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Introduction

Our main motivation is to model spiral waves that occur during
arrhythmias in the heart. We wish to simulate spiral waves on
heart-like surfaces.
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Introduction: Aims

We aim to

create spiral waves on a 2D square using both the finite
element and finite difference method

create spiral waves on a static sphere and static ellipsoid
and compare

create spiral waves on a moving surface and compare the
results for different magnitudes of oscillation and compare to
the static case

simulate inhomogeneities and areas of reduced
conductivity in the sphere.

Amal Alphonse Simon Bignold Yuchen Pei



Introduction: The Barkley Model

System of coupled PDEs on surface Γ:

u̇ + u∇Γ · v − a∆Γu = f (u, v) in GT :=
⋃

0≤t≤T

{t} × Γt ;

v̇ + v∇Γ · v = g(u, v) in GT .

with

f (u, v) =
1

ε
u(1− u)

(
u − v + b

c

)
g(u, v) = u − v

and model parameters a, b, c and ε all in R+. We denote by v the
velocity of the surface.
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Numerical Methods

Amal Alphonse Simon Bignold Yuchen Pei



Finite Difference: Time Discretisation

Apply θ-method only to the LHS:

Tθu
n+1 = Tθ−1u

n + f̃ n;

vn+1 = vn + g̃n,

where T is a linear operator defined by

(Tθu)(x) = u(x)− θτa∆Γu(x)

and f̃ n and g̃n are terms involving f and g .
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Finite Difference: Space Discretisation

Approximating with central difference

∆un(xi , yj) ≈ ∆hu
n(xi , yj)

un(x−1, yj) = un(x1, yj), un(xN+1, yj) = un(xN−1, yj),

un(xi , y−1) = un(xi , y1), un(xi , yN+1) = un(xi , yN−1),

Denote Aθ,h = I − θτa∆h. The approximation is:

Aθ,hu
n+1 = Aθ−1,hu

n + f̃ n.

Amal Alphonse Simon Bignold Yuchen Pei



Finite Element: Weak Formulation

By Leibniz formula, weak form is

d

dt

∫
uφ+

∫
a∇Γu · ∇Γφ =

∫
f (u, v)φ+

∫
uφ̇.

Choose m-dimensional subspaces (Vt)t≥0 of (H1(Γt))t≥0.

Choosing basis (Zi (t, ·))mi=1 of Vt wisely, we have

Żi = 0 ∀i .

The weak formulation is now

d

dt

∫
uZi +

∫
a∇Γu · ∇ΓZi =

∫
f (u, v)Zi .
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Finite Element: Time Discretisation

Again using θ-scheme we have:

an+1
θ (un+1,Zn+1

i ) = anθ−1(un,Zn
i ) + F̃ n,

where

anθ(ξ, η) =

∫
Γnτ

(ξη + θτa∇Γξ · ∇Γη).
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Finite Element: Projection

Approximate un by its projection on Vnτ :

un ≈
m∑
i=1

αn
i Z

n
i ,

then

m∑
j=1

αn+1
j an+1

θ (Zn+1
j ,Zn+1

i ) =
m∑
j=1

αn
j a

n
θ−1(Zn

j ,Z
n
i ) + F̃ n,

i = 1, . . . ,m.

Almost a system of linear equations!
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Right Hand Side: The Problem

Work strictly in line with θ method, we have

f̃ n = τθf (un+1, vn+1) + τ(1− θ)f (un, vn),

F̃ n = τθ

∫
Γ(n+1)τ

f (
m∑
j=1

αn+1
i Zn+1

j , vn+1)Zn+1
i

+ τ(1− θ)

∫
Γnτ

f (un, vn)Zn
i .

Problem: this is linear in un+1 or αn+1 only if θ = 0!

Solution 1: explicit RHS

Solution 2: semi-implicit RHS.
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Right Hand Side: Explicit

Use fully explicit RHS regardless of θ.

FD method, taking f̃ n = f (un, vn):

Aθ,hu
n+1 = Aθ−1,hu

n + τ f (un, vn).

FE method, taking F̃ n = τ
∫
f (un, vn)Zn

i :

m∑
j=1

αn+1
j an+1

θ

(
Zn+1
j ,Zn+1

i

)
=

m∑
j=1

αn
j a

n
θ−1(Zn

j ,Z
n
i )

+ τ

∫
f (un, vn)Zn

i ,

∀i = 1, . . . ,m.
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Right Hand Side: Semi-Implicit

Want to evaluate n1, n2, n3 ∈ {n, n + 1} such that

f̃ n =
τ

ε
un1(1− un2)

(
un3 − vn3 + b

c

)
is linear in un+1.

Denote unth = vn+b
c , take

n2 = n + 1, if unth < un;

n1 = n + 1, if unth ≥ un.
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Right Hand Side: Semi-Implicit (cont’d)

FD method:

f̃ n =

{
τ
ε u

n(1− un+1)(un − unth), when unth < un

τ
ε u

n+1(1− un)(un − unth), when unth ≥ un

FE method:

F̃ n =


τ
ε

∫
Γnτ

un(un − unth)− τ
ε

∫
Γ(n+1)τ

ūn(ūn− ūnth)un+1,

when unth < un

τ
ε

∫
Γ(n+1)τ

un+1(1− ūn)(ūn − ūnth),

when unth ≥ un.
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Recovery Variable v

We make the RHS of v equation fully explicit (where for simplicity
we consider a static surface).

FD method:
vn+1 = vn + τg(un, vn).

FE method, take vn =
∑m

j=1 β
n
j Z

n
j :

m∑
j=1

βn+1
j

∫
Zn+1
j Zn+1

i =
m∑
j=1

βnj

∫
Zn
j Z

n
i + τ

∫
g(un, vn)Zn

i .
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Stability and Refinement
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The Choice of Diffusion Coefficient a

It is known from a test of a = 1 on Ω150 that the results
produce spiral waves.

We want to test on unit sphere and a square Ω3.5 with same
area.

Therefore we test with a = 1
1790.49 ≈ 4π/1502.

Figure: Left: a = 1
1790.49 , Γ = Ω3.5; Right: a = 1, Γ = Ω150.
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The choice of a: Stability

Unfortunately a = 1
1790.49 brings instability when using FE

method.

After testing a variety of diffusion coefficients a, we settled on
a = 1

179.049 .
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Planar 2D Simulation
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The Equation

ut −
1

179.049
∆u = 50u(1− u)

(
u − v + 0.01

0.75

)
, in Ω3.5;

vt = u − v , in Ω3.5;

∂u

∂n
= 0, on ∂Ω3.5;

u(0, x) = u0(x) = Iy>1.751(·),
v(0, x) = v0(x) = Ix<1.75(·).
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Planar 2D Simulation: Finite Element versus Finite
Difference

Figure: Simulation of spirals on Ω3.5 using various methods at time 10.

( Square spiral)
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Fixed Surface Simulation
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Fixed Surface Simulation: Fixed Sphere

We start our simulation on a unit sphere with initial conditions

u(0, x) = u0(x) =
1

2
(tanh(30y) + 1),

v(0, x) = v0(x) =
1

2
0.375(tanh(30(−x + 0.01)) + 1).

( Static sphere)
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Fixed Surface Simulation: Refinement

We refine the grid until two consecutive resolutions give almost the
same results.

Figure: Left: 40448 elements; Right: 161792 elements.
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Fixed Surface Simulation: Fixed Ellipsoid

Here we deform the unit sphere along the y -axis by a factor of 1.5
to give an ellipsoid:

( Static ellipse)
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Surfaces with Inhomogeneities
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Surfaces with Inhomogeneities: Different Methods

The heart may have areas where tissue is damaged (and hence
electro-dynamical properties are different there) and has veins and
arteries puncturing the surface. To simulate this, we add
inhomogeneities to our spheres in four ways:

reducing the diffusion coefficient to zero

reducing the diffusion coefficient by a factor

reducing the diffusion coefficient continuously to zero

a physical hole

Amal Alphonse Simon Bignold Yuchen Pei



Surfaces with Inhomogeneities: Zero Conductivity

In this case we create areas of zero conductivity by setting the
diffusion constant to zero in that region. The region of our hole is

{(x , y , z) : 0.3 < x < 0.4, 0.3 < y < 0.4, z ≥ 0}.

Unfortunately, due to the sudden drop in the diffusivity coefficient
we have numerical instability.
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Surfaces with Inhomogeneities: Reduced Conductivity

One way of overcoming this numerical instability: reduce the
diffusion coefficient rather than set it to zero.

The limit of this procedure should be the same as the zero
conductivity case.

This method has the advantage that we can simulate
damaged tissue where conductivity is reduced but not zero.

In the following example we reduce a to 1
17904.9 in the area

{(x , y , z) : (x − 0.15)2 + y2 < 0.01, z > 0}.
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Surfaces with Inhomogeneities: Reduced Conductivity
(cont’d)

Figure: Test on reduced conductivity

( Reduced holes)
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Surfaces with Inhomogeneities: Continuous Conductivity

We apply a factor to the diffusion coefficient so that it decays
continuously to zero at the centre of the hole. Consider a
circular hole of radius R centred at x0. We multiply the
diffusivity in the hole by

1+exp
(

1000
(
|x− x0|2 − R2

))
×exp

(
− R

10

)
−exp

(
−|x− x0|2

10R

)
.
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Surfaces with Inhomogeneities: Continuous Conductivity
(cont’d)

Figure: Left: sphere with hole of radius 0.1. Right: sphere with hole of
radius 0.2

( Continuous hole)
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Surfaces with Inhomogeneities: A Physical Hole

In this case we are simulating a physical hole. To do this we filter
out a region of the sphere to make a physical hole and apply zero
Neumann boundary conditions at the edge. We consider two
different sizes of circular holes.

Figure: Left: sphere with hole of radius 0.1. Right: sphere with hole of
radius 0.4.

( Holes)
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Moving Surface Simulation
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Moving Surface Simulation: Deforming Sphere

A primary feature of the heart is its oscillatory movement which we
wish to emulate. To do this we take a unit sphere and apply a
factor

1 + α sin (2πβt)

to the y -axis. Here, α, β ∈ R with |α| < 1.
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Moving Surface Simulation: Different Deformations

We consider a range of deformations on the unit sphere with
α = 0.1, 0.2, . . . , 0.5 and β = 0.1.

Figure: Oscillating sphere with α = 0.5 at times 2.5, 5, 7.5, 10, 20 and
30.

( Moving surface simulations)
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Heart Pulse
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Heart Pulse: Initial Conditions

In certain cases, we can adapt the Barkley equation slightly to give
a pulse that travels across a 2D surface and then dissipates before
re-emerging. This is a good model of normal heart rhythm. To do
this, we set

α = 0.1, β = 0.1

with the initial conditions as

u0(x , y) = 0

v0(x , y) = 0.
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Heart Pulse: Altering the Source Term
To create the source of our wave we add a new term to the right
hand side of the equation for u:

(1− u)Iy>0.95Iu<0.99IZ≤t≤Z+0.05

Figure: The arrival of the second wave and mid-way through the second
wave

( Pulse)
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Further Work
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Further Work: Stability Estimates

So far we have investigated numerical stability of spiral waves on
static spheres. An obvious extension is to investigate numerical
stability on moving surfaces and especially on 3D surfaces that
more closely resemble the heart.
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Further Work: More Accurate Models

In the heart spiral waves often break up to form turbulence. We
believe that a slight alteration of our equations will lead to
turbulence. The alteration is to the source term

g(u, v) = u3 − v

and the initial conditions

u0(x , y) = Iy>0.3,

v0(x , y) =
3

8
Ix<0.

( Turbulent spiral)
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Post-Presentation Fun: Instability Gallery

Figure: Top: Oscillating sphere, α = 0.1, β = 1. Bottom: FE method on
Ω3.5, α = 1

1790.49 .

Amal Alphonse Simon Bignold Yuchen Pei



Post-Presentation Fun: Instability Gallery 2

Figure: Top: FE method on Ω3.5, α = 1
1790.49 ; Bottom: FE method on

oscillating sphere. α = 1
2500 ; oscillating along z-axis; α = 0.1; β = 1.

Amal Alphonse Simon Bignold Yuchen Pei



Post-Presentation Fun: Golf ball

Figure: No refinement: 632 elments.

( Golfball)
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