AG for NT Week 7 Divisor

- Introduction
- Weil divisors
- Divisors on Curves (Riemann-Roch, Jacobian Variety)
- Cartier Divisor

Introduction

Let C be a non singular projective curve in \mathbb{P}_{k}^{2} (k algebraically closed). For any line in \mathbb{P}_{k}^{2}, $L \cap C$ has exactly d points (where d is the degree of C). Exercise I.5.4
$L \cap C \leftrightarrow \sum n_{i} P_{i}$ where n_{i} is the multiplicity of $P_{i} \in L \cap C$. Call $\sum n_{i} P_{i}$ a divisor on C. By varying L, we get a family of divisors on C, parametrized by the set of lines in \mathbb{P}^{2}. This set of divisors is called a linear system of divisors of C.
Remark. Knowing the linear system of divisors on C, one can recover the embeddings of C in \mathbb{P}_{k}^{2}. Given a point on C, say P. Given a point on C, say P. Consider the set of divisors on $P \Rightarrow$ set of lines passing through P, which gives a unique characterization of P in \mathbb{P}_{k}^{2}.

Consider two lines L and L^{\prime} in \mathbb{P}_{k}^{2} given by $f=0$ and $f^{\prime}=0$ respectively. Then f / f^{\prime} is a rational function on \mathbb{P}_{k}^{2} which restricts to a rational function g on C. Let $D \leftrightarrow L \cap C$ and $D^{\prime} \leftrightarrow L^{\prime} \cap C$. By construction g has 0 at points on D and poles at points on D^{\prime}. If this happens we say D and D^{\prime} are equivalent.

Group of divisors modulo linear equivalence is called the Picard Group. This is an invariant of the variety we are considering.

Weil Divisors

Let X be a Noetherian, regular in codimension 1, Integral, Separated, scheme. We will denote this as NCIS.
Definition. A scheme X is regular in Codimension 1 if every local ring \mathcal{O}_{X} of X of dimension 1 is regular.
So for us, it means that \mathcal{O}_{X} will a a discrete valuation ring.
Example. Nonsignular Variety over a filed
Noetherian normal scheme
Definition. Let X be NCIS. A prime divisor on X is a closed integral subscheme Y of codimension 1.
A Weil divisor is an element of the free abelian group denoted $\operatorname{Div}(X)$, generated by the prime divisors.
We write $D=\sum n_{i} Y_{i}$ where Y_{i} are prime divisors on X, n_{i} are integers and all but finitely many are zeros.
A divisors is effective if $n_{i} \geq 0$ for all n_{i}.
If Y is a divisors on X, let $\eta \in Y$ be its generic point. The local ring $\mathcal{O}_{\eta, X}$ is a discrete valuation ring with the quotient field K. Call the corresponding valuation v_{Y}.

Let $f \in K^{*}$ be a non-zero rational function on X. If $v_{Y}(f)$ is strictly positive, we say f has a zero along Y of order $v_{Y}(f)$. If $v_{Y}(f)$ is strictly negative, we say f has a pole along Y of order $-v_{Y}(f)$.

Lemma. Let X be NCIS, $f \in K^{*}$ then $v_{Y}(f)=0$ for all by finitely many prime divisors Y of X.
Proof. Let $U=\operatorname{Spec} A$ be an open affine subset of X on which f is regular. Let $Z=X \backslash U, Z$ is a proper closed subset of X. As X is Noetherian, Z must contain finitely many prime divisors on X. In particular, all other prime divisors must meet U. So we need to show that U contains finitely many divisors with $v_{Y}(f) \neq 0$. But f is regular on U, in particular $v_{Y}(f) \geq 0$. If $v_{Y}(f)>0$ then Y is contained in the closed subset U defined by the ideal $A f \subset A$. Since $f \neq 0$, this is a proper closed subset. In particular it contains finitely many closed irreducible subsets of codimension 1 of U (which are the divisors)

Definition. Let X be a NCIS, $f \in K^{*}$. We define the divisor of f, denote $(f)=\sum_{Y} v_{Y}(f) Y$ where the sum is taken over all prime divisors of X.

Any divisor in $\operatorname{Div}(X)$ is called principal if it is the divisor of a function $f \in K^{*}$
Remark. Let $f, g \in K^{*}$, then $(f / g)=(f)-(g)$
This allows us to define $\phi: f \mapsto(f)$ is a homomorphism from the multiplicative group of K^{*} to the additive group $\operatorname{Div}(X)$.

Definition. Two divisors $D, D^{\prime} \in \operatorname{Div}(X)$ are linearly equivalent, denoted $D \sim D^{\prime}$, if $D-D^{\prime}$ is a principal divisor. $\operatorname{Div}(X) / \operatorname{im}(\phi)=\operatorname{Div}(X) / \sim=$ divisor class group of X. This is denoted $\operatorname{Cl}(X)$.

Divisors on Curves

Nice reference: Silverman, The Arithmetic of Elliptic Curves, II. 3
Definition. Let k be algebraic closed. A curve over k is an integral separated, (complete, proper), scheme X of finite type over k of dimension 1.

If X is a nonsingular curve, then X is NCIS
A prime divisor on X is a closed point. $D=\sum_{P \subset X} n_{i} P_{i}$ where $n_{i} \in \mathbb{Z}$.
Definition. The degree of $D=\sum n_{i} P_{i}$ is $\operatorname{deg}(D)=\sum n_{i}$.
If $f: X \rightarrow Y$ is a finite morphism of non-singular curves, we define $f^{*}: \operatorname{Div}(Y) \rightarrow \operatorname{Div}(X)$ to a homomorphism, as follows: Let $Q \in Y$ be given, $t \in \mathcal{O}_{Q}$ be a local parameter at $Q, t \in K(Y)$. Hence $v_{Q}(t)=1$. Then $f^{*} Q=\sum_{f(P)=Q} v_{p}(t) P$. Since f is a finite morphism, we have finitely many $P \in X$ such that $f(P)=Q$.

Note. f^{*} preserves linear equivalence.
Hence f induces $f^{*}: \mathrm{Cl} Y \rightarrow \mathrm{Cl} X$.
Remark. A principal divisor on a complete non singular curve had degree 0 . The degree of a divisor on X depends only on the its linear equivalence class.

Proposition. Let $f: X \rightarrow Y$ be a finite morphism. Let $\operatorname{deg}: \operatorname{Div}(X) \rightarrow \mathbb{Z}$ be defined by $f^{*} D \mapsto \operatorname{deg} f \cdot \operatorname{deg} D$. The degree map is surjective. Let $C l^{0}(X)=\operatorname{ker}(\mathrm{deg})$.

There is a natural 1-1 correspondence between the set of closed points of X and $\mathrm{Cl}^{0}(X)$.
For elliptic curves:
Let $P_{0} \in X,\left(P_{0}=(0: 1: 0)\right)$, The tangent $z=0$, meets the curve in $3 P_{0}$. Given any line passing through $P, R, Q, P+Q+R \sim 3 P_{0}$. Now to any point $P \in X$, construct $P \mapsto P-P_{0} \in \mathrm{Cl}^{0}(X)$.

Injective: If $P-P_{0} \sim Q-Q_{0} \Longleftrightarrow P \sim Q \Rightarrow($ exercise p139) X is rational. This is a contradiction since X is not birationaly equivalent to \mathbb{P}^{1} (its an elliptic curve)

Surjective: Let $D \in \mathrm{Cl}^{0}(X), D=\sum n_{i} P_{i}$ with $\sum n_{i}=0$. In particular, $D=\sum n_{i}\left(P_{i}-P_{0}\right)$. Now for any point $R \in X$, there exists $T \in X$ such that $P_{0}+T+R \sim 3 P_{0}$. So $R-P_{0} \sim-\left(T-P_{0}\right)$ in $D=\sum n_{i}\left(P_{i}-P_{0}\right)$. If $n_{i}<0$, we can replace by some $m_{i}>0$. Complete proof p139 Hartshorne

Hence we have $\mathrm{Cl}^{0}(X) \leftrightarrow$ set of closed points on X.

Remark. The divisor class group of a variety has a discrete component (\mathbb{Z}), a continuous component $\left(\mathrm{Cl}^{0}(X)\right)$ which has itself the structure of an algebraic variety. If X is any curve, $\mathrm{Cl}^{0}(X) \cong$ group of closed points of an abelian variety called the Jacobian Variety of X. The dimension of the Jacobian variety, $J(X)$ is the genus of the curve X.

For genus 2, you can look at Cassels/Flynn: Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2, for the construction of the Jacobian.

