
AG for NT 11

As last time, everything is Noetherian or of �nite type.

1 More on intersections

Relation with conormal sheaves and blowups. Let X be a �bered surface. Let D ⊆ X be a Cartier divisor.
(D = V (I) where I = OX(−D).) Let i : D ↪→ X

1→ I → OX → i∗(OD)→ 1

Then the conormal sheave in this case is

CD/X = i∗(I/I2)

= I ⊗OX
OX/I

= OX(−D)⊗OX
OD

= OX(−D)|D
The cononical sheave is ωD/X = C∨D/X = OX(D)|D.

For a blowup: Y = V (I) ↪→ X both regular, we get Y ′ ↪→ X ′ where X ′ is the blowup of X in Y and Y ′ is
the inverse image of Y (i.e., V (IOX′) and Y ′ ∼= Pr−1

Y . By construction i : X ′ ↪→ Pr−1
X and J = i∗(OPr−1

X
(1)). We

have J/J2 = i∗(OPr−1
Y

(1)) and ωY ′/X = (J/J2)∨ = OY (−1). Specialising to Y being a point, we see that Y ′ has

self-intersection −1, by taking the degree.

1.1 Adjunction

Let X be a �bered surface, suppose E ⊂ XS component of special �ber.

ωE/k(s) =
(
OX(E)⊗ ωX/S

)
E

The proof of this formula is: One has
X

��
E //

##

, �

::

S

Spec(S)
?�

OO

ωE/S︸ ︷︷ ︸
=ωE/k(S)⊗ωSpec(s)|S︸ ︷︷ ︸

trivial

= ωE/X︸ ︷︷ ︸
ωE/X |E=OX(E)|E

⊗ ωX/S |E

By taking degrees and using the relation between deg(ω) and pa, one gets

pa(E) = 1 +
1

2
(E2 + E ·KX/S)

where ωX/S = OX(KX/S).
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2 Cohomology

Let F be a sheaf on X be a scheme. We get an in�nite sequence of groups H0(F), H1(F), H2(F), . . . .
We have H0(F) = F(X)
If

0→ F → G → H → 0

then we get the long exact sequence

0→ H0(F)→ H0(G)→ H0(H)→ H1(F)→ H1(G)→ . . .

Key Properties for Projective Space:

X = PdA = ProjB where B = A[T0, . . . , Td], then

• H0(X,OX(n)) = Bn the nth graded parts

• Hi(X,OX(n)) = 0 if i 6= 0, d

• Hd(X,OX(n)) = H0(X,OX(−n− d− 1))∨ = 0 for n� 0.

• Serre showed: Let F be a general sheaf on X = PdA. Then Hi(X,F(u)) = 0 for i > 0 if n� 0.

• Subschemes: if i : Z ↪→ X is a closed immersion then Hi(Z,F) ∼= Hi(X, i∗F) (where F is a sheaf on Z)

Let X be an arithmetic surface E ⊂ XS irreducible such that

• E ∼= P1
k′ for k

′/k �nite

• E2 < 0

Let H be an e�ective divisor on X such that H1(X,OX(H)) = 0. Let r = −H·E
E2 ∈ Q. Then

1. H1(X,OX(H + iE)) = 0 for i ≤ r

2. If r ∈ Z, OX(H) is generated by global sections: then

{
OX(H + rE)|E ∼= OE
OX(H + rE) generated by global sections

.

Proof.

1. We use induction on i. For the given i ≤ r, we have (H + (i + 1)E) · E ≥ 0. So OX(H + (i + 1)E)|E is of
positive degree, hence isomorphic to OE(a) for some a ≥ 0. Use

0→ OX(H + iE)→ OX(H + (i+ 1)E)→ i∗OX(H + (i+ 1)E)|E → 0.

Use cohomology, H1(X,OX(H + iE)) = 0, by induction hypothesis.

H1(X, i∗OX(H + (i+ 1)E)|E) = H1(E,OE(a)) = 0

by description for P1. Hence H1(X,OX(H + (i+ 1)E)) = 0 because of the exact sequence

2. OX(H + rE)|E ∼= OE because its degree is zero and E ∼= P1
k′ . Use the fact that it is generated by global

sections, we only have to check this at points of E, since H0(X,H + rE) ⊃ H0(X,H) and outsides E, these
sheaves coincides.

Now H0(X,OX(H + rE))� H0(E,OX(H + rE)|E)→ H !(X,OX(H + (r − 1)︸ ︷︷ ︸
=0

E)

Theorem 2.1. Let X be an arithmetic surface, E ⊆ XS irreducible component of special �ber such that
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1. E ∼= P1
k′

2. E2 < 0

Then a contraction f : X → Y of E exists.

Proof. Let L be an ample sheaf on X. If necessary replace L by L⊗n, we can assume L is very ample. Furthermore,
by using Serre we can also assume H1(X,L) = 0. Let L = OX(H0) where H0 is an e�ective divisors.

Let Γ be a component of a special �ber, then OX(H0)|Γ is still ample, so H0 · Γ > 0 (as ample if and only if
deg > 0 if P1). Let m = −E2 > 0 and r = H0 · E > 0. Construct D = mH0 + rE. By our previous result D is
generated by global sections and so de�nes a morphism f = fD:

1. E get contracted, because D · E = 0 by construction, so deg(OX(D)|E) = 0, so OX(D)|E = OE (since
E ∼= P1

k′)

2. Other Γ do not get contracted: deg(OX(D)|Γ) = D ·Γ = mH0 · Γ︸ ︷︷ ︸
>0H0 ample

+ rE · Γ︸ ︷︷ ︸
≥0, no common components

> 0. So OX(D)|Γ

is not trivial.

Using the theorem on formal functions, one shows: if

d = −E2/[k′ : k(s)]

= degk′(OX(−E)|E)

= degk′(NE/X)

So E 7→ y is a contraction dimk(y) TY/y = d+ 1.

So the contraction is regular if and only if

{
E ∼= P1

k′

E2 = −[k′ : k(s)]
. In such a case E is called exceptional. The

arithmetic surface obtained after successfully contracting all exceptional divisors is the relatively minimal model of
X.

Criteria for a divisor to be exceptional:

1. E is exceptional if and only if E2 < 0 and KX/S · E < 0.

2. pa(Xη) ≥ 1: E is exceptional if and only if KX/S · E < 0

Proof.

1. Use adjunctions,

KX/S · E + E2 = −2χk(s)(OE)

= −2 + 2 dimk′(H
1(E,OE))

This shows, H1 = 0, which means E is a conic, and in fact E ∼= P1
k′ . In fact then KX/S · E = E2

2. H0(X,ωX/S)⊗K(S) 6= 0 because of hypothesis. Therefore, ωX,S is e�ective: ωX/S = O(KX/S) for KX/S > 0.
We have KX/S = aE +D where D has no common component with E. Because of the intersection number,
we seea ≥ 1. Then aE2 = KX/S · E

<0

−D · E
>0

< 0

Recall: If Y is an arithemtic surface, it is minimal if for all other X arithemtic surface, if we have that there is
birational map X 99K Y , it is in fact a morphism.

We want that relvative minimal implies minimal. This is true f pa(Xη) ≥ 1. This is beacuse for pa(Xη) = 0, the
statement is not true. (See diagram in notes)
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Lemma 2.2. Let X1, X2 be arithmetic birational surfaces without morphism between them. There exists a Z
common birational cover and E1, E2 on Z such that either

• p2(E1) is still exceptional or

• (E1 + µE2)2 ≥ 0 for some µ ≥ 0

Z
p2

  

p1

~~
X1

//
X2oo

Theorem 2.3. Relative minimal implies minimal if pa(Xη) ≥ 1

Proof.

2pa(Xη)− 2 = 2pa(Zη)− 2

= KZ/S · ZS

ConsiderD = E1+µE2, there are contained in the same �ber, soD = rZs for some r because of negative-de�niteness.

= (KZ/SE1 + µE2 ·KZ/S)/r < 0

Contraction.

2.1 Other models

1. E/K elliptic curve where K = K(S) for a�ne Dedekind scheme. Then there exists a normal model of E over
S. So a minimal regular model E exists.

Let N be the smooth locus of E → S. This is an open immersion in E . We have Hom(S, E) = E(S) = E(K) =
Hom(SpecK,E) (because E is proper). E(S) = N (S) because rational points intersect special �bers once, so
not in singular points.

N is called the Neron model of E. It is the unique smooth model of E such that for X/S smooth, there is an
bijection HomS(X, E) = HomK(XK , E). This gives a �ltration of E(K): given by

E1(K)︸ ︷︷ ︸
∼=m for maximal ideal of DVRRwith FFK

↪→ E0(K) ↪→ E(K)

k = R/m, (�rst arrow) NJ(k) is connected component containing 0 of the special �bers of N over S

(second arrow) groups of connected components of special �ber.
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