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Derivation of PFC from DFT: Statistical Mechanics

Start from statistical mechanics following 1. N ∈ N particles with
positions xi in a d-dimensional box Λ ⊂ Rd .

HU1

ΛN (XN) =
N∑
i=1

U1(xi ) +
∑

1≤i<j≤N
U2(|xi − xj |)

where XN = (x1, .., xN) ∈ ΛN and U1 : Rd → R , U2 : Rd → R.

Let ΓΛ = ΛN and equip it with the Borel σ-algebra BΛ on ΓΛ.
Then the probability measure γβ,µΛ ∈ P(ΓΛ,BΛ) with density

ρ̂ΛN

β (XN) = exp
[
−βHU1

ΛN (XN)
]

(N!ZΛ(N, β))−1

is called the canonical ensemble.

1
A. González, J.A. White. The extended variable space approach to density functional theory

in the canonical ensemble, Journal of Physics: Condensed Matter 14, pages 11907-11919, (2002).
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Derivation of PFC from DFT:Free Energy

The normalisation constant ZΛ(N, β) is called the partition
function.

ZΛ(N, β) =
1

N!

∫
ΛN

exp
[
−βHU1

ΛN (XN)
]
dXN (1)

and

β =
1

kBT
.

Following page 23 of 2 the (Helmholtz) free energy can be written
as

FΛN

β [U1] = −β−1 ln[ZΛ(β,N)]. (2)

2
S. Adams. Lectures on Mathematical Statistical Mechanics,

Communications of the Dublin Institute for Advanced Studies, Series A, No. 30, (2006).
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Derivation of PFC from DFT: Density

ρΛ
β,N(x) =

∫
ΛN

N∑
i=1

δ(x − xi )ρ̂
ΛN

β (XN)dXN

= N

∫
Λ
. . .

∫
Λ
ρ̂ΛN

β (XN)dx2 . . . dxN

=
δFΛN

β [U1]

δU1(x)

where importantly

N =

∫
Λ
ρΛ
β,N(x)dx .
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Derivation of PFC from DFT: The Kohn-Hohenberg
Functional

Theorem

There exists a functional FHK purely a functional of density,
minimised at the equilibrium density (see Section 4 of a).

a
W.S.B. Dwandaru, M. Schmidt. Variational Principle of Classical Density Functional Theory via Levy’s

Constrained Search Method, Physical Review E, 83, 061133, (2011).

Free energy is minimised at equilibrium at constant temperature
(see Section 1.3 of 3), so at equilibrium

FΛN

β [U1] = FHK [ρΛ
β,eq,N ] +

∫
Λ
U1(x)ρΛ

β,eq,N(x)dx .

We can split this functional into two

FHK [ρΛ
β,N ] = Fβ,id [ρΛ

β,N ] + Fβ,exc [ρΛ
β,N ].

3
M. Plischke, B. Bergerson. Equilibrium Statistical Physics, 3rd Edition, World Scientific, (2006).
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Derivation of PFC from DFT: The Excess Functional

Following Section 2 of 4 assume a constant reference density and
perform a formal expansion of the excess free energy around it and
curtail at 2nd order

Fβ,exc [ρβ,µ] ≈ F (0)
β,exc(ρref )

− 1

2
β−1

∫ ∫
c(2)(x1 − x2)∆ρβ,µ(x1)∆ρβ,µ(x2)dx1dx2.

∆ρβ(x) = ρΛ
β,N(x)− ρref .

Consideration of translational and rotational symmetry gives
c(1) = 0

4
H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G.I. Tóth, G. Tegze, L. Gránásy.

Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales;
an overview, arXiv:1207.0257,(2012)
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Derivation of PFC from DFT: The Ideal Gas

We now consider the ideal gas contribution, i.e. U2(x1, x2) = 0.
Using the formula (2) for free energy and the partition function (1)
we have

FΛN

β [U1] = β−1

ln[N!]− N ln


∫

Λ
exp [−βU1(x)]dx︸ ︷︷ ︸

z(Λ)


 . (3)

Using the definition of the one-particle density as the functional
derivative of the free energy we can find the density

ρΛ
β,N(x) =

N exp[−βU1(x)]

z(Λ)
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Derivation of PFC from DFT: Density Functional

Using that the integral of ρΛ
β,N(x) is N we can re-write (3)

FΛN

β [U1] = β−1 (ln[N!]− N lnN) + β−1

∫
Λ
ρΛ
β,N(x) ln

[
ρ(1)(x)

]
dx

+

∫
Λ
ρΛ
β,N(x)U1(x)dx .
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Derivation of PFC from DFT: Stirling’s Approximation

We have Stirling’s approximation (see 5)

ln[N!] = N lnN − N + O(lnN).

using this in our functional and discarding the external energy term
the ideal gas part of our Hohenberg-Kohn functional is

Fβ,id [ρN1 ] = β−1

∫
Λ
ρN1(x) (ln (ρN1(x))− 1)dx . (4)

5
H. Robbins. A remark on stirling’s formula, The American Mathematical Monthly, 62:1, pages 26-29,

(1955).
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Derivation of PFC from DFT: Density Approximation

If we know the reference density is constant and the deviation from
the density is small we can re-write the density as

ρN1 = ρref (1 + ψ(x)).

Inserting this into our ideal gas equation functional and Taylor
expanding the logarithm we have

Fβ,id [ρN1 ] = Fβ,id [ρref ] + β−1ρref

∫
Ω
a0ψ(x) +

ψ(x)2

2
− ψ(x)3

6

+
ψ(x)4

12
+ O

(
ψ(x)5

)
dx

where
a0 = ln [ρref ] .
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Derivation of PFC from DFT: Excess Functional
Approximation

If we use the same approximation for the density in our expression
for the excess energy

Fβ,exc [ρN1 ] = Fβ,exc [ρref ]−
ρ2
ref β

−1

2

∫
Ω

∫
Ω
c(2)(x1, x2)ψ(x1)ψ(x2)dx1dx2.

Using the definition of a convolution and that the Fourier
transform of a convolution is the product of the Fourier transforms
of the functions in the convolution we have

Fβ,exc [ρN1 ] = Fβ,exc [ρref ]−
ρ2
ref β

−1

2

∫
Ω
F−1

[
ĉ(2)(k)ψ̂(k)

]
ψ(x1)dx1.
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Derivation of PFC from DFT: Gradient Expansion

Then expand ĉ(2) as a Taylor series around k = 0 and use that odd
terms vanish by symmetry of ĉ(2)

Fβ,exc [ρN1 ] = Fβ,exc [ρref ]−
ρ2
ref β

−1

2

∫
Ω
F−1

[ ∞∑
m=0

c2mk
2mψ̂(k)

]
ψ(x1)dx1.

Using that

F−1
[
k2mψ̂(k)

]
= (−1)m∇2mψ(x)

we have

Fβ,exc [ρN1 ] = Fβ,exc [ρref ]

−
ρ2
ref β

−1

2

∫
Ω
ψ(x1)

∞∑
m=0

c2m (−1)m∇2mψ(x1)dx1.
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Derivation of PFC from DFT: Combining the Functionals

We can re-combine our ideal gas functional and our excess energy
functional and following 6 we curtail at fourth order in both ψ and
the gradient. We know the terms ci alternate in sign and we
discard the linear terms. The functional minus the part evaluated
at the reference density is

∆FHK [ρN1 ] ≈ β−1ρref

∫
Ω
Aψ(x)2 + Bψ(x)∇2ψ(x) + Cψ(x)∇4ψ(x)

− ψ(x)3

6
+
ψ(x)4

12
dx . (5)

We would like to reformulate our functional difference to be of the
form

F̃ =

∫ (
ψ̃

2

(
−`+

(
k2

0 +∇2
)2
)
ψ̃ +

ψ̃4

4

)
dx̃ . (6)

6
K.R. Elder, N. Provatas, J. Berry, P. Stefanovic, M. Grant. Phase Field Crystal and Classical Density

Functional Theory, Physical Review B 75, 064107, (2007)
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Derivation of PFC from DFT: Reformulating the
Functional

Substitution of ψ̃ = α(1− 2ψ(x)) in (6), neglecting constant
contributions and terms linear in ψ and terms that vanish on the
boundary shows this is equivalent to (5) divided by 12ρref β

−1C 2.

Using the transforms k0
2xi = x̃i , and ψ̃ = k0

2u (6) can be
re-written as

F̃ [u] = k0
8−2d

∫
Ω

u

2
(∆ + 1)2 u − `

2k0
4
u2 +

1

4
u4dx̃ .
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Derivation of PFC from DFT: The PFC functional

The PFC functional

F [u] =

∫
Ω

u

2
(∆ + 1)2 u − δ

2
u2 +

1

4
u4dx (7)

where u : Rd → R is a density perturbation.

We minimise the functional whilst conserving the integral of u

ū =
1

|Ω|

∫
Ω
udx .

This functional is minimised by 3 different phases:

a striped phase,
a hexagonal phase
a constant phase

see 7.

7Modelling elastic and plastic deformations in non-equilibrium processing
using phase field crystals, K.R. Elder, Martin Grant. Physical Review E, 70,
051605, (2004).
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Numerical Approaches: Idea

We seek to minimise the PFC functional whilst conserving the
integral of u.

Classical gradient flow

un+1 = un −∇F(un)

We wish to choose a different metric i.e.

un+1 = un −M−1∇F(un)

which is equivalent to

〈M(un+1 − un), un+1 − un〉 = −〈δF(un), un+1 − un〉
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Numerical Approaches: Definitions

First we define a quadratic functional

Φ(v , u) =
1

2
‖∆v + v‖2

L2 + 〈δF(u), v〉+
γ

2
‖v‖2

L2 .

c.f.

F [u] =

∫
Ω

u

2
(∆ + 1)2 u − δ

2
u2 +

1

4
u4dx

We also define the inner product

〈Mγv , v〉 = ‖∆v + v‖2
L2 + γ‖v‖2

L2

where we have a norm

|‖v‖|2 = 〈M1v , v〉.

and the dual norm

|‖δF(u)‖|∗ = sup
|‖ϕ‖|=1

−〈δF(u), ϕ〉.
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Numerical Approaches: Lemma 1

We know
∃!v = argminΦ(v , u).

Lemma 1

In 2 (or 3) dimensions, for sufficiently large γ(‖u‖L∞ , |‖δF(u)‖|∗).
If ‖u‖L∞ , |‖δF (u)‖|∗ <∞, β > 0

F(u + v) ≤ F(u)− β〈Mγv , v〉

.
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Numerical Approaches: Numerical Schemes

We now know we can find the minimum of F by minimising Φ .

Φ(u, v) =
1

2
〈Mγv , v〉+ 〈δF(u), v〉.

We can show that minimising this functional is equivalent to
solving the problem

〈Mγv , v〉 = −〈δF(u), v〉.

Simon Bignold Supervisor: Christoph Ortner



Numerical Approaches: Numerical Schemes

This is equivalent to(
∆2 + 2∆ + (1 + γ)

)
v = −(∆ + 1)2u + δu − u3. (8)

We now discretise in space to introduce the discrete Laplacian, for
which we use the central difference method. Since we are using a
domain which is a periodic box we transform into Fourier space
and use the Fast Fourier Transform.
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Numerical Approach: Fourier transform of the Laplacian

To solve our equation in Fourier space, we need the Fourier
transform of the discrete Laplacian.

Using the linearity of the Fourier transform, after some changes of
variable we can show

∆̂hUj
n = F [k]Ûn[k]

where

F [k] =
d∑

i=1

2

h2
i

(
cos

[
2πki
mi

]
− 1

)
.

and we see that in k-space the action of the operator ∆h

becomes multiplication by F [k].
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Numerical Methods: Equation in Fourier Space

The Fourier transform of equation (8) after re-arrangement and
discretising in space is

V̂j = −
(F + 1)2Ûj − δÛj + Û3

j

(F 2 + 2F + (1 + γ))
.

We know un+1 = un + v . Thus

Ûn+1
j = Ûn

j −
(F + 1)2Ûn

j − δÛn
j + Ûn

j
3

(F 2 + 2F + (1 + γ))
.

We enforce conservation of u using

Ûn+1
j [0] = Ûn

j [0]
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Results: Unit Cell
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Results: Errors

We show below the graph of the error against the time step on a
log-log scale, where the error is given as

en+1 =
‖un+1 − un‖L∞
‖un+1‖L∞
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Results: Video

movie
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Results: Lattice

We have created a unit cell, now we can create a lattice of
arbitrary size by placing unit cells side by side.
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Results: Surfaces

We have a minimising constant phase, this is typically taken to be
the liquid phase. We wish to embed the lattice in a liquid. The
value to create an interface is ū = 0.7
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Preliminary Results: Site Vacancy

We can simulate a site vacancy by creating a lattice and then
removing half a unit cell and setting ū = 0.7 in the gap.
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Another Method: The PFC Equation

The classical way of minimising our functional (7) whilst enforcing
conservation of ū is to take the H−1 gradient flow, i.e.

ut = ∆
δF
δu

[u].

This leads to the equation

ut = ∆
(

(∆ + 1)2 u − δu + u3
)

known as the PFC equation.
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Another Method: The Method of Elsey and Wirth

In 8 they add and subtract a stabilising constant to the PFC
equation. They then discretise in time and use a convex-concave
splitting to give

un+1 − un

τ
= ∆

(
(∆ + 1)2 un+1 − δun+1 + Cun+1 − Cun + (un)3

)
.

Re-arranging, discretising in space and evaluating in Fourier space
gives

Ûn+1[k] =
Ûn[k] + τF

(
(̂Un)3[k]− CÛn[k]

)
1− τF

(
(F + 1)2 − δ + C

) .

8M. Elsey, B. Wirth. A simple and efficient scheme for phase field
crystal simulation, pre-print, (2012).
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Further Work

Coarse Graining PFC

Grain Boundaries

Elastic Deformations

Finding Faster Minimisation Technique
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