AG for NT 11

As last time, everything is Noetherian or of finite type.

1 More on intersections

Relation with conormal sheaves and blowups. Let X be a fibered surface. Let $D \subseteq X$ be a Cartier divisor. ($D=V(I)$ where $I=\mathcal{O}_{X}(-D)$.) Let $i: D \hookrightarrow X$

$$
1 \rightarrow I \rightarrow \mathcal{O}_{X} \rightarrow i_{*}\left(\mathcal{O}_{D}\right) \rightarrow 1
$$

Then the conormal sheave in this case is

$$
\begin{aligned}
C_{D / X} & =i^{*}\left(I / I^{2}\right) \\
& =I \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X} / I \\
& =\mathcal{O}_{X}(-D) \otimes_{\mathcal{O}_{X}} \mathcal{O}_{D} \\
& =\left.\mathcal{O}_{X}(-D)\right|_{D}
\end{aligned}
$$

The cononical sheave is $\omega_{D / X}=C_{D / X}^{\vee}=\left.\mathcal{O}_{X}(D)\right|_{D}$.
For a blowup: $Y=V(I) \hookrightarrow X$ both regular, we get $Y^{\prime} \hookrightarrow X^{\prime}$ where X^{\prime} is the blowup of X in Y and Y^{\prime} is the inverse image of Y (i.e., $V\left(I \mathcal{O}_{X^{\prime}}\right)$ and $Y^{\prime} \cong \mathbb{P}_{Y}^{r-1}$. By construction $i: X^{\prime} \hookrightarrow \mathbb{P}_{X}^{r-1}$ and $J=i^{*}\left(\mathcal{O}_{\mathbb{P}_{X}^{r-1}}(1)\right)$. We have $J / J^{2}=i^{*}\left(\mathcal{O}_{\mathbb{P}_{Y}^{r-1}}(1)\right)$ and $\omega_{Y^{\prime} / X}=\left(J / J^{2}\right)^{\vee}=\mathcal{O}_{Y}(-1)$. Specialising to Y being a point, we see that Y^{\prime} has self-intersection -1 , by taking the degree.

1.1 Adjunction

Let X be a fibered surface, suppose $E \subset X_{S}$ component of special fiber.

$$
\omega_{E / k(s)}=\left(\mathcal{O}_{X}(E) \otimes \omega_{X / S}\right)_{E}
$$

The proof of this formula is: One has

$$
\underbrace{\omega_{E / S}}_{=\omega_{E / k(S)} \otimes \underbrace{\omega_{\text {Spec }(s) \mid S}}_{\text {trivial }}}=\left.\underbrace{\omega_{E / X}}_{\left.\omega_{E / X}\right|_{E}=\left.\mathcal{O}_{X}(E)\right|_{E}} \otimes \omega_{X / S}\right|_{E}
$$

By taking degrees and using the relation between $\operatorname{deg}(\omega)$ and p_{a}, one gets

$$
p_{a}(E)=1+\frac{1}{2}\left(E^{2}+E \cdot K_{X / S}\right)
$$

where $\omega_{X / S}=\mathcal{O}_{X}\left(K_{X / S}\right)$.

2 Cohomology

Let \mathcal{F} be a sheaf on X be a scheme. We get an infinite sequence of groups $H^{0}(\mathcal{F}), H^{1}(\mathcal{F}), H^{2}(\mathcal{F}), \ldots$
We have $H^{0}(\mathcal{F})=\mathcal{F}(X)$
If

$$
0 \rightarrow \mathcal{F} \rightarrow \mathcal{G} \rightarrow \mathcal{H} \rightarrow 0
$$

then we get the long exact sequence

$$
0 \rightarrow H^{0}(\mathcal{F}) \rightarrow H^{0}(\mathcal{G}) \rightarrow H^{0}(\mathcal{H}) \rightarrow H^{1}(\mathcal{F}) \rightarrow H^{1}(\mathcal{G}) \rightarrow \ldots
$$

Key Properties for Projective Space:

$X=\mathbb{P}_{A}^{d}=\operatorname{Proj} B$ where $B=A\left[T_{0}, \ldots, T_{d}\right]$, then

- $H^{0}\left(X, \mathcal{O}_{X}(n)\right)=B_{n}$ the nth graded parts
- $H^{i}\left(X, \mathcal{O}_{X}(n)\right)=0$ if $i \neq 0, d$
- $H^{d}\left(X, \mathcal{O}_{X}(n)\right)=H^{0}\left(X, \mathcal{O}_{X}(-n-d-1)\right)^{\vee}=0$ for $n \gg 0$.
- Serre showed: Let \mathcal{F} be a general sheaf on $X=\mathbb{P}_{A}^{d}$. Then $H^{i}(X, \mathcal{F}(u))=0$ for $i>0$ if $n \gg 0$.
- Subschemes: if $i: Z \hookrightarrow X$ is a closed immersion then $H^{i}(Z, \mathcal{F}) \cong H^{i}\left(X, i_{*} \mathcal{F}\right)$ (where \mathcal{F} is a sheaf on Z)

Let X be an arithmetic surface $E \subset X_{S}$ irreducible such that

- $E \cong \mathbb{P}_{k^{\prime}}^{1}$ for k^{\prime} / k finite
- $E^{2}<0$

Let H be an effective divisor on X such that $H^{1}\left(X, \mathcal{O}_{X}(H)\right)=0$. Let $r=\frac{-H \cdot E}{E^{2}} \in \mathbb{Q}$. Then

1. $H^{1}\left(X, \mathcal{O}_{X}(H+i E)\right)=0$ for $i \leq r$
2. If $r \in \mathbb{Z}, \mathcal{O}_{X}(H)$ is generated by global sections: then $\left\{\begin{array}{l}\left.\mathcal{O}_{X}(H+r E)\right|_{E} \cong \mathcal{O}_{E} \\ \mathcal{O}_{X}(H+r E) \text { generated by global sections }\end{array}\right.$.

Proof.

1. We use induction on i. For the given $i \leq r$, we have $(H+(i+1) E) \cdot E \geq 0$. So $\left.\mathcal{O}_{X}(H+(i+1) E)\right|_{E}$ is of positive degree, hence isomorphic to $\mathcal{O}_{E}(a)$ for some $a \geq 0$. Use

$$
\left.0 \rightarrow \mathcal{O}_{X}(H+i E) \rightarrow \mathcal{O}_{X}(H+(i+1) E) \rightarrow i_{*} \mathcal{O}_{X}(H+(i+1) E)\right|_{E} \rightarrow 0
$$

Use cohomology, $H^{1}\left(X, \mathcal{O}_{X}(H+i E)\right)=0$, by induction hypothesis.

$$
H^{1}\left(X,\left.i_{*} \mathcal{O}_{X}(H+(i+1) E)\right|_{E}\right)=H^{1}\left(E, \mathcal{O}_{E}(a)\right)=0
$$

by description for \mathbb{P}^{1}. Hence $H^{1}\left(X, \mathcal{O}_{X}(H+(i+1) E)\right)=0$ because of the exact sequence
2. $\left.\mathcal{O}_{X}(H+r E)\right|_{E} \cong \mathcal{O}_{E}$ because its degree is zero and $E \cong \mathbb{P}_{k^{\prime}}^{1}$. Use the fact that it is generated by global sections, we only have to check this at points of E, since $H^{0}(X, H+r E) \supset H^{0}(X, H)$ and outsides E, these sheaves coincides.
Now $H^{0}\left(X, \mathcal{O}_{X}(H+r E)\right) \rightarrow H^{0}\left(E,\left.\mathcal{O}_{X}(H+r E)\right|_{E}\right) \rightarrow H^{!}(X, \mathcal{O}_{X}(H+\underbrace{(r-1)}_{=0} E)$

Theorem 2.1. Let X be an arithmetic surface, $E \subseteq X_{S}$ irreducible component of special fiber such that

1. $E \cong \mathbb{P}_{k^{\prime}}^{1}$
2. $E^{2}<0$

Then a contraction $f: X \rightarrow Y$ of E exists.
Proof. Let \mathcal{L} be an ample sheaf on X. If necessary replace \mathcal{L} by $\mathcal{L}^{\otimes n}$, we can assume \mathcal{L} is very ample. Furthermore, by using Serre we can also assume $H^{1}(X, \mathcal{L})=0$. Let $\mathcal{L}=\mathcal{O}_{X}\left(H_{0}\right)$ where H_{0} is an effective divisors.

Let Γ be a component of a special fiber, then $\left.\mathcal{O}_{X}\left(H_{0}\right)\right|_{\Gamma}$ is still ample, so $H_{0} \cdot \Gamma>0$ (as ample if and only if $\operatorname{deg}>0$ if \mathbb{P}^{1}). Let $m=-E^{2}>0$ and $r=H_{0} \cdot E>0$. Construct $D=m H_{0}+r E$. By our previous result D is generated by global sections and so defines a morphism $f=f_{D}$:

1. E get contracted, because $D \cdot E=0$ by construction, so $\operatorname{deg}\left(\left.\mathcal{O}_{X}(D)\right|_{E}\right)=0$, so $\left.\mathcal{O}_{X}(D)\right|_{E}=\mathcal{O}_{E}$ (since $\left.E \cong \mathbb{P}_{k^{\prime}}^{1}\right)$
2. Other Γ do not get contracted: $\operatorname{deg}\left(\left.\mathcal{O}_{X}(D)\right|_{\Gamma}\right)=D \cdot \Gamma=\underbrace{m H_{0} \cdot \Gamma}_{>0 H_{0} \text { ample }}+\underbrace{\geq 0 \text {, no common components }} \quad$. $E \cdot \Gamma$. So $\left.\mathcal{O}_{X}(D)\right|_{\Gamma}$ is not trivial.

Using the theorem on formal functions, one shows: if

$$
\begin{aligned}
d & =-E^{2} /\left[k^{\prime}: k(s)\right] \\
& =\operatorname{deg}_{k^{\prime}}\left(\left.\mathcal{O}_{X}(-E)\right|_{E}\right) \\
& =\operatorname{deg}_{k^{\prime}}\left(N_{E / X}\right)
\end{aligned}
$$

So $E \mapsto y$ is a contraction $\operatorname{dim}_{k(y)} T_{Y / y}=d+1$.
So the contraction is regular if and only if $\left\{\begin{array}{l}E \cong \mathbb{P}_{k^{\prime}}^{1} \\ E^{2}=-\left[k^{\prime}: k(s)\right]\end{array}\right.$. In such a case E is called exceptional. The arithmetic surface obtained after successfully contracting all exceptional divisors is the relatively minimal model of X.

Criteria for a divisor to be exceptional:

1. E is exceptional if and only if $E^{2}<0$ and $K_{X / S} \cdot E<0$.
2. $p_{a}\left(X_{\eta}\right) \geq 1: E$ is exceptional if and only if $K_{X / S} \cdot E<0$

Proof.

1. Use adjunctions,

$$
\begin{aligned}
K_{X / S} \cdot E+E^{2} & =-2 \chi_{k(s)}\left(\mathcal{O}_{E}\right) \\
& =-2+2 \operatorname{dim}_{k^{\prime}}\left(H^{1}\left(E, \mathcal{O}_{E}\right)\right)
\end{aligned}
$$

This shows, $H^{1}=0$, which means E is a conic, and in fact $E \cong \mathbb{P}_{k^{\prime}}^{1}$. In fact then $K_{X / S} \cdot E=E^{2}$
2. $H^{0}\left(X, \omega_{X / S}\right) \otimes K(S) \neq 0$ because of hypothesis. Therefore, $\omega_{X, S}$ is effective: $\omega_{X / S}=\mathcal{O}\left(K_{X / S}\right)$ for $K_{X / S}>0$. We have $K_{X / S}=a E+D$ where D has no common component with E. Because of the intersection number, we see $a \geq 1$. Then $a E^{2}=K_{X / S} \cdot E-D_{>0} \cdot E<0$

Recall: If Y is an arithemtic surface, it is minimal if for all other X arithemtic surface, if we have that there is birational map $X \rightarrow Y$, it is in fact a morphism.

We want that relvative minimal implies minimal. This is true $\mathrm{f} p_{a}\left(X_{\eta}\right) \geq 1$. This is beacuse for $p_{a}\left(X_{\eta}\right)=0$, the statement is not true. (See diagram in notes)

Lemma 2.2. Let X_{1}, X_{2} be arithmetic birational surfaces without morphism between them. There exists a Z common birational cover and E_{1}, E_{2} on Z such that either

- $p_{2}\left(E_{1}\right)$ is still exceptional or
- $\left(E_{1}+\mu E_{2}\right)^{2} \geq 0$ for some $\mu \geq 0$

Theorem 2.3. Relative minimal implies minimal if $p_{a}\left(X_{\eta}\right) \geq 1$
Proof.

$$
\begin{aligned}
2 p_{a}\left(X_{\eta}\right)-2 & =2 p_{a}\left(Z_{\eta}\right)-2 \\
& =K_{Z / S} \cdot Z_{S}
\end{aligned}
$$

Consider $D=E_{1}+\mu E_{2}$, there are contained in the same fiber, so $D=r Z_{s}$ for some r because of negative-definiteness.

$$
=\left(K_{Z / S} E_{1}+\mu E_{2} \cdot K_{Z / S}\right) / r<0
$$

Contraction.

2.1 Other models

1. E / K elliptic curve where $K=K(S)$ for affine Dedekind scheme. Then there exists a normal model of E over S. So a minimal regular model \mathcal{E} exists.
Let \mathcal{N} be the smooth locus of $\mathcal{E} \rightarrow S$. This is an open immersion in \mathcal{E}. We have $\operatorname{Hom}(S, \mathcal{E})=\mathcal{E}(S)=E(K)=$ $\operatorname{Hom}(\operatorname{Spec} K, E)$ (because \mathcal{E} is proper). $\mathcal{E}(S)=\mathcal{N}(S)$ because rational points intersect special fibers once, so not in singular points.
\mathcal{N} is called the Neron model of E. It is the unique smooth model of E such that for X / S smooth, there is an bijection $\operatorname{Hom}_{S}(X, \mathcal{E})=\operatorname{Hom}_{K}\left(X_{K}, E\right)$. This gives a filtration of $E(K)$: given by

$$
\underbrace{E^{1}(K)}_{\mathfrak{m} \text { for maximal ideal of DVR } R \text { with FF } K} \hookrightarrow E^{0}(K) \hookrightarrow E(K)
$$

$k=R / \mathfrak{m}$, (first arrow) $N_{J}(k)$ is connected component containing 0 of the special fibers of \mathcal{N} over S (second arrow) groups of connected components of special fiber.

