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Introduction

What is the aim of this study group?

To have a better understanding of basic Algebraic Geometry. To have developed an intuition for the idea
behind Algebraic Geometry

Who is this study group for?

As often quoted �A study group is on subject the organiser knows nothing about and wish to know more�.
This is the case here. This study group was form due to a group of Number Theorist attending one of the
many Number Theory conference at Warwick last year and realising that there was a fair bit of Algebraic
Geometry of which we knew nothing. This study group will help to motivate us all to learn Algebraic
Geometry, with examples mainly from Number Theory but hopefully broad enough to interest everyone.

Sheaves

Zariski Topology

LetA be a commutative ring with 1 (and not the zero ring). De�ne Spec(A) = {proper prime ideals p ( A}.
For any ideal I of A let V (I) := {p ∈ Spec(A)|I ⊆ p}, if f ∈ A, let D(f) := Spec(A) \ V (〈f〉)

Proposition. The following holds:

• V (I) ∪ V (J) = V (I ∩ J)

• ∩λV (Iλ) = V (
∑
Iλ)

• V (A) = ∅ and V (0) = Spec(A)

Proof. Exercise

We de�ne the Zariski Topology on Spec(A) to be de�ned as its closed sets V (I). D(f) is called a
principal open subset (and forms a bases of open subset on Spec(A)) while V (f) is called a principal closed

subset.

Note. Let p ∈ Spec(A). Then {p} is closed if and only if p is a maximal ideal. (If it is maximal then
{p} = V (p), if it is not maximal then {p} ( V (p), so not closed)

De�nition. In the above context, p is called a closed point
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Example. Consider Spec(Z).

•
2

•
3

•
p

�
0

We see that 〈p〉 where p is prime are closed points, while is the point {0} =: ζ is non-closed. In fact
ζ = Spec(Z), and so we call ζ the generic point (of Spec(Z))

Example. Let k be a �eld and let 1
k := Spec(k[x]) be the a�ne line over k. Again we have a point

corresponding to the {0} ideal, which we call the generic point (of 1
k). The other closed points correspond

to the maximal ideal of k[x] which correspond to the monic irreducible polynomials of k[x]. (In particular
if k = k is algebraic closed, then the closed points corresponds to elements of k)

We show that the proper closed set correspond to �nite sets (of points). Let I be an ideal and let
p(x) be the polynomial generating it. We can write p(x) =

∏n
i=1 pi(x) into irreducible factors. Then

V (I) = {p1(x), . . . , pn(x)}. (This should be look like the de�nition of the Zariski topology on R you
meant in a metric space course)

Example. Let k = k and 2
k := Spec(k[x, y]) be the a�ne plane. Again we have the generic point (of

2
k) ζ which correspond to the {0} ideal (ζ = 2

k). We have closed points which are in correspondence to
pairs of elements of k. (V (〈x− a, y − b〉) as 〈x− a, y − b〉 is maximal). Given an irreducible polynomial
f(x, y), there is a point η whose closure is η and all the closed points (a, b) for which f(a, b) = 0. Namely
η correspond to the ideal 〈f(x, y)〉 as 〈f(x, y)〉 ⊂ 〈x− a, y − b〉 where a, b are such that f(a, b) = 0. (To
see this, by the division algorithm, on any ordering you want, we have f(x, y) = h1(x− a)+h2(y− b)+ r,
where h1, h2, r are polynomials. Furthermore r must be constant, either because we can put any x term
in (x − a) and y terms in (y − b) or because the leading term of r must be less than the leading term of
(x− a) and (y − b). Substituting x = a and y = b, we see that r = 0). We say that η is the generic point

of the curve f(x, y) = 0
See Hartshorne's picture on page 75.

Sheaves

De�nition. Let X be a topological space. A presheaf F (of abelian groups) on X consist of the following
data:

• An abelian group F (U) for every open subset U of X

• For every pair of open subset V ⊆ U a group homomorphism (called the restriction map) ρUV :
F (U)→ F (V )

such that

1. F (∅) = {1}

2. ρUU = id

3. W ⊆ V ⊆ U then ρUW = ρVW ◦ ρUV

Note. (For those who know Category Theory, otherwise ignore this). A presheaf is just a contravariant
function from the category of Topological spaces (with morphisms being the inclusion map) to the category
of Abelian groups.
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Notation. An element s ∈ F (U) is called a section of F over U . s|V denotes the element ρUV (s) ∈ F (V )
and is called the restriction of s to V

De�nition. A presheaf F is a sheaf if we have the following properties:

1. Uniqueness: Let U be an open subset of X, s ∈ F (U) a section and {Ui}i a covering/re�nement of
U . If s|Ui = 0∀i then s = 0

2. Gluing local sections (or Gluability): Using the same notation as above. Let si ∈ F (Ui) for all i be
sections such that si|Ui∩Uj = sj |Ui∩Uj . Then there exists s ∈ F (U) such that s|Ui = si. Note that
by 4. this is unique.

De�nition. We say F is a subsheaf of F if F ′(U) is a subgroup of F (U) for all U and ρ′UV is induced
from ρUV

Example. Let X be a topological space and k a �eld. For any open subset U of X, let C(U) = C0(U, k)
be the set of continuous functions from U to k. The restrictions ρUV are the usual restrictions of functions.
Then C is a sheaf on X. (1− 3 obvious, 4− 5 follows from properties of continuous functions)

Note. Every (pre)sheaf F on X induces a (pre)sheaf F |U on U ⊆ X (by setting F |U (V ) = F (V ) for all
V ⊆ U)
Note. We show that a sheaf is completely determined by its sections over a basis of open sets:

Let B be a basis of open subsets on X. De�ne B-(pre)sheaf by replacing 'U ⊆ X open' by 'U ∈ B'.
Then we can extend a B-sheaf F0 to a sheaf F on X since foe any U ⊆ X can be written as ∪iUi with
Ui ∈ B. So F (U) is the set of elements (si)i ∈

∏
iF0(Ui) such that si|Ui∩Uj = sj |Ui∩Uj

De�nition. Let F be a presheaf on X and let x ∈ X. The stalk of F at x is the group

Fx := lim←−
x∈U

F (U)

Let s ∈ F (U) be a section. For any x ∈ U we denote the image of s in Fx by sx. We call sx the germ of
s at x. The map F (U)→ Fx de�ned by s 7→ sx is a group homomorphism.

Example. Back to the sheaf C on X. Then Cx is the set of continuous functions at x. Another way
to see the stalk, is that elements in Fx are represented by a pair (U, f) where U is an open subset of X
containing x and f ∈ F (U), up to the equivalence that (U, f) ∼ (V, g) if f |U∩V = g|U∩V .

Lemma. Let F be a sheaf on X. Let x, t ∈ F (X) be sections such that sx = tx∀x ∈ X. Then s = t, i.e.,
sections are determined by their germs.

Proof. WLOG assume t = 0. For all x ∈ X, there exists open Ux of x such that s|Ux = 0, since sx = 0.
As Ux cover X as x varies, we have (by gluability) s = 0

De�nition. Let F and G be two presheaves on X. A morphism of presheaf α : F → G consist of group
morphism α(U) : F (U)→ G(U) for all open U ⊆ X, which is compatible with the restriction ρUV . That
is the following diagram commutes

F (U)
α(U) //

ρUV

��

G(U)

ρ′UV

��
F (V )

α(V )
// G(V )
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α is injective if every α(U) is injective.
An isomorphism is an invertible morphism α, i.e., α(U) is an isomorphism for all U
For any x ∈ X, α induces a group homomorphism αx : Fx → Gx such that (α(U)(s))x = αx(sx). We

say that α is surjective if αx is surjective for all x ∈ X

Example. We can de�ne a morphism between the sheaf of di�erential functions to the sheaf of continuous
function (by forgetting we are di�erentiable)

Proposition. Let α : F → G be a morphism of sheaves on X. Then α is an isomorphism if and only if

αx is an isomorphism for every x ∈ X.

Proof. ⇒) Clear
⇐) Let s ∈ F (U) be a section. If α(U)(s) = 0, then for every x ∈ U , we have αx(sx) = (α(U)(s))x = 0.

As αx is an isomorphism it follows that sx = 0 for all x ∈ X. Hence s = 0
Let t ∈ G(U). We can �nd a covering/re�nement of U by open subset Ui and si ∈ F (Ui) such that

α(Ui)(si) = t|Ui . As α is injective, si and sj coincide on Ui∩Uj . Th si therefore glue to a section s ∈ F (U)
such that s|Ui = si. By construction α(U)(s) and t coincide on every Ui and hence are equal. So α(U) is
surjective

Similarly we can prove α is injective if and only if αx is.
There is a method to construct a sheaf associated to a presheaf by preserving stalks (sometimes called

shea��cation) Such a construction is unique. This is a very technical point and I don't think we will use
it in this study group, so I cover it today. See either Hartshorne or Qin-Liu book (pg 36)

De�nition. Let f : X → Y be a continuous map of topological spaces. F a sheaf on X and G a sheaf on
Y .

For every V ⊆ Y , V 7→ F (f−1(V )) de�nes a sheaf f∗F on Y which is called the direct image or
pushforward of F

We also have the inverse image of G denoted by f−1G which is the sheaf associated to the presheaf
U 7→ lim←−f(U)⊆V G(V ). This construction is complicated, but we have the nice property that (f−1G)x =

Gf(x)

Note. When I de�ned the constant presheaf on the board, part of the de�nition which I forgot is that
F (∅) = 0 (which is a property of presheaf anyway)

Ringed Topological Spaces (Not covered in week 1)

De�nition. A ringed topological space consist of a topological space X with a sheaf of rings OX on X,
such that OX,x is a local ring for every x ∈ X. We denote it (X,OX) or X if OX is obvious.

Let mx be the maximal ideal of OX,x, we call OX,x/mx the residue �eld of X at x and denote it k(x)

Example. Let X = n
k where k is a �eld.

For any open subset U , let OX(U) be the set of regular functions on U , i.e., f = g
h with g, h polynomials

in k[x1, . . . , xn] and h non-zero on U
We show that OX,x are local (and hence (X,OX) is a ringed topological space). Let x ∈ X, then OX,x

can be identi�ed with the regular functions de�ned on a neighbourhood of x, and let mx be the set of

regular functions which vanished on x. We see that OX,x/mx
∼= k (since g

h =
f

g
− f(x)

g(x)︸ ︷︷ ︸
∈mx

+ f(x)
g(x) ). It is the
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only maximal ideal, because if f does not vanish on x, then g does not vanish on x and 1
f = h

g is still
regular. (So any ideal which contains f contains 1)
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