THE STABLE LUROTH PROBLEM: A SURVEY ON
RECENT TECHNIQUES AND EXAMPLES.

ALESSANDRO BIGAZZI

ABSTRACT. We survey the recent specialisation method by Voisin and,
by means of Colliot-Thélene and Pirutka’s generalisation, we show many
notable applications in the stable Liiroth problem. Furthermore, we
analyse the current results in the stable Liiroth problem for conic fibra-
tions, also attempting to present some possible new questions.

1. INTRODUCTION

One of the most fascinating areas of algebraic geometry is the birational
classification of varieties, namely grouping together algebraic varieties in
equivalence classes up to birational transformations. This has some sig-
nificant limitations. For instance, one could start subdividing the class of
algebraic varieties in rational and irrational ones. Even if this were possi-
ble in general, the amount of different behaviours in the class of irrational
varieties is so huge to make this simple classification almost useless. The
same problem, namely the excessive vastity of birational models, appears
studying classification up to birational equivalence.

For these reasons, a finer classification is needed and some notions of
“nearly rational” varieties have been introduced since the late XIX century.
We report here the basic definitions.

Definition 1.1. A projective variety X defined over a field k is called

(1) rational if there is a birational map X --» P} for some n > 0.

(2) stably rational if X x P} is rational;

(3) wnirational if there is a dominant rational map P}* --» X;

(4) rationally connected if, for every algebraically closed field extension
L/k and for each p,q € X (L), namely there is a morphism P} — X
such that 0 — p and oo — gq.

There are some easily seen implications (1) = (2) = (3) = (4), which
however do not admit reverse statements in general. To distinguish the two
classes of rational and unirational varieties has been one of the most chal-
lenging problems in algebraic geometry until the second half of XX century,
and still remains today a very fertile research field. Moreover, the notions
depends heavily on the ground field, with the classical case (k algebraically
closed with char k = 0) somehow better understood than the positive char-
acteristic one.
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However, all the definitions above are equivalent in low dimension, at least
over the field £k = C of complex numbers. We have, indeed, the following
result.

Theorem 1.2. (Liiroth) Let k be a field such that chark # 2. Then every
subfield of k(t) is a purely transcendetal field extension of k.

In geometric terms, the Liiroth Theorem proves that every unirational
curve is rational. The general version, which aims to decide whether or
not unirational and rational varieties are equivalent, takes the name of gen-
eralised Liiroth problem, or generalised stable Liiroth problem if the atten-
tion is restricted to differences between unirational and stably rational vari-
eties. A positive answer is also known for projective surfaces, thanks to the
Castelnuovo-Enriques characterisation.

Theorem 1.3. (Castelnuovo) Let X be a projective surface over an alge-
braically closed field k such that chark = 0. Therefore X is rational if and
only if dim H (X, Ox) = 0 = dim H*(X.w$?).

In fact, if X is unirational, then there is a dominant map P% --» X. Blow-
ing up P? repeatedly, we can extend this map to a morphism Blow(P%) —
X and then we can bound dim H'(X, ) and dim H°(X,w$?) by means of
the corresponding quantities in Blow(P%). But the blow-up of the projective
plane is rational, hence by Castelnuovo’s Theorem, X is rational too.

It was an open question to decide whether or not the same result held in
dimension at least 3, and in general the Liiroth problems become non-trivial
in higher dimension. The first examples of unirational non-rational 3-folds
were discovered during the Seventies by Emile Artin and David Mumford.
Subsequently, more examples have been provided; here we shall mention
some notable ones.

e Smooth cubic 3-folds in P‘é are all unirational, but they can’t be
rational. This has been proved by Clemens and Griffiths using the
method of intermediate jacobians. Stable rationality of this class
of varieties is still unknown; the class of cubics seems currently the
most difficult to approach for this kind of problems.

e Artin and Mumford constructed an unirational variety which is not
stably rational (and a fortiori ratione, not rational): it is a quartic,
3-dimensional variety X which is a double cover X — P?é ram-
ified along a special cubic surface with 10 nodes. The example is
illustrated further in details.

e The very general quartic double solid is unirational but not stably
rational. This result is due to Claire Voisin and comes from an
application of the specialisation method.

e It is not known if every quartic 3-fold in P‘é is unirational, but Alena
Pirtuka and Jean-Louis Colliot-Théléne proved that the very general
member of this family is not stably rational (see further for details).



THE STABLE LUROTH PROBLEM. 3

e Conic fibrations, and more generally, quadric fibrations are a partic-
ular class of 3-folds, some of which are unirational. Imposing some
reducibility conditions on the discriminant locus, it can be proved
that they are not stably rational. Some details and techniques are
discussed further.

Stable irrationality is a subtle condition to detect. Indeed, most of the
birational invariants that have been used in various contexts are trivial or
very difficult to compute in many examples. To address the difficulties, the
idea is to study degenerations of the variety X in which we are interested,
namely to realise X as the special fibre X of a suitable flat morphism

X—B

where B is a smooth curve. Assume that the generic fibre X; has a particular
property PP, which behaves well under specialisation; then if X is not “too
singular”, the property P extends to each smooth model X ~;. X.

Of course, the property P has to be wisely chosen in a way that P can be
both “transferred” from general fibres to the special fibre, and have some
strong connection to stable rationality. One could expect P to be non-
triviality of some stable rational invariant, but this is in general not suffi-
cient. For instance, in the Artin-Mumford example, stable irrationality of
X is proved by showing non-triviality of a cohomology class in Br(X) =
tors H3(X (C), Z). However, this group is not useful to detect stable irra-
tionality of varieties by specialisation, as it vanishes for a general quartic
double solid.

For these reasons, new invariants have been introduced in the recent
years, constructed with the specific purpose to be exploited via speciali-
sation. These invariants, which are essentially of Chow-theoretic nature,
have the disadvantage to lack a immediate geometric meaning, but they
appear to be particularly suitable for this kind of obstruction problems.

2. DECOMPOSITION OF THE DIAGONAL AND ZERO-CYCLES

In this section we introduce the key invariants for the study of stable
rationality. In this setting, we assume k to be a general field (possibly, of
characteristic 2, even though we will soon restrict to simpler cases).

Let X be a projective variety of dimension n over a field k. Recall that
the diagonal of X is the variety

Ax ={(z,2) |[re X} C X x X
Suppose also that X (k) # & and let us give the following definition.
Definition 2.1. We say that X has Chow decomposition of the diagonal if
[Ax] =[X x 2]+ [Z] € CH,(X x X)

where x € X (k) and Z is a n-cycle on X x X supported on some D x X,
where D C X is a closed proper subvariety (in the sense that D # X).
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If X has nice properties, then the Chow decomposition of the diagonal
does not depend on the choice of x, which can be replaced with a zero-cycle.
Assuming X proper is enough to guarantee this.

Definition 2.2. We say that a projective variety X over k has universally
trivial CHy group (briefly, X is wuniversally CHy trivial) if, for any field
extension L/k, we have CHo(X) ~ Z via the degree map, where X :=
X X Spec(L).

If X is a projective integral variety over k and X is universally CHy trivial,
then X admits a Chow decomposition of the diagonal ([7]). If in addition
X is smooth, the two conditions are equivalent.

Theorem 2.3. Let X be a smooth projective variety over k and assume that
X has a Chow decomposition of the diagonal. Then X is universally CHgy
trivial.

The point of view of Chow decomposition of the diagonal is more geomet-
ric and can be rephrased in cohomological fashion, giving rise to a notion
which is simpler to check but almost equally significant in many cases (see
[19]).

Now, the main motivation to study the above properties is that they are
stable birational invariants.

Theorem 2.4. Admitting a Chow decomposition of the diagonal is a stable
birational invariant for smooth projective varieties. In this setting, being
universally CHg-trivial is also a stable birational invariant.

Since the projective space P} admits a Chow decomposition of the diag-
onal, stably rational varieties admit a Chow decomposition of the diagonal.
Of course the existence of a decomposition is not a sufficient condition for
stable rationality (see [18]) but has equally been applied to explore gener-
alised invariants for stable rationality; a survey of the most important stable
birational invariants can be found in [19].

Our view point will be the non existence: if X is a smooth projective
variety over an infinite algebraically closed field k, with chark = 0, such
that it does not admit a Chow decomposition of the diagonal, then X can
not be stably rational.

3. SPECIALISATION METHOD

The two invariants defined in the above section, together with the non-
existence point of view, can be successfully employed to study varieties that
come in families with some properties. In this respect we state and prove
here the following specialisation principle. From now, we assume that the
varieties are defined over a field k which is algebraically closed with char k =
0.

Theorem 3.1. Let f : X — B be a proper, flat projective morphism of
relative dimension at least 2, where B is a smooth curve. Assume that the
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fibres Xt are smooth fort # 0 and that it has at worst quadratic singularities
fort = 0. Suppose that, for general t € B, the fibre X; admits a Chow de-
composition of the diagonal (or, equivalently, X; is universally CHy trivial).
Then the same holds for any smooth projective birational model %0 of the
special fibre Xg.

This result can be rephrased in more convenient terms using the non
existence formalism. Recall the following ubiquitary terminology: let X be
an algebraic variety:

e a property P holds for general points in X if P holds outside a Zariski
closed set Z C X;

e a property IP holds for very general points in X if P holds outside the
union of a countable family of proper Zariski closed sets Z,, C X.

In particular, we can talk about properties of (very) general hypersurfaces
of fixed degree d in P}, as the set of these varieties forms a projective space.

Corollary 3.2. Let f : X — B be a proper, flat projective morphism, where
B is a smooth curve. If Xq is at worst nodal and the desingularisation Xy of
the special fibre Xo has no Chow decomposition of the diagonal, then for a
very general t € B, the fibre X; has no Chow decomposition of the diagonal.

The proof of these results can be found [21].

Remark 3.3. Theorem 3.1 does not hold without any restricion on the sin-
gularities of the special fibre at all. Indeed, the proof is split in two parts:
the first parts uses an intersection theory argument to show that the de-
composition of the diagonal in X; can be replicated in X and holds without
hypotheses on the fibres. The second part attempts to compare Xy with Xy
and it is here that one needs to consider only “mildly singular” cases.

Remark 3.4. The assumption that f is of relative dimension > 2 is necessary:
the disjoint union of two P! does not admit a Chow decomposition on the
diagonal.

In the applications, the specialisation theorem is used following this scheme:

e suppose X is a projective variety (with mild singularities, as stated in
the hypotheses) and suppose that a smooth birational model X of X
has no Chow decomposition of the diagonal (or it is not universally
CHy trivial). This realistically can happen if X has some non-trivial
invariant (like the Brauer group);

e realise X as special fibre of a proper, flat morphism X — B;

e by specialisation, the very general fibre X; has no Chow decomposi-
tion of the diagonal (or it is not universally CHy trivial);

e as seen in Theorem 2.4, if X; is smooth, this implies that X; is not
stably rational.

In order to widen the range of application of this method, the hypotheses
on the singularities of the special fibre have been weakened in [7], in a way
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we shall now explain. We first introduce a relative notion of universal CHg-
triviality.

Definition 3.5. A projective morphism f : X — Y of varieties defined
over a field k is universally CHy-trivial if, for any field extension F'/k, the
push-forward map f. : CHo(Xr) — CHp(Yr) is an isomorphism.

Therefore, we have the following “local” specialisation result.

Theorem 3.6. Let A be a discrete valuation ring, K = Quot(A) its field of
fractions and k its residue field, which we assume to be algebraically closed.
Let X — Spec(A) be a proper, flat morphism with integral geometric fibres.
Let us call X the generic fibre over K and Y the special fibre over k. Assume
that Y admits a resolution of singularities f : Y — Y such that f s
universally CHo-trivial and assume one of the following:

(1) X is smooth and Y has a zero-cyle of degree 1; B
(2) X is universally CHo-trivial, for an algebraic closure K of K.

Then Y is universally CHy-trivial.

_ The usual application of this local theorem is as follows: suppose f :
Y — Y is a resolution of singularities with f universally CHg-trivial and
suppose we know that, for any smooth birational model of Y some stable
birational invariant (for instance, the Brauer group) is non-trivial. Then Y
is not universally CHg-trivial and, by the Theorem 3.6, every smooth variety
X which specialises to Y is not universally CHg-trivial. A fortiori ratione,
this implies that X is not stably rational. The hypothesis of smoothness of
X could also be replaced with the more general assumption that X has a res-
olution of singularities X — X with X smooth, projective and universally
CHjy-trivial.

There follows, also, a global argument by using the point of view of de-
composition of the diagonal.

Theorem 3.7. Let B an integral k-scheme of finite type, where k is an
infinite algebraically closed field of characteristic 0 and let f : X — B be a
proper, flat projective morphism. If there is a point tg € B(k) such that Xy,
has no Chow decomposition of the diagonal, then for a very general point
t € B(k), the fibre X; has no Chow decomposition of the diagonal.

In particular, the two results are coupled to obtain the following useful
Corollary.

Corollary 3.8. Let B an integral k-scheme of finite type, where k is an
infinite algebraically closed field of characteristic 0 and let f : X — B be a
flat projective morphism. If there is a point tg € B(k) such that X4, is smooth
and not universally CHy-trivial, then for a very general point t € B(k), the
fibre X; is not universally CHg-trivial.
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4. EXAMPLES.

In this section we aim to present some notable applications of the above
Theorem 3.1. We shall start presenting the Artin-Mumford example, then
we will use this construction to show how it is employed to prove that the
very general quartic 3-fold is not stably rational. For convenience, we work
over k = C, even if most of the constructions could be carried out over Q.

Recall the formal construction of double solids, following [5]. Let S C
P3 be a hypersurface of even degree 2n, having at worst ordinary nodes
(singularities of multiplicity at most 2). Then S is a Cartier divisor and can
be expressed as zero set of a global section o of Ops(2n). Definie

E = Tot(Ops(n)) := Spec Sym Ops(—n)

namely the total space of the line bundle Ops(n). Let ¢ : O(n) — 0(2n)
the square map (whose action on sections is 7 + 72) and define

Vi={zc E|q() € (P}

This defines a branched double cover 7 : V — P3: for each p € P3\ S we
have o(p) # 0, hence ¢~!(p) has two values; however, 7 is branched along
the whole S, as o vanishes there. Furthermore, the possible singular points
of V' are exactly the inverse images of the possible singular points of S.

Definition 4.1. The 3-fold V is called double solid branched along S.

In the applications, it is often more useful to work with a coordinate
representation of V. Indeed, if S C P3 is the surface cut out by the ho-
mogeneous equation o(Xy, X1, Xo, X3) = 0, then V can be expressed as the
locus of the points [Xo : X1 : Xo : X3 : X4] € P* satisfying the equation

X3 = (X0, X1, X2, X3)

Note that this is an affine equation, since the polynomial X7 —o(Xo, X1, X2, X3)
is not homogeneous.

Otherwise, V' can be seen as the birational model for the field k(S)(1/s),
namely the field of rational functions on S adjoint with a square root of
its equation s. When s is a square in k(S5), the resulting double covering
consists trivially of two identical, disjoing copies and it is said to split.

4.1. The Artin-Mumford quartic double solid. Artin and Mumford
in [1] constructed a quartic hypersurface in P4 := P¢ which is unirational
but not stably rational. The example can be viewed both as double solid
ramified over a particular cubic nodal curve. We sketch here the geometric
construction.

Let C C P? be a smooth conic defined by a homogeneous equation

f(Xo, X1, X2) =0
and then let Ei, By C P? be two smooth cubic curves, defined by equations
91(Xo, X1, X2) =0,  g2(Xo, X1, X2) =0
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respectively. Suppose that g1, g2 are chosen such that each E; is tangent to
C' at three distinct point and such that E1 N Es consists of nine pairwise
distinct points (of multiplicity one), also different from the previous ones.
Recall the following classical result.

Lemma 4.2. For any 6 points in linearly general position there passes an
unique cubic curve.

Proof. See ([12]). O

Therefore, there is a third cubic £ meeting all the points in £1 N C' and
E> N C, defined, say, by a homogeneous equation

9(Xo,X1,X2) =0

Hence the sextic homogeneous polynomial g; go+g? vanishes at the six points
of (E1 NC) U (EyNC) so it must vanish on the whole conic C. In other
words, there is a quartic polynomial h such that

fh=g192+ ¢*
This means, in particular, that gigs = fh — g2, hence the sextic defined
by the equation fh — ¢g> = 0 is the union E; U E5 of two cubics meeting
transversally.
Now, define B C P? as the quartic surface defined by the following ho-
mogeneous equation:

(4.1) @(Xo, X1, X2, X3) := X f(Xo, X1, X2)+
— X39(Xo, X1, X2) — h(Xo, X1, X2) =0

where f, g, h are the polynomials defined before. Now, clearly B has a node
at pp =[0:0:0:1]: in fact, all the derivatives vanish at p;, as f, g, h are
homogeneous of positive degree, while

P

0X3
does not vanish at p;. Moreover, note that the projection 7 : B\{p;} — P2
away from p; induces a morphism 7 : B — P2 where B = Blow,, (B),
which is a double cover ramified along the sextic g?>+ fh, hence along EyUFE5.

This imposes additional nine ordinary double points to B.
Now, consider V' C P* as the solid defined by the equation

X7 = p(Xo, X1, X2, X3)

This is clearly a double solid branch along B as defined above, namely a
double cover of P? whose branch locus is the surfaces B. By the above
remark on the singularities of B, it follows that V has 10 ordinary double
points.

Artin and Mumford showed the following.

=2f

Theorem 4.3. Any smooth birational model of the double solid V' con-
structed above is not stably rational.
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The technique employed aimed to show that H?(X(C),Z) has a non-
trivial torsion element; in this case, however, this is equivalent to determine
a non trivial 2-torsion element in Br(X). We will show this in a subsequent
section, using techniques from the conic fibrations formalism.

Now, the above Theorem 4.3 shows stable irrationality of V', but indeed
it is not hard to check that V is unirational.

Theorem 4.4. Any smooth birational model of the double solid V con-
structed above is unirational.

Proof. Let X be the desingularisation of V', obtained blowing up the nodes.
Now, in suitable affine coordinates Xy = 1, the equation of V is

X7 =X3(X? - X2) — X39(X1,X32) — h(X1,X2)
Now let us consider the affine double cover W defined, in P, by
X2 =X{ - X,
Hence, in W, the new 3-fold has equation
X = X3X3 — Xag(X1, X{ — X3) — h(X1, X{ — X3)

and this is a rational variety, via the map ® : W --» A3 = Spec(Cly1, y2, y3))
defined as
D(Xp:-: Xp) = (X1, X5, Xy — X5X3)
In fact, if we aim to calculate the fibre of ® above (y1,y2,y3) € A3, let us
set
X1 =y1, X5 = y2, X4 = y3 + y2X3
and they need to satisfy the equation

Y3 + U5 X35 + 2y0ys X3 = y5X3 — g(y1, 91 — v3) X3 — h(y1, 1 — v3)

which can be rewritten as

(2y2u3 + 9(y1, 97 — ¥3)) X3 = h(y1,y7 — ¥3)

and has indeed a solution if

2yays + g(y1, ¥ — y2) # 0

This is sufficient to prove that W is birational to P3.

Hence, we have determined a dominant rational map P3 --» V, which
extends to a dominant rational map P3 --» X, proving then the desired
result. (]

4.2. The very general quartic hypersurface. Quartic hypersurfaces
have been successfully studied since the late XIX century but there are
still many unsolved questions in low dimension. Indeed, in 1936 Ugo Morin
proved the following result ([14]).

Theorem 4.5. The generic quartic hypersurfaces X C P} is unirational if
n > 7, over any field k.



THE STABLE LUROTH PROBLEM. 10

This result was extended to n = 6, still by Morin in 1952 ([15]), and
to n = 5, by Alberto Conte and Jacob Murre in 1998, using a result by
Beniamino Segre from 1954 ([8]).

However, it is still unknown if the quartic 3-folds are all unirational or not.
Some of them, actually, are unirational. For instance, the quartic X C P?é
defined by the homogeneous equation

Xo+ X{ + X3 + X35+ Xo X3 + X5X, - 6X7X3 =0

is smooth and unirational; this construction is due to Beniamino Segre
([17]). This same quartic hypersurfaces was proved to be irrational in 1971
by Iskovskikh and Manin, using the method of “birational rigidity”: they
proved that every birational automorphism of X extends to an automor-
phism of X; but the birational automorphism group of rational varieties is
huge, while X has not many (regular) automorphisms.

Here we will concentrate on sketching the proof of the fact that the very
general quartic 3-fold is not stably rational. This is done using the gener-
alised version of the specialisation theorem, namely the Theorem 3.6. We
will assume the ground field to be C, but the whole construction could be
presented entirely over Q.

First, let us consider the quartic hypersurface Y C P* which is cut out
by the equation

X3X3 = X3 f(Xo, X1, Xa) + X39(Xo, X1, Xa) + h(Xo, X1, X2)

where f, g, h are the same homogeneous polynomials as in (4.3). Thus, Y
is birational to the Artin-Mumford double solid, by taking Xo = 1. In
particular, for any resolution of singularities f : ¥ — Y, we have that
Br(Y)[2] # 0.

Now, the singularities of Y are more complicated than ordinary double
points, so we can not apply Theorem 3.1 directly. However, it can be shown
that there exists a resolution f which is universally CHo-trivial ([7]).

Hence, any smooth variety that specialises to Y can not be stably rational.
More precisely, suppose that 2 ~ P("1)-1 = P99 is the projective space of
quartics hypersurfaces in P%. Let

f:x—P%®
be the universal family of quartics: this is obtained as follows: let
X:=V(o) CP* x P¥

be the zero-set of a global section o of Opaypes((4,1)), with coordinate
representation
g = Z aio,,_.7z~4Xé° te Xi‘l
i+ +ig=4

The map f is then the projection on the second factor: each fibre fixes a
choice of coefficients a;,,...;, and thus defines a quartic hypersurface via the
vanishing of o in P4. Now, let % C P% be the open set of smooth quartics
and let my € # := P% \ % be the Q-point corresponing to the quartic Y.
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Let L € P% be a line containing my such that L ¢ #. Now let us apply
the local specialisation theorem to the local ring A := Oy, : the scheme
Spec(A) parametrises quartics with coefficients chosen in L and the above
family f defines a flat family f : X — Spec(A), whose special fibre is Y.
By the theorem, the geometric generic fibre %m is not stably rational; this
corresponds to a smooth quartic in P4. But then, for any p € L(C) that is
not defined over Q, the corresponding quartic X, is isomorphic to f{m.
This enables us to produce many smooth quartics that are not stably
rational and, thus, it will allow us to invoke the global specialisation theorem,

in the form of Corollary 3.8:

in the universal family of quartics X — P% there are
smooth fibres X;, which are not stably rational. By The-
orem 2.4, this means that Xy, is not universally CHo-trivial
and, by specialisation, this imply that the very general fibre
X is not universally CHg-trivial. Therefore, the very general
fibre is not stably rational.

5. BRAUER GROUP OF VARIETIES AND FIELDS.

In this section we shall introduce some theoretical notions about Brauer
groups, which we have already mentioned being involved as obstruction to
stable rationality. The proofs of the stated results can be found, together
with many other details, in [11].

5.1. Quaternion algebras. Let us start with a general definition. In what
follows, unless otherwisely stated, we will work with a general field k of
characteristic char k # 2.

Definition 5.1. Let k be a field and let a,b € k*. The quaternion algebra
(a,b) is the 4-dimensional k-algebra generated by symbols x,y subject to
relations 22 = a,y? = b and zy = —yx.

In a more concrete way, (a,b) is a k-vector space with basis given by
{1,z,y,zy} and with an inner product ruled by the above relations. By
definition, it is clear that the isomorphism class of quaternion algebras (a, b)
depends only on the classes of a,b in kX /(k*)2. Indeed, if a = u?a and
b = v2B, the substitution = +— uz, y — vy yelds an isomorphism (o, 3) ~
(u?a,v?B) = (a,b). In particular, this shows that (a,b) ~ (b, a).

Every quaternion algebra is endowed with an involution™: (a,b) — (a, b),
which can be defined in the following way. Let us call ¢ € (a,b) a pure
quaternion if ¢> € k but ¢ ¢ k. Each ¢ € (a,b) can be written uniquely as
q = qo + q1 where qg € k and ¢ is a pure quaternion. Therefore, define

q:=q0—q
This also allows us to define a norm over (a,b), by setting N : (a,b) — k
as
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Note that
N@)=(p+a)gp—-—q)=¢ —d¢ €k
so the norm is well defined.

Example 5.2. (1) The classical example of quaternion algebra is obvi-
ously the algebra of Hamilton quaternions, namely the R-vector space H =
(1,4, j,1j) with an inner product defined by the relations

i? =52 = —1,ij = —ji

Following our notations, it is clear that H = (-1, —1).

(2) A more refined example is given by the vector space M (2, k) of square
matrices. This is turned into a quaternion algebra (—1,b), for each b € k*,
setting the following basis elements:

T A

and defining an isomorphisms (1,b) ~ M(2,k) via setting 1 — I,z
X,y— Y xy — XY.

Definition 5.3. A quaternion algebra (a,b) over k is called split if there
exists an isomorphism of k-algebras (a,b) ~ M (2, k).

Every non-split quaternion algebra (a, b) is a division algebra, namely it is
such that each non-zero element has a multiplicative two-sided inverse. Ex-
istence of division algebra depends strongly on the base field: if K = R, then
the only finite-dimensional division algebras over it are, up to isomorphism,
R itself, its algebraic closure C and the quaternion algebra H. If, instead,
k is algebraically closed, then every division algebra over k is isomorphic to
k itself.

We have the following characterisation of splitness over a field.

Proposition 5.4. Let (a,b) be a quaternion algebra over k. The following
properties are equivalent:

(1) (a,b) is split;

(2) (a,b) is not a division algebra;

(3) the norm map of (a,b) has a non-trivial zero;

(4) b is a norm in the field extension k(\/a)/k;

(5) a os a norm in the field extension k(v/b)/k.

To each quaternion algebra (a, b) over k, we can attach a projective plane
quadric curve C(a,b) defined over k, cut out by the following equation:

aX?+bY?—-2%2=0

where X,Y,Z are coordinates for P%. We have the following important
result.

Proposition 5.5. A quaternion algebra (a,b) is split if and only if the
associated conic C(a,b) has a k-rational point.
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Recall that a smooth projective curve over a field k is rational if and only
if it is isomorphic to the projective line, and if and only if it has a k-rational
point.

5.2. Central simple algebras. Recall that the centre Z(A) of an algebra
A is the set of the elements x € A commuting with every other element in
A. If Z(A) = k, the algebra A is said to be central. It can be proved that
every 4-dimensional central division algebra D over a field k is isomorphic to
a quaternion algebra; the key point in proving this characterisation is that
D contains a quadratic extension k(y/a)/k amd D ®j k(y/a) is split over
k(/a).

More precisely, if can be proved that a k-algebra A is isomorphic to a
quaternion algebra (a,b) if and only if A ®; k(y/a) is split over k(y/a).
There is a whole class of algebras which can be described as those algebras
splitting over a suitable extension of the base field.

Definition 5.6. A ring is simple if it has no non-trivial two-sided ideals.

The class we are interested into is the class of central algebras over a
field k& which are simple (as rings). For instance, every division algebra D is
simple and, since Z (D) is a field, D is central simple over Z(D); every non-
split quaternion algebra is of this kind. Moreover, the matrix ring M (n, D)
over any division algebra D is simple; the center of M (n,D) is a copy of
Z(D) formed by scalar matrices (and it is a field), so M(n.D) is central
simple over Z(D).

There exists an important characterisation theorem for simple algebras,
which we state below.

Theorem 5.7. (Wedderburn) Let A be a finite-dimensional simple alge-
bra over a field k. Then there exist an integer n > 1 and a divison algebra
D D k such that A~ M(n, D). Finally, D is unique up to isomorphism.

If k is algebraically closed, then the only divison algebra containing & is
k itself, so every finite-dimensional simple algebra over it is isomorphic to
M(n, k) for some n. This fact gives the idea for a different definition for
central simple algebras.

Proposition 5.8. Let k be a field and A a finite-dimensional k-algebra.
Then A is central simple if and only if there exist an integer n > 1 and a
finite field extension K/k such that A @y K is isomorphic to M(n, K).

The field extension K/k of the previous theorem is called splitting field
of the central simple algebra A; the commonly used terminology is that A
splits over K to mean that A ® K ~ M (n, K). Moreover, the k-dimension
of a central simple algebra A is a square, and /dimy A is called the degree
of A. The following results guarantees some nice conditions of the splitting
field.

Theorem 5.9. (Noether, Kothe) The splitting field of a central simple
algebra is a separable extension.
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Since every finite separable field extension is contained into a finite Galois
extension, the above results imply that a finite-dimensional k-algebra A is
central simple if and only if it splits over a finite Galois extension K/k.

5.3. Algebraic Brauer group. We finally define the main object of inter-
est in this chapter using the ideas recalled in the previous sections.

Lemma 5.10. If A, B are two central simple k-algebras split over K, then
80 is A® B.

The above Lemma leads to the following definition.

Definition 5.11. Let A, B be two central simple k-algebras. Then A and
B are said to be Brauer equivalent if there exist integers m,n > 0 such that
A®, M(m,k) ~ B® M(n,k).

We can make the definition above work as an equivalence relation. Call
% (K /k,n) the set of central simple k-algebras of degree n which are split over
a finite Galois extension K/k. Then Brauer equivalence defines an equiva-
lence relation on the union of sets € (K /k,n) running on positive integers:
if A, B and B, C are pairwise Brauer equivalent, we have isomorphisms

AR M(n, k)~ Bk M(m,k), B M(pk)~C®M(q,k)
and
A®g M(np, k) ~ B, M(p, k) ~C ® (q,k)
Every equivalence class is called Brauer class.

Remark 5.12. By definition, each Brauer class contains an unique division
algebra up to isomorphism. Then it is natural to say that the Brauer equiv-
alence classifies division algebras over the ground field. Moreover, if A and
B are two Brauer-equivalent algebras with same dimension, then by Wed-
derburn theorem they are even isomorphic.

We will denote Br(K/k) the set of all the Brauer classes and Br(k) the
union of all Br(K/k) amongst all the finite Galois extensions of k. Since
tensor product manifestly preserves Brauer equivalence of k-algebras, the
sets above defined have a natural inner operation.

Proposition 5.13. The sets Br(K/k) and Br(k) have an abelian group
structure with the operation induced by tensor product of k-algebras.

The set Br(K/k) equipped with the tensor product is called Brauer group
of K relative to k, while Br(k) is the (absolute) Brauer group of k. The
triviality of division algebras over algebraically closed fields leads to the
following easy but important result.

Lemma 5.14. Let k be an algebraically closed field. Then Br(k) = 0.

Proof. Since Br(k) parametrises central simple division algebras over k, it is
enough to prove that no such algebra is non-trivial. Indeed if D is a division
algebra over k then for each d € D the field k[d] is a finite extension of k,
which must be trivial by algebraic closure. ([
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Example 5.15. For instance, Br(R) = {R,H} ~ Z/2 by what we have
seen previously. Note that C is a simple division algebra over R, but it is
not central, so it does not belong to Br(R).

5.4. Brauer group and Galois cohomology. There is an useful descrip-
tion of the Brauer group which uses some Galois cohomology groups.

Let K/k be a Galois field extension and recall that the Galois group
Gal(K/k) is a profinite group:

Gal(K/k) = lgil(Gal(L/k))LgK

where L/k varies amongst all finite Galois sub-extensions of K/k. In par-
ticular, if kep is a separable closure of k, we can define the absolute Galois
group Gal(k) := Gal(ksep/k) and, for every continous Gal(k)-module M, we
can define the Galois cohomology groups as

HP (k, M) := HP(Gal(k), M) = lim H?(Gal(K/k), MUx/r))

where K/k is a finite Galois sub-extension of ksep,/k and Uy, is a standard
open set in Gal(k) with respect to the profinite topology, namely such that
Gal(K/k) ~ Gal(k)/Ug -

We recall here the following important result.

Proposition 5.16. (Kummer theory) Let m > 0 be an integer prime
to char k. Denote with u,, the group of m-th roots of unity in a separable
closure keep of k, with the structure of continuous Gal(k)-module given by
the usual action of Gal(k) on kgep. Therefore

H* (k, ) = & /()™
The above general setting can be fruitfully used to describe the Brauer
group.
Theorem 5.17. Let K/k be a finite Galois extension. Therefore
Br(K/k) ~ H*(Gal(K/k), K*)
If moreover ke, is a separable closure of k,

Br(k) ~ H?(k, (kX))

sep

One important consequence of this result is that the Brauer group is a
torsion group, as Galois cohomology groups are so. We will be particularly
interested in the m-torsion part of the Brauer group, which also can be
described by means of Galois cohomology.

Corollary 5.18. Let m be a positive integer, prime to char k. Then we have
the isomorphism

Br(k)[m] =~ H?(k, jun)
where fuy, is the (multiplicative) group of m-th roots of unity in keep, equipped
with the standard Gal(K/k)-action.
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Remark 5.19. For convenience, we omitted to explain what happens if we
consider the m-th torsion part with m not prime to char k. There are the-
orems replacing the above results (Artin-Schreier theory) and some of the
notable characterisations can still be achieved.

5.5. Cohomological Brauer group. The notion of Brauer group can be
generalised to arbitrary schemes, with a construction due to Grothendieck
which involves étale cohomology. We don’t need many details here, so the
construction is only sketched; the standard reference is [13]

Let X be a k-scheme. The group scheme G, (which can be thought as
the group scheme associated to the multiplicative group pu,, of m-th roots of
unit in a separable closure of k) defines a sheaf on X for the étale topology.
Thus, the following definition is meaningful.

Definition 5.20. The cohomological Brauer group of X is defined as
Br(X) := HA(X,G,,)

The torsion part of this group can be reconstructed, in many cases, using
Morita equivalences of Azumaya algebras over X, in a similar fashion as we
did for central simple algebras. When X is a regular k-variety, Br(X) is a
torsion group and it is a subgroup of Br(k(X)).

Now, let C' a smooth conic over a field k. Suppose that C(k) = &, so that
C defines a non-split quaternion algebra over k and, hence, a non-trivial
Brauer class a¢ € Br(k). By properties of étale cohomology, we have that

Br(k) = H*(k, Gn,) = HE (Spec(k), Gy,
so the natural morphism C' — Spec(k) induces a pullback map
Br(k) — HE(C,Gp) = Br(0)

Theorem 5.21. In the above setting, if chark # 2 and —1 is a square in
k, there is an exact sequence

0 — Z/2 — Br(k)[2] — Br(C)[2] — Z/2 — 0
Moreover, any class not in the image of Br(k)[2] — Br(C)[2] is 4-torsion,
that is it belongs to the image of Br(k)[4] — Br(C)[4].

Concretely, our interest in the Brauer group is motivated by the fact that
it can be used to obstruct stable rationality by means of the point of view of
universal CHg-triviality or Chow decomposition of the diagonal. We have,
indeed, the following result (see [16]).

Theorem 5.22. Let X be a smooth projective variety over a field k and
assume that X has a Chow decomposition of the diagonal. Then, for any
field extension L/k, the natural map Br(L) — Br(Xp) is an isomorphism.

If k£ is algebraically closed, the above result joint with Lemma 5.14 tells
that
Br(X) ~Br(k) =0
and recalling Theorem 2.4, we have the following statement.
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Corollary 5.23. Let X be a smooth, projective variety defined over an
algebraically closed field k and suppose X is stably rational. Then Br(X) =
0.

In the special case k = C, it can be proved that Br(X) ~ tors H3(X(C), Z),
where the cohomology is the topological Betti cohomology. Hence, one re-
covers the original argument by Artin and Mumford, disproving stable ra-
tionality by showing non-triviality of the latter subgroup.

6. RESIDUES AND UNRAMIFIED COHOMOLOGY

In this section we present some tools which may be useful to calculate
Br(X) or, more precisely, to show its non-triviality.

Let K be the function field of an integral variety X defined over a field k
such that char k # 2. Upon this choice, —1 is a square in a chosen separable
closure K, of K and then there is an isomorphism

po =~ 7Z/2
Recall that Kummer theory 5.16 induces an isomorphism
HYK,7Z/2) ~ K*/(K*)?
Similarly, by Corollary 5.18,
(6.1) H*(K,Z/2) ~ Br(K)[2]

Suppose D is a prime divisor in X, such that X is regular at the generic
point of D. Note that D corresponds to an unique divisorial valuation vp
over the field K = k(X), with residue field k(D), the function field of D
and discrete valuation ring exactly O ,,, the local ring of X at the generic
point of D. We want to define group morphisms

b : HY(K,Z/2) — H°(k(D),Z/2) = Z/2
0% : HX(K,Z/2) — H'(k(D),Z/2)

called residue maps at D. Let us procced in the following way: let a €
HY(K,Z/2) = K*/(K*)? and define

05(a) :=vp(a) mod 2
Then, let o € H?(K,Z/2); according to isomorphism (6.1), & can be rep-
resented by a symbol (a,b) for some a,b € K*, corresponding to a plane
smooth conic C' in P%. We define

(6.2) OQD(a,b) = (_1)VD(G)VD(b) (aVD(b)b—VD(a))D

where (—)p indicates the square class in k(D)*/(k(D)*)?. Recall indeed
that k(D) is a field extension of K. Note that if 7 is an uniformiser parameter
in the valuation ring of vp, then 812) is determined uniquely by the value
0% (m,u) = (u)p, where u is a unit in the valuation ring.

If X is not regular at the generic point of D, we also have an alternative
description of 8%). In this case, the local ring Ox ,, is not necessarily a
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discrete valuation ring. Suppose X — X is the normalisation and suppose
Dy,..., D, are the irreducible components lying over D. Then each D;
defines a discrete divisorial valuation of k(X) = K with residue field k(D;)
and we define, for each a € L™

p(a) := Y |k(D:)/k(D)lvp,(a) mod 2
=1

where |k(D;)/k(D)| is the degree of the extension induced by the natural
dominant morphism D; — D.

The above formulas can be rephrased in a more general setting. Let
P(K/k) be the set of places on K, namely divisorial valuations over K
which fix k; for each v € Z(K/k) we will denote with k(v) the residue
field of v. Clearly formula (6.2) makes sense for any divisorial valuations
v e P(K/k), even if it has not necessarily centre in a divisor D of X.

Definition 6.1. Let X be an integral variety defined over a field k& with
char k # 2 and let K be its function field. The second unramified cohomology
group of K over k with coefficients in Z/2 is defined as

H2(K/k,Z/2) := ﬂ ker(9?%)
ve?(K/k)

Note that the definition of unramified cohomology depends on the ground
field k: indeed, the divisorial valuations in &?(K/k) are meant to be fixing
k. In general, an element a of H?(K,Z/2) is called unramified with respect
to a certain class of places A C Z(K/k) if 92(a) = 0 for each v € A.

It is immediate to see that unramified cohomology groups are birational
invariants. We also have the following theorem.

Theorem 6.2. Let X be a smooth projective variety over a field k and let
m > 0 be an integer prime to chark. Therefore

Hy, (k(X)/k,Z/m) =~ Br(X)[m]

In particular, in the case m = 2 and char k # 2, we find Br(X)[2]. Recall-
ing Corollary 5.23, this means that non-triviality of unramified cohomology
obstructs the stable rationality of X.

Of course, in the definition of H2,(K/k,Z/2), it is impossible to check
every place in Z(K/k), so in practice one needs some result that restricts
this set to an appropriate set of valuations corresponding to prime divisors
over a fized model of K. Such kind of results are implied by the so-called
“cohomological purity”, of which we will need the following geometric ver-
sion.

Proposition 6.3. Let k be a field such that chark # 2 and let X be a
smooth variety over k. Call K = k(X) the field of rational functions of
X. Then every element in H?(K,Z/2) which is unramified with respect to
divisorial valuations corresponding to prime divisors of X is also unramified
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with respect to P (K /k), namely all the divisorial valuations having centre
on X.

More details about this can be found in [6]. Finally, we shall recall the
following result which shows the behaviour of Brauer classes with respect to
their residues.

Proposition 6.4. Let k be an algebraically closed field and let B be a
smooth algebraic surface over k. Suppose that chark(B) # 2; therefore
if HY.(B,Z/2) = 0, we have the following exact sequence

0 — Br(B)[2] — Br(k(B)[2] 2% @ H'(k(D),z/2) 2%
DeDiv(B)

— Pz2—12/2—0
peEB
where the first arrow is induced by the restriction to the generic point of B
and the last arrow is the sum.

7. CONIC FIBRATIONS.

The machinery introduced in the previous sections is fruitfully applied
to a particular class of varieties, conic fibrations or, more informally, conic
bundles. Roughly speaking, a conic bundle is a proper, projective morphism
whose fibres are conics. A more general definition leads to quadric fibrations,
namely proper projective morphisms whose fibres are quadrics of arbitrary
dimension. The advantages of studying conic bundles are roughly two:

(1) they are essentially easy (or at least easier than other varieties) to
organise in families (namely, they”deform well” in flat families);
(2) there are good results about Brauer group and unramified cohomol-
ogy of them.
We will show later what is the role of conic bundles in the stable Liiroth
problem. Here we shall only introduce the basic definition and the funda-
mental examples.

Definition 7.1. Let X,Y be projective varieties defined over a field k such
that chark # 2. A conic fibration is a projective morphism f : Y — X
whose fibres are isomorphic to plane conics. More precisely,

(1) f factors through Y < P% and P% — X;

(2) for each p € X, the fibre Y}, is isomorphic to a conic in P%.
A rational conic fibration is a morphism f : Y — X such that f is a conic
fibration in a whole open set of X.

The fibres of a conic fibration f can have three different behaviours: they
may be a smooth conic, a pair of lines and a double line.

Lemma 7.2. If X and Y are integral, projective varieties, then f is a
rational conic fibration if and only if the generic fibre is a smooth conic in
P2, where K = k(X) is the field of functions of the base X .
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Proof. Suppose f is a rational conic fibration; then there exists an open
affine set U C X such that f : Y — U is a conic fibration. Hence Y, =
Y Xy Spec K is a smooth conic on P?. But P} = P% Xgpec(k) U and
U = Spec K[X1,...,Xn] so P} = P3%. Conversely, assume Y}, is a smooth
conic on P%.. By definition of generic point, there exists an open set U C X
such that Y}, is a smooth conic for each p € U. O

In the applications, we almost always shall restrict to the notable case in
which X is a rational, smooth variety. Indeed, to emphasize the fact that
we are treating a special case, we will refer to these conic fibrations as conic
bundles. Accordingly, a variety Y will have a conic bundle structure over
P if there exists a projective morphism f : Y — P™ whose fibres are
plane conics.

Conic bundles can be defined in a more explicit way, by means of zeros
of suitable quadratic forms. Indeed many conic bundles can be constructed
in this way: suppose that 1 is a form on P2 x P™, of degree 2 in the first
component, defined as

([Xo: X1 Xo], [to s -t tm]) = Ypgieat ) (Xo, X1, X2)
Then defining
Y = {([Xo: X1 : Xa],p) € P2 x P™ | (X0, X1, X2) = 0}
we have a natural projection map
m:Y — P™
([Xo:X1:Xa],p)—p
and it is clear that the fibres above each point p € P™ are plane conics

defined by the quadratic equation ,(Xo, X1, X2) = 0. This elementary
setting can be reinterpreted using vector bundles and scheme formalism.

Proposition 7.3. Let f : X — P™ a conic bundle. Then

(1) f is a flat morphism;

(2) there exist a vector bundle &, an integer n and a global section o €
HO(P™, Sym2&(n)) such that Y can be identified as the set of the
zeros o in P(&) := ProjSym(&);

(3) there ezists a sub-variety A C P™, with at most nodal singularities,
such that:

(a) for each p € P™\ A, the fibre Y, is smooth;
(b) if p € A is non-singular, the fibre Y, has ezactly a singular

point;
(c) if p € A is singular, the fibre Y, has a whole line of singular
points.
Proof. See ([3]) O

The locus A in the above result is called discriminant divisor of the conic
bundle and has a remarkable role in our further investigations. As said, A
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consists of those points p such that the conic Y), is singular and this can
happen in two different ways: Y, may be a singular, reduced conic (id est,
two crossing lines) or may be a singular but non-reduced conic (id est, a
whole line of double points).

Remark 7.4. Of course, when a conic bundle is described by means of a
quadratic form 1, then A is the zero locus of det 1.

7.1. The cubic 3-fold. A classical example of conic bundle structure is
given by a cubic 3-fold in P* := Pg. We will use the following well-known
result.

Lemma 7.5. Let X be a smooth cubic 3-fold in P*. Therefore, X contains
a 2-dimensional linear system of lines.

The conic bundle structure on X is then given as following. Suppose Lg
is a line in X and consider the family of hyperplanes containing Lg: it is a
2-dimensional family up to scalars, so it can be thought as a P?. Then, let
us consider the projection map 7 : X \ Ly — P? away from Lg. Since every
hyperplane containing Lg cuts out a residual conic, we have proved that
has fibres isomorphic to smooth conics. Now, calling X the blow-up of X
along Ly, the map 7 extends to a morphism 7 : X — P? whose fibres are
isomorphic to smooth conics or a pair of distinct lines.

7.2. The Artin-Mumford double solid as a conic bundle. The exam-
ple provided by Artin and Mumford, which we described in paragraph 4.1,
can be viewed as a particular conic bundle over P2. Recall, firstly, that V'
is the double cover of P3 ramified along a nodal cubic surface B, which has
exactly 10 ordinary double points.

Suppose P? is a plane containing a node p € V (corresponding to a node
p € B); the projection map away from that plane yelds a rational map
7V -—-» P2, We can think P? as the linear system of lines through p in
P3, and from this point of view 7 is a rational conic bundle.

Indeed, the lines in P? through p meet B in three distinct points: p itself
(with multiplicity 2) and two other points x,y (with multiplicity 1). Hence,
the inverse image of such lines in V' is a curve C', with a nodal singularity in
77 1(p). Let C be the normalisation of C: then C is a double cover of P,
ramified at two points only (the inverse images of x,y as before). By the
Riemann-Hurwitz formula,

29(C) — 2 =2(2g(PY) — 2) + (e — 1) + (e, — 1)
so that
29(C)=2—-4+2=0
hence C is a rational quadric curve, hence a conic. This defines the rational
conic bundle structure. Now, resolving the singularities of V', namely blow-
ing up the nodes, we obtain a morphism 7 : V — P2 which has the desired
conic bundle structure.
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Let us determine the discriminant locus. Note that, given a point x :=
(xg : 21 : x2) € P2, the fibre over x is given by the affine equation

X3 = f(wo, 21, 22) X5 — g(w0, 71, 22) X3 — h(m0, 71, T2)

representing a conic. This conic is singular if and only if 0 = (¢? — fh)(x) =
g192(x), so if and only if z lies in the union of the two cubics Ey U Eq, whose
equation is g; = 0 respectively. Moreover, the above conic is a double line
X2 = 0 if and only if f,g and h vanish simultaneously at x, and this would
imply that = is a double point of Fy U Es lying in the conic C' defined by
f = 0. There is no such point, so the discriminant curve A of 7 is the union
of two cubic curves F1, Es meeting transversely at 9 different points.

8. CONIC BUNDLES AND UNRAMIFIED COHOMOLOGY.

Now, we shall explain why conic fibrations are interesting when analysing
the stable Liiroth problem. We will assume, at a first stage, that all the
varieties are defined over a field £ which is algebraically closed and such
that char k # 2.

Let # : Y — X be a conic bundle, with Y smooth, projective variety
defined over k. Note that the generic fibre Y}, is a smooth conic over K :=
k(X), so it corresponds to a quaternion algebra over K and, hence, to Brauer
class in Br(K) of order 2. So Y}, lies in Br(K)[2]. Moreover, by Lemma 5.21,
there is an exact sequence

0 — Z/2 — Br(K)[2] — Br(Y;)[2] — Z/2 — 0

By the theory of maximal orders (see [1]), it can be proved that the kernel
of 7 is generated by the Brauer class of ¥;,.

Recall, also, that Br(Y)[2] = H2,.(k(Y)/C,Z/2) = H2.(k(Y;)/C,Z/2) by
Theorem 6.2.

Example 8.1. (The Artin-Mumford conic bundle) Let 7 : Y := V —
P2 .= P% the Artin-Mumford conic bundle with generic fibre Q C Py,
where K := k(P?). We shall show that Br(Y)[2] # 0 or equivalently
H2,((Q)/C.Z/2) # 0.

By Lemma 5.21, each class in Br(Q)[2] which is not 4-torsion comes from
a class in Br(K)[2]. Since

Br(Q)[2] = Hi(k(Y)/K,Z/2) 2 Hi,(k(Y)/C,Z/2) = Br(Y)[2]

we claim that any element & € Br(Y)[2] come from a class {x € Br(K)[2].
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Now, recall the exact sequence 6.4: applying it to the base P? and using
Lemma 5.21, we find the following commutative diagram

0
0 Br(Y)[2]
0 z/2 Br(K)|[2] . Br(Q)[2]
®6? ®6?
0 K B H'(KD),Z2)—— P H'(*(C)Z/2)

DeDiv(P?) CeDiv(Y)q

l@al

P z/2

peP?

Note that Div(Y')q is the set of prime divisors in Y which dominate the
base P? onto a divisor and 7 is the pullback map induced by restriction
of m to such divisors. Note also that the rows and the columns are exact,
either by definition or by the various Lemmas we have proved. Call ag
the Brauer class in Br(K)[2] corresponding to the generic fibre @; then
(aq) = ker(1) ~ Z/2. Finally, recall that, by Kummer theory, we have

H'(k(D),2/2) ~ k(D)*/(k(D)*)?

Now, we know that the discriminant curve A C P2 of 7 is the union of
two cubics F; U Fy without singular points. Note that each component FE;
induces a non split (namely, not reducible) double covering via 7, so indeed
o = 81291, (a) # 0, namely « is not a square in k(FE;). By diagram chasing, it
can be proved that

K =kerm* = (a1) @ (o) ~ (Z/2)*

Note that elements in Br(Y)[2] = H2.(k(Y)/C,Z/2) are those elements
in Br(Q)[2] = H2.(k(Y)/K,Z/2) which are mapped to zero via the map
POL.

We now prove that elements of Br(Y)[2] come from H?(K,Z/2) even
though 7 is not surjective. Suppose indeed ¢ € Br(Q)[2] does not lift to
H?(K,Z/2); then by Lemma 5.21, it lifts to an element ¢’ € H?(K,Z/4) =
Br(K)[4]. Since the map ®d% in the left column is injective, there exists
one D € Div(P?) such that 0%(¢') € HY(k(D),Z/4) has order 4. But by
the above description of the kernel of 7*, we must have 7*(9%(¢')) # 0. By
commutativity, this means also that 92(¢) # 0 for 7(C) = D and, hence

§ & Br(Y)[2].
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With a similar diagram chasing, one proves then that elements of Br(Y")[2]
come from a subgroup H of K. This correspondence is an isomorphism up
to a quotient of H, which is proved to be non-trivial. This finally proves
that Br(Y)[2] # 0 and, therefore, that the desingularisation of the Artin-
Mumford double solid is not stably rational.

The strategy presented in the above Example can be generalised to conic
bundles 7 : Y — X, where X is a smooth, projective rational surface.
Indeed, there is a formula for the torsion part of Br(Y).

Theorem 8.2. (Colliot-Théléne) Let X be a smooth, projective rational
surface over C and let K := k(X); let moreover Y be a smooth 3-fold
equipped with a conic bundle structure w:Y — X. Suppose o € Br(K)|[2]
is the Brauer class corresponding to the generic fibre Y. Assume o # 0 and
assume the discriminant locus A C X has at worst quadratic singularities.
Let A = Ay U...UA, be the decomposition into irreducibile components
and let ap, = OQAZ, (a) for each i =1,...,n. Consider the subgroup

. n 0i=0;j if for i # j there isp € A;NA;
H = {(01’ -2 0n) € (Z/2)": such that 9y (aa,) = 9} (aa,) # 0

Therefore,
Br(Y)[2] ~ H/(1,...,1)Z/2

Recently a more general version of this theorem has been proved in [2],
yelding a similar formula for the Brauer group of conic bundles over 3-folds
(that is, with base X of dimension 3). We recall here only a geometric
corollary, which is useful to detect stable irrationality of such conic bundles.

Theorem 8.3. Let k be an algebraically closed field such that chark # 2
andletm:Y — X be a conic bundle over a smooth projective 3-fold X such
that Br(X)[2] = 0. Suppose that the discriminant locus A of 7 is a union
A= A1U...UA, of irreducible surfaces A;, with the following conditions:

(1) A is not irreducible, namely n > 2;

(2) through any irreducible curve of X there pass at most two sur-
faces amongst the A;’s;

(3) through any point of B there pass at most three surfaces amongst
the A;’s;

(4) for all i # j, both A; and A; are locally factorial at every point
of AiNA;.

Now suppose also that

(5) a general fibre of m above A; consists of two distinct lines and
the induced double cover of A; is non-split for each i;

(6) for each irreducible component C; € A;NA;, the fibres of m above

C; still consist of two distinct lines, but the induced double cover
of C; is split (inside ; or Aj) for each i # j.
Therefore, Br(Y')[2] # 0.
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The above theorem has been employed, in the same paper, to determine
suitable classes of conic bundle which might be good candidates for the spe-
cialisation method. Note, indeed, that adjusting the parameters accordingly
in the construction of a conic bundle 7 can lead to a non-trivial Brauer group
and, hence, to a potentially irratioanl variety. In the paper, the strategy is
applied with details to a divisor of bi-degree (2,2) in P? x P3| treated as
conic bundle over P3. The same example had been studied in ([7]), but from
the point of view of a quadric fibration over P2.

8.1. Reducibility of discriminant. As one can see in Theorem 8.3, the
role of the discriminant locus is particularly significant to determine the
right setting for the conic bundle to be stably irrational. A construction
to which these ideas may be applied is the case of graded free type conic
bundle. These are defined as following. Fix a triple (dy, da,ds) € N3 such
that d; = d; mod 2 and consider a symmetric matrix

a1 a2 a3
A= (a2 azxn a3
a3 a3 ass

such that a;; € k[Xo, X1, X2, X3] are homogeneous polynomial with

d; +d;
deg(ai;) = d;, deg(a;j) = %
Define d := dy + do + d3 and
d—d;  d+d,
Ty = 5 S; = 9

Therefore, by setting
& = ﬁpB(—Tl) @ Ops(—ra) ® Ops(—r3)

we determine a symmetric map between graded free sheaves:

V:EV(—d) — &
whose action on the sections is given by multiplication by A. By duality,
this defines a quadratic form

:68& — 0(d)
and, as we have seen before, an associated conic bundle Y = {g = 0} C P(&)
over P3, whose discriminant locus is the set

A={pecP?|det A(p) =0}

In order to apply the above theorem, one needs to check that A satisfies some
strict reducibility and intersection conditions. In the forementioned paper
[2], these are simplifies employing techniques from the theory of contact of
surfaces. Recall that two surfaces S, So C P3 are said to have contact (of
order 1) if S; NSy is schematically a curve, such that each component has
intersection multiplicity along Si,.S52 at least 2 and there is one of them
whose multiplicity is exactly 2.
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More specifically, in the above setting, let

020,11 —bydet A cara cais

b1 C
B := (C by ) N = caya az a3
cais a3 433

be matrices of homogeneous forms over P3. If

by = det <a22 a23>
a23 G33

then det N = —(det A)(det B). Here one can prove that by defines a surface
which is contact to both det A and det B. The power of this construction
resides in the fact that N defines a conic bundle over P3, whose restriction
to A is birationally equivalent to the one defined by A. Thus, in order to
apply the Theorem, 8.3, one needs to check that:

(a): det A and det B define the irreducible components of det N, namely
they define irreducible surfaces in P3. This guarantees the condition
(1) of the Theorem;

(b): det A and det B are smooth on the intersection curve D = {det A =
det B = 0}. This verifies condition (4);

(c): the double covers induced by N over det A and det B are non-
trivial. This is condition (5);

(d): N has generically rank 2 on each component of D. This is ensures
the first part of condition (6);

(e): the double cover induced by N over the intersection curve D is
trivial. This guarantees the last part of condition (6).

Note that (e) is a closed condition and it is the hardest part of the above. In
[2], this condition is translated in a more concrete language, using techniques
of classical algebraic geometry.

8.2. Gushel-Mukai varieties. This class of 4-folds has been recently stud-
ied with great interest by Olivier Debarre and Alexander Kuznetsov ([10]).
One striking open problem in Gushel-Mukai varieties is whether they are
rational or not. Part of this interest comes from the conjectural similarity
of the behaviour of these variety and those of cubic 4-folds. Since now, we
will work over the field of complex numbers C.

Definition 8.4. Let W be a five dimensional vector space. A Gushel-Mukai
four-fold X is a smooth dimensionally-transverse intersection

X :=QNGrass(2, W)NH

where Grass(2, W) € P(A? W) is the Grassmannian, Q is a quadric and H
is a hyperplane in P(A?W).

One may ask whether the very general Gushel-Mukai 4-fold is stably ra-
tional or not and then one may try to apply the specialisation method. This
is particularly tempting because these varieties are birational to a certain
class of conic bundles over P3, so one might expect to employ the techniques
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from the above paragraphs. This is indeed the aim of the very recent paper
([4]) by Christian Bohning and Hans-Christian Graf von Bothmer.
Let us recall the following definitions.

Definition 8.5. Let V be a four dimensional vector space and consider the
sheaf (5,3(2) over P(V) ~ P3. A Gushel-Mukai vector bundle &, is the
cokernel of a nowhere vanishing section o € H°(P?, Ops(1) ® Qps(2)), or
equivalently an injective morphism

[ ﬁPS — ﬁps(l) ) 9%33(2)

A null-correlation bundle .4 is the cokernel of a nowhere vanishing section
T € H(P3,Q%;(1)), or equivalently an injective morphism

0 Ops — Qps(1)
Then one has the following description.

Proposition 8.6. A general Gushel-Mukai 4-fold X is birational to a conic
bundle 7 : Yy, » C P(&)) — P? associated to a symmetric map

0:E — &

for some Gushel-Mukai vector bundle &,. This will be called a Gushel-Mukasi
conic bundle.

The first problem addressed in the article is to decide whether Theorem
8.3 can be applied to this particular class of variety. In order to do that, we
have to look for Gushel-Mukai conic bundles in which the discriminant locus
A breaks up in a suitable way. Now, it is known that A is, in general, a so-
called Eisenbud-Popesco sextic nodal surface. Thus, we need to determine
Gushel-Mukai conic bundles in which A breaks up into two cubic surfaces
Ay, Ag; this also guarantees many hypotheses of Theorem 8.3 are satisfied.
It turns out that the only possible candidates for A; and Ay are the so
called del Pezzo cubic symmetroids, namely: the Cayley cubic with four A
singularities, a cubic with two A; and one Ag singularities and a cubic with
one A; and one As singularitiy.

Moreove, recall the following definition.

Definition 8.7. A Kummer surface is a quartic surface in P? having exactly
16 nodal singularities.

These surfaces come into the picture because of the following terminology.

Definition 8.8. A tame degeneration of a Gushel-Mukai 4-fold consists of

(1) a Gushel-Mukai vector bundle &, on P3;
(2) a symmetric map ¢ : &, — &, yelding a conic bundle 7 : Y, , C
P(&Y) — P? with the following properties:
(a) the discriminant locus A of 7 splits as A = A; U Ay with A; a
del Pezzo cubic symmetroid for i =1, 2;
(b) each of A; is smooth along A; N Ag;
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(c) let T be the composition
Ops = Ops(1) ® Ohs(2) 25 QL. (2)

Then 7 does not vanish and defines a null-correlation bundle
Ny together with a symmetrix map ¢ : A, — A, sitting in
a diagram

&2 -6,

]

N v Ny
such that the degeneracy locus of ¢ (called the associated null-
correlation quartic) is a Kummer surface wich is contact to both
Al and AQ.

This is the most natural kind of degenerations to look for if one seeks to
apply Theorem 8.3. However, in the paper it is proved that this argument
fails.

Theorem 8.9. There is no tame degeneration of Gushel-Mukai fourfolds.

Still the Theorem could be applicable with respect to a “wilder” class of
degenerations. For instance, one might want to remove the condition that
the null-correlation quartic is a Kummer surface. This kind of generalised
degenerations, however, has neither been found in any computer algebra
experiment, so it is still unclear how to proceed in this direction.

Another possibility could be allowing the bundles &, and .4, to degener-
ate to some sheaves (namely, losing the freeness at some points). Even this
possibility has yet to be explored.

8.3. Conic fibrations in positive characteristic. An interesting prob-
lem which has very lately risen our attention is the behaviour of conic bun-
dles in positive characteristic. This is a meaningful problem, since the spe-
cialisation method does not put any restriction on the characteristic of the
fields involved. More precisely, we would aim to work in an unequal charac-
teristic setting, namely define a flat family

X — Spec(R)

of varieties, where R is a discrete valuation ring with residue field k£ such
that chark = 2 and with fraction field K such that char K = 0. Clearly,
the special fibre X is defined over k and the generic fibre is defined over K.
This is opposed to the equal characteristic context we have treated so far,
namely when char k£ = char K = 0.
By specialisation, if we manage to prove that
e the special fibre X has an universally trivial CHg resolution of sin-
gularities Xo — Xo;
e X does not have universally trivial CHy group;
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then we have shown that the geometric generic fibre X¢ := X¢ X ¢ Spec(K)
does not have universally trivial CHy group and, a fortiori ratione, is not
stably rational.

This setting becomes slightly more concrete if we assume that Xy has a
conic bundle structure over some projective space, say 7 : X = Xog — Pz.
In this case, the most difficult problem to overcome would be determining
good invariants which are able to obstruct universal triviality of CHg group;
one would like to employ the Brauer group and the unramified cohomology
as in the equal characteristic case but this poses some notable problems. A
roughly hypothetical “path” to follow could be the following.

(1) Firstly, one needs to understand if the non-triviality of Brauer group
Br(X)[2] still represents a good obstruction for universal triviality.

(2) Secondly, it is necessary to re-interpretate the meaning of the residue
maps, using Artin-Schreier theory instead of Kummer theory in the
Galois cohomology groups.

(3) Thirdly, it is necessary to understand if unramified cohomology can
still be used to calculate the above group (in other words, one needs
an analogue of Theorem 6.2 when m is not prime to char k).

(4) Finally, perhaps the toughest part is to understand the presence of
2-torsion classes in Br(X)[2] by means of the discriminant profile of
the conic bundle (namely, one seeks for an analogue of the sequence
in Proposition 6.4).

All of the above is still a matter of speculation and we are currently trying
to understand the problem in its best formulation possible.
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