
AG for NT Week 8

We will use the language of schemes to study varieties

1 Blowing Up Varieties

We will construct the blow up of a variety with respect to a non-singular closed subvariety. This tool/technique is
the main method to resolve singularities of algebraic variety.

De�nition 1.1. The blowup of An at 0 is constructed as follows: Take the product An × Pn−1. If {x1, . . . , xn} are
a�ne coordinated for An, {y1, . . . , yn} are the homogeneous coordinates of Pn−1, the blowup of An Bl0(An) is the
closed subset de�ned by

Bl0(An) := {xiyj = xjyi|1 ≤ i, j ≤ n, i 6= j}

We have the following commutative diagram

Bl0(An) �
� //

φ

&&

An × Pn−1

projection

��
An

For the next few pages, we let φ be the morphism de�ned as above.

Lemma 1.2.

1. If p ∈ An, p 6= 0 then φ−1(p) consist of one point. In fact phi gives an isomorphism of Bl0(An) \ φ−1(0) ∼=
An \ {0}

2. φ−1(0) ∼= Pn−1

3. The points of φ−1(0) are in 1-1 correspondence with the lines of An through the origin

4. Bl0(An) is irreducible

Proof.

1. Let p = (a1, . . . , an) ∈ An, assume ai 6= 0. So if p × (y1, . . . , yn) ∈ φ−1(p) then for each j, yj =
(
aj
ai

)
yi.

So (y1 : · · · : yn) is uniquely determined as a point in Pn−1. By setting yi = ai, we have (y1 : · · · : yn) =
(a1 : · · · : an). Moreover setting ψ(p) = (a1, . . . , an) × (a1 : · · · : an) de�nes an inverse morphism to φ.
An \ {0} → Bl0An \ φ−1(0)

2. φ−1(0) consist of all points 0×Q for Q ∈ Pn−1 with no restrictions

3. Follows from 2.

4. Bl0(An) =
(
Bl0(An) \ φ−1{0}

)
∪ φ−1{0}. The �rst component, by part 1. is irreducible, and each point in

φ−1(0) is contained in the closure of some line L in Bl0An \φ−1{0}. Hence Bl0An \φ−1(0) is dense in Bl0(An)
and hence Bl0(An) is irreducible
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De�nition 1.3. If Y ⊂ An \ 0 we de�ne Bl0Y to be Ỹ is φ−1(Y \ 0)

We see from Lemma 1.2 φ induces a birational morphism of Ỹ to Y .

Fact 1.4. Blowing up is independent of your choice of embedding.

Example 1.5. (Node)
Let x, y be coordinates in A2, and de�ne X : (y2 = x2(x + 1)). Let t, u be homogeneous coordinates for P1.

Then Bl0X = {y2 = x2(x+ 1), ty = ux} ⊂ A2 × P1. On the a�ne piece t 6= 0, we have y2 = x2(x+ 1) and y = ux,
hence u2x2 = x2(x+ 1). This factors, hence we get a variety {x = 0} = E (this is the preimage of 0 under φ and is

called the �Exceptional Divisors�) and the variety {u2 = x+ 1} = X̃ (This is called �the proper transform of X�).

Note that X̃ ∩ E consists of two points, u = ±1. Notice that this values for u are precisely the values of the
slopes of X through the origin. �Blowups separates points and tangent vectors�)

Exercise 1.6. (Tacnode)
Let T : (y2 = x4(x+ 1)). Blow this up at the origin and see what you get.

De�nition 1.7. Blowing up with respect to a subvariety. Let X ⊂ An be an a�ne variety. Let Z ⊂ X be a
closed non-singular subvariety, Z de�ned by the vanishing of the polynomials {f1, . . . , fk} in An. Let (y1 : · · · : yk)
be homogenous coordinates for Pk−1. De�ne BlZ(An) = {yifj = yjfi|1 ≤ i, j ≤ k, i 6= j}. As before, we get a
birational map

BlZ(An) �
� //

φ

&&

An × Pk−1

projection

��
An

It has a birational inverse, p = (a1, . . . , an) 7→ (a1, . . . , an)× (f1(p) : · · · : fk(p)). Also de�ne BlZ(X) = φ−1(X \ 0).

Exercise 1.8. Compare blowing up y2 = x2(x+ 1) in A3
[x:y:z] with respect to the z-axis.

[Note: 0 the subvariety de�ned by the vanishing of polynomials fi = xi]
For most purposes/�classifying all surfaces� only need to know about blowing up a point.

Example 1.9. Let X be the double cone de�ned by x2 + y2 = z2 ⊂ A3
[x:y:z] and let Z be the line de�ned by

{y = z, x = 0}. Let t, u be coordinates for P1, hence BlZX = {x2 + y2 = z2, xt = (y − z)u}. So on the a�ne piece
u 6= 0, we get xt = y− z hence x2 = xt(y+ z). This factorises, so we get two pieces: {x = 0, y = z, t arbitrary} = E

(the exceptional curve); {xt = y − z} := X̃ (this should be nonsingular)

2 Invertible Sheaves

Let X be a variety.

De�nition 2.1.

• An invertible sheaf F on X is a locally free OX -module of rank 1. (That is, there exists an open covering
{Ui} of X so that F(Ui) ∼= OX(Ui))

• We will see soon that the Picard group is the group of isomorphism classes of invertible sheaves on X.

• On varieties: Weil divisors are �the same� as Cartier divisors. A Cartier Divisor D = {(Ui, fi)} with {Ui} an
open covering of X, and fi on Ui is an element of OX(Ui) (think of a rational function). Also on Ui ∩Uj , we
have fi

fj
is invertible.
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Notation 2.2. Let D be a divisors (Weil/Cartier), de�ne L(D) to be the sub-OX -module which is generated by f−1
i

on Ui. This is well de�ned since fi
fj

is invertible on Ui ∩ Uj , so f−1
i and f−1

j di�ers by a unit. This L(D) is called

the sheaf associated to D = {(Ui, fi)}.

Proposition 2.3.

1. For any divisors D, L(D) is an invertible sheaf on X and the map D 7→ L(D) gives a 1-1 correspondence
Pic(X) ↔Invertible sheaves on X.

2. L(D1 −D2) ∼= L(D1)⊗ L(D2)−1

3. D1 ∼ D2 (linearly equivalence) if and only if L(D1) ∼= L(D2)

Proof.

1. The map OUi
→ L(D)|Ui

de�ned by 1 7→ f−1
i is the isomorphism, so L(D) is an invertible sheaf. Conversely,

D can be recovered from L(D) by fi on Ui to be the inverse of a generator for L(D)(U
i
).

2. If D1 = {(Ui, fi)} and D2 = {(Vi, gi)}, then L(D1 −D2) on Ui ∩ Vj is generated by f−1
i gj . So L(D1 −D2) ∼=

L(D1)⊗ L(D2)−1.

3. By part 2. it is su�cient to show that D = D1 −D2 is principal if and only if L(D) ∼= OX . If D is principal,
de�ned by f ∈ Γ(X,O∗

X), then L(D) is globally generated by f−1, so 1→ f−1 is the isomorphism OX ∼= L(D).

So we have a 1-1 correspondence from Pic(X)→isomorphism classes of invertible sheaves.

3 Morphisms to Pn

On Pn, the homogeneous coordinates x0 : · · · : xn give the standard cover {Ui := (xi 6= 0)} and on Ui, x
−1
i is a local

generator for the sheaf O(1). For any (projective) variety X, let φ : X → Pn. Then L = φ∗(O(1)) is an invertible
sheaf on X. The global sections s0, . . . , sn (si := φ∗(xi)), si ∈ Γ(X,L) �generate� the sheaf L. Conversely, L and
si determines φ.

Theorem 3.1.

1. If φ : X → Pn is a morphism, then φ∗(O(1)) is an invertible sheaf generated by global sections si = φ∗(xi)

2. Any invertible sheaf L on X determines a unique morphism φ : X → Pn

Proof.

1. From Above

2. Lengthy argument in Hartshorne, pg 150

Proposition 3.2. Let k be an algebraically closed �eld. Let X be a variety, and φ : X → Pn be a morphism
corresponding to L and s0, . . . , sn be as above. Let V ⊂ Γ(X,L) be a subspace spanned by si = φ∗(xi). Then φ is a
closed immersion if and only if:

1. Elements of V �separate points�, i.e., for any P 6= Q on X, exists s ∈ V with s ∈ mPLP but s /∈ mQLQ.

2. Elements of V �separate tangent vectors�, i.e., for each points P ∈ X, the set of {s ∈ V : sP ∈ mpLp} span
the vector space mpLp/m2

pLp.
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Proof. (Only proving⇒) If φ is a closed immersion, think of X as a closed subvariety of Pn. So L = OX(1) and the
vector space V ⊂ Γ(X,OX(1)) is spanned by the images of x0, . . . , xn ∈ Γ(Pn,O(1)). Given P 6= Q in X, we can
�nd a hyperplane H containing P and not Q. If H = (

∑
aixi = 0) for ai ∈ k, then s =

∑
aixi|X satis�es the �rst

property. For the second, each hyperplane passing through P gives rise to sections which generate mPLP /m2
pLp.

Example. If P = (1 : 0 : · · · : 0), then U0 has local coordinates yi = xi

x0
, so P = (0, . . . , 0) ∈ Ui and mp/m

2
p is the

vector space spanned by yi.

So we have a 1-1 correspondences Pic(X)↔isomorphism classes of invertible sheaves ↔ morphisms to Pn.

4 Linear systems of Divisors

De�nition 4.1. A complete linear system |D0| on a non-singular projective variety is the set of all e�ective divisors
linearly equivalent to D0.

That is |D0| is in 1-1 correspondence to this set: Γ(X,L(D0)) \ {0}/k∗, i.e., |D0| �is� a projective space.

De�nition 4.2. A linear system δ on X is a subset of a complete linear system |D0| which is a linear subspace for
|D0|

That is, δ is a sub-vector space of Γ(X,L(D0))

De�nition 4.3. A point P ∈ X is a base point for a linear subsystem δ is P ∈ Supp(D) for every D ∈ δ. (Where
Supp(D) is the set of all prime divisors whose coe�cient is non-zero)

Lemma 4.4. Let δ be a linear system on X corresponding to the subspace V ⊂ Γ(X,L(D0)). Then a point P ∈ X
is a base point of δ if and only if sp ∈ mPLp for all s ∈ V . In particular, δ is base point-fee if and only if L(D0) is
generated by global sections in V .

Proof. This follows from the fact that for every s ∈ Γ(X,L(D0)), s 7→ D(Ui, φi(s)), (where φi : L(D0)(Ui)
∼=→

OX(Ui)) and D is an e�ective divisors on X. So the support of D is the complement of the open set Xs := {x ∈
X|sx /∈ mpL(D0)}.

Remark. We can use this to rephrase Prop 3.2 in terms of linear systems (without base points). φ : X → Pn is a
closed immersion if and only if

1. δ �separates points�, i.e., for all P 6= Q, ∃D ∈ δ with P ∈ SuppD and Q /∈ SuppD

2. δ �separates tangent vectors�, i.e., if P ∈ X and t ∈ mp/m
2
p (is a tangent vector) then there exists D ∈ δ such

that P ∈ SuppD but t ∈ (mp,D/m
2
p,D) where we consider D ⊂ X as a closed subvariety.

4


