
THE SEIFERT-VAN KAMPEN THEOREM

ALESSANDRO BIGAZZI

Abstract. We propose a detailed self-contained survey of the Seifert-
Van Kampen’s theorem, along with a brief summary of topological and
algebraic preliminaries, culminating in a proof accesible to the non-
expert reader. The last section contains some notable computations.

1. Topological preliminaries.

We recall here the main topological concepts needed for the next sections.
A topological space is a pair (X, τX) where X is a set and τX a topology on

X; when no danger of confusion may arise (namely, always) we will forget to
specify the underlying topology of X. Elements of τX are called open sets;
we say C ⊆ X is a closed set if X \C ∈ τX . A set U ⊆ X is a neighborhood
of a point x ∈ X if there is a A ∈ τX such that x ∈ A ⊆ U ; the family Ux

of all the neighborhoods of x in X is the filter of neighborhoods.

Definition 1.1. A basis for the topology τX on X is a subfamily BX of τX
such that for each A ∈ τX there exist Bi ∈ BX such that A is the union of
the Bi.

Definition 1.2. Given x ∈ X, a basis of neighborhoods for x in X is a
subfamily Vx of Ux such that, for each U ∈ Ux there exists a V ∈ Vx such
that V ⊆ U .

The euclidean topology over Rn is the topology having basis En = {B(x, ρ) |
ρ > 0, x ∈ Rn}. Unless differently stated, when dealing with subsets of
euclidean spaces, we henceforth assume that they are endowed with the
euclidean topology.

Given a topological space X, a family {Ui}i∈I ⊆ τX is an open cover of
X if the union of all the Ui is the whole X.

Definition 1.3. A topological space X is connected if it can not be written
as union of two disjoint open subsets.

The maximal connected sets in X are called connected components and
form a partition of X.

Definition 1.4. A topological space X is quasi-compact if every open cover
of X has a finite open sub-covering.

Definition 1.5. Let X be a topological space.Then X is said to be
1
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• T0 (or Kolmogoroff ) if for each pair of distinct points x, y ∈ X there
are U ∈ Ux and V ∈ Uy such that y /∈ U or x /∈ V ;
• T1 (or Fréchet) if for each pair of distinct points x, y ∈ X there are
U ∈ Ux and V ∈ Uy such that x /∈ V and y /∈ U ;
• T2 (or Hausdorff ) if for each pair of distinct points x, y ∈ X there
are U ∈ Ux and V ∈ Uy such that U ∩ V = ∅.

Euclidean topology is Hausdorff (so a fortiori even Fréchet and Kolmogo-
roff).

Recall that, given a function between topological spaces
f : (X, τX) −→ (Y, τY )

we say that f is continuous if f−1(A) ∈ τX for each A ∈ τY . Compactness
and connectedness is preserved under continuous maps. A continuous map
which is invertible and whose inverse is continuous is a homeomorphism.
We will often identify topological spaces up to homeomorphism.

Let I be the real closed interval
I = {t ∈ R | 0 ≤ t ≤ 1}

Definition 1.6. A topological space X is path connected if, given any
x0, x1 ∈ X, there is a continuous map f : I −→ X such that f(0) = x0,
f(1) = x1. This map is called path (or arc) joining x0 to x1.

Paths can be linked together in the following way. If f : I −→ X is a
path joining x0 to x1 and g : I −→ X is a path joining x0 to x2, then we
can define h : I −→ X as follows:

h(t) =
{
f(1− 2t) 0 ≤ t ≤ 1/2
g(2t− 1) 1/2 ≤ t ≤ 1

Clearly h is a well defined path in X joining x1 to x2.

Remark 1.7. If a topological space X has a point x0 which can be joint
to every other point x ∈ X via a continuous path, then X is clearly parh
connected. If X has this special property, sometimes it is called path star-
shaped with respect to x0. Not every path connected space is path star-
shaped.

Remark 1.8. Recall that a continuous map sends connected sets to connected
sets; hence, if f : I −→ X is a path in X, then f(I) is a connected set which
must belong to the connected component of X containing f(0) e f(1). It
follows readily that X must have only one connected component: namely, a
path connected topological space is connected.

In general, the converse is not true. Let
P = {(t, sin(1/t)) | 0 < t ≤ 1} ⊆ R2

and Y0 = {(0, y) | 0 ≤ y ≤ 1}, then P ∪ Y0 is the closure of the connected
set P , so it is connected. Yet is can not be path connected as points in Y0
can not be reached by continuous paths.
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Definition 1.9. A topological space X is locally path connected if, for each
x0 ∈ X, there exists a basis of neighborhoods V(x0) for x0 such that each
U ∈ V(x0) is an open path connected set.

Remark 1.10. Locally path connectedness is much weaker than path con-
nectedness: let us consider the sets

X0 = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, y = 0}
Y0 = {(x, y) ∈ R2 | x = 0, 0 ≤ y ≤ 1}
Yn = {(x, y) ∈ R2 | x = 1/n, 0 ≤ y ≤ 1}

and let

X = (X0 ∪ Y0) ∪
( ∞⋃
n=2

Yn

)
It is not difficult to picture that X is path connected. However X it is not
locally path connected, as points y0 ∈ Y0\{(0, 0)} do not admit a basis of
neighborhoods made of path connected open sets.

Theorem 1.11. A topological space X is locally path connected if and only
if its topology has a basis of open path connected sets.

Definition 1.12. Two continuous maps f0, f1 : X −→ Y are called ho-
motopic if there exists a continuous map F : X × I −→ Y such that
F (x, 0) = f0(x) and F (x, 1) = f1(x) for each x ∈ X. The map F is
called homotopy between f0 and f1.If, moreover, given X0 ⊆ X,Y0 ⊆ Y
we have f0(X0) ⊆ Y0, f1(X0) ⊆ Y0 and F (X0×I) ⊆ Y0, therefore F is called
homotopy between f0 and f1 relative to X0, Y0.

Proposition 1.13. Homotopy of continuous maps is an equivalence relation
and it is well behaved with respect to composition of continuous functions.

Remark 1.14. Sometimes we will write f0 ∼ f1 to mean that f0 is homotopic
to f1. Relative homotopy is either an equivalence relation.

Definition 1.15. We say that two topological spaces X,Y have the same
homotopy type (or that they are homotopic) if there exist two maps f :
X −→ Y and g : Y −→ X such that f ◦ g ∼ idY and g ◦ f ∼ idX .

We will write X ∼ Y to indicate that X and Y have the same homotopy
type.

Proposition 1.16. Having the same homotopy type is an equivalence re-
lation.

Remark 1.17. The “set of all topological spaces” does not exists. It is a
(proper) class, but equivalences can still be defined in classes.

Definition 1.18. A topological space X is contractible if the identity map
on X is homotopic to a constant map.
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Theorem 1.19. X is contractible if and only if X has the same homotopy
type of a point.

Proposition 1.20. Contractible spaces are path connected.

We now concentrate on homotopy relations between paths in a topological
space X.

Suppose X is path connected; in this setting, the notion of paths inside
X is meaningful. Recall that two paths f, g : I −→ X linking respectively
x0 to x1 and x1 to x2 can be linked together via

fg(t) :=
{
f(2t) 0 ≤ t ≤ 1/2
g(2t− 1) 1/2 ≤ t ≤ 1

which is a path joining x0 a x2. Since we are interested in base points, we
will formally say that two paths f, g : I −→ X such that f(0) = g(0) = x0
and f(1) = g(1) = x1 are homotopic if there exists an homotopy between f
and g relative to {0, 1} and {x0, x1} in the sense specified above.

Lemma 1.21. Let f, f1 : I −→ X be two paths joining x0 and x1 and let
g, g1 : I −→ X be two paths joining x1 to x2. If f ∼ f1 and g ∼ g1 therefore
fg ∼ f1g1.

Given a path f : I −→ X joining x0 to x1, let us define the reverse path
of f as the map

f−1 : I −→ X

t 7→ f(1− t)
which is a path in X joining x1 and x0.

Lemma 1.22. Let f0, f1 : I −→ X two paths joining the same points. If
f0 ∼ f1, then f−1

0 ∼ f−1
1 .

Lemma 1.23. Let f, g, h : I −→ X paths joining x0 to x1, x1 to x2 and x2
to x3 respectively. Therefore

(fg)h ∼ f(gh)

Let x0 ∈ X be a point. Define the constant path as
ex0 : I −→ X

t 7→ x0

Lemma 1.24. Let f : I −→ X a path joining x0 to x1. Therefore ex0f ∼
f ∼ fex1.

Lemma 1.25. Let f : I −→ X a path joining x0 to x1. Therefore ff−1 ∼
ex0 e f−1f ∼ ex1 .

Let us now consider a particular class of paths, called loops, which are
characterised by the property of having the same start and end points. We
will indicate with Ω(X,x0) the set of loops X having origin at x0.
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The above lemmas allow us to define a composition law inside Ω(X,x0),
given by (f, g) 7→ fg, the link of two loops. This operation is well behaved
with respect to homotopy of loops (namely, homotopy relative to the origin)
and it gives rise to a composition rule amongst the homotopy equivalence
classes:

[f ] ∗ [g] := [fg]
This operation is well defined, is associative and has an identity element
[ex0 ], with inverse given by

[f ]−1 = [f−1]

Hence we can give the following definition.

Definition 1.26. Let X be a path connected topological space. The set
Ω(X,x0) of loops inX with origin x0 modulo the equivalence relation of path
homotopy is a group with the above composition law ∗ and it is called first
homotopy group or fundamental group of X. It is denoted with π1(X,x0).

If X is path connected, the choice of the base point is not relevant.

Theorem 1.27. Let X be a path connected topological space and let x0, x1 ∈
X. Then π1(X,x0) and π1(X,x1) are isomorphic.

Corollary 1.28. If X is any topological space, its fundamental space is
unique, up to isomorphism, in each path connected component of X.

The construction made is functorial in the category of topological spaces.

Proposition 1.29. Let ϕ : X −→ Y be a continuous map such that ϕ(x0) =
y0. Therefore the map

ϕ∗ : π1(X,x0) −→ π1(Y, y0)
[f ] 7→ [ϕ ◦ f ]

is a group morphism. Moreover, if ψ : Y −→ Z is another continuous map
such that ψ(y0) = z0, then

(ψ ◦ ϕ)∗ = (ψ∗) ◦ (ϕ∗)

Remark 1.30. The above proposition shows that, if X and Y are homeo-
morphic, then π1(X,x0) ' π1(Y, y0) for a compatible choice of base-points.

Proposition 1.31. Let ϕ0, ϕ1 : X −→ Y two homotopic continuous maps.
Therefore there is an isomorphism λ# : π1(Y, ϕ0(x0)) −→ π1(Y, ϕ1(x0)) such
that (ϕ1)∗ = (λ#) ◦ (ϕ0)∗.

Corollary 1.32. If X are Y path connected topological spaces with the
same homotopy type, the corresponding fundamental groups are isomorphic.

Definition 1.33. A topological space with trivial fundamental group is
called simply connected.
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2. Free products and amalgamation.

Let {Gi}i∈I a collection (possibly infinite) of arbitrary groups and let

E =
⋃
i∈I

Gi

be the set of letters over Gi. The set E is often described as a choice of
an alphabet. We will denote asW (E) the set of words with respect to the
alphabet E, namely the set of arbitrary finite strings made of elements in
E; formally

W (E) = {a1a2 . . . an = w | a1, . . . , an ∈ E,n ∈ N}
The length of a word w ∈ W (E) of the above form is defined as lg(w) = n,
namely the number of letters of which w is made of. The empty word w0,
that is the word which does not contain any letter and acts like a blank
space, has formally zero length. It is natural to introduce a composition law
in W (E) by setting:

(w,w′) 7→ ww′

namely, operating a plain juxtaposition of the two original words, without
further changes. This law is clearly associative and has an identity element
(given by w0), which is however the only invertible word. Indeed, the ele-
ments of W (E) need to be selected with more care in order to extract some
significant information from W (E).

Let us say that w and w′ are equivalent words (w ≈ w′) if and only if w
can be turned into w′ by means of a finite number of elementary operations
of the following two kinds:

(1) removing an identity element ej ∈ Gj namely a1eja2 ≈ a1a2;
(2) replacing two consecutive elements belonging to the same group with

their internal product: namely if a1, a2 ∈ Gj and a = a1 · a2 ∈ Gj
then a1a2 ≈ a;

The relation ≈ defined above introduces an equivalence in W (E). It could
be verified, even if very tediously, that the juxtaposition operation is stable
under ≈ and indeed turns W (E)/≈ in a group, called free product of the
{Gj}j∈J . The free product is usually denoted as

∗
j∈J

Gj

or, if J = {1, . . . , n} is finite, as G1 ∗G2 ∗ . . . ∗Gn. Let us now explore some
properties of this newly introduced object.

Definition 2.1. A word w ∈W (E) of the form w = a1a2 . . . an is said to be
reduced if aj 6= ej for each j = 1, . . . , n and if no couple of adjacent letters
belong to the same group.

Note that length is a well defined function from the set of reduced words
R(E) to Z. Moreover, reduced words are a good choice for a system of
representatives for the free product.
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Lemma 2.2. In every equivalence class of W (E)/≈ lies exactly one reduced
word.

Proof. Assume w = a1 . . . an is a reduced word and let a ∈ E be a letter.
Therefore, the new word w′ = aw can fall in the following cases:

(1) if a is any identity element, then w′ ≈ w;
(2) if a is not an identity element and does not belong to Gj1 , the group

to which a1 belongs. In this case we get w′ = aa1 . . . an;
(3) if a is not an identity element, belongs to Gj1 as before, but a 6= a−1

1 .
In this case w′ = ba2 . . . an where b = a · a1 internally in Gj1 ;

(4) if a is not an identity element, but a = a−1
1 . Then w′ = a2 . . . an.

Given a ∈ E, let us define the operator Ta defined of the set of reduced words
R(E) in the following way: Ta(w) = aw. Then we extend T to arbitrary
reduced words w1 = a1 . . . an by setting Tw1 := Ta1 ◦ . . . ◦ Tan . Note that if
w0 is the empty word, then Tw(w0) is the same reduced word w. Moreover,
if z = xy is a reduced word that can be split as juxtaposition of two reduced
word, then

Tz = Tx ◦ Ty
Also, if e is an identity element, then Te is the identity over R(E). It follows
that if w1 ≈ w2, then Tw1 = Tw2as operators. But then let w ≈ w′ be two
reduced equivalent words. Hence

w = Tw(w0) = Tw′(w0) = w′

This proves that each equivalence class contains only one reduced word. �

Thus, the free product can be fully described by working on reduced
words. However, the group structure is heavily anabelian.

Theorem 2.3. If G is a free product of the {Gj}j∈J and J contains at least
two elements, then the centre Z(G) is trivial.

Proof. Let, by contradiction, w = a1 . . . an be the reduced representative
of a non trivial central class, with ai ∈ Gji for each i = 1, . . . , n. Since
G has at least two factors, there exists a /∈ Gj1 which is not an identity
element. Let g = aa−1

1 ; as w is central, we have that wg = gw, but this
would imply, after reducing the words, lg(wg) = n + 1 > n = lg(gw) and
this is a contradiction. �

Note, finally, that each Gj is canonically identified to a subgroup of ∗
j∈J

Gj :
it is mapped in the subgroup generated by the empty word and all the
elements of Gj . Hence, the free product has attached a canonical family of
monomorphisms ij : Gj ↪→ ∗

j∈J
Gj .

Now we come to the most important property.

Theorem 2.4. (Universal property of free product) Let {Gj}j∈J be
a collection of groups, G a group and {hj}j∈J a family of group morphisms
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hj : Gj −→ G. Then, there exists an unique group morphism

h : ∗
j∈J

Gj −→ G

such that the following diagram commutes for each j ∈ G:

Gj
hj

//

ij
��

G

∗
j∈J

Gj

h

>>

where ij is the canonical inclusion of Gj in the free product.

Proof. Note, on a first instance, that every function g : E −→ G can be
easily extended to a function g̃ : W (E) −→ G by splitting each word into
its letters:

g̃(a1 . . . an) := g(a1) · g(a2) · . . . · g(an)
In our situation, we can define the morphism h̃ : W (E) −→ G in the follow-
ing way:

h̃(a1 . . . an) = hj1(a1) · hj2(a2) · . . . · hjn(an)
for each word w = a1 . . . an ∈ W (E) with ak ∈ Gjk . Note that h̃ quotients
modulo ≈: indeed if ej ∈ Gj is an identity element, then h̃(ej) = hj(ej) =
eG := [w0] is the identity element of G; moreover, if ak, ak+1 ∈ G then
clearly

h̃(akak+1) = hjk(ak) · hjk(ak+1) = h(ak · ak+1)
as each hj is a group morphism. Hence, the morphism

h : ∗
j∈J

Gj −→ G

is clearly well defined. Furthermore, it is easy to see that h satisfies the
requested commutativity properties. Uniqueness is obvious by the fact that
h ◦ i = hj , since in this way h depends only on the hj . �

Definition 2.5. The group∗
j∈G

Gj is called free group if each factor Gj is an

infinite cyclic group (in particular, Gj ' Z).

Example 2.6. Z ∗ Z is a free group, while (Z/2) ∗ (Z/2) o Z ∗ (Z/4) are
not free groups. A free group has no relations on the generators, neither
between them.

Sometimes it can happen that, while the generators itself are kept free,
we want to impose conditions that allow the words to mix together in some
controlled way. This is the aim of this new construction.

Let {Gj}j∈J and {Fjk}(j,k)∈J2 be families of groups (assume Fjk = Fkj)
and suppose αjk : Fjk −→ Gj are group morphisms for each j, k ∈ J . We
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define the amalgamated product of the Gj with respect to the relations αjk
as the quotient group

Am(Gj ;αjk) = ∗
j∈J

Gj
/
N

where
N = 〈αjk(x)αkj(x)−1 | j, k ∈ J, x ∈ Fjk〉

is called amalgamation subgroup. There is a slight abuse of notation: αjk(x)
is not an element of the free product, but it is intended so via the canonical
inclusion ij . It is not difficult to prove that N is a normal subgroup of the
free product, so that the amalgamated product is well defined.

It is useful to see how the amalgamation works in the case of the free
products of two groups G1 ∗G2. Suppose α : F1 −→ G1 and β : F2 −→ G2
are group morphisms. Then

Am(Gi; {α, β}) =: G1 ∗Fi G2 = G1 ∗G2/N

where N = 〈α(x)β(y)−1 | x ∈ F1, y ∈ F2〉 is the amalgamation subgroup. In
practice, G1 ∗Fi G2 is obtained by G1 ∗G2 imposing the relation

α(x) = β(y)

for each x ∈ F1 and y ∈ F2, inside the free products. Heuristically, this
forces an identification between α(F1) and β(F2), element by element. This
is exactly what is needed to reconstruct the fundamental group of a space
from two separate parts: there must be an identification in the intersection,
which translates theoretically in the concept of amalgamation.

More formally, in the notable case in which G1, G2 and F1, F2 are finitely
generated and finitely presented, namely

G1 = 〈g1, . . . , gn | R1, . . . , Rs〉
G2 = 〈h1, . . . , hm | L1, . . . , Lt〉
F1 = 〈f1, . . . , fp | U1, . . . , Uw〉
F2 = 〈e1, . . . , eq | V1, . . . , Vz〉

we have that

G1 ∗Fi G2 = 〈(gi), (hi) | (Ri), (Li), α(fk)β(el)−1, k = 1, . . . , p, l = 1, . . . , q〉

Remark 2.7. The amalgamated product is either an universal construction.
In the category theory setting, it is group A such that the diagram⊔

(j,k)∈J2

Fjk ⇒
⊔
j∈J

Gj → A

is a coequaliser in the category of groupoids.
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3. Seifert-Van Kampen’s theorem.

We present two versions of Seifert-Van Kampen’s theorem, the general
statement and then a weaker version which is more useful in the applications.
Firstly, note that we will make use of the following Lemma.

Lemma 3.1. (Lebesgue number Lemma) Let (X, d) be a sequentially
compact metric space and let V = {Uα}α∈A an open cover of X. Then,
there exists a δ > 0, called Lebesgue number, such that for each Y ⊆ X
having smaller diameter than δ, there exists α0 ∈ A such that Y ⊆ Uα0.

Theorem 3.2. Let X be a path connected topological spaces, with an open
cover {Aj}j∈J such that

(1) the Aj are not disjoint;
(2) each Aj ∩Ak is path connected;
(3) each Ai ∩Aj ∩Ak is path connected.

Let x0 be a point in the intersection, namely x0 ∈ Aj for each j ∈ J and
let pj : Aj −→ X, pjk : Aj ∩ Ak −→ Aj and pkj : Aj ∩ Ak −→ Ak be,
for each j, k ∈ J the canonical open inclusions which induce the morphisms
p∗k : π1(Ak, x0) −→ π1(X,x0), p∗jk : π1(Aj ∩ Ak, x0) −→ π1(Aj , x0) and
p∗kj : π1(Aj ∩ Ak, x0) −→ π1(Ak, x0) on the fundamental groups. Therefore,
π1(x0, X) is the free product of the π1(Aj , x0) with amalgamation given by
the p∗jk and p∗kj. In symbols,

π1(X,x0) '
∗
k∈J

π1(Ak, x0)

N

where N = 〈p∗jk(x)p∗kj(x)−1 | j, k ∈ J, x ∈ π1(Aj ∩Ak, x0)〉.

Proof. The proof is based on the free product’s universal property, con-
structing the morphism

ϕ : ∗
k∈J

π1(Ak, x0) −→ π1(X,x0)

by means of the standard morphisms p∗k : π1(Ak, x0) −→ π1(X,x0), then
proving its surjectivity and showing finally that kerϕ is exactly the amal-
gamation subgroup N .

Let us prove in a first stage that ϕ is surjective. Let [α] ∈ π1(X,x0)
be a homotopy class on X, represented by a loop α : I −→ X with origin
x0. Now, the family {α−1(Aj)}j∈J is an open cover of the compact I, so
its Lebesgue number δ > 0 is well defined. Let N ∈ N a natural number
such that 1/N < δ (this exists as R is archimedean) and choose a partition
t0 = 0 < t1 < . . . < tN−1 < tN = 1 such that tk+1 − tk = 1/N . By the
Lebesgue number Lemma, we know that

α([tk, tk+1]) ⊆ Ak
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up to renumber the indices of the Ak in the open cover. Let us call αk+1 :
I −→ Ak, for each k = 0, . . . , N − 1, the paths

αk+1(s) = α(stk+1 + (1− s)tk)

which join α(tk) to α(tk+1). Then let us consider the path ρk : I −→
Ak ∩ Ak+1 joining x0 to α(tk), for each k = 1, . . . , N − 1; note that this
path exists as the 2-fold intersections are path connected. Therefore, we
can decompose, up to homotopy

α = α1 . . . αN ∼ α1ρ
−1
1 ρ1α2 . . . ρ

−1
N−1ρN−1αN

Note that α1ρ
−1
1 is a loop in A1 ∩ A2 with origin α(t0) = α(0) = x0, that

each ρiαi+1ρ
−1
i+1 is a loop in Ai ∩ Ai+1 with origin x0 and also that even

ρN−1αN is a loop in AN−1 ∩ AN with origin x0. Switching to homotopy
classes, we then are allowed to say that

[α] = [α1ρ
−1
1 ] ∗ [ρ1α2ρ

−1
2 ] ∗ . . . ∗ [ρN−1αN ]

where, for the sake of simplicity, we omit to indicate the inclusions on the
right side: each term should actually be

p∗k(p∗k,k+1([ρkαk+1ρ
−1
k+1])) ∈ π(X,x0)

but the point is that α can be decomposed as the juxtaposition of loops in
Ak ∩Ak+1.

Hence, the universal property of the free product impose that ϕ ◦ ik = p∗k
for each k ∈ J , where ik is the canonical injection of π1(Ak, x0) in the free
product of all of them. Then, if with a slight abuse of notation we identify
ik([x]) with the class [x] ∈ π1(Ak, x0), we have indeed proved that

ϕ([α1ρ
−1
1 ] ∗ . . . ∗ [ρN−1αN ]) = [α]

namely, ϕ is surjective.
The above construction shows clearly that, in general, ϕ has no hope to

be injective: indeed, the loop β = ρkαk+1ρ
−1
k+1 in Ak ∩Ak+1 can be regarded

either as a loop in Ak (via pk,k+1) or as a loop in Ak+1 (via pk+1,k). This leads
to an unavoidable ambiguity when the corresponding homotopy classes are
identified with their immersions in π1(X). In general, a class [β] ∈ π1(Aj ∩
Ak, x0) can be seen in Ak, identified via p∗jk([β]) ∈ π1(Ak, x0), and then in
X identified via p∗k(p∗jk([β])) ∈ π1(X,x0). But it can also be seen in Aj ,
firstly identified via p∗kj([β]) ∈ π1(Aj , x0) and then in X via p∗j (p∗kj([β])) ∈
π1(X,x0). Basically, we need to impose that these two identification are
the same or, in formal terms, that the following diagram commutes for each
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j, k ∈ J :
π1(Aj ∩Ak, x0)

p∗kj

vv

p∗jk

((

π1(Aj , x0)
p∗j

((

π1(Ak, x0)
p∗k

vv

π1(X,x0)

Let [α] ∈ π1(X,x0); we define a factorisation of [α] every formal prod-
uct [α1] ∗ . . . ∗ [αN ] such that [αj ] ∈ π1(Aj , x0) ' p∗j (π1(Aj , x0)) and α ∼
α1 . . . αN . In more precise terms, a factorisation of [α] is a word (not neces-
sarily a reduced word) which lies in the free product of the π1(Ak, x0) and
which is mapped to [α] via ϕ. Since ϕ is surjective, we have already seen that
each class in π1(X,x0) admits a non trivial factorisation. We will say that
two such factorisation of [α] are equivalent one can be turned in the other
by means of a finite number of the following moves (and their reverses):

(1) if [αi], [αi+1] ∈ π1(Aj , x0) are adjacent factors which lie in the same
group, replace [αi] ∗ [αi+1] with [αiαi+1];

(2) if αi is a loop in Aj ∩ Ak, identify p∗ki([αi]) ∈ π1(Ak, x0) with the
class p∗ik([αi]) in π1(Aj , x0).

Indeed, the first action does not change the class [α] which is factorised, while
the second one does not change the homomorphic image of the factorisation
to the quotient modulo N (this because N is normal). If then we show that
two factorisations of [α] are always equivalent, we have proved that N is the
kernel of ϕ, hence ∗

k∈J
π1(Ak, x0)

N
' π1(X,x0)

Suppose then we dispose of two factorisations of [α], namely:

[α1] ∗ . . . ∗ [αN ] = [α] = [α′1] ∗ . . . ∗ [α′M ]

By definition, we know that α1 . . . αN ∼ α ∼ α′1 . . . α′M , that is to say, there
exists a homotopy F taking α1 . . . αn into α′1 . . . α′M . Since {F−1(Aj)}j∈J is
an open over of the compact set I × I, its Lebesgue number δ′ > 0 is well
defined. Hence, there are two partitions 0 = s0 < s1 < . . . < sN = 1 and
0 = t0 < t1 < . . . < tM = 1 such that the rectangle Rij = [si−1, si]× [ti−1, ti]
is mapped, via F inside only one open set Aij of the cover. We ask moreover
that these rectangles are sent in the right places through the homotopy,
namely

F (t, 0)|[tk,tk+m] = αk(t) F (t, 1)|[tk,tk+p] = α′k(t)
with m, p some integers appropriately chosen.

Now, with this construction, as I × I is divided in rectangles, we can see
that F maps each open neighborhood of Rij in the corresponding open set
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Aij , respecting the factorisation as above; to avoid points in a 4-fold inter-
section of open (for instance, the common corners of the rectangles), we aim
to slightly deform each edge of Rij , in order that their extremes are not
in correspondence with the extremes of those of the upper and lower rows.
Actually, assuming that there are at least three rows of rectangles, this oper-
ation can be performed only on the intermediate sections, leaving unaltered
the exterior rows. Note that this operation is allowed and it does not pro-
voke any loss in the topological structure of the factorisation, because F is
continuous; let us call the newly adjusted rectangles R1, R2, . . . , RMN num-
bering them from left to right, starting from the bottom row and proceeding
towards the roof.

Let γr be the polygonal path separating the first r rectangles R1, . . . , Rr
from the remaining, obtained by passing over the adjoining edges; γr has
starting point in {0} × I and final point in {1} × I. In this way, γ0 is the
segment I × {0} and γMN is the segment I × {1}.

Note that F ◦ γr is a loop in X with origin in x0: this descends from
the properties of the homotopy F (recall that it preserves the base point).
Let v a vertex of Rij such that F (v) 6= x0; therefore F (v) belongs to the
intersection of at most three open sets of the given cover of X, thanks to the
effort put previously to avoid 4-fold intersections in the rectangles. As the
3-fold intersection if path connected, there exists a path gv : I −→ X such
that gv(0) = x0 and gv(1) = F (v), in a way that gv(t) remains contained,
for each t, in the intersection of at most three open sets of the given cover.
Therefore, we are allowed to insert the loop gvg−1

v inside each path passing
through F (v), obtaining then a factorisation of it by means of elements in
Ω(Aij , x0).

It is worth to notice that choosing different paths gv (and even of different
rectangles Rij) does not affect the equivalence of the different factorisations
obtained, as the paths F ◦ γr and F ◦ γr+1 have equivalent factorisations1.
Now we only have to choose appropriate loops such that the factorisation
associated to γ0 is equivalent to [α1] ∗ . . . ∗ [αN ] and that the factorisation
associated to γMN is equivalent to [α′1]∗ . . .∗ [α′M ]. As we pointed out above,
all the factorisations associated to the γr are equivalent, so event the two
chosen factorisations of [α] are equivalent.

This completes the proof. �

The simplest example of application is explained in the following.

Example 3.3. (Wedge sum) Let {(Xα, xα)}α∈T be a collection of pointed
topological spaces (path connected). We define the wedge sum of the Xα as

1It should be checked, at this point, that γr and γr+1 are homotopic but this is indeed
very cumbersome. One could however avoid the chore to write it explicitly noting that
I × I is simply connected, so each couple of paths are homotopic (if they have the same
base points).
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the quotient ∨
α∈T

Xα =
⊔
α∈T

Xα

/
∼

where ∼ is the equivalence relation which identifies all the base-points xα.
Let us assume that every xα is a deformation retract of some simply con-
nected open set Uα in Xα. Choose{

Aα = Xα

∨
β 6=α

Uβ
}
α∈T

as open cover of
∨
αXα and note that each Aα is a deformation retract of

Xα; moreover, the intersection of two or more Aα’s is the wedge sum of some
opens Uβ, which is still homotopic to a point. By Van Kampen’s theorem,
as no amalgamation is needed,

π1
( ∨
α∈T

Xα

)
' ∗

α∈T
π1(Xα)

In particular, if each Xj has the same homotopy type of S1 then

π1

( n∨
j=1

Xj

)
'

n∗
j=1

π1(Xj) '
n∗
j=1

Z

In the remarkable case n = 2, let X1 = S1
α ∨ (S1

β\{p}) and X2 = S1
β ∨

(S1
α\{q}). Since S1\{point} in contractible, we have π1(Xi) = π1(S1) ' Z

for i = 1, 2. The intersection is S1
α∨S1

β\{p, q} and it is simply connected. So
in perfect coherence with what said in the general case, π1(S1∨S1) ' Z ∗ Z.

Remark 3.4. Note that, in general, the hypothesis on the path-connectedness
of the 3-fold intersections can not be removed. Indeed, let be two triangles
with a common edge and let A,B,C be, respectively, the external vertices
and an interior point of the common edge. ClearlyX has the same homotopy
type of S1 ∨ S1, hence its fundamental group is isomorphic to Z ∗ Z. But if
we try to apply Van Kampen’s theorem with the open cover {Aα, Aβ, Aγ}
of X defined as Aα = X\{A}, Aβ = X\{B} and Aγ = X\{C} we see that

π1(X) ' π1(Aα) ∗ π1(Aβ) ∗ π1(Aγ)
N

Since π1(Aα) = π1(Aβ) = π1(Aγ) ' π1(S1) ' Z, we would find
π1(X) ' Z ∗ Z ∗ Z

as the 2-fold intersections are contractible and N is trivial. The contradic-
tion arises from the fact that the above open cover is not admissible for Van
Kampen’s theorem, as the 3-fold intersection is not path connected (it is
even disconnected).

For the above reason, Van Kampen’s theorem is most successfully applied
to topological spaces which admit an admissible open cover made of two sets
only. There is also a weaker version, which was precisely intended to apply
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the theorem to S1 (note that no open cover of S1 can satisfy the requirements
of Van Kampen’s theorem).

Theorem 3.5. Let X be a path connected topological space such that X =
X1 ∪ X2 with X1, X2 path connected open sets such that X1 ∩ X2 = A ∪
B, where A,B are non empty path connected sets. If A,B,X2 are simply
connected, then for each x0 ∈ X1 ∩X2,

π1(X,x0) ' π1(X1, x0) ∗ Z

4. Attachment of handles.

Let us formalise the notion of “attachment” with the following general
scheme. Let X,Y be two disjoint topological spaces, K ⊆ X a subset and
f : K −→ Y a continuous map. Let us endow X tY with the disjoint union
topology2 and let ∼ be the equivalence relation on XtY such that x ∼ f(x)
for every x ∈ K. Therefore, we define the new topological space

X ∪f Y := X t Y
∼

which is said to be obtained attaching X to Y by means of f . It can be
proved that this operation is well behaved under retraction.

Proposition 4.1. Let K ⊆ Z ⊆ X and Y be topological spaces. If Z is a
deformation retract of X, then Z ∪f Y is a deformation retract of X ∪f Y .

Define the n-cells in Rn as the following spaces:
Dn = {(x1, . . . , xn) ∈ Rn | x2

1 + . . .+ x2
n ≤ 1}

Sn−1 = {(x1, . . . , xn) ∈ Rn | x2
1 + . . .+ x2

n = 1}
en = Dn\Sn−1

The attachment of a n-cell to a topological space Y by means a continuous
map f : Sn−1 −→ Y has a fundamental group which is easily comparable to
the fundamental group of Y . To calculate the fundamental group of Y ∪fDn,
let us choose a point p, in the interior of Dn, and let us consider

X1 = (Y ∪f Dn)\{p}
X2 = en

Since Dn\{p} has the same homotopy type of Sn−1 and attachment com-
mutes with homotopy, one can deduce that X1 has the same homotopy type
of Y for n ≥ 3. Moreover, X1∩X2 = en\{p} has the same homotopy type of
Sn−1 so it is simply connected, as it is X2. Hence, Van Kampen’s theorem
states that

π1(Y ∪f Dn) ' π1(Y )
for n ≥ 3.

2Namely, the coarsest topology such that the inclusions X ↪→ X ∪ Y and Y ↪→ X ∪ Y
are continuous.
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Now, if n = 2 then X1 ∩ X2 = e2\{p} has the same homotopy type of
S1, which is not simply connected. Instead, X2 = e2 is still contractible.
Calling x any generator of π1(X1 ∩ X2) ' Z, the amalgamation relations
impose that N = 〈f∗(x)〉 where f∗ : π1(X1∩X2) −→ π1(Y ) is the morphism
induced by f : X1 ∩X2 −→ Y . Therefore, by Van Kampen’s theorem

π1(Y ∪f D2) ' π1(Y )
〈f∗(x) | x ∈ π1(S1)〉

Finally, in the case n = 1, we need to attach D1 = S1 to the space Y . It
is immediate to prove that

π1(Y ∪f D1) ' π1(Y ) ∗ Z
using the second version of Van Kampen’s theorem, choosing X1 = Y ∪
D1\{p} andX2 = D1\{q} with q 6= p; it is immediately found thatX1∩X2 =
D1\{p, q} = A ∪B with A and B simply connected open sets.

5. Exercises.

Exercise 5.1. (Infinite mug) Let C be the topological cylinder S1 ×R
with a handle attached (the handle can be thought as a segment of a curve).
Calculate π1(C).

Proof. We can proceed in three different ways.
(1) C retracts into S1 ∪M by deformation, where M is a segment of

curve. Up to homotopy, this can be thought as S1 ∨ S1, so
π1(C) ' π1(S1 ∨ S1) ' Z ∗ Z

(2) We can use the first Van Kampen’s theorem, choosingX1 as C minus
an interior point of M and X2 as an open neighborhood of the same
point, such that it is completely contained in M and X1 ∩X2 is the
union of two open curves A,B. All the hypotheses are satisfied, as
X2, A and B are simply connected, so

π1(C) = π1(X1) ∗ Z
Let us note that π1(X1) ' π1(S1×R) as M minus an interior point
can be retracted to the cylinder. Hence we find π1(C) ' Z ∗ Z.

(3) C can be viewed as S1 ×R with an 1-cell attached to it (the handle
of the mug). We then know that π1(S1 ×R) ' π1(S1) ∗ Z ' Z ∗ Z.

�

Exercise 5.2. Compute the fundamental groups of RP1 and RP2.

Proof. We know that RP1 is the Alexandroff compactification of R, hence
it is homeomorphic to S1. Therefore π1(RP1) ' π1(S1) ' Z.

Instead, RP2 can be seen as the quotient of a solid plane disk D2 modulo
the relation which identifies antipodal points on the boundary. We use the
first Van Kampen’s theorem to calculate its fundamental group. Let us
consider X1 = RP2\{(0, 0)} and X2 = RP2\{a} ' B(0, 1). Note that
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X1 ∩ X2 = B(0, 1)\{(0, 0)} is not simply connected, while X2 is. Now,
X1 is deformation retract of a circle S1 modulo the relation identifying
antipodal points; but S1 modulo this relation is homeomrphic to S1 itself,
so π1(X1) ' Z. X2 has trivial fundamental group. It remains only to
determine the amalgamation. Let f a nontrivial loop in X1 ∩ X2, namely
such that [f ] 6= [e], and let d any path joining a point of f to the boundary
a. Therefore, in terms of homotopy equivalence, inside X1 we see that

f ∼ daad−1 = dad−1dad−1 = x2

where x = d−1ad is a generator of π1(X1) ' Z. On the other hand, f is
trivial in X2 as it is simply connected. The amalgamation then is given by
the subgroup N = 〈x2〉 ⊆ 〈x〉 ' Z so that

π1(RP2) ' π1(X1) ∗ π1(X2)
N

= 〈x〉
〈x2〉

' Z
2Z

�

Exercise 5.3. Calculate the fundamental group of the Klein bottle K.

Proof. K is obtained identifying the edges a, b of a square two by two, in a
way that each couple of edge are indentified with opposing orientation. The
result is a non orientable surface which can not be immersed in R3 (it is
indeed homeomorphic to RP2#RP2).

Let us use the Van Kampen’s theorem to calculate π1(K): as before, we
choose X1 = K\{(0, 0)} and X2 = K\{a, b} where a, b are the edges of the
square. We see that X2 ' B(0, 1) so it is simply connected; instead X1
retracts to the boundary of K, which is exactly S1 ∨ S13. Hence, π1(X1) '
π1(S1 ∨ S1) ' Z ∗ Z and π1(X2) = 1. Let us find the amalgamation: pick
any non trivial loop f inside X1 ∩ X2 ' B(0, 1)\{(0, 0)} and let d path
joining f to the boundary of K as before. Therefore, on X1 the homotopy
of f can be read as

f ∼ daba−1bd−1 = (dad−1)(dbd−1)(da−1d−1)(dbd−1) =
= xyx−1y

where x = dad−1 and y = dbd−1 are two generators for π1(X1). Instead,
inside X2 the loop f becomes trivial thanks to simple connectedness. Even-
tually one finds

π1(K) ' 〈x, y〉
〈xyx−1y〉

�

Exercise 5.4. Calculate the fundamental group of R3 minus a circle C .

Proof. Up to a homeomorphism (more precisely, an affine transformation),
we may assume C = {(x, y, z) ∈ R3 | x2 + y2 = 1, z = 0}; we want to
use the second version of Van Kampen’s theorem. Let X1 = R3\D, where

3A good eye is necessary to see this identification.
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D = {(x, y, z) ∈ R3 | x2 + y2 ≤ 1, z = 0} is a closed disk, and let X2 =
{(x, y, z) ∈ R3 | x2 +y2 < 1, |z| < 1} is an open (solid) cylinder. Clearly, X2
is simply connected and the intersection X1 ∩X2 is the union of two similar
disjoint cylinders A,B, with the same centre, the same radius and cut in
half by D itself. Since even A are B both simply connected, the theorem
can be applied, to get

π1(R3\C ) ' π1(X1) ∗ Z
Now, X1 retracts by deformation to R3\p since D is contractible; hence,
being X1 simply connected, we finally conclude π1(R3\C ) ' Z.

Alternatively, one could use the first Van Kampen’s theorem by consid-
ering the open sets

X1 = int(C ×D), X2 = R3 \D
noting that X2 retracts by deformations onto S2, while X1 retracts by de-
formation onto a circle and X1 ∩X2 is simply connected. �

Exercise 5.5. Calculate the fundamental group of R3 minus a line r and
a circle C .

Proof. We need to distinguish various cases, depdending on the mutual po-
sitions of r and C .

(1) Suppose that r and C are disjoint and separated, namely assume
that r does not pass through C ; so there is a plane between r and
C . In this case, let P1 and P2 be the two half spaces meeting in
a small open neighborhood of this plane, respectively containing r
amd C , covering the entire R3 and then let X1 := P1\r and X2 :=
P2\C . The intersection X1∩X2 is therefore simply connected, being
only an infinite solid strip. Instead, π1(X1) = π1(R3\r) ' Z while
π1(X2) = π1(R3\C ) ' Z as before. By Van Kampen’s theorem, it
follows that

π1(R3\(r ∪ C )) ' Z ∗ Z
(2) Suppose that r is tangent to C ; we want to use the second Van

Kampen’s theorem. Let X1 = R3\(r ∪D) where D is a closed disk
havng C as boundary, and let X2 the open (solid) cylinder with basis
D; note that X2 is simply connected. And it clear that X1 ∩X2 is
the union of two open cylinders, disjoint in correspondence of D,
both simply connected. Therefore, it follows that

π1(R3\(r ∪ C )) ' π1(X1) ∗ Z
But X1 = R3\(r ∪ D) is deformation retract of R3\r, dato che D
è contrattile, quindi π1(X1) ' π1(R3\{r}) ' Z. Adding up every-
thing, proves that π1(R3\{r ∪ C }) ' Z ∗ Z.

(3) Suppose that r and C are disjoint, but not separated; hence, r pass
through C . This is surprisingly the simplest case, and does not re-
quire any application of Van Kampen. Up to topological equivalence



THE SEIFERT-VAN KAMPEN THEOREM 19

(translating and rotating C and r), note that R3\(r∪C ) can be ob-
tained rotating the punctured open half plane {(x, y, z) ∈ R3 | z =
0, x > 0}\{p = (1, 0, 0)} = Y . In other words, R3\r ∪ C = S1 × Y ,
so

π1(R3\{r ∪ C }) = π1(S1 × Y ) ' Z× π1(Y )
But Y is homeomorphic to the punctured (whole) plane, so π1(Y ) =
π1(R2\{p}) ' Z, and finally π1(R3\(r ∪ C ) ' Z× Z.

(4) Suppose finally that r is secant to C , so it intersects C in two (dis-
tinct) points. Up to homotopies and retractions, r ∪ C can then be
seen as a wedge sum S1 ∨ S1 together with a line r passing only by
the tangency point. For the sake of simplicity, let us call α the right
circle and β the left circle (respect to a fixed, but absolutely arbi-
trary, reference). In order to use the second version of Van Kampen’s
theorem, let us define X1 = R3\(r ∪ β ∪Dα) where Dα is a closed
disk having α as boundary, and let X2 be an open (solid) cylinder
with basis Dα. Therefore, X2 is simply connected, while X1 ∩X2 is
union of two (solid) cylinders, so it is simply connected. It follows
that

π1(R3\{r ∪ C }) ' π1(X1) ∗ Z
But since Dα is contractible, X1 is a deformation retract of R3\(r∪
α). We have already studied this configuration, as it consists of a
circle and a tangent line; hence quindi π1(X1) ' Z ∗ Z. Putting
everything together,

π1(R3\(r ∪ C )) ' Z ∗ Z ∗ Z
�

Exercise 5.6. Calculate the fundamental group of R3\(r ∪ s), where r 6= s
are two distinct space lines.

Proof. Two cases need to be addressed separately.
(1) Suppose r and s are skew or parallel. In this setting, let simply

X1, X2 be, respectively, the two open half-spaces containing r and s
minus the lines itselves; we can apply Van Kampen’s theorem. The
intersection X1 ∩X2 is simply connected, so there is no amalgama-
tion. Therefore

π1(R3\(r ∪ s)) ' π1(R3\r) ∗ π1(R3\s) ' Z ∗ Z
(2) Suppose r and s are secant in a point. Up to homeomorphism, we

can assume r = {y = z = 0} and s = {x = z = 0} and with some
efforts it can be seen that R3\(r ∪ s) is a deformation retract of
S2\{4 points}. Moreover, S2\{4 points} is a deformation retract
of S1 ∨ S1 ∨ S1, whose fundamental group is Z ∗ Z ∗ Z. In general,
X = S2\{p1, . . . , pn} with pi distinct points on S2 is a deformation
retract of the wedge sum of n− 1 circles.

�
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Exercise 5.7. Calculate the fundamental group of R3 minus two circles
C1,C2.

Proof. We need to consider various cases.
(1) Suppose the two circles are distinct and separated; therefore we can

choose two half spaces P1, P2 containing C1 and C2 respectively and
such that P1 ∩ P2 is a solid strip. Then define X1 := P1\C1 e X2 :=
P2\C2; clearly X1 ∩ X2 = P1 ∩ P2 is simply connected, so by Van
Kampen’s theorem:

π1(R3\(C1 ∪ C2)) ' π1(R3\C1) ∗ π1(R3\C2) ' Z ∗ Z
(2) Suppose that C1 ∪ C2 ' S1 ∨ S1, namely the two circles are tangent

in a point; let us use the second Van Kampen’s theorem. Let X1 =
R3\(C1 ∪D2) where D2 is a closed disk having C2 as boundary, and
let X2 be the open (solid) cylinder with basis D2. Then clearly X2 is
simply connected and the intersection X1 ∩X2 is union of two open
(solid) cylinders disjoint in correspondence of D2. It follows that
π1(R3\(C1,C2)) ' π1(X1) ∗ Z. Now, since D2 is contractible, X1
retracts by deformation on R3\C1, hence π1(X1) ' Z. Therefore,

π1(R3\(C1 ∪ C2)) ' Z ∗ Z
(3) Let us suppose the two circles are secant, namely they intersect

in two different points; for each i = 1, 2 let us call Di the closed
disk having Ci as boundary and let X1 = R3\(C1 ∪ C2 ∪ (D2\D1)),
and X2 = (−1, 1) × (D2\D1), namely a kind of half-moon shaped
cylinder. Then it is clear that X2 is simply connected and X1 ∩X2
is the union of two simply connected pieces. Hence by the second
Van Kampen’s theorem,

π1(R3\(C1 ∪ C2)) ' π1(X1) ∗ Z
Now it is easy to see that C1∪C2∪D2\D1 retracts by deformation on
S1∨S1, sinceD2\D1 is contractible; therefore π1(X1) ' π1(R3\(S1∨
S1)) ' Z ∗ Z. Putting everything together, we get

π1(R3\(C1 ∪ C2)) ' Z ∗ Z ∗ Z
(4) Suppose, finally, that C1 and C2 are chained (or linked) in the sense

that C1 does not intersect C2 but passes through the disk having it
as boundary; up to homeomorphism we can assume C1 = {x2 +z2 =
1, y = 0} and C2 = {(x− 1)2 + y2 = 1, z = 0}. For each i = 1, 2, call
Di the open disk having Ci as boundary and let us define

X1 := int(C1 × (D∗1))
where D∗1 is D1 with the centre removed. Clearly X1 is an open
(solid) torus with the circle C2 “carved” from the interior. Moreover,
choose

X2 = R2 \D1 ∪ C2
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Hence, X1∩X2 is a solid torus with a circular hole inside and with a
whole slice removed. So it retracts by deformation to the topological
finite cylinder S1× I (this can be seen in two steps: first, we retract
the interior of the torus to its boundary, as the central points have
been removed; second, we note that this amounts to a surface torus
without C1 - essentially, the torus is not closed anymore - and this is
actually homeomorphic to the cylinder). By Van Kampen’s theorem,
we finally get

π1(R3\(C1 ∪ C2)) ' π1(X1) ∗ π1(X2)
N

Now, X2 retracts by deformation on R3\C2 (by contracting D1 to
its centre, which belongs to C2) so has fundamental group isomor-
phic to Z := 〈β〉; moreover X1 retracts by deformation on Z× Z :=
〈δ〉 × 〈α〉, so it only remains to determine the amalgamation; recall
that π1(X1 ∩ X2) ' Z = 〈γ〉. Therefore, γ will look, inside X1, as
homotopy equivalento to the longitudinal loop α, the second gener-
ating loop of the torus, while inside X2 it will look as the only non
trivial generator β of π1(X2) ' Z, as in can not be trivial. We can
then conclude that

π1(R3\(C1 ∪ C2)) ' 〈δ〉 × 〈α〉 ∗ 〈β〉
〈αβ−1〉

=

= 〈δ〉 × 〈α, β | αβ−1 = 1〉 '
' 〈δ〉 × 〈z〉 ' Z× Z

�


