AG for NT 11

As last time, everything is Noetherian or of finite type.

1 More on intersections

Relation with conormal sheaves and blowups. Let X be a fibered surface. Let $D \subseteq X$ be a Cartier divisor. $(D = V(I) \text{ where } I = \mathcal{O}_X(-D).)$ Let $i: D \hookrightarrow X$

$$1 \to I \to \mathcal{O}_X \to i_*(\mathcal{O}_D) \to 1$$

Then the conormal sheave in this case is

$$C_{D/X} = i^* (I/I^2)$$

= $I \otimes_{\mathcal{O}_X} \mathcal{O}_X / I$
= $\mathcal{O}_X (-D) \otimes_{\mathcal{O}_X} \mathcal{O}_D$
= $\mathcal{O}_X (-D)|_D$

The cononical sheave is $\omega_{D/X} = C_{D/X}^{\vee} = \mathcal{O}_X(D)|_D.$

For a blowup: $Y = V(I) \hookrightarrow X$ both regular, we get $Y' \hookrightarrow X'$ where X' is the blowup of X in Y and Y' is the inverse image of Y (i.e., $V(I\mathcal{O}_{X'})$ and $Y' \cong \mathbb{P}_Y^{r-1}$. By construction $i: X' \hookrightarrow \mathbb{P}_X^{r-1}$ and $J = i^*(\mathcal{O}_{\mathbb{P}_X^{r-1}}(1))$. We have $J/J^2 = i^*(\mathcal{O}_{\mathbb{P}_Y^{r-1}}(1))$ and $\omega_{Y'/X} = (J/J^2)^{\vee} = \mathcal{O}_Y(-1)$. Specialising to Y being a point, we see that Y' has self-intersection -1, by taking the degree.

1.1 Adjunction

Let X be a fibered surface, suppose $E \subset X_S$ component of special fiber.

$$\omega_{E/k(s)} = \left(\mathcal{O}_X(E) \otimes \omega_{X/S}\right)_E$$

The proof of this formula is: One has

By taking degrees and using the relation between $deg(\omega)$ and p_a , one gets

$$p_a(E) = 1 + \frac{1}{2}(E^2 + E \cdot K_{X/S})$$

where $\omega_{X/S} = \mathcal{O}_X(K_{X/S})$.

2 Cohomology

Let \mathcal{F} be a sheaf on X be a scheme. We get an infinite sequence of groups $H^0(\mathcal{F}), H^1(\mathcal{F}), H^2(\mathcal{F}), \ldots$. We have $H^0(\mathcal{F}) = \mathcal{F}(X)$

If

$$0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$$

then we get the long exact sequence

$$0 \to H^0(\mathcal{F}) \to H^0(\mathcal{G}) \to H^0(\mathcal{H}) \to H^1(\mathcal{F}) \to H^1(\mathcal{G}) \to \dots$$

Key Properties for Projective Space:

 $X = \mathbb{P}^d_A = \mathbf{Proj}B$ where $B = A[T_0, \dots, T_d]$, then

- $H^0(X, \mathcal{O}_X(n)) = B_n$ the *n*th graded parts
- $H^i(X, \mathcal{O}_X(n)) = 0$ if $i \neq 0, d$
- $H^d(X, \mathcal{O}_X(n)) = H^0(X, \mathcal{O}_X(-n-d-1))^{\vee} = 0$ for $n \gg 0$.
- Serre showed: Let \mathcal{F} be a general sheaf on $X = \mathbb{P}^d_A$. Then $H^i(X, \mathcal{F}(u)) = 0$ for i > 0 if $n \gg 0$.
- Subschemes: if $i: Z \hookrightarrow X$ is a closed immersion then $H^i(Z, \mathcal{F}) \cong H^i(X, i_*\mathcal{F})$ (where \mathcal{F} is a sheaf on Z)

Let X be an arithmetic surface $E \subset X_S$ irreducible such that

- $E \cong \mathbb{P}^1_{k'}$ for k'/k finite
- $E^2 < 0$

Let H be an effective divisor on X such that $H^1(X, \mathcal{O}_X(H)) = 0$. Let $r = \frac{-H \cdot E}{E^2} \in \mathbb{Q}$. Then

1. $H^1(X, \mathcal{O}_X(H+iE)) = 0$ for $i \leq r$

2. If $r \in \mathbb{Z}$, $\mathcal{O}_X(H)$ is generated by global sections: then $\begin{cases} \mathcal{O}_X(H+rE)|_E \cong \mathcal{O}_E\\ \mathcal{O}_X(H+rE) \text{ generated by global sections} \end{cases}$

Proof.

1. We use induction on *i*. For the given $i \leq r$, we have $(H + (i+1)E) \cdot E \geq 0$. So $\mathcal{O}_X(H + (i+1)E)|_E$ is of positive degree, hence isomorphic to $\mathcal{O}_E(a)$ for some $a \geq 0$. Use

$$0 \to \mathcal{O}_X(H+iE) \to \mathcal{O}_X(H+(i+1)E) \to i_*\mathcal{O}_X(H+(i+1)E)|_E \to 0.$$

Use cohomology, $H^1(X, \mathcal{O}_X(H+iE)) = 0$, by induction hypothesis.

$$H^{1}(X, i_{*}\mathcal{O}_{X}(H + (i+1)E)|_{E}) = H^{1}(E, \mathcal{O}_{E}(a)) = 0$$

by description for \mathbb{P}^1 . Hence $H^1(X, \mathcal{O}_X(H + (i+1)E)) = 0$ because of the exact sequence

2. $\mathcal{O}_X(H+rE)|_E \cong \mathcal{O}_E$ because its degree is zero and $E \cong \mathbb{P}^1_{k'}$. Use the fact that it is generated by global sections, we only have to check this at points of E, since $H^0(X, H+rE) \supset H^0(X, H)$ and outsides E, these sheaves coincides.

Now
$$H^0(X, \mathcal{O}_X(H+rE)) \twoheadrightarrow H^0(E, \mathcal{O}_X(H+rE)|_E) \to H^!(X, \mathcal{O}_X(H+\underbrace{(r-1)}_{=0}E)$$

Theorem 2.1. Let X be an arithmetic surface, $E \subseteq X_S$ irreducible component of special fiber such that

- 1. $E \cong \mathbb{P}^1_{k'}$
- 2. $E^2 < 0$

Then a contraction $f: X \to Y$ of E exists.

Proof. Let \mathcal{L} be an ample sheaf on X. If necessary replace \mathcal{L} by $\mathcal{L}^{\otimes n}$, we can assume \mathcal{L} is very ample. Furthermore, by using Serre we can also assume $H^1(X, \mathcal{L}) = 0$. Let $\mathcal{L} = \mathcal{O}_X(H_0)$ where H_0 is an effective divisors.

Let Γ be a component of a special fiber, then $\mathcal{O}_X(H_0)|_{\Gamma}$ is still ample, so $H_0 \cdot \Gamma > 0$ (as ample if and only if deg > 0 if \mathbb{P}^1). Let $m = -E^2 > 0$ and $r = H_0 \cdot E > 0$. Construct $D = mH_0 + rE$. By our previous result D is generated by global sections and so defines a morphism $f = f_D$:

- 1. E get contracted, because $D \cdot E = 0$ by construction, so $\deg(\mathcal{O}_X(D)|_E) = 0$, so $\mathcal{O}_X(D)|_E = \mathcal{O}_E$ (since $E \cong \mathbb{P}^1_{k'}$)
- 2. Other Γ do not get contracted: $\deg(\mathcal{O}_X(D)|_{\Gamma}) = D \cdot \Gamma = \underbrace{mH_0 \cdot \Gamma}_{>0 H_0 \text{ ample}} + \underbrace{rE \cdot \Gamma}_{\geq 0, \text{ no common components}} > 0.$ So $\mathcal{O}_X(D)|_{\Gamma}$

is not trivial.

Using the theorem on formal functions, one shows: if

$$d = -E^2/[k':k(s)]$$

= deg_{k'}($\mathcal{O}_X(-E)|_E$)
= deg_{k'}(N_{E/X})

So $E \mapsto y$ is a contraction $\dim_{k(y)} T_{Y/y} = d + 1$.

So the contraction is regular if and only if $\begin{cases} E \cong \mathbb{P}_{k'}^1 \\ E^2 = -[k':k(s)] \end{cases}$. In such a case *E* is called *exceptional*. The arithmetic surface obtained after successfully contracting all exceptional divisors is the *relatively minimal model* of *X*.

Criteria for a divisor to be exceptional:

- 1. E is exceptional if and only if $E^2 < 0$ and $K_{X/S} \cdot E < 0$.
- 2. $p_a(X_\eta) \ge 1$: E is exceptional if and only if $K_{X/S} \cdot E < 0$

Proof.

1. Use adjunctions,

$$K_{X/S} \cdot E + E^2 = -2\chi_{k(s)}(\mathcal{O}_E)$$

= -2 + 2 dim_{k'}(H¹(E, \mathcal{O}_E))

This shows, $H^1 = 0$, which means E is a conic, and in fact $E \cong \mathbb{P}^1_{k'}$. In fact then $K_{X/S} \cdot E = E^2$

2. $H^0(X, \omega_{X/S}) \otimes K(S) \neq 0$ because of hypothesis. Therefore, $\omega_{X,S}$ is effective: $\omega_{X/S} = \mathcal{O}(K_{X/S})$ for $K_{X/S} > 0$. We have $K_{X/S} = aE + D$ where D has no common component with E. Because of the intersection number, we see $a \geq 1$. Then $aE^2 = K_{X/S} \cdot E - D \cdot E < 0$

Recall: If Y is an arithemtic surface, it is *minimal* if for all other X arithemtic surface, if we have that there is birational map $X \rightarrow Y$, it is in fact a morphism.

We want that relvative minimal implies minimal. This is <u>true</u> f $p_a(X_\eta) \ge 1$. This is because for $p_a(X_\eta) = 0$, the statement is not true. (See diagram in notes)

Lemma 2.2. Let X_1, X_2 be arithmetic birational surfaces without morphism between them. There exists a Z common birational cover and E_1, E_2 on Z such that either

- $p_2(E_1)$ is still exceptional or
- $(E_1 + \mu E_2)^2 \ge 0$ for some $\mu \ge 0$

Theorem 2.3. Relative minimal implies minimal if $p_a(X_\eta) \ge 1$

Proof.

$$2p_a(X_\eta) - 2 = 2p_a(Z_\eta) - 2$$
$$= K_{Z/S} \cdot Z_S$$

Consider $D = E_1 + \mu E_2$, there are contained in the same fiber, so $D = rZ_s$ for some r because of negative-definiteness.

$$= (K_{Z/S}E_1 + \mu E_2 \cdot K_{Z/S})/r < 0$$

Contraction.

2.1 Other models

1. E/K elliptic curve where K = K(S) for affine Dedekind scheme. Then there exists a normal model of E over S. So a minimal regular model \mathcal{E} exists.

Let \mathcal{N} be the smooth locus of $\mathcal{E} \to S$. This is an open immersion in \mathcal{E} . We have $\operatorname{Hom}(S, \mathcal{E}) = \mathcal{E}(S) = \mathcal{E}(K) = \operatorname{Hom}(\operatorname{Spec} K, E)$ (because \mathcal{E} is proper). $\mathcal{E}(S) = \mathcal{N}(S)$ because rational points intersect special fibers once, so not in singular points.

 \mathcal{N} is called the Neron model of E. It is the unique smooth model of E such that for X/S smooth, there is an bijection $\operatorname{Hom}_S(X, \mathcal{E}) = \operatorname{Hom}_K(X_K, E)$. This gives a filtration of E(K): given by

$$\underbrace{E^1(K)}_{\cong \mathfrak{m} \text{ for maximal ideal of DVR } R \text{ with FF } K} \hookrightarrow E^0(K) \hookrightarrow E(K)$$

 $k = R/\mathfrak{m}$, (first arrow) $N_J(k)$ is connected component containing 0 of the special fibers of \mathcal{N} over S (second arrow) groups of connected components of special fiber.