1 Navier Stokes

 $S(\mathbf{u} + \nabla \cdot [F(\mathbf{u}) - G(\mathbf{u} \cdot \nabla \mathbf{u})] = s(\mathbf{u}) \quad \text{in } \Omega = [0, t_{real}]$ (1)

where $\Omega \in \mathcal{C}$ is $(p, p \mathbf{v}, p_{\ell})$ is the unknown vector p is closely $p \mathbf{v}$ monotonic and p_{ℓ} total energy. The velocity is $\mathbf{v} = (r_{\ell}, v_{\ell})$, p pressure, and Tbecomes time. The converges v_{ℓ} diffusion fluxes are

with $v_{d,1} = av_{i,i} + mv_{d,1}$ and $v_{d,2} = av_{i,2} + av_{i,i}$. The viscous stars franci x is $v = \begin{bmatrix} (2y + \lambda)^i i_i w - \lambda^i l_i w & \varphi(\partial_i w + \partial_i w) \\ \rho(ir_i w - \partial_i w) & \lambda \partial_i w + (2y - \lambda)^i l_i w \end{bmatrix}$ (9)

 κ is they mixteen ductivity coefficient and the term $\kappa \nabla x$ represents the best flux

http://dune-project.org/

1 Spactial Discretization

$$R(n_{K}, \varphi) = \int_{\mathbb{R}} (f(n_{K}), \nabla \varphi + s_{E}(n_{K})\varphi) + \int_{\partial X} \widetilde{f}(u) \cdot n_{K}\varphi$$

$$+ \int_{\mathbb{R}} (A(n_{K})\nabla n_{K}, \nabla \varphi - s_{F}(n_{K})\varphi) \cdot \int_{\partial X} \widetilde{A}(u) \cdot n_{K}\varphi$$

$$+ \int_{A(n_{K})_{+}} \left(\frac{1}{n} + \beta_{1}A_{e} \cdot n_{K}\right) A(n_{K})_{1}u_{1}, \quad \nabla \varphi$$

$$+ \int_{A(n_{K})_{+}} \left(\frac{1}{n} + \beta_{1}A_{e} \cdot n_{K}\right) A(n_{K})_{1}u_{1}, \quad \nabla \varphi$$

$$+ \int_{A(n_{K})_{+}} \left(\frac{1}{n} \cdot s_{1}^{*}A(n_{K}) \cdot \nabla \varphi - s_{1}^{*}A(n_{K}) \cdot s_{2}^{*}\varphi \right) + B_{1}(n_{K}, \varphi)$$

$$+ \int_{A(n_{K})_{+}} \left(\frac{1}{n} \cdot s_{1}^{*}A(n_{K}) \cdot s_{2}^{*}\varphi - s_{1}^{*}A(n_{K}) \cdot s_{2}^{*}\varphi \right) + B_{1}(n_{K}, \varphi)$$

$$+ \int_{A(n_{K})_{+}} \left(\frac{1}{n} \cdot s_{1}^{*}A(n_{K}) \cdot s_{2}^{*}\varphi - s_{1}^{*}A(n_{K}) \cdot s_{2}^{*}\varphi \right) + \int_{A(n_{K})_{+}} \left(\frac{1}{n} \cdot s_{2}^{*}A(n_{K}) \cdot s_{2}^{*}\varphi - s_{1}^{*}A(n_{K}) \cdot s_{2}^{*}\varphi \right) + \int_{A(n_{K})_{+}} \widetilde{A}(n_{K}) \cdot s_{2}^{*}\varphi - s_{1}^{*}\varphi - s_{1$$

Warwick/NAIS Dune School

20-24 June 2011

2 Temporal Discretization

	Monday	Tuesday	Wednesday	Thursday	Friday
9:00-10:30	registration	Introduction to Dune	Introduction to Dune- Fem	Finite Element Methods	Discontinuous Galerkin Methods
10:30-11:00	Getting	coffee	coffee	coffee	coffee
11:00-12:30		Introduction to Dune	Introduction to Dune- Fem	Finite Element Methods	Discontinuous Galerkin Methods
12:30-14:00	lunch in street	lunch in street	lunch in street	lunch break	lunch in street
14:00-15:30	Generic programming in C++	Parallelization in Dune	Adaptive finite volume methods	Finite Elements on Surfaces	Further aspects of Dune
15:30-16:00	tea	tea	tea	tea	
16:00-18:00	Generic programming in C++	Parallelization in Dune	Adaptive finite volume methods	Finite Elements on Surfaces	

