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Problem Formulation

We will consider the following PDE

κ∆2u − σ∆u = δX in Ω

where κ > 0, σ ≥ 0 and Ω ⊂ R2 is a bounded, Lipschitz domain.

The right hand side δX is the delta function centred at the point
X ∈ Ω.

We impose some appropriate homogeneous boundary conditions
which will lead to the weak formulation.



Weak Formulation

We use integration by parts to derive a weak formulation and the
possible homogeneous boundary conditions.

∫
Ω

(κ∆2u − σ∆u)v =

∫
Ω
−κ∇∆u · ∇v + σ∇u · ∇v

+

∫
∂Ω

∂(∆u)

∂ν
v +

∂u

∂ν
v

=

∫
Ω
κ∆u∆v + σ∇u · ∇v

+

∫
∂Ω

∂(∆u)

∂ν
v +

∂u

∂ν
v + ∆u

∂v

∂ν



Weak Formulation - Boundary Conditions

We thus pose the problem in H2(Ω) and impose boundary
conditions by considering the problem in a subspace V ⊂ H2(Ω).

We take the first boundary condition to be u|∂Ω = 0. The
boundary integral now vanishes if we choose the second boundary
condition as follows.

I Dirichlet boundary conditions: u = ∂u
∂ν = 0 on ∂Ω

I Navier boundary conditions: u = ∆u = 0 on ∂Ω



Weak Formulation - Imposing Boundary Conditions

For Dirichlet boundary conditions we take the test space to be:

V =

{
v ∈ H2(Ω)

∣∣∣ v =
∂v

∂ν
= 0 on ∂Ω

}
= H2

0 (Ω).

For Navier boundary conditions we take the test space to be:

V =
{
v ∈ H2(Ω)

∣∣∣ v = 0 on ∂Ω
}

= H2 ∩ H1
0 (Ω).



Weak Formulation - Left Hand Side

We have now constructed the left hand side of the weak
formulation:

a(u, v) :=

∫
Ω
κ∆u∆v + σ∇u · ∇v .

Notice that a : V × V → R is bilinear, bounded and coercive.



Weak Formulation - Right Hand Side

For the right hand side we follow the same process and ’integrate’
the right side against a test function v ∈ V .∫

Ω
δX v = v(X )

I This doesn’t make sense!

I We must interpret δX as an element of the dual space, V ∗.
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Weak Formulation - Right Hand Side

By the Sobolev embedding theorem we have H2(Ω) ↪→ C (Ω).

We then interpret δX as l ∈ V ∗ such that

l(v) = v(X ).

Notice that |l(v)| ≤ ‖v‖C(Ω) ≤ C‖v‖V , so indeed l ∈ V ∗.



Weak Form

We may thus state the weak form of our problem;

Find u ∈ V s.t. a(u, v) = l(v) ∀ v ∈ V .

By the Lax-Milgram theorem we have the existence of a unique
solution u ∈ V .



An Example - The Biharmonic Problem

To gain an idea of the regularity of solutions consider the problem

∆2u = δ in Ω = B(0; 1)

Beginning with Navier boundary conditions, we use the Green’s
function of the laplacian to construct a radial solution. The
Green’s function is given by:

Φ(r) =
1

2π
ln(r).

So we find u(r) such that

1

r

∂

∂r

(
r
∂u

∂r

)
= Φ(r).



An Example - The Biharmonic Problem

We then conclude that u has the form

u(r) =
r2

8π

[
ln(r)− 1

]
+ a ln(r) + b.

If u ∈ H2(Ω) it is continuous and thus a = 0. We then enforce the
zero boundary condition and so b = 1/8π.

Notice that u ∈ C 1,γ(Ω) for all γ ∈ [0, 1). The same result holds
for Dirichlet boundary conditions.



Regularity for General Problem

In fact the same regularity result holds for the general problem.

Theorem
Suppose Ω has C 3 boundary and u ∈ V is the weak solution of

κ∆2u − σ∆u = δX

Then u ∈W 3,p(Ω) for all p ∈ (1, 2) and hence u ∈ C 1,γ(Ω̄) for all
γ ∈ [0, 1).



Proof

Define T : L2(Ω)→ C (Ω) by Tf = vf such that

a(vf , v) = (f , v)L2(Ω) ∀v ∈ V (1)

And thus define the adjoint operator T ∗ : C (Ω)∗ → L2(Ω).
Hence, for any f ∈ L2(Ω)

(T ∗(δX ), f )L2(Ω) = δX [Tf ]

= vf (X )

= a(u, vf )

= (u, f )L2(Ω)

Thus u = T ∗(δX ).



Proof

Now let ψ ∈ C∞0 (Ω) and find v ∈ H1
0 (Ω) such that κ∆v −σv = ψ.

By elliptic regularity, v is smooth, we will only require v ∈ H4(Ω).

∫
Ω

∆uψ =

∫
Ω
u∆ψ

=

∫
Ω
u[κ∆2v − σ∆v ]

= (T ∗δX , κ∆2v − σ∆v)

= δX [v ]

= v(x)



Proof

=⇒
∣∣∣∣∫

Ω
∆uψ

∣∣∣∣ ≤ ‖v‖∞
≤ C (Ω, p)‖ψ‖W 1,p(Ω)∗ for p ∈ (1, 2)

Where ψ ∈W 1,p(Ω)∗ is given by

ψ[w ] =

∫
Ω
ψw .

C∞0 (Ω) is dense in W 1,p(Ω)∗ thus ∆u ∈W 1,p(Ω).
By elliptic regularity u ∈W 3,p(Ω), hence u ∈ C 1,γ(Ω̄).



Application - Biomembrane Deformation

If we consider an elastic membrane which is deformed by point
forces we are lead to the energy functional:

E(u,X±) =
∫

Ω
κ
2 |∆u|2 + σ

2 |∇u|
2 + α

∑N+

j=1 u(X+
j )− β

∑N−

j=1 u(X−j )

�
�
�
��

Elastic Energy

A
A
A
AU

Coupling Energy

I Energy minimisation produces our fourth order equation.

I Gradient flow produces particle movement ˙X±j ∝ ∇u(X±j ).



Further Work - Eighth Order Equations

Another model for biomembrane deformation considers the
coupling energy:

EC (u,X±) = α

N+∑
j=1

Du(X+
j )− β

N−∑
j=1

Du(X−j ).

We add higher order terms to the elastic energy and arrive at an
equation of the form:

κ8∆4u − κ6∆3u + κ∆2u − σ∆u = DδX
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