AG for NT Week 8

We will use the language of schemes to study varieties

1 Blowing Up Varieties

We will construct the blow up of a variety with respect to a non-singular closed subvariety. This tool/technique is
the main method to resolve singularities of algebraic variety.

Definition 1.1. The blowup of A™ at 0 is constructed as follows: Take the product A™ x P~ If {x1,...,2,} are
affine coordinated for A", {y1,...,y.} are the homogeneous coordinates of P"~1, the blowup of A™ Blg(A™) is the
closed subset defined by

Blo(A") :={z;y; = zjys|1 < 4,5 <n,i #j}

We have the following commutative diagram

Blp(A")— A" x P71
projection
An
For the next few pages, we let ¢ be the morphism defined as above.

Lemma 1.2.
1. If p € A", p # 0 then ¢~1(p) consist of one point. In fact phi gives an isomorphism of Bly(A™) \ ¢~—1(0) =
A™\ {0}
2. ¢~1(0) = P!
3. The points of $~1(0) are in 1-1 correspondence with the lines of A" through the origin
4. Bly(A™) is irreducible
Proof.
1. Let p = (a1,...,a,) € A", assume a; # 0. So if p X (y1,...,Yn) € ¢ *(p) then for each j, y; = (Z—J) Ys-

So (y1 : -+ : yp) is uniquely determined as a point in P"~!. By setting y; = a;, we have (y; : -+ : y,) =
(a1 = -+ : an). Moreover setting ¥(p) = (a1,...,a,) X (a1 : -+ : a,) defines an inverse morphism to ¢.
A"\ {0} = BloA™ \ 67(0)

2. ¢~1(0) consist of all points 0 x @ for @Q € P"~! with no restrictions
3. Follows from 2.

4. Blg(A™) = (Blo(A™) \ ¢7'{0}) U¢~1{0}. The first component, by part 1. is irreducible, and each point in
¢»~1(0) is contained in the closure of some line L in BlgA™\ ¢~1{0}. Hence BlpA™\ ¢~1(0) is dense in Bly(A"™)
and hence Bly(A™) is irreducible



Definition 1.3. If Y C A"\ 0 we define BlyY to be Y is ¢—1(Y \ 0)
We see from Lemma 1.2 ¢ induces a birational morphism of Y to Y.

Fact 1.4. Blowing up is independent of your choice of embedding.

Example 1.5. (Node)

Let z,y be coordinates in A2, and define X : (y? = 2%(z + 1)). Let t,u be homogeneous coordinates for P!
Then BlpX = {y? = 2%(z + 1),ty = ux} C A% x P!, On the affine piece t # 0, we have y> = 2?(x + 1) and y = uz,
hence u?z? = 2%(z + 1). This factors, hence we get a variety {z = 0} = E (this is the preimage of 0 under ¢ and is
called the “Exceptional Divisors”) and the variety {u? =z + 1} = X (This is called “the proper transform of X”).

Note that X N E consists of two points, u = +1. Notice that this values for u are precisely the values of the

slopes of X through the origin. “Blowups separates points and tangent vectors”)

Exercise 1.6. (Tacnode)
Let T : (y* = 2*(z + 1)). Blow this up at the origin and see what you get.

Definition 1.7. Blowing up with respect to a subvariety. Let X C A™ be an affine variety. Let Z C X be a
closed non-singular subvariety, Z defined by the vanishing of the polynomials {fi,..., fx} in A™. Let (y1 :---: yg)
be homogenous coordinates for P*=1. Define Bl (A") = {y;f; = y; fill < i,j < k,i # j}. As before, we get a
birational map

Blz(A")C—> A" x Pk-1

projection

A'n,
It has a birational inverse, p = (a1,...,a,) — (a1,...,6,) X (f1(p) : - -+ : fr(p)). Also define Blz(X) = ¢—1(X \ 0).

Exercise 1.8. Compare blowing up y?> = 2%(z + 1) in A3

luy:2) With respect to the z-axis.

[Note: 0 the subvariety defined by the vanishing of polynomials f; = ;]
For most purposes/”classifying all surfaces” only need to know about blowing up a point.

Example 1.9. Let X be the double cone defined by z2 4+ 3% = 22 C Af’m:y:z] and let Z be the line defined by
{y = 2,7 = 0}. Let t,u be coordinates for P!, hence Blz X = {2? + y? = 2%, 2t = (y — 2)u}. So on the affine piece
u # 0, we get xt = y — z hence 22 = xt(y + 2). This factorises, so we get two pieces: {x = 0,y = z,t arbitrary} = E

(the exceptional curve); {at = y — 2z} := X (this should be nonsingular)

2 Invertible Sheaves

Let X be a variety.
Definition 2.1.

e An invertible sheaf F on X is a locally free Ox-module of rank 1. (That is, there exists an open covering
{U;} of X so that F(U;) = Ox(U;))

e We will see soon that the Picard group is the group of isomorphism classes of invertible sheaves on X.

e On varieties: Weil divisors are “the same” as Cartier divisors. A Cartier Divisor D = {(U;, f;)} with {U;} an
open covering of X, and f; on U; is an element of Ox (U;) (think of a rational function). Also on U; NU;, we
have J’f—J is invertible.



Notation 2.2. Let D be a divisors (Weil /Cartier), define £(D) to be the sub-Ox-module which is generated by f; !
on U;. This is well defined since }% is invertible on U; N U;, so f;* and fj_1 differs by a unit. This £(D) is called
the sheaf associated to D = {(U;, fi)}-

Proposition 2.3.

1. For any divisors D, L(D) is an invertible sheaf on X and the map D — L(D) gives a 1-1 correspondence
Pic(X) <> Invertible sheaves on X.

2. E(Dl — DQ) = E(Dl) ® L(Dg)il
3. Dy ~ Dy (linearly equivalence) if and only if L(D) = L(D5)
Proof.

1. The map Oy, — L(D)|y, defined by 1 +— fi_1 is the isomorphism, so £(D) is an invertible sheaf. Conversely,
D can be recovered from £(D) by f; on U; to be the inverse of a generator for £(D)(U,).

i

2. If Dy = {(U;, f;)} and Dy = {(Vi, gi)}, then £L(D; — D3) on U; NV} is generated by f; 'g;. So £L(Dy — Dy)
L(D1) ® L(Dy)™t.

3. By part 2. it is sufficient to show that D = D; — D is principal if and only if £(D) = Ox. If D is principal,
defined by f € T'(X, 0%), then L(D) is globally generated by f~*, so 1 — f~!is the isomorphism Ox = £(D).

O
So we have a 1-1 correspondence from Pic(X) —isomorphism classes of invertible sheaves.
3 Morphisms to P"
On P", the homogeneous coordinates z : - - - : x,, give the standard cover {U; := (x; # 0)} and on U;, z; ' is a local

generator for the sheaf O(1). For any (projective) variety X, let ¢ : X — P™. Then £ = ¢*(O(1)) is an invertible
sheaf on X. The global sections sq, ..., s, (s; := ¢*(2;)), s; € T'(X, L) “generate” the sheaf L. Conversely, £ and
s; determines ¢.

Theorem 3.1.
1. If ¢ : X — P™ is a morphism, then ¢*(O(1)) is an invertible sheaf generated by global sections s; = ¢*(x;)
2. Any invertible sheaf L on X determines a unique morphism ¢ : X — P
Proof.
1. From Above
2. Lengthy argument in Hartshorne, pg 150
O

Proposition 3.2. Let k be an algebraically closed field. Let X be a variety, and ¢ : X — P™ be a morphism
corresponding to L and s, . .., s, be as above. Let V C T'(X, L) be a subspace spanned by s; = ¢*(x;). Then ¢ is a
closed immersion if and only if:

1. Elements of V' “separate points”, i.e., for any P # @Q on X, exists s € V with s € mpLp but s ¢ mgLyg.

2. Elements of V “separate tangent vectors”, i.e., for each points P € X, the set of {s € V : sp € mpL,} span
the vector space mpﬁp/mgﬁp.



Proof. (Only proving =) If ¢ is a closed immersion, think of X as a closed subvariety of P*. So £ = Ox(1) and the
vector space V' C I'(X, Ox (1)) is spanned by the images of zg,...,z, € I'(P",O(1)). Given P # Q in X, we can
find a hyperplane H containing P and not Q. If H = (}_ a;x; = 0) for a; € k, then s =Y a;x;|x satisfies the first
property. For the second, each hyperplane passing through P gives rise to sections which generate mpLp/ mgﬁp.

Example. If P = (1:0:---:0), then Up has local coordinates y; = 3%, so P = (0,...,0) € U; and myp/m2 is the
vector space spanned by ;.

O

So we have a 1-1 correspondences Pic(X) <»isomorphism classes of invertible sheaves <> morphisms to P".

4 Linear systems of Divisors

Definition 4.1. A complete linear system |Dp| on a non-singular projective variety is the set of all effective divisors
linearly equivalent to Dy.

That is |Dg| is in 1-1 correspondence to this set: I'(X, £(Dy)) \ {0}/k*, i.e., |Do| “is” a projective space.

Definition 4.2. A linear system 6 on X is a subset of a complete linear system |Dg| which is a linear subspace for
| Do

That is, d is a sub-vector space of T'(X, L(Dy))

Definition 4.3. A point P € X is a base point for a linear subsystem ¢ is P € Supp(D) for every D € §. (Where
Supp(D) is the set of all prime divisors whose coefficient is non-zero)

Lemma 4.4. Let 0 be a linear system on X corresponding to the subspace V. C I'(X, L(Dy)). Then a point P € X
is a base point of § if and only if s, € mpL, for all s € V. In particular, § is base point-fee if and only if L(Dy) is
generated by global sections in V.

Proof. This follows from the fact that for every s € I'(X,L(Dy)), s — D(U;, ¢:i(s)), (where ¢; : L(Dg)(U;
Ox(U;)) and D is an effective divisors on X. So the support of D is the complement of the open set X, := {z
X|sz ¢ mpL(Do)}.

Om e

Remark. We can use this to rephrase Prop 3.2 in terms of linear systems (without base points). ¢ : X — P" is a
closed immersion if and only if

1. § “separates points”, i.e., for all P # @, 3D € § with P € SuppD and @ ¢ SuppD

2. 0 “separates tangent vectors”, i.e., if P € X and t € mp/mf, (is a tangent vector) then there exists D € § such
that P € SuppD but ¢ € (my,p/m? ) where we consider D C X as a closed subvariety.



