AG for NT Week 8

We will use the language of schemes to study varieties

1 Blowing Up Varieties

We will construct the blow up of a variety with respect to a non-singular closed subvariety. This tool/technique is the main method to resolve singularities of algebraic variety.

Definition 1.1. The blowup of \mathbb{A}^{n} at 0 is constructed as follows: Take the product $\mathbb{A}^{n} \times \mathbb{P}^{n-1}$. If $\left\{x_{1}, \ldots, x_{n}\right\}$ are affine coordinated for $\mathbb{A}^{n},\left\{y_{1}, \ldots, y_{n}\right\}$ are the homogeneous coordinates of \mathbb{P}^{n-1}, the blowup of $\mathbb{A}^{n} \mathrm{Bl}_{0}\left(\mathbb{A}^{n}\right)$ is the closed subset defined by

$$
\mathrm{Bl}_{0}\left(\mathbb{A}^{n}\right):=\left\{x_{i} y_{j}=x_{j} y_{i} \mid 1 \leq i, j \leq n, i \neq j\right\}
$$

We have the following commutative diagram

For the next few pages, we let ϕ be the morphism defined as above.

Lemma 1.2.

1. If $p \in \mathbb{A}^{n}, p \neq 0$ then $\phi^{-1}(p)$ consist of one point. In fact phi gives an isomorphism of $B l_{0}\left(\mathbb{A}^{n}\right) \backslash \phi^{-1}(0) \cong$ $\mathbb{A}^{n} \backslash\{0\}$
2. $\phi^{-1}(0) \cong \mathbb{P}^{n-1}$
3. The points of $\phi^{-1}(0)$ are in 1-1 correspondence with the lines of \mathbb{A}^{n} through the origin
4. $B l_{0}\left(\mathbb{A}^{n}\right)$ is irreducible

Proof.

1. Let $p=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{A}^{n}$, assume $a_{i} \neq 0$. So if $p \times\left(y_{1}, \ldots, y_{n}\right) \in \phi^{-1}(p)$ then for each $j, y_{j}=\left(\frac{a_{j}}{a_{i}}\right) y_{i}$. So ($y_{1}: \cdots: y_{n}$) is uniquely determined as a point in \mathbb{P}^{n-1}. By setting $y_{i}=a_{i}$, we have $\left(y_{1}: \cdots: y_{n}\right)=$ $\left(a_{1}: \cdots: a_{n}\right)$. Moreover setting $\psi(p)=\left(a_{1}, \ldots, a_{n}\right) \times\left(a_{1}: \cdots: a_{n}\right)$ defines an inverse morphism to ϕ. $\mathbb{A}^{n} \backslash\{0\} \rightarrow \mathrm{Bl}_{0} \mathbb{A}^{n} \backslash \phi^{-1}(0)$
2. $\phi^{-1}(0)$ consist of all points $0 \times Q$ for $Q \in \mathbb{P}^{n-1}$ with no restrictions
3. Follows from 2.
4. $\mathrm{Bl}_{0}\left(\mathbb{A}^{n}\right)=\left(\mathrm{Bl}_{0}\left(\mathbb{A}^{n}\right) \backslash \phi^{-1}\{0\}\right) \cup \phi^{-1}\{0\}$. The first component, by part 1 . is irreducible, and each point in $\phi^{-1}(0)$ is contained in the closure of some line L in $\mathrm{Bl}_{0} \mathbb{A}^{n} \backslash \phi^{-1}\{0\}$. Hence $\mathrm{Bl}_{0} \mathbb{A}^{n} \backslash \phi^{-1}(0)$ is dense in $\mathrm{Bl}_{0}\left(\mathbb{A}^{n}\right)$ and hence $\mathrm{Bl}_{0}\left(\mathbb{A}^{n}\right)$ is irreducible

Definition 1.3. If $Y \subset \mathbb{A}^{n} \backslash 0$ we define $\mathrm{Bl}_{0} Y$ to be \widetilde{Y} is $\overline{\phi^{-1}(Y \backslash 0)}$
We see from Lemma 1.2ϕ induces a birational morphism of \tilde{Y} to Y.
Fact 1.4. Blowing up is independent of your choice of embedding.
Example 1.5. (Node)
Let x, y be coordinates in \mathbb{A}^{2}, and define $X:\left(y^{2}=x^{2}(x+1)\right)$. Let t, u be homogeneous coordinates for \mathbb{P}^{1}. Then $\mathrm{Bl}_{0} X=\left\{y^{2}=x^{2}(x+1)\right.$, ty $\left.=u x\right\} \subset \mathbb{A}^{2} \times \mathbb{P}^{1}$. On the affine piece $t \neq 0$, we have $y^{2}=x^{2}(x+1)$ and $y=u x$, hence $u^{2} x^{2}=x^{2}(x+1)$. This factors, hence we get a variety $\{x=\underset{\sim}{0}\}=E$ (this is the preimage of 0 under ϕ and is called the "Exceptional Divisors") and the variety $\left\{u^{2}=x+1\right\}=\widetilde{X}$ (This is called "the proper transform of X ").

Note that $\tilde{X} \cap E$ consists of two points, $u= \pm 1$. Notice that this values for u are precisely the values of the slopes of X through the origin. "Blowups separates points and tangent vectors")

Exercise 1.6. (Tacnode)
Let $T:\left(y^{2}=x^{4}(x+1)\right)$. Blow this up at the origin and see what you get.
Definition 1.7. Blowing up with respect to a subvariety. Let $X \subset \mathbb{A}^{n}$ be an affine variety. Let $Z \subset X$ be a closed non-singular subvariety, Z defined by the vanishing of the polynomials $\left\{f_{1}, \ldots, f_{k}\right\}$ in \mathbb{A}^{n}. Let $\left(y_{1}: \cdots: y_{k}\right)$ be homogenous coordinates for \mathbb{P}^{k-1}. Define $\mathrm{Bl}_{Z}\left(\mathbb{A}^{n}\right)=\left\{y_{i} f_{j}=y_{j} f_{i} \mid 1 \leq i, j \leq k, i \neq j\right\}$. As before, we get a birational map

It has a birational inverse, $p=\left(a_{1}, \ldots, a_{n}\right) \mapsto\left(a_{1}, \ldots, a_{n}\right) \times\left(f_{1}(p): \cdots: f_{k}(p)\right)$. Also define $\mathrm{Bl}_{Z}(X)=\overline{\phi^{-1}(X \backslash 0)}$.
Exercise 1.8. Compare blowing up $y^{2}=x^{2}(x+1)$ in $\mathbb{A}_{[x: y: z]}^{3}$ with respect to the z-axis.
[Note: 0 the subvariety defined by the vanishing of polynomials $f_{i}=x_{i}$]
For most purposes/"classifying all surfaces" only need to know about blowing up a point.
Example 1.9. Let X be the double cone defined by $x^{2}+y^{2}=z^{2} \subset \mathbb{A}_{[x: y: z]}^{3}$ and let Z be the line defined by $\{y=z, x=0\}$. Let t, u be coordinates for \mathbb{P}^{1}, hence $\mathrm{Bl}_{Z} X=\left\{x^{2}+y^{2}=z^{2}, x t=(y-z) u\right\}$. So on the affine piece $u \neq 0$, we get $x t=y-z$ hence $x^{2}=x t(y+z)$. This factorises, so we get two pieces: $\{x=0, y=z, t$ arbitrary $\}=E$ (the exceptional curve); $\{x t=y-z\}:=\widetilde{X}$ (this should be nonsingular)

2 Invertible Sheaves

Let X be a variety.

Definition 2.1.

- An invertible sheaf \mathcal{F} on X is a locally free \mathcal{O}_{X}-module of rank 1 . (That is, there exists an open covering $\left\{U_{i}\right\}$ of X so that $\left.\mathcal{F}\left(U_{i}\right) \cong \mathcal{O}_{X}\left(U_{i}\right)\right)$
- We will see soon that the Picard group is the group of isomorphism classes of invertible sheaves on X.
- On varieties: Weil divisors are "the same" as Cartier divisors. A Cartier Divisor $D=\left\{\left(U_{i}, f_{i}\right)\right\}$ with $\left\{U_{i}\right\}$ an open covering of X, and f_{i} on U_{i} is an element of $\mathcal{O}_{X}\left(U_{i}\right)$ (think of a rational function). Also on $U_{i} \cap U_{j}$, we have $\frac{f_{i}}{f_{j}}$ is invertible.

Notation 2.2. Let D be a divisors (Weil/Cartier), define $\mathcal{L}(D)$ to be the sub- \mathcal{O}_{X}-module which is generated by f_{i}^{-1} on U_{i}. This is well defined since $\frac{f_{i}}{f_{j}}$ is invertible on $U_{i} \cap U_{j}$, so f_{i}^{-1} and f_{j}^{-1} differs by a unit. This $\mathcal{L}(D)$ is called the sheaf associated to $D=\left\{\left(U_{i}, f_{i}\right)\right\}$.

Proposition 2.3.

1. For any divisors $D, \mathcal{L}(D)$ is an invertible sheaf on X and the map $D \mapsto \mathcal{L}(D)$ gives a 1-1 correspondence $\operatorname{Pic}(X) \leftrightarrow$ Invertible sheaves on X.
2. $\mathcal{L}\left(D_{1}-D_{2}\right) \cong \mathcal{L}\left(D_{1}\right) \otimes \mathcal{L}\left(D_{2}\right)^{-1}$
3. $D_{1} \sim D_{2}$ (linearly equivalence) if and only if $\mathcal{L}\left(D_{1}\right) \cong \mathcal{L}\left(D_{2}\right)$

Proof.

1. The map $\left.\mathcal{O}_{U_{i}} \rightarrow \mathcal{L}(D)\right|_{U_{i}}$ defined by $1 \mapsto f_{i}^{-1}$ is the isomorphism, so $\mathcal{L}(D)$ is an invertible sheaf. Conversely, D can be recovered from $\mathcal{L}(D)$ by f_{i} on U_{i} to be the inverse of a generator for $\mathcal{L}(D)\left(U_{i}\right)$.
2. If $D_{1}=\left\{\left(U_{i}, f_{i}\right)\right\}$ and $D_{2}=\left\{\left(V_{i}, g_{i}\right)\right\}$, then $\mathcal{L}\left(D_{1}-D_{2}\right)$ on $U_{i} \cap V_{j}$ is generated by $f_{i}^{-1} g_{j}$. So $\mathcal{L}\left(D_{1}-D_{2}\right) \cong$ $\mathcal{L}\left(D_{1}\right) \otimes \mathcal{L}\left(D_{2}\right)^{-1}$.
3. By part 2. it is sufficient to show that $D=D_{1}-D_{2}$ is principal if and only if $\mathcal{L}(D) \cong \mathcal{O}_{X}$. If D is principal, defined by $f \in \Gamma\left(X, \mathcal{O}_{X}^{*}\right)$, then $\mathcal{L}(D)$ is globally generated by f^{-1}, so $1 \rightarrow f^{-1}$ is the isomorphism $\mathcal{O}_{X} \cong \mathcal{L}(D)$.

So we have a 1-1 correspondence from $\operatorname{Pic}(X) \rightarrow$ isomorphism classes of invertible sheaves.

3 Morphisms to \mathbb{P}^{n}

On \mathbb{P}^{n}, the homogeneous coordinates $x_{0}: \cdots: x_{n}$ give the standard cover $\left\{U_{i}:=\left(x_{i} \neq 0\right)\right\}$ and on U_{i}, x_{i}^{-1} is a local generator for the sheaf $\mathcal{O}(1)$. For any (projective) variety X, let $\phi: X \rightarrow \mathbb{P}^{n}$. Then $\mathcal{L}=\phi^{*}(\mathcal{O}(1))$ is an invertible sheaf on X. The global sections $s_{0}, \ldots, s_{n}\left(s_{i}:=\phi^{*}\left(x_{i}\right)\right), s_{i} \in \Gamma(X, \mathcal{L})$ "generate" the sheaf \mathcal{L}. Conversely, \mathcal{L} and s_{i} determines ϕ.

Theorem 3.1.

1. If $\phi: X \rightarrow \mathbb{P}^{n}$ is a morphism, then $\phi^{*}(\mathcal{O}(1))$ is an invertible sheaf generated by global sections $s_{i}=\phi^{*}\left(x_{i}\right)$
2. Any invertible sheaf \mathcal{L} on X determines a unique morphism $\phi: X \rightarrow \mathbb{P}^{n}$

Proof.

1. From Above
2. Lengthy argument in Hartshorne, pg 150

Proposition 3.2. Let k be an algebraically closed field. Let X be a variety, and $\phi: X \rightarrow \mathbb{P}^{n}$ be a morphism corresponding to \mathcal{L} and s_{0}, \ldots, s_{n} be as above. Let $V \subset \Gamma(X, \mathcal{L})$ be a subspace spanned by $s_{i}=\phi^{*}\left(x_{i}\right)$. Then ϕ is a closed immersion if and only if:

1. Elements of V "separate points", i.e., for any $P \neq Q$ on X, exists $s \in V$ with $s \in m_{P} \mathcal{L}_{P}$ but $s \notin m_{Q} \mathcal{L}_{Q}$.
2. Elements of V "separate tangent vectors", i.e., for each points $P \in X$, the set of $\left\{s \in V: s_{P} \in m_{p} \mathcal{L}_{p}\right\}$ span the vector space $m_{p} \mathcal{L}_{p} / m_{p}^{2} \mathcal{L}_{p}$.

Proof. (Only proving \Rightarrow) If ϕ is a closed immersion, think of X as a closed subvariety of \mathbb{P}^{n}. So $\mathcal{L}=\mathcal{O}_{X}(1)$ and the vector space $V \subset \Gamma\left(X, \mathcal{O}_{X}(1)\right)$ is spanned by the images of $x_{0}, \ldots, x_{n} \in \Gamma\left(\mathbb{P}^{n}, \mathcal{O}(1)\right)$. Given $P \neq Q$ in X, we can find a hyperplane H containing P and not Q. If $H=\left(\sum a_{i} x_{i}=0\right)$ for $a_{i} \in k$, then $s=\left.\sum a_{i} x_{i}\right|_{X}$ satisfies the first property. For the second, each hyperplane passing through P gives rise to sections which generate $m_{P} \mathcal{L}_{P} / m_{p}^{2} \mathcal{L}_{p}$.
Example. If $P=(1: 0: \cdots: 0)$, then U_{0} has local coordinates $y_{i}=\frac{x_{i}}{x_{0}}$, so $P=(0, \ldots, 0) \in U_{i}$ and m_{p} / m_{p}^{2} is the vector space spanned by y_{i}.

So we have a 1-1 correspondences $\operatorname{Pic}(X) \leftrightarrow$ isomorphism classes of invertible sheaves \leftrightarrow morphisms to \mathbb{P}^{n}.

4 Linear systems of Divisors

Definition 4.1. A complete linear system $\left|D_{0}\right|$ on a non-singular projective variety is the set of all effective divisors linearly equivalent to D_{0}.

That is $\left|D_{0}\right|$ is in 1-1 correspondence to this set: $\Gamma\left(X, \mathcal{L}\left(D_{0}\right)\right) \backslash\{0\} / k^{*}$, i.e., $\left|D_{0}\right|$ "is" a projective space.
Definition 4.2. A linear system δ on X is a subset of a complete linear system $\left|D_{0}\right|$ which is a linear subspace for $\left|D_{0}\right|$

That is, δ is a sub-vector space of $\Gamma\left(X, \mathcal{L}\left(D_{0}\right)\right)$
Definition 4.3. A point $P \in X$ is a base point for a linear subsystem δ is $P \in \operatorname{Supp}(D)$ for every $D \in \delta$. (Where $\operatorname{Supp}(D)$ is the set of all prime divisors whose coefficient is non-zero)

Lemma 4.4. Let δ be a linear system on X corresponding to the subspace $V \subset \Gamma\left(X, \mathcal{L}\left(D_{0}\right)\right)$. Then a point $P \in X$ is a base point of δ if and only if $s_{p} \in m_{P} \mathcal{L}_{p}$ for all $s \in V$. In particular, δ is base point-fee if and only if $\mathcal{L}\left(D_{0}\right)$ is generated by global sections in V.

Proof. This follows from the fact that for every $s \in \Gamma\left(X, \mathcal{L}\left(D_{0}\right)\right), s \mapsto D\left(U_{i}, \phi_{i}(s)\right)$, (where $\phi_{i}: \mathcal{L}\left(D_{0}\right)\left(U_{i}\right) \xlongequal{\cong}$ $\left.\mathcal{O}_{X}\left(U_{i}\right)\right)$ and D is an effective divisors on X. So the support of D is the complement of the open set $X_{s}:=\{x \in$ $\left.X \mid s_{x} \notin m_{p} \mathcal{L}\left(D_{0}\right)\right\}$.

Remark. We can use this to rephrase Prop 3.2 in terms of linear systems (without base points). $\phi: X \rightarrow \mathbb{P}^{n}$ is a closed immersion if and only if

1. δ "separates points", i.e., for all $P \neq Q, \exists D \in \delta$ with $P \in \operatorname{Supp} D$ and $Q \notin \operatorname{Supp} D$
2. δ "separates tangent vectors", i.e., if $P \in X$ and $t \in m_{p} / m_{p}^{2}$ (is a tangent vector) then there exists $D \in \delta$ such that $P \in \operatorname{Supp} D$ but $t \in\left(m_{p, D} / m_{p, D}^{2}\right)$ where we consider $D \subset X$ as a closed subvariety.
