
AG for NT 10

Goal:
To understand the theory behind blowdown for arithmetic surfaces, learn minimal model and maybe canonical

model.
Give intuition and where hypothesis (normality, regularity)
Everything here will be Noetherian and of �nite type

1 Prerequisites

1.1 Sheaves of di�erentials

Start with rings: f : A → B, write B = A[x1, . . . , xn]/(f1, . . . fm). Let Ω1
B/A =

∑
Bdxi/ 〈dfj , da〉 (for all a ∈ A

and where d is evaluated using Leibniz rule). This is a B-module.

Example. A = k[y] = k[xn] ↪→ B = k[x], so B = A[t]/(tn − y). Then

Ω1
B/A = Bdt/d(tn − y)

= Bdt/(ntn−1dt− dy)

= Bdt/ntn−1dt

= B/ntn−1

This B-module correspond to a sheaf on SpecB supported at 0 only. This is exactly where the map x 7→ xn rami�es.
Taking B′ = k[x, x−1] then Ω1

B′/A = 0

The idea is that Ω1
B/A detects smoothness and rami�cation.

Let f : X → Y be a morphism of schemes. Then this construction shea��es and gives Ω1
X/Y , a sheaf on X.

Properties

• f : X → Y equidimensional �ber of dimension n and x ∈ X a point. Then f is smooth at x if and only if
Ω1
X/Y is locally free of dimension n around x.

So f is smooth if and only if Ω1
X/Y is locally free of rank n. (Note that f is smooth if and only if the �bers

of f are all smooth)

• i : Z ↪→ X a closed immersion with de�ning sheaf of ideal I ⊂ OX . In general, there is a sequence

0→ i∗(I/I2)︸ ︷︷ ︸
=:CX/Y the conormal sheaf

→ Ω1
X/Y ⊗Ox OZ → Ω1

Z/Y → 0

X is smooth over Y , then Z is smooth if and only if this sequence is left exact.
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1.2 Local complete intersections

f : X → Y morphism of schemes. f is a local complete intersection if it for every x ∈ X there is a an open
neighborhood x ∈ U such that there exists Z and

B U
f //� o

reg immesion ��

Y

A

OO

Z

smooth

??

Where a regular immersion is de�ned as follows: On rings this corresponds to B = A/(x1, . . . , xd) where xi is not
a zero divisor in A/(x1, . . . , xi−1) for all i ≤ d. �Successive quotient by non-zero divisors�.

Geometrically, this means that U is de�ned by a number of equations equal to its codimension in Z.
Intuition: Y = Spec k, then Z is a smooth variety K (such as Ank ) and X is locally de�ned by the appropriate

number of equations
Complete intersection: Same de�nition as above except with U = X. This is much more restrictive

Example. of a local complete intersection that is not a complete intersection is the twisted cubic, i.e, Proj(k[x, y, z, w]/
〈
xz − y2, yw − z2, xw − yz

〉
).

While this is a curve, it needs 3 equations to de�ne it and not 2.

Example.

1. Curves over a �eld are local complete intersections except if they have embedded point. An example of non
local complete intersection: k[x, y]/(x2, xy).

2. Let R be a Dedekind ring, F ∈ R[x, y]. Then R[x, y]/ 〈F 〉 is a local complete intersections.

3. f : X → Y morphism of regular schemes is an local complete intersection.

De�nition 1.1. The canonical sheaf of a local complete intersection X → Y is ωX/Y = det
(
C∨X/Z

)
⊗OX

i∗
(

det Ω1
Z/Y

)
. This is locally free of rank 1.

Example. X is a curve smooth over Y = Spec k, then ωX/Y = Ω1
X/k

Properties:

• ωX/Y is stable under �at base change

X ′
p //

��

X

β

��
Y ′

α
// Y

(either α or β is �at), then ωX′/Y = p∗ωX/Y

Additionally f : X → Y is a local complete intersection if and only if it is so �berwise

• For composition: f : X → Y , g : Y → Z. ωX/Z = ωX/Y ⊗OX f∗(ωY/Z). (This is the Riemann-Hurwitz
formula in disguise)

The sheaf ωX/Y gives Serre duality: H0(X,ωX/Y ) = Hd(X,OX)∨.
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2 Arithmetic surfaces

De�nition 2.1. A �bered surface is an integral surface X with a projective �at map π : X → S where S is a one
dimension Dedekin scheme (like SpecZ).

See diagram on slides for intuition

Divisors on X comes in two �avors:

• Vertical one (components of special �bers XS)

• Horizontal ones (closures of points in Xη).

Properties:

• Xη is geometrically integral (like a smooth curve), hence OS
∼→ π∗OX

• If Xη is smooth, then there are only �nitely many non-smooth �bers (proof: Smooth locus is open, use Ω1
X/S ,

and non-empty. Its complement is closed hence so is its image under π (proper), therefore this image is �nite)

• ωX/S |XS = ωXS |k(S)which follows from base change

• ps(XS) = pa(Xη), where pa of a curve is 1 − dimH0(C,OC) + dimH1(C,OC) (and in the case the curve is
smooth, we have = dimH0(C,ωC) = g(C) the usual genus of C)

De�nition 2.2. π : X → S is called normal if X is, and regular (or an arithmetic surface) if X is regular.

2.1 Desingularisation

Process of �nding Y 99K X birational (isomorphism Yη → Xη) such that Y is regular.
If Xη is smooth, one can do:

X

X1

OO

normalisation of X

X ′1

OO

blowup of remaining sing inX1

X2

OO

X ′2

OO

Fact. This stops and gives a regular surface at some points. After further blowup, all special �bers can be taken to
have normal crossings.

2.2 Contraction

X → S arithmetic surface, E component of special �bers XS . We want typically to construct a morphism:

X
f //

  

Y

��
S
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contracting E means we want f(E) to be a point and f is an isomorphism outside E.
This is done by using invertible sheaves. L an invertible sheaf on X: H0(X,L) = Rs0 ⊕ · · · ⊕Rsn . This gives a

morphism fL : X → Pn de�ned by x 7→ (s0(x) : · · · : sn(x)). This is well de�ned as long as Lx =
∑
i siOX,x, i.e., L

should be generated by its global sections.
f = fL, suppose Z ⊂ XS is a projective component of �bers, then f(Z) is a point if and only if L|Z = OZ .
⇒: suppose the point is (1 : 0 : · · · : 0), then by construction s0 generates on all points above y.
⇐: Restricting to Z the space H0(Z,L) is �nite (Z is projective), so we get f |Z : Z → H0(Z,L)→ PnA .

Fact. Birational maps X → Y between normal �bered surfaces are sequences X 99K X1 99K X2 99K · · · 99K Y
(where the map is either a blowup of a point or a contraction of a curve to a point).

Contraction Criteria

Let E be a set of vertical divisors: Contraction of E exists if and only if there exists a carties divisor D on X such
that

• deg(D|Xη ) > 0

• OX(D) generated by global sections

• OX(D)|E ∼= OE for E vertical if and only if E ∈ E
Over a�ne S, for any e�ective horizontal Cartier divisors D, the sheaf OX(nD) is generated by its global sections
if n� 0.

D + E may not be generated by global sections even if D and E are.

2.3 Intersection Theory

LetX be a �bered surface, D,E divisors onX. Suppose thatD and E have no common component. D,E then inter-
sect in �nitely many points. Suppose x ∈ X is a point of intersection, we set ix(D,E) = lengthOX,x(OX,x/(OX,x(−D)+
OX,x(−E)) and let i(D,E) =

∑
x∈X ix(D,E). (With the convention that if x is not an intersection point the

ix(D,E) = 0)
Alternatively: D|E = j∗(D) where j : E ↪→ X, then ix(C,D) =multiplicity of x on D|E .
On a �bered surface we get for s ∈ S, is : Div(X)×Divs(X)→ Z. If E is a component of XS then is(D,E) =

degk(S)OX(D)|E .

Properties

• Xs �ber of X → S then is is negative de�nite and x · x = 0 implies x ∈ ZXs.

• X → Y a contraction, Γi → y. Look at
∑
ninjΓiΓj ≤ 0, with equality if and only if ni = 0.

• Hodge index theorem for ordinary surfaces Pic(X)× Pic(X)→ Z, has signature (1,−1, . . . ,−1).

• P a point of Xη. Consider {P} ·Xs = [K(P ) : K(S)], hence it is 1 if P is a rational point

• TakeK such that ωX|S = OX(K), then

2pa(Xη)− 2 = degωXη |k(η)

= −2χk(η)(OXη )

= 2Xk(S)
(OXS )

= deg(ωXs |k(s))

= deg(OX(K)|XS )

= K ·XS

=
∑

di(KX|S · Γi)

where Γi are components of XS and di are the length of OX,Γi .
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