

For two distinct real roots (p > 0), we observe that

|φ(1)| ≈ |k0|ε
1−p
2 ,

For two distinct complex roots (p < 0) we observe that

|φ(1)| ≈ |k0|ε
1
2 .



Regularisation of k(x)

Similarly for
k(x) = M(1− x + ε)−2,

we observe that
|φ(1)| ≈ |k0|ε.



What about bounded k(x)?

It would very surprising if there was some bounded, continuous
k(x) on [0, 1], having a solution satisfying the boundary conditions.
Suppose there was such a k(x) with solution

φ(x) = φr (x) + iφi (x)

that satisfied the boundary conditions.

Sturm-Picone separation theorem ⇒ φr and φi have infinitely
many roots on [0, 1].

Let ||k||∞ < K , the Sturm Picone comparison theorem would
then imply that cos(Kx) and sin(Kx) have infinitely many
roots on [0, 1] which is clearly a contradition.



Frobenius method: k(x) = M(1− x)−
1
2

It would be interesting to try weaker singularities. So consider

k(x) = (1− x)−
1
2 . We use the Frobenius method to identify two

linearly independent solutions to the problem, and then show how
the solutions cannot satisfy all the boundary conditions.

Changing variables x → (1− x) we get

φxx(x) + M2x−1φ(x) = 0 (5)

φ(0) = 0, (6)

φ(1) = 1, (7)

φ′(1) = ik0. (8)

We look for series solutions of the form φ(x) =
∑∞

k=0 akx
k+r , for

some r ∈ C. Substituting in (5), we get a series of relationships
between the coefficients and r .



Frobenius method: k(x) = (1− x)−
1
2

The indicial equation is r(r − 1) = 0, so that r = 0 or r = 1.

For r = 1 we obtain

y1(x) = a0

∞∑
k=0

(−M2)kxk+1

k!(k + 1)!
(9)

Second independent solution has the form

y2(x) = αy1(x) ln(x) + x0(1 +
∞∑
k=1

bkx
k).

For x ≈ 0, y1(x) ≈ x and limx→0 y1(x) ln(x) = 0 (L’Hopital’s
rule). Thus limx→0 y2(x) = 1 6= 0.

Thus, y2 does not satisfy the boundary conditions.

General solution is of the form y = Ay1, but this cannot
satisfy BOTH of the remaining boundary conditions.



Faster singularities: k(x) = M(1− x)−n, n ≥ 2

We do a WKB approximation around the the irregular singular
point.

We get that for x close to 1

φ(x) = A(1− x)
n
2 e

iM(1−x)1−n

1−n + B(1− x)
n
2 e−

iM(1−x)1−n

1−n

If we consider the corresponding regularised problem where
k(x) = M(1− x + ε)−n, then we can see that

|φ(1)| = O(ε
n
2 ),

Note we don’t know how the constant depends on k0, but we
expect the dependence to be linear.



Conclusions

We considered a very basic 1-D model.

Our choice of k(x) is quite arbitrary. Other choices of k(x)
have other interesting properties k(x) = M(1− x2)−2 for
example

Would be interesting to see how the above could be applied to
2D, 3D.



Thank you for listening!


