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1 Kelvin’s Circulation Theorem

Theorem 1. In an ideal flow with a conservative force, let C(s, t) be a closed material contour.
Then the circulation

Γ =

∮
C(s,t)

u · dx =

∫
S
ω · dS, (1.1)

is independent of time.

This is an important theorem in fluid dynamics. Note that this only holds for non-viscous fluids.

2 Complex Potential

If a flow is 2D, incompressible and irrotational then the velocity field can be represented as

u =
∂φ

∂x
=
∂ψ

∂y
, v =

∂φ

∂y
= −∂ψ

∂x
, (2.1)

where φ is the velocity potential and ψ is the streamfunction. These are the Cauchy-Riemann
equation, which in Complex Analysis implies there is an analytic function called the complex
potential,

χ = φ+ iψ, (2.2)

which is a function of z = x + iy, then ∂zχ = u − iv is the complex velocity. Examples of the
complex potential in the lecture notes include uniform flow at an angle, stagnation point and
point vortex.

3 Irrotational Flow Around a Cylinder ***2013/14 Problem***

We are given that the complex potential of uniform flow of speed U0 in the x-direction around
a cylinder of radius a is

χ = U0

(
z +

a2

z

)
. (3.1)

This comes from something called Milne-Thomson’s circle Theorem, (Acheson §4.4, §4.5). If the
cylinder has circulation Γ then

χ = U0

(
z +

a2

z

)
− iΓ

2π
log z, (3.2)

(see complex potential of point vortex). To find velocities ur and uθ we use the polar form
z = reiθ to get

χ = U0

(
reiθ +

a2e−iθ

r

)
− iΓ

2π
(log r + iθ) ,

and using the identity eiθ = cos θ + i sin θ,

χ = U0

(
r +

a2

r

)
cos θ +

Γθ

2π︸ ︷︷ ︸
φ

+i

(
U0

(
r − a2

r

)
sin θ − Γ

2π
log r

)
︸ ︷︷ ︸

ψ

. (3.3)



Then using

ur =
1

r

∂ψ

∂θ
, uθ = −∂ψ

∂r
or ur =

∂φ

∂r
, uθ =

1

r

∂φ

∂θ
,

we get

ur = U0

(
1− a2

r2

)
cos θ, uθ = −U0

(
1 +

a2

r2

)
sin θ +

Γ

2πr
. (3.4)

Example 1. Rankine Vortex in a strain field
Consider a vortex with vorticity which has only z-component, ω = (0, 0, ωz), and which is uni-
formly distributed in a circle of radius R:

ωz = Ω = const for r2 = x2 + y2 < R2, and ωz = 0 for r2 ≥ R2.

The flow with such vorticity and with velocity field uR which decays at infinity (uR → 0 for
r →∞) is called a Rankine vortex; in this case the vortex radius R is constant.

In this example we will consider a case when the velocity field does not decay at infinity. Namely,
we will consider a flow with velocity

u = uR + uσ (3.5)

where uR is the Rankine vortex and uσ is a uniform strain field of the form

uσ = (−σx,−σy, 2σz). (3.6)

In this case the vortex radius R and the vorticity will be time dependent, R = R(t),Ω = Ω(t),
because of the vortex stretching produced by the strain.

1. Prove that the Rankine vortex is a solution to the Euler equation for an inviscid fluid.
Find the incompressible velocity field uR of the Rankine vortex.

2. Prove that the uniform strain field uσ given by expression (3.6) satisfies the ideal flow
equations.



3. Now consider the combination of the Rankine vortex and the strain field as in expression
(3.5) and prove that it satisfies the ideal flow equations. Find dependencies R(t) and Ω(t).
Interpret your results in terms of the vortex stretching mechanism.

4. The Burgers vortex is a generalisation of the considered solution to viscous flows. This
solution is stationary because the vortex stretching is stabilised by the vorticity diffusion
due to viscosity. The stain field in this vortex is the same as in (3.6), but the vorticity
profile now is

ωz = Ω0e
−λr2

where Ω0 = const. Find λ in terms of σ and ν.

Example 2. Vortex Lift

Some aeroplanes have sharply swept leading edge of the wing which generate vortices on the the
upper sides of both wings. Examples include a delta winged F-106 military jet and a commercial
one (no longer in use) - Concorde. Each vortex is trapped by the air flow and remains fixed
to the upper surface of the wing. The major advantage of vortex lift is that it allows angles of
attack that would stall a normal wing. The vortices also produce high drag which can help to
slow down the aircraft. This is why the vortex lift is used during (high angle of attack) landing
of most supersonic jets.

In this problem we will aim to understand how vortices produce lift. For this, we will consider
a simplified situation in which an infinite straight vortex with circulation Γ is placed parallel to
an infinite flat plate (an idealised wing). For simplicity, we will assume that the flow is inviscid
and incompressible.

1. Formulate the free-slip boundary conditions on the plate.



2. Find the velocity field produced by the vortex of circulation Γ on the top surface of the
plate. (Hint: use the vortex image method to satisfy the free-slip boundary conditions.)

3. Find the pressure distribution on the top surface of the plate assuming that the surrounding
pressure (i.e. far away from the vortex) is atmospheric, p0.

4. Assuming that the pressure at the lower side of the plate is uniform and equal to the
atmospheric value, find the total force on the plate per unit length in the vortex direction.

Example 3. Water Clock

A water clock is an axisymmetric vessel with a small exit hole of radius a in the bottom. Find
the vessel shape for which the water level falls equal heights in equal intervals of time. (Hint:
The hole is so small that the water passes through it very slowly and its velocity can be found
from Bernoulli’s theorem for stationary flows).


