
Algebraic Geometry

Tim Dokchitser
(Thanks to Céline Maistret for copying notes in my absence)

Prerequisites: Seen varieties; algebraic curves up to Riemann-Roch

Topics:

• Review of varieties

• Algebraic graph and abelian varieties

• Families

• Moduli spaces

• Models of curves

Part I

Reviews of Varieties

1 A�ne Varieties

The base �eld will be k = k. Let Ak = kn be the a�ne space, f1, . . . , fm ∈ k[x1, . . . , xn]⇒ V = {x ∈ An|allfi(x) =
0}, this is called a (Zariski) closed set (or closed a�ne algebraic set).

• V1 ∪ V2 = {fi = 0} ∪ {gj = 0} = {figj = 0} also closed

• ∩Vi closed (since k(x1, . . . , xn) is Noetherian)

Hence we have a (Zariski) topology.

De�nition 1.1. An (a�ne) variety is an irreducible, non-empty, closed set. (Where irreducible means, if V =
V1 ∪ V2 closed, then V = V1 or V = V2)

Any closed sets is ∪finitevarieties

Example. Let f ∈ k[x1, . . . , xn] and non-constant. Then V = {f = 0} called hypersurface. This is irreducible if
and only if f is irreducible.

Let V ⊆ A1 be closed, then V = ∅,A1or a �nite set. This is a variety if and only if V = A1 or V = {pt}
Let V ⊆ A2 variety if and only if V =A2, irreducible curve f(x, y) = 0 or {pt}

Note. Very coarse: e.g., A1 homeomorphic to any other curve f(x, y) = 0.
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1.1 Morphisms

De�nition 1.2. A map An ⊇ V → W ⊆ Am is a morphism (or regular map) if it is given by x 7→ (fi(x)) where
f1, . . . , fm ∈ k[x1, . . . , xn].

An Isomorphism: V
f //

W
g

oo and f · g = id = g · f

A regular function is a morphism f : V → A1 = k
k[V ] = {regular functions onV } = k[x1, . . . , xn]/I, where I = {f |f |V ≡ 0}. This is a ring

V is a variety if and only if I is prime if and only if k[V ] is an integral domain

Theorem 1.3. Let V be closed sets consider the map to �nitely generated k-algebras with no nilpotents (de�ned
by V 7→ k[V ] and inverse f 7→ f∗), is an (anti) equivalence of categories. This maps re�nes to Varieties map to
�nitely generated integral k-algebras.

The other map is A→ SpecA

De�nition 1.4. Let V be a variety, the �eld of fractions of k[v] is denoted by k(v), and is called �eld of rational
functions.

φ : V  W is a rational map if given by rational functions (de�ned on a dense open subset of V )

V and W are birational (equivalently k(V ) ∼= k(W )) if there exists V
f //

W
g

oo such that f · g = id = g · f

Example. Let V = An, then k[V ] = k[x1, . . . , xn] and k(V ) = k(x1, . . . , xn)
Let V : y2 = x3 + 1 ⊂ A2

x,y . Then k[V ] = k[x, y]/(2−x3 − 1), k(V ) = k(x)(
√
x3 + 1) ([k(V ) : k(x)] = 2)

Note: The image of a Variety is not a Variety in general.

Example. Take A2 → A1 de�ned by x, y 7→ x then the variety V : xy = 1 maps to A1 \ {0}
Take A2 → A2 de�ned by (x, y) 7→ (xy, x). Then V = A2 is A2\{x− axis} ∪ {(0, 0)}.

The �rst of these example actually makes A1 \{0} into an a�ne variety. Indeed consider the map A1 \{0} → A2

de�ned by (t, t−1). These are two rational maps, de�ned everywhere and whose compositions with (x, y) 7→ x is the
identity. On the level of functions k[t, t−1] ∼= k[x, y]/(xy − 1).

Generally,

Example. V : f(x1, . . . , xn) = 0 is a hypersurface, then U = An \ V has a structure of an a�ne variety (k[U ] =
k[x1, . . . , xn, 1/f ])

1.2 Invariants

De�nition 1.5. The dimension d = dimV of V ⊂ An is de�ned as the length of a longest chain ∅ ⊆ V0 ( V1 (
· · · ( Vd ⊆ V (where each Vi is a variety)

This is also equal to the longest chain of prime ideals k[V ] ) P0 ) · · · ) Pd ⊇ {0}, Pi prime.
This is also equal to the transcendence degreed of k(V ) for varieties.

Example. dimAn = n, V ⊂ An is a hypersurface, it has dimension n− 1. A point has dimension 0.

De�nition 1.6. Let V ⊆ An of dimension d, x ∈ V be a point. Recall that k[V ] = {regular functions V → k}.
For x, we have the evaluation map f 7→ f(x) ∈ k. This has a kernel which is a maximal ideal and denoted by mx
(In fact all maxima ideals of k[V ] are of this form).

The local ring Ox =
{
f
g ∈ k(V )|g(x) 6= 0

}
.

Completion Ôx = lim←−j Ox/m
j
x = {compatible sequences in (Ox/mnx)n}

x is a non-singular point if, equivalently

1. dimk mx/m
2
x = d
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2. Ôx ∼= k[[t1, . . . , td]]

3. if V is given by f1 = · · · = fm = 0, then
(
∂fi
∂xj

)
i,j

has rank n− d.

V is regular (or non-singular) if every point is non-singular.

Fact. Vns = {non-singular points on V } ⊆ V is dense open.

Example.

• y = x2. This is regular.

• y2 + x1 = 1. This is regular.

• y2 = x3. This is singular at (0, 0).

• y2 = x3 + x2. This is singular at (0, 0).

Finally, there are products of varieties. If V ⊆ An and W ⊆ Am are closed (respectively varieties) then
V ×W ⊆ An × Am is closed (respectively a variety; k[V ×W ] ∼= k[V ]⊗k k[W ])

2 A�ne algebraic groups

Many categories have groups like topological groups, Lie groups,.... In our case if we have a�ne varieties which are
also groups, then we can call them a�ne algebraic group

De�nition 2.1. A�ne algebraic groups is a closed set G ⊆ An, and there are morphisms m : G × G → G
(multiplication), i : G→ G (inverse) and a point e ∈ G (unit) satisfying the usual group axioms:

1. Associativity G×G×Gid×m //

m×id

��

G×G

m

��
G×G m // G

2. Units (Exercise) m(id×m) = m(m× id)

3. Inverse (Exercise)

Example. Additive group Ga = A1, m : (x, y) 7→ x+ y, i : x 7→ −x, e = 0.
Multiplicative group Gm = A1 \ {0}, m : (x, y) 7→ xy, i : x 7→ x−1, e = 1.

Generally, GLn = {A ∈Mn×n(k)|detA 6= 0} = An2 \hypersurfaces det = 0. Again a�ne algebraic groups (note
that n = 1 gives Gm)

De�nition 2.2. (Algebraic) subgroups is a closed subgroup.
(Algebraic group) homomorphism are group homomorphism which is a homomorphism (of closed sets)
An action of G on a variety V is a group action G× V → V given by a morphism.
Representations of G is a homomorphism G→ GLn. [equivalently it is a linear actions of G on An]

Fact. Kernels and images of homomorphisms are algebraic groups. (Exercise for kernel, images is not so trivial)

Example. det GLn → Gm, the kernel is SLn.
SLn ↪→ GLn is a subgroup.

Gm ↪→ SL2 by t 7→
(
t 0
0 t−1

)
.

Other classical groups: On = {A ∈ Mn×n(k)|AtA = I}, Sp2n = {A × Mn×n(k)|AtΩA = Ω} where Ω =(
0 idn
− idn 0

)
, are also algebraic groups.
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Observe: (left) translations maps lh : G→ G de�ned by g 7→ hg, are isomorphisms of algebraic sets. So �every
points of G looks the same�

Hence G is non-singular (as Gns ⊆ G is non-empty)
Connected components are irreducible components.
Connected components of e, denoted G0, is a closed normal subgroup, G0 CG, G/G0 is �nite.
We usual study connected algebraic groups (Gm,Ga,GLn,SLn, On,Spn, . . . are all connected)

Example. Let G be a �nite group, then it is a algebraic group

Proof. G ↪→ Aut(k[G]) regular representation = GLn for n = |G|. So this is a closed subgroup.

Theorem 2.3. Every a�ne algebraic group is a closed subgroup of GLn for some n

A consequence of this is a�ne algebraic groups are also called linear algebraic groups.)

Proof. Let G be an a�ne algebraic group, m : G ×G → G, i : G → G, e : {pt} → G. Let A := k[G] and consider
m∗ : A⊗A← A, i∗ : A→ A, e∗ : k ← A. Structure map, A = k[G] Hopf algebra. We want to prove: Σ : G→ GL(V )
closed, equivalently �nd Σ∗ : A� k[GL(V )] = k[x11, . . . , xnn, 1/ det]. This equivalent σ : V → V ⊗A k-linear such
that σ is an action, (id⊗e∗)σ = id, (id⊗m∗)σ = (σ ⊗ id)m. We want σ : vi 7→

∑
vj ⊗ aij . We say that V is an

A-comodule. One (and only one) obvious comodule, V = A = k[G] and σ = m∗. There is only one problem: this is
in�nite-dimensional (unless G is �nite). So we need the following:

Lemma 2.4. Every �nite dimensional k-subspace W ⊆ A is contained in a �nite dimensional co-module V ⊆ A
(i.e., m∗(V ) ⊆ V ⊗A)

Proof. Enough to take W = 〈W 〉 is one dimensional. m∗(W ) =
∑m
i=1 vi ⊗ Gi, check that 〈w, v!, . . . , vn〉 is a

comodule.

To �nish proving the theorem: take A = k[G] = k[x1, . . . , xn]/I, W := 〈x1, . . . , xn〉 and take V as in the lemma.
Then check that k[GLn]� A

Example. Let G = Ga = (A1,+). Then A = k[G] = k[t] and take W = 〈t〉 (1-dimensional). Look at m∗(t) =
t ⊗ 1 + 1 ⊗ t. Take V = 〈1, t〉, as in the lemma. t 7→ t ⊗ 1 + 1 ⊗ t, 1 7→ 1 ⊗ 1, all in W ⊗ A, so V is a comodule,

corresponding embedding Ga → GL(V ) = GL2, t 7→
(

1 t
0 1

)
.

3 General Varieties and completeness

In topology: Manifold is a topological space X, covered by opens Ui such that

1. Ui open balls in Rn (Cn)

2. Transitions functions Ui ⊃ Ui ∩ Uj → Uj ∩ Ui ⊂ Uj are continuous (or C∞, or analytic, . . . )

3. X Hausdor�, second countable

We now copy this de�nition

De�nition 3.1. An algebraic set V is a topological space, covered by �nitely many open Vi, V = V1 ∪ · · · ∪ Vn,
such that

1. Each Vi is an a�ne variety

2. Transition maps Vi ⊃ Vi ∩ Vj → Vj ∩ Vi ⊂ Vj are regular isomorphisms

3. V is closed in V × V (Note V × V is covered by a�nes Vi × Vj hence have a topology)
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The third condition in topology is equivalent to Hausdor�.
An algebraic variety is an irreducible algebraic variety.
A curve is a one dimensional variety
A surface is a two dimensional variety

Example. If X is a variety, then every open U ⊂ X is also a variety. As are irreducible closed subspaces

The projective space Pn = Pnk . Pn = {[x0 : · · · : xn]|xi ∈ k,not all 0} / ∼ where [x0 : · · · : xn] ∼ [αx0 : · · · : αxn]
for any α ∈ k∗. Subset V ⊂ Pn is closed if it is the zero set of homogeneous polynomials f1, . . . , fm ∈ k[x0, . . . , xn]

To give Pn the structure of a variety, cover Pn = An(0) ∪ · · · ∪A
n
(n) where Anj = {[x0 : x1 : · · · : 1

j−place
: · · · : xn]}.

The transition maps Ank \{xi = 0} → Ak \{xj = 0) de�ned by (xm) 7→ (xm
xj

xi
) is an isomorphism. So Pnis a variety.

Closed subsets of Pn are called projective varieties.

Example. C : xy = 1 ⊂ A2
x,y ⊂ P2

x,y,z. The closure C ⊂ P2 is a curve C : xy = z2.

De�nition 3.2. A morphism X → Y of algebraic sets is a continuous map given locally by morphism on a�ne
charts.

A rational map is a morphism from a dense open
Regular functions is a morphism f : X → A1 = k
Rational function is a rational map f : X  A1

Example. On Pn the only regular functions are constants k[Pn] = k (ring of regular functions)
Rational functions {f/g|f, ghomogenous of same degree}. k(Pn) ∼= k(t1, . . . , tn) (�eld of rational functions)

De�nition 3.3. A variety X is complete if it satis�es the following equivalent conditions:

1. (Universally closed) For every variety Y , the projection p2 : X × Y → Y takes closed sets to closed sets.

2. (Maximality) If X ⊂ Y open with Y a variety, then X = Y

3. (Valuative criterion) For every curve C and a non-singular point P ∈ C, then every morphism C \ {p} → Y
extends to (a unique) morphism C → X.

Example. A1 is not complete.

1. fails, because p2 : A1 × A1 → A1 takes xy = 1 to A1 \ {0} which is not closed.

2. fails because A1 ↪→ P1

3. fails because A1 \ {0} → A1 de�ned by x 7→ x−1 does not extend to a morphism A1 → A1.

Corollary 3.4. Every variety can be embedded in a complete variety as a dense open

(This is proved �rst, �rst for a�ne charts and then mat the completion together using blowing ups and blowing
downs)

Consequence of completeness:

Lemma 3.5. Suppose X is a complete variety

1. If Z ⊆ X closed, then Z is complete

2. If f : X → Y is a morphism, then f(X) is closed and complete

3. k[X] = k (X has no non-constant regular functions)

4. If X is a�ne, then X is a point

Proof.

1. Immediate from de�nition condition 1)
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2. f(X) is the p2 of the graph (X, f(X)) ⊆ X × Y

3. Image of X under f : X → A1 ↪→ P1 is closed, connected, misses ∞, therefore must be a point.

4. A�ne varieties are characterised by their regular functions

Main example of a complete variety is:

Theorem 3.6. Pn is complete

Corollary 3.7. Projective varieties are complete (and have k[X] = k)

Complete non-projective varieties exists in dimension ≥ 3 (Hironaka), but we'll never see them

Theorem 3.8 (Chow's Lemma). If X is complete, there exists X ′ projective and a morphism X ′ → X which is
birational.

Finally, for complete varieties over C we have:

Theorem 3.9 (Chow). Let X be a complete variety over C.

1. Ever analytic subvariety of X is closed in Zariski topology

2. Every holomorphic map f : X → Y between complete varieties is a morphism.

(In particular, the only meromorphic functions on X are rational functions)

One application:

Theorem (Weak Bezout). Every two curves C,D ⊂ P2 intersect:

Proof. C : f(x, y, z) = 0, D : g(x, y, z) = 0. If C ∩ D = ∅, then [f(x, y, z) : xdeg f ] : D → P1 is a regular map
D → P1 that misses [0 : 1], hence constant, which is a contradiction.

4 Curves

Power of completeness:

Lemma 4.1. C1, C2 non-singular complete curves.

1. Every rational map f : C1 → C2 extends to a unique morphism

2. Every non-constant map f : C1 → C2 is onto

Proof.

1. f is a morphism Cn{P1, . . . , Pn} → C2 and extends to C1 → C2 by de�nition 3. of completeness

2. im f is irreducible and closed, hence either C2 or a point.

It is not hard to deduce that C → k(C) de�nes an anti-equivalence of categories between {complete non-singular
curves over k} and {�nitely generated �eld extensions of k of transcendence degree 1}

In higher dimension, this is not true: e.g., P1 × P1 6∼= P2 (though they have the same �eld of rational functions)
From now on we look at non-singular complete curves (which is equivalent to look at non-singular projective)
A non-constant map f : C1 → C2 gives a �eld inclusion f∗ : k(C2) ↪→ k(C1) of �nite index, called the degree of

f . deg f = [k(C1) : f∗k(C2)]. In particular, deg f = 1 if and only if f : C1
∼= C2.
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Example. Consider x2 + y2 = 1 (meaning the unique complete curve C which contains C as Zariski open), maps
this to x. This corresponds to k(x) ↪→ k(x)

(√
1− x2

)
, so the map is of degree 2.

Not hard to see: if f : C → D is non-constant, then every point of D has d preimages, counted with multiplicities
(exactly d distinct points for all but �nitely many p ∈ D), where d = deg f if characteristic k = 0, otherwise d is
the separable degree of k(C)/f∗k(D).

Every non-constant rational functions f ∈ k(C) is a morphism f : C → P1, so f(P ) ⊂ k∪{∞} is always de�ned.

De�nition 4.2. We say that f has a zero at P if f(P ) = 0, and a pole at P if f(P ) =∞

From the above discussion, we see that every functions on C has the same number of zeros as poles, if counted
with multiplicities.

Local behaviours of functions on curves

Let P ∈ C be a point. We de�ne O = OC,P a local ring of functions de�ned at P . This is a local domain of
dimension 1, dimK m/m

2 = 1, hence O is a DVR (Discrete Valuation Ring). In other words, there is a valuation,
ordP : k(C)∗ � Z (called order of vanishing at P ). This is a discrete valuation, so it satis�es:

1. ordP (fg) = ordP f + ordP g

2. ordP (f + g) ≥ min(ordP f, ordP g)

3. ordP c = 0 for c ∈ k∗

In fact, {discrete valuations on k(C) trivial on k}
1:1↔ {ptsP onC} via ord. If ordP t = 1, then t is called a uniformiser.

If we pick a uniformiser, say t, at P , then every f ∈ k(C) can be written uniquely as f = u · tn where n = ordP f
and u has neither a zero or a pole at p.

Exercise. Take C : x2 + y2 = 1, P = (1, 0), prove that ordP y = 1 and ordP (x− 1) = 2. Show that x− 1 = 1
x+1y

2.

De�nition 4.3. A divisor on a (non-singular complete) curve C is a �nite formal linear combination of points,
D =

∑r
i=1 ni(Pi), ni ∈ Z, Pi ∈ C.

The degree of D is
∑
ni, D is e�ective if all ni ≥ 0.

If f ∈ k(C)∗, then the divisor of f is de�ned as (f) =
∑
P∈C ordP (f) · (P ) (�nite). Divisors of this forms are

called principal. They have degree 0, so principal divisors are a subset of degree 0 divisors, which are a subset of
all divisors, i.e., Principal Divisors < Div0(C) < Div(C)

De�nition 4.4. Pic(C) = Div(C)/principal divisors is called the Picard group. We de�ne Pic0(C) = Div0(C)/principal divisors.
Elements in Pic and Pic0 are called equivalent classes of divisors.

We have an exact sequence 0→ Pic0(C)→ Pic(C)
deg→ Z→ 0

We say that D,D′ ∈ Div(C) are linearly equivalent if they have the same class, i.e, D = D′ + (f) for some f .

5 Di�erentials and genus

Over C curves are Riemann surfaces. We de�ne genus for a general curves using di�erentials.
Let X be a variety over k.

De�nition 5.1. Rational k-di�erentials on X are formal �nite sums ω =
∑
i fidgi where fi, hi ∈ k(X), modulo

the relations d(f + g) = df + dg, d(fg) = fdg + gdf and da = 0 for a ∈ k.

If k(X) is written as �nite separable extension of k(x1, . . . , xn) then every ω has a unique expression g1dx1 +
· · ·+ gndxn (note n = dimX). So their space is isomorphic to k(x)n.
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Example. X = An (or Pn) has di�erentials f1dx1 + · · ·+ fndxn with fi ∈ k(x1, . . . , xn) and f1dx1 is on A1 (or P1)
C : y2 = x3+1 (chark 6= 2, 3). Every ω can be written as f(x, y)dx and also as h(x, y)dy. Use 0 = d(y2−x3−1) =

2ydy − 3x2dx, hence dy = 3x2

2y dx

De�nition 5.2. A di�erential ω is regular at P ∈ X if it has a representation ω =
∑
i fidgi where fi, gi are regular

at P .
ω is regular if ω is regular at every point.

Notation. ΩX = {regular di�erentiations} (a k-vector space)
(For complete varieties X, dim ΩX <∞; also if X is projective and k = C, regular di�erentials are the same as

holomorphic di�erentials.)

If X = C a curve, P ∈ C a non-singular point and ω a di�erential, write ω = fdt where t is a uniformiser at P .
Then ω is regular at P if and only if f is regular at P if and only if ordP f ≥ 0.

We de�ne ordP ω = ordp f (well-de�ned). So ω is regular if and only if ordp ω ≥ 0.

De�nition 5.3. For C a complete non-singular curve, the genus of C if g(C) := dimk ΩC .
If C is any curve, the geometric genus of C is the genus of the unique complete non-singular curve birational to

C.

Example. Let C = P1 = A1
x × A1

y with xy = 1. Then x − a are uniformisers at a ∈ A1
x, so d(x − a) = dx has

no zeroes or poles on A1
x (and similarly dy on A1

y). If ω = f(x)dx 6= 0 then xy = 1 implies xdy + ydx = 0, hence

f(x)dx = − 1
y2 f( 1

y )dy. For ω to be regular:

1. f(x) must be a polynomial in x

2. 1
y2 f( 1

y ) must be a polynomial in y.

But those two conditions can be not be satis�ed at the same time. So ΩP1 = {0} and hence has genus 0.

Example. C : y2 = x3 + 1 ⊆ P2 (chark 6= 2, 3). Can check that dx
y is regular everywhere.

Generally, C : f(x, y) = 0 a non-singular a�ne curve embedded in A2. How to �nd the corresponding complete
curve C and �nd g(C) and ΩC?

Take P = (a, b) ∈ C, so OP is a local ring, m = (x − a, y − b) (one of these is a uniformiser). Expand f(x, y)
at P , f(x, y) = 0 + f ′x(x− a) + f ′y(y − b)+terms in m2. Either f ′x(P ) 6= 0 if y − b is a uniformiser, or f ′y(P ) 6= 0 if

x− a uniformiser; so either ordP

(
dy
f ′x

)
= 0 or ordP

(
dx
f ′y

)
= 0. But 0 = df = f ′xdx+ f ′ydy, hence

dx
f ′y

= −dyf ′x . So this

di�erential has no zeroes or poles on C ⊆ A2. Therefore xiyj dxf ′y
have no poles on C and hence form a basis.

If we embed A2 as an open of some complete variety X (e.g., P2,P1 × P1, . . . ) and if C ( the closure of C in X)
happens to be non-singular, then we just need to inspect xiyj dxf ′y

at C\C (a �nite set) to �nd ΩC and g(C).

Theorem 5.4 (Baker). Let C :
∑
i,j cijx

iyj = 0 be a curve in A2, C be a unique non-singular complete curve

birationals to C. De�ne ∆ (subset of R2) to be the convex hull of (i, j) for which cij 6= 0. Let I := ∆ \ ∂∆ ∩ Z2

(interior lattice points).

1. ΩC ⊆ span of xi−1yj−1 dx
d′y

for (i, j) ∈ I.

2. The equality g(C) = |I| holds if e.g. C ⊆ A2 non-singular, and for all segments σ ⊆ ∂∆ that do no have both
end points on the coordinate axe have that the polynomial fσ =

∑
(i,j)∈σ cijx

iyj is square-free.

(Basically this embeds A2 ⊆ X :=toric variety with the corresponding Newton polygon, and compute arithmetic
genus of C in X)
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Example. (chark > 5)
x4 + y4 = 1

· · · · · ·

× · · · · ·

× × · · · ·

× • × · · ·

× • • × · ·

× × × × × ·

Hence g = 3
y2 = x5 + 1

· · · · · · ·

× · · · · · ·

× • • · · · ·

× × × × × × ·

Hence g = 2

Both example generalise:

Example. (Plane curves) Let C : f = 0 ⊆ P2 non-singular, f homogeneous of degree d ≥ 1. Then g ≤ (d−1)(d−2)
2

by the Theorem� and it gives di�erential xi−1yj−1 dx
f ′y
. It is not di�cult to check that these are regular everywhere,

so g = (d−1)(d−2)
2

Example. (Hyperelliptic curves) Let y2 = f(x), f square-free, deg(f) = 2g + 1 or 2g + 2 has genus g. ΩC =〈
dx
y ,

xdx
y , . . . , x

g−1dx
y

〉
.

6 Riemann - Roch

Notation. For a divisor D ∈ Div(C), where C is a complete non-singular curve, we write L (D) = {D′ ≥ 0|D′ ∼ D}
or equivalently L (D) = {0} ∪ {f ∈ k(C)∗|(f) ≥ −D}. This is called �the space of functions with poles at most at
D�

[E.g., D = 4(P ), then L (D) = {f with no poles outside P and at most pole of order 4 at P}]
Write KC = [(ω)] ∈ Pic(C) for (any) di�erential form on C, this is the canonical class.
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Note. dimL (KC) = dim ΩC = g(C)

Theorem 6.1 (Riemann - Roch). Let C be a complete non-singular curve. Then for every D ∈ Div(C),

dim L (D)− dim L (KC −D) = degD − g + 1

Corollary 6.2.

1. degKC = 2g − 2

2. If degD > 2g − 2, then dim L (D) = degD − g(C) + 1.

Note. If D = 0, then L (D) = k and hence dim L (D) = 1. If degD < 0 then dim L (D) = 0.

Proof of Corollary.

1. D = KC , g − 1 = degKC − g + 1

2. degD > 2g − 2 then KC −D will have negative degree and L (KC −D) = 0.

Example. (genus 0). Suppose C has genus 0. Pick P ∈ C, D = (P ). Then using Riemann - Roch, we have
dim L (0) = 1, L (0) = k = 〈1〉, dim L ((P )) = 1−0+1 = 2, hence L ((P )) = 〈1, f〉 where f has exactly one simple
pole at P and no other poles. Then f : C → P1 has degree 1, hence it is an isomorphic and so C ∼= P1.

Remark. If g(C) > 0 and P ∈ C, then L ((P )) = L (0) = k 1-dimensional. (Otherwise pick f ∈ L ((P )) −L (0)
implies f : C

∼→ P1)

Example. (Genus 1)

De�nition 6.3. A genus 1 curve C with a chosen point (�origin�) O, is called an elliptic curve.

Suppose (C,O) is elliptic. L (0) = L (1 · (O)) = k 1-dimensional
L (n · (O)) has dimension n (for n ≥ 1). In particular:

• L (2 · (O)) = 〈1, x〉 (where x is a function with exactly a double pole at O and no other poles).

• L (3 · (O)) = 〈1, x, y〉 (where y is a function with a triple pole...)

• L (4 · (O)) =
〈
1, x, y, x2

〉
• L (5 · (O)) =

〈
1, x, y, x2, xy

〉
• L (6 · (O)) =

〈
1, x, y, x2, xy, x3, y2

〉
. But this is 6-dimensional by Riemann - Roch, so there must exists a liner

relation (rescaling x, y, if necessary): y2 + a1xy + a3y = x3 + a2x
3 + a4x+ a6 (Weierstrass equations).

First note: �elds
k(C)

k(x, y)

k(x)

2

k(y)

3

so k(C) = k(x, y), and so C is birational to y2 + a1xy + a3y = x3 + a2x
3 + a4x + a6 ⊆ A2. Finally, this curve is

non-singular, otherwise has geometric genus 0 by Baker's theorem and C ∼= P1 which is a contradiction. This de�nes
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a non-singular curve in P1 (with a unique point O = (0 : 1 : 0) outside A2) which must therefore be isomorphic to
C.

Conclusion: Every elliptic curve is isomorphic to one in Weierstrass form. If chark 6= 2, 3, complete the square
and cube, get y2 = x3 +Ax+B, A,B ∈ k, x3 +Ax+B square-free.

The only functions with a double pole at O are ax+ b (a 6= 0) and triple pole cy + dx+ e (c 6= 0). So the only
isomorphism between Weierstrass equations are x 7→ u2x+ r, y → u3y+ sx+ t, and between simpli�ed Weierstrass
equations, x 7→ u2x, y 7→ u3y. So y2 = x3 +Ax+B ∼= y2 = x3 + u4Ax+ u6B.

Corollary 6.4. Aut(E,O) is �nite. In chark 6= 2, 3:

• if A,B 6= 0 then Aut ∼= C2 (u = ±1)

• A 6= 0 then C6

• B 6= 0 then C4

Similarly if charK = 2, 3 then Aut(E,O) is �nite of order at most 24.

Theorem 6.5 (Hurwitz). If C has genus greater than 1, then Aut(C) is �nite.

Embedding of curves in Pn:
If D ∈ DivC, say L (D) = 〈f1, . . . , fn〉 6= 0, then get φ : C  Pn−1 de�ned by P 7→ [f1(P ) : · · · : fn(P )] extends

to a morphism. Di�erent basis gives the same map up to linear transformation of Pn−1 (in PGLn(K)). Also φ
clearly depends only on [D] ∈ Pic(C). Finally, there are conditions to ensure that φ is an isomorphism C → φ(C)
[�closed inversion�]. Thence φ(C) is a curve in Pn−1 of degree degD (recall that degree is number of φ(C)∩generic
hyperplane)

Example. Let (C,O) be an elliptic curve, given by y2 = x3 +Ax2 +B, take D = n · (O) with n ≥ 1. Then

• L (1 · (O)) = 〈1〉, this gives E → {pt} = P0

• L (2 · (O)) = 〈1, x〉, this gives E x,2:1→ P1

• L (3 · (O)) = 〈1, x, y〉, this gives E ↪→ P2 (degree 3)

• L (4 · (O)) =
〈
1, x, y, x2

〉
, this gives E ↪→ P3 (degree 4). Here φ(E) =

{
x2

1 = x0x3

x2
2 = x1x3 +Ax0x1 +Bx2

0

. This is

the intersection of two quadrics.

When degD is large (greater than 2g − 2), then dim L (D) does not depend on the curve (only genus), or D.
But for degD small it does. Existence of these linear systems can be used to classify curves (complete classi�cation
is unknown).

Example. The canonical map, given by D = KC , φ : C → Pg−1 and φ(C) is a curve of degree 2g − 2 (for g ≥ 3).
For non-hyperelliptic curves, this is a closed immersion. [Conversely, if C ⊆ Pg−1 of degree 2g − 2, then C∩generic
hyperplane is a divisor in the canonical class]

For hyperelliptic curves y2 = f(x), φ : C
2:1→ P1 ↪→ Pg−1 and the 2: 1 map to P1 is unique when g ≥ 3.

Example. A genus 3 curve is either hyperelliptic y2 = f(x) with f(x) having degree 7 or 8, or its canonical
embedding gives C ↪→ P2 plane quartic (and not both)

A genus 4 curve is either hyperelliptic (deg 9, 10) or canonical C ↪→ P3 with φ(C) = deg 2 ∩ deg 3.
A genus 5 curve is either hyperelliptic (deg 11, 12) or canonical C ↪→ P4 with φ(C) = deg 2 ∩ deg 2 ∩ deg 2.
A genus 6 does not have complete intersections in Pg−1.
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Picard Groups of curves

Example. (g = 0) C ∼= P1. On C every D ∈ Div0(C) is ∼ 0 (hence Pic0(C) = 0, Pic(C) = Z). Let D =∑
a∈P1 na(a) = div(f), where f =

∏
a6=∞(x− a)na .

Example. (g = 1). On an elliptic curve (E,O) every D ∈ Div0(C) is ∼ (P )− (O) for a unique point P ∈ E. To
see this, take D ∈ Div0(C), L (D + (O)) is 1-dimensional by Riemann - Roch, hence there exists f ∈ k(E)∗ such
that (f) ≥ −D − (O), so (f) = −D − (O) + (P ) for some P ∈ E. As f in unique up to constant multiple, P is
unique.

This shows that E
1:1→ Pic0(E) de�ned by P 7→ (P )− (O). In particular, this gives E the structure of an abelian

group, with O as the identity element. Geometrically, if E is in Weierstrass form y2 =cubic in X, O = [0 : 1 : 0],
then P + Q + R = O if and only if P,Q,R lie on a line. Indeed, if L is the line through P,Q (tangent if
P = Q), L : αx + βy + γ = 0, then the function αx + βy + γ has divisor (P ) + (Q) + (R) − 3(O) and so
(P )− (O) + (Q)− (O) + (R)− (O) ∼ 0, hence P +Q+R = 0. To add P,Q, draw the line through P,Q, �nd 3rd
point of intersection, say R′, and let P +Q = R, where R is R′ re�ected in the x-axis.

From here not hard to see that addition E × E → E de�ned by P,Q 7→ P +Q is a morphism of varieties.

Example. (g = 2) Let C : y2 = x5 + a4x
4 + · · · + a0 (characteristic not 2, then every genus 2 curve has this

form). This model has a unique point ∞ at in�nity. C is hyperelliptic, write ι : (x, y) 7→ (x,−y), the hyperelliptic

involution. Let ΩC =
〈
dx
y ,

xdx
y

〉
,
〈
dx
y

〉
= 2·(∞) (no zeroes, poles on C∩A2 and degree 2),

(
(x−a)dx

y

)
= (P )+(ι(P )).

So, e�ective divisors in the canonical class K, are �bres of C
x→ P1.

If D ∈ Div2(C), (i.e. a degree 2 divisor) and D /∈ [KC ] then, by Riemann - Roch, dim L (D)−dim L (K−D) =
degD − g + 1 = 1, but K −D had degree 0 and is not principal, hence L (K −D) has dimension 0. Therefore [D]
has a unique e�ective divisors (P1) + (P2).

Hence every D ∈ Div2(C) is equivalent to (P1) + (P2) for a unique {P1, P2}, except that all {P, ι(P )} are
equivalent. Adding −2(∞) we get a description of Pic0(C).

unordered pairs of points {P1, P2}, except all {P, ι(P )} give the same class
1:1↔ Pic0(C) de�ned by P1, P2 7→

(P1) + (P2)− 2(∞). The group law on Pic0(C):

Unit Element: any pair {P, ι(P )}.

Inverse: {P1, P2} 7→ {ι(P1), ι(P2)}

Addition: to add {P1, P2} and {Q1, Q2}, �nd a unique curve y = a3x
3 + · · · + a0 that intersect C at those points

plus two other points {R1, R2} and let {P1, P2}+ {Q1, Q2} := {ι(R1), ι(R2)}

Remark. Let C be any curve of genus g > 0

• Every divisors D ≥ 0 of degree g is equivalent to one of the form (P1) + (P2) + · · ·+ (Pg), �usually� uniquely
(Pic5(C) is birational to Sym8 C = C9/S9)

Example. (Cantor) Let C : y2 = f(x) an hyperelliptic curve (any genus g > 0) with f(x) having degree 2g + 1
square free. Every class in Pic0(C) is represented by a unique divisor (P1) + · · · + (Pr) − r(∞), 0 ≤ r ≤ g, where
Pi are a�ne points and Pj 6= ι(Pi) for j 6= i.

Remark. In general Pic0(C) has a structure of an algebraic group, speci�cally of an abelian variety of dimension g.

General Algebraic Groups

De�nition 6.6. A group G is an algebraic group over k if it has a structure of an algebraic set, and multiplication
G×G→ G, inverse G→ G are morphisms.

Example. A�ne algebraic groups, Ga,Gm,GLn, . . .

Example. Elliptic curves and their products E1 × E2 × . . .
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Example. Multiplication by [m] map, [m] : G → G, P 7→ P + · · · + P (m times) is a homomorphism, if G is
commutative.

As before, connected component G0 is a variety, G = G0o �nite group. Kernels and images exist, as before

Example. Algebra groups often occur as automorphism groups of varieties. For example, if C is a non-singular
complete curve

(g = 0) C ∼= P1, AutP1 =

{
ax+b
cx+d

∣∣∣∣ (a b
c d

)
∈ Gl2

}
/k∗ ∼= PGL2(k). Möbius group.

(g = 1) Choose O ∈ C, hence C is an elliptic curve, then Aut(C) ∼= CoAut(C,O) (translation, using the group
law, and automorphism that �xes O). We know Aut(C,O) is �nite of order ≤ 24.

(g ≥ 2) Theorem: Aut(C) is �nite.

Proposition 6.7. The only 1-dimensional connected algebraic groups are Ga,Gm and elliptic curves.

Proof. Suppose G is such an algebraic group. So G = C \ {P1, . . . , Pn} for some complete non-singular curve C,
and points Pi ∈ C. The left translation map lx : G→ G de�ned by y 7→ xy, extends to C → C, so C has ∞-many
automorphism that are

1. �xed points free on G

2. preserve {P1, . . . , Pn}

Let g =genus (C) and e ∈ G.

If g ≥ 2 Aut(C) �nite (contradiction)

g = 1 If n ≥ 1, then Aut(C, {Pi}) �nite (size ≤ 24) , contradiction. So n = 0. There exists a unique �xed point
free map taking e to a given x ∈ G, so the group law must be the standard one.

g = 0 Now C = P1, G = C \ {P1, . . . , Pn}.

n = 0 lx : P1 → P1 have no �xed points (impossible)

n ≥ 3 Aut(P1, {P1, . . . , Pn}) is �nite.
n = 1 Move P1 to∞, G = A1, �xed point free transformation of A1 are of the form x 7→ x+a. Hence

G ∼= Ga
n = 2 Move P1, P2 to 0 and ∞, G = A1 \ {0}, �xed point free transformation of G are of the form

x 7→ bx, hence G ∼= Gm.

An Abelian Variety is a Complete Connected Algebraic Group

Example. Elliptic curves and product of elliptic curves

Theorem 6.8 (Barsotti - Chevalley). Every connected algebraic group G �ts in an exact sequence 1→ H → G→
A→ 1 with H CG is the largest linear connected normal subgroup and A an Abelian variety.

Recall that linear are closed subgroups of GLn and are well understood.
In view of this, every algebraic groups G has a (unique) �ltration

G
finite
−
C

G0connected
ab variety
−
C

G1linear
semi−simple
−
C

G2solvable
torus
−
C

G3unipotent−
C

1

with Gi connected.

Example. A torus is isomorphic to Gm × · · · ×Gm.

13



• unipotent = subgroups of

1 ∗
. . .

0 1

 (which is build up from Ga) .

• Solvable = admits a �ltration 1CH0 C · · ·CHk = G with Hi/Hi−1 commutative

• Semi-simple group is one that admits a �nite cover G1 × · · · × Gk → G with Gi almost simple [centre C is
�nite, and G/C is simple], where simple of is of type An, Bn, . . . , Gn [PSL,SO, . . . ]

Let A be an Abelian variety over k (i.e., complete algebraic group). We will show that A is commutative (whence
�abelian�)

Lemma 6.9 (Mumford's Rigidity). Suppose f : V ×W → U is a morphism, where V,W,U are varieties and V is
complete. If f({v0}×W ) = f(V ×{w0}) = {u0} for some point u0, v0, w0 then f is constant, i.e., f(V ×W ) = {u0}.

Aside: Over C, if w is close to w0, then compactness of V and continuity of f implies f(V ×{w}) ⊆ some open
ball around u0. But Liouville Theorem implies that no non-constant maps from a compact complex manifold to an
open disc. So f(W × {w}) = pt = u0. Hence the set of points w ∈ W such that f(V × {w}) = {u0} is open. It is
closed as well, W is connected so f is constant.

Proof of Lemma. Let U0 be an open a�ne neigbourhood of u0 and Z = f−1(U \ U0) which is closed subset of
V ×W . Since V is complete the projection p2(Z) under V ×W → W is closed. As w0 /∈ p2(Z), complement
W0 = W \ p2(Z) is open and hence dense in W . But for all w ∈W0, the image f(V × {w}) ⊆ U0 must be a point,
as V × {w} is complete and U0 is open a�ne. So f(V × {w}) = u0. In other words f is constant on a dense open
set hence constant everywhere.

Corollary 6.10. If U, V,W are varieties, V is complete and U is an Algebraic group then if f1, f2 : V ×W → U
are two morphisms which agree on {v0} ×W and on V × {w0}, then f1 = f2.

Proof. The map p 7→ f1(p)f2(p)−1 is constant by the Rigidity lemma.

Corollary 6.11. Every Abelian variety over k is Commutative.

Proof. The map xy, yx : A×A→ A agree on {e} ×A and A× {e}, hence everywhere.

Corollary 6.12. Let f : A→ B be a morphism of varieties, A an abelian variety and B an algebraic group. Then

1. If f(eA) = eB then f is a homomorphism of Algebraic groups

2. In general f is a composition of a translation on B and a homomorphism A→ B.

Proof. We proof the �rst part. The morphism f(x)f(y) and f(xy) are morphisms on A × A → B and agree on
A× {e} and {e} ×A.Hence they agree everywhere.

Another consequence: In de�ning an abelian variety, we could drop the associativity conditions (it's automatic
from rigidity). This gives an easy proof that the chord-tangent addition on Elliptic curves de�nes an associative
addition.

The last corollary can be extended: Any rational map G A from an connected algebraic group to an abelian
variety is a morphism and is an in the corollary.

Part II

Families and Moduli Spaces

The most powerful technique in modern algebraic geometry:

Viewing a morphism f : X → Y as a family of varieties (�bres) parametrised by Y .
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Example. Let E : y2 = x3 + t3 ⊆ A3
x,y,t. This can be viewed either as a surface in A3 or as a family of (elliptic)

curves parameterised by t ∈ A1. This is line an �Elliptic curve over k[t]� and embedding k[t] ⊆ k(t) ⊆ k(t). This
does become an Elliptic curve as we know them.

This allows us to pass between geometry of surfaces and curves over another �eld. Some of the main results in
Algebraic geometry are proved by reducing questions about general varieties to questions about curves (over some
general bases)

Example. Deligne's proof of Weil Conjecture
de Jong's alteration.

7 Varieties over a general �eld

Let K be any �eld, k = K its algebraic closure. If V is an a�ne variety over K, we say that V is de�ned over
K if V can be de�ned with polynomials with K-coe�cients. For such V and V ′ a (K-)morphism f : V → V ′ is a
morphism given by polynomial with coe�cients in K. As before K[V ] are morphism V → A1 and K(V ) is the �eld
of fractions of K[V ]. We say that V is complete, regular (usually geometrically regular) if V over K is.

General variety - Covered by a�ne Varieties de�ned over K with transition maps de�ned over K. Products
exists: K[V ×W ] = K[V ]⊗K[W ].

Example.

• An,Pn are varieties over any �eld.

• The line
√

2x+
√

3y = 0 in A2
Q, it is not de�ned over Q but it is over Q(

√
2,
√

3). Note that it is also de�ned

over Q(
√

6) since x+
√

6
2 y de�nes the same line.

• f : x2 + y2 = 0 is an algebraic set over R, but not a variety over R though x2 + y2 is irreducible.

Note. The old de�nition �variety = Zariski closed irreducible subset of Kn� does not work. For example over Fp
only varieties could be points.

Let V be an a�ne variety over K, i.e., V ⊂ An
K
. De�ne its set of K-rational point as V (K) = V ∩ Kn and

similarly for non a�ne varieties (V (K) = ∪Vi(K)). Note that this may be small or empty.
Assume that K is perfect (i.e., every f extension of K is separable that is K = Fq or it has characteristic 0)
Let C be a curve over K. We say that D ∈ Div(C) is de�ned over K if it is invariant under all automorphism

σ ∈ Gal(K/K)

Example. Consider P1
Q. The divisors (0), (1/2), (∞) are Q-rational, and the divisors (

√
2) +

(√
−2
)
, 4(i) + 4(−i)

are de�ned over Q.

There are two main complications when K 6= K

• Varieties might not have any K-rational points

• There are varieties over K which are not isomorphic over K but are isomorphic over K

Example (Selmer). Let C be a curve of genus 1 over Q. C : 3X3 + 4Y 3 = 5Z3 ⊆ P2
Q, it is isomorphic over Q to

the elliptic curve E : y2 = x3 − 100/3. However, C(Q) = ∅ hence C 6∼= E or any other elliptic curve over Q (as they
are genus 1 curves with a Q-rational point O). In fact, all Q-rational divisors on C have degree multiple of 3. So
C does not even admit a degree 2 map to P1. Fortunately, if C has a K-rational divisor D, then L (D) has basis
of rational functions de�ned over K.

Lemma 7.1. Let V be a K-vector space such that Gal(K/K) acts on V (compatibly with its action on K) thenˇ
has a basis of Gal(K/K)invariant vectors.
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Example. If C/K has genus 1 and D ∈ Div1(C) is K-rational then we can apply the lemma to L (n ·D), n ≥ 1
and as before prove that C ∼= Elliptic curve in Weierstrass form, P  O = (0 : 1 : 0).

Example. Genus 0. Let C/K be genus 0, the divisor D = (ω) of any K-rational di�erential form ω 6= 0 has degree
−2 and is K-rational by Riemann - Roch, L (−D) is 3-dimensional, has a basis of K-rational functions f1, f2, f3

and (f1, f2, f3) : C → P2 has image of degree 2 (possibly singular). Hence every curve of genus 0 is isomorphic to
P1
K or a nonsingular conic in P2

K .

Example. Over R. Every genus 0 curve over R is isomorphic to P1
R or x2 + y2 − z2 = 0 ⊆ P2

R.

Example. Genus 2. Let C/K with K a �eld of characteristic not 2. The canonical divisor class has degree 2, has
K-rational divisors in it, hence use this to get a model y2 = g(x) where deg f ∈ {5, 6} and f is square free.

Can have varieties V, V ′ over K (or algebraic groups over K) that are non-isomorphic over K but are isomorphic
over K. In either setting, we say that V and V ′′ are forms or twists of each other. If V and V ′ are twists, pick an
isomorphism over K, i : V → V ′. Any automorphism σ ∈ Gal(K/K) de�nes another such isomorphism, iσ, and
the composition ξ : Gal(K/K)→ Aut(V/K) de�ned by σ 7→ (iσ)−1i satis�es ξ(στ) = ξ(σ)τξ(τ). This makes ξ into
a 1-cocycle.

Theorem 7.2. If either

• V is an algebraic group, or

• V is a quasi-projective (open subset of a projective variety) and Aut(V/K) is an algebraic group

then the above map ξ gives a bijection between {twists of V overK} ↔ H1(Gal(K/K),Aut(V/K)).
[Moreover, if L/K is Galois, then twists of K that become isomorphic over L are in bijection with H1(Gal(L/K),Aut(V/L)).]

Example. (Elliptic Curves). Suppose that the �eld K does not have characteristic 2 or 3. Every E/K has a
model E : y2 = x3 + Ax + B with A,B ∈ K, and we call Ed : dy2 = x3 + Ax + B (which is isomorphic to
y2 = x3 + d2Ax+ d3B) is the quadratic twist of E by d ∈ K∗/K∗2.

IfAB 6= 0, then AutK(E) = AutK(E) = {±1}. This acts with trivial Galois actions. HenceH1(Gal(K/K),AutK(E)) =

Hom(Gal(K/K), {±1}). A non-trivial element of this group is characterised by its kernel, which is Gal
(
K/K

(√
d
))

,

for some d ∈ K∗/K∗2. It corresponds to the quadratic twist of E/K by d:
Choose i : E → Ed to be de�ned by P = (x, y) 7→ i(P ) = (x, y√

d
). Then (iσ)−1i : P = (x, y) 7→ (x, y√

d
) 7→

(x,

(√
d
)σ

√
d︸ ︷︷ ︸

=±1

y) =

{
P if σ(

√
d) =

√
d

−P if σ(
√
d) = −

√
d
which is indeed the corresponding element of H1(Gal(K/K),AutKE).

Finally, there are 2 exceptional curves:

• E : y2 = x3 + x. Then Aut(E/K) = 〈ζ4〉 (as [i] : (x, y) 7→ (−x, iy) is an automorphism)

• E : y2 = x3 + 1. Then Aut(E/K) = 〈ζ6〉.

and in these cases the corresponding twists are y2 = x3 + dx where d ∈ K∗/K∗4 (quartic twists) and y2 = x3 + d
where d ∈ K∗/K∗6 (sextic twist)

Exercise. What happens when charK = 2, 3 and Aut(E/K) ∼= SL2(F3) (of order 24).

8 Moduli problems

There exists many classi�cation problems in which objects that we want to classify are �naturally� parametrised by
points on a variety. As before we work k = k
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Example. Lines through the origin in A2. They are parameterised by points of P1. To see this, ax + by = 0
1:1↔

[a : b] ∈ P1.

Similarly, all lines in A2: ax+ by + c = 0
1:1↔ P2 \ {[0 : 0 : 1]}.

All lines in P2 1:1↔ P2.

Example. Generally, d-dimensional linear subspaces in An are again parameterised by points on a variety, called
the Grassmanian, denoted by Gr(d,An)

Example. Curves of degree 2 in P2 (conics) have an equation a0x
2 + a1xy + a2xz + a3y

2 + a4yz + a5z
2 and

again (ai) and λ(ai) de�nes the same conic. So conics
1:1↔ {pts inP5} \ {pts that correspond to reducible conics}. If

a0x
2 + · · ·+a5z

2 = (b0x+b1y+b2z)(c0x+c1y+c2z) then (ai) ∈ P5 is in the image of the map P2×P2 → P5 de�ned
by [b0, b1, b2], [c1, c2, c3] 7→ [b0c0, b0c1 + b1c1, b0c2 + b2c0, b1c1, b1c2 + b2c1, b2c2]. This image, say Z, is closed (image
of a complete variety under morphism) and P5 \ Z is open [we say that �being irreducible is an open condition�]
and parameterised conics in P2.

Another type of problems: classifying e.g. varieties up to isomorphism. Usually there are discrete invariants
(e.g. dimension, genus) that breaks the problem naturally into �connected components� and �xing these may lead
to a set that has a structure of variety.

Example. Genus 0 curves over k are all isomorphic to P1, so the variety parametrising them is {pt}.

Example. Genus 1 curves or elliptic curves. Again we assume the characteristic of k is not 2 or 3. Every E can be

given by y2 = x3+Ax+B. De�ne the jinvariant by j(E) = 1728 4A3

4A3+27B2 ∈ k, this is unchanged under isomorphism

of Weierstrass equations. Conversely, every j ∈ k is the jinvariant of some curve, Ej : y2+xy = x3− 36
j−1728x−

1
j−1728

(j 6= 0, 1728), E0 : y2 = x3 + 1 and E1728 : y2 = x3 +x. In over words, genus 1 curves over k up to isomorphism are
in one to one correspondence to points j ∈ A1 (the j-line)

Exercise. Show that E ∼= E′ ⇐⇒ j(E) = j(E′)

Generally, consider the set Mg,n = {isomorphism classes of (non-singular projective) curves C of genus g, with
n distinct ordered marked points P1, . . . , Pn ∈ C}/ ∼=, where we de�ne the isomorphism as (C, (Pi)) ∼= (C ′, (Pi)

′)
if there exists isomorphism φ : C → C ′ such that φ(Pi) = P ′i . If we make points unordered, get M sym

g,n = Mg,n/Sn
(acts by permuting the marked points)

Example. (Genus 0) Every C ∼= P1, Aut(P1)= Möbius group, acts triply transitive, so M0,0 = M0,1 = M0,2 =
M0,3 = {pt}. For higher n, every (C, (Pi)) ∈ M0,n is represented by a unique curve (P1, (0, 1,∞, P4, . . . , Pn)). So

we have natural identi�cation M0,n =
(
P1 \ {0, 1,∞}

)n−3 \ {diagonalxi = xj}

Example. (Genus 1) As we have seen, M1,0 = M1,1 = A1 (j-line)

Example. (Hyperelliptic Curves of �elds with characteristic not 2) C hyperelliptic genus g ≥ 2, C has admits a
2 : 1 map to P1, unique up to an automorphism of P1. In other words, C has a model y2 = f(x) where f is square
free, deg f ∈ {2g+ 1, 2g+ 2}. The set of 2g+ 2 roots of f (including ∞ if deg f = 2g+ 1) is an element of M sym

g,2g+2,
so this is the set that classi�es hyperelliptic curves of genus g, up to isomorphism.

9 Functorial approach

What does it mean for a variety X to classify something? [i.e., for X to be the moduli space for that classi�cation

problem]. How does the variety structure on X come in? So far, {our objects over K}/ ∼=1:1↔set of points X(k)
only speci�es X as a set. Over R,C can appeal to continuity, and insists that �close points� correspond to �close
objects�. In other words, if we have a continuous family of objects parameterised by some Y , we get a map Y → X
de�ned by (objects above Y ) 7→ X(k) which is continuous. This works in our setting, if we replace �continuous� by
�morphisms�
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Example. Lines through origin in A2, ax + by = 0
[1:1]↔ points [a : b] ∈ P1. A family of such lines over a variety Y

is a closed subvariety L ⊆ Y × A2 such that every �bre Ly is a line through 0 in A2.
Such a family gives a map Y → P1 de�ned by Ly : ax + by = 0 7→ [a : b] which is a morphism. Indeed,

intersecting L ∩ Y × {(1, t)}, Y × {(t, 1)} and projecting onto the t-line gives rational functions f, g on Y , fg = 1
and at least one of them regular at every y ∈ Y . So we get a morphism Y → P1, y 7→ [f(y) : 1] = [1 : g(y)].

Moreover, the families over di�erent varieties are related under morphisms f : X → Y . The morphism f takes
(π : L → Y ) 7→ (f∗π : L ×Y X → X) where L ×Y X = {(l, x) ∈ L × X|π(l) = f(x)} (puts the line above f(x)
over x). Under the correspondence: families over Y correspond to maps Y → P1. This pullback f∗π corresponds
to composition with f , f∗ : Hom(Y,P1)→ Hom(X,P1) de�ned by φ 7→ f ◦ φ.

De�nition 9.1. A contravariant functor F : Varieties/k → Sets is representable (by a variety Y ) if F ∼= Hom(−, Y ).
Same in any category; similarly a covariant functor is representable if F ∼= Hom(Y,−)

What we showed is that the functor �families of lines through 0 is A2� is representable by P1.

Example. Say we have a family of lines parametrised by C \ {P}. Does it extend uniquely to a family over C?
This is equivalent to the question whether a map C \ {P} → P1 extends to C → P1? Yes if P is non-singular
(because P1 is complete) (No in general)

Generally, geometry of the representing variety (connected, irreducible, complete, dimension,...)
A few more examples for a�ne varieties corresponding to covariant functors on Algk (�nitely generated k-algebras

with no nilpotents)
First, take F : Algk → Sets de�ned by A 7→ A (often called the forgetful functor). Is F representable? I.e., does

there exists a ring R such that HomAlgk
(R,A) → A is one to one and natural? Yes, take R = k[t], then elements

of Hom(k[t], A) determined by image of t ∈ A.
Similarly

• F(A) = A, R = k[t] (the above)

• F(A) = A×A, R = k[t1, t2]

• F(A) = A∗ units, R = k[s, t]/(st− 1)

• F(A) = {4th root of unity in A}, R = k[x]/(x4 − 1). (chark 6= 2)

So a representable functor F on Algk is one for which has a structure of solutions in A to a �xed system of poly
equations.

Similar, but not representable: reuse lines through 0 in A2, reformulated in terms of k-algebras. F(A) = {f, g ∈
A|fA+ gA = A}/A∗.

It has two subfunctors F1(A) = {f, g ∈ A|fA + fA = A, f units}/A∗ = {g ∈ A} represented by k[t]. F2(A) is
similar, g unit. So F corresponds to P1 = A1 ∪ A1.

Back to F1(A) = {units inA} = Hom(k[x, y]/(xy − 1), A) and F2(A) = {elements inA} = Hom(k[x], A). There
is a natural inclusion F1(A) = A∗ ↪→ A = F2(A) (natural means commutes with A → B), corresponds to a
homomorphism k[x]→ k[x, y]/(xy − 1) de�ned by x 7→ x.

Yoneda's Lemma. For any category C, A → Hom(A,−) is a full embedding of C into the category of covariant
functors C → Sets.

Full embedding means: every natural transformation of functors Hom(A,−) → Hom(B,−) is induced by a
unique morphism B → A. In particular, Hom(A,−) ∼= Hom(B,−) if and only if A ∼= B.

So every moduli problem has at most one representation variety.

Note. We don't need k to be algebraically closed. Can talk about moduli problems over any �eld K. E.g., the
functor �families of lines in A2 through (0, 0)� is representable on the category of algebraic sets over Q. In particular,
for every �eld K ⊇ Q,

{lines inA2 through (0, 0) defined overK} 1:1↔ Hom(SpecL,P1
Q) = P1(K)
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This suggest to de�ne the set of S-rational points on a variety X for any algebraic sets S to be X(S) := Hom(S, X).
In this language the Hom(−X) is simply �functor of points�, S → X(S).

Now Yoneda implies thatX is determined uniquely by its functor of points. If S = SpecA we writeX(A) = X(S)
�solutions in A to a system of polynomial equations�

Example. (Product of varieties). Let V, V ′ be varieties. Naively V ×V ′ is, as a set, the set of pair (pt inV,pt inV ′).
This only describe V × V ′ as a set, not as a variety.

Construction approach: pass to k, suppose V, V ′ a�ne so V ⊆ Am and V ′ ⊆ An. Then V × V ′ ⊆ Am+n

irreducible, then glue a�ne charts in general and deduce its properties (e.g., (V × V ′) × V ′′ = V × (V ′ × V ′′),
existence of projections V × V ′ → V ) from the construction.

Functorial approach: Use the �naive� pairs of points description, but for all S. Thus V × V ′ is de�ned as a
variety that represents the functor S 7→ V (S)× V ′(S). If such a V × V ′ exists, it is unique, and all the properties
follow from Yoneda. (e.g., the projections V (S) × V ′(S) → V (S) gives a natural transformation of functors that
correspond to a morphism V × V ′ → V .)

Important (and unsolved) problem: Characterise representable functors on varieties in an intrinsic way.

10 Hilbert Scheme and Standard Moduli Spaces

We started with lines, conics in P2, Grassmanians. These are special cases of the Hilbert Scheme, that clas-
si�es closed subsets of Pn with given discrete invariants speci�ed by Hilbert polynomial : Closed Z ⊆ Pn is
a zero set of homogeneous ideal I ⊆ k[x0, . . . , xn]. Its homogeneous coordinate ring splits into graded pieces,
S = k[x0, . . . , xn]/I = ⊕d≥0Sd (homogeneous of degree d). Consider the dimension counting function (the Hilbert
function) d 7→ dimk Sd

Example. (Point) Let Z = {[1 : 0 : · · · : 0]} ⊆ Pn then I = (x1, . . . , xn) and S = k[x0], dimk Sd = (1, 1, 1, . . . ).
(Linear subspaces) Let Z = Pm ⊆ Pn, then S = k[x0, . . . , xm] and dimk Sd =

(
d+m
m

)
= 1

m!d(d−1) . . . (d−m+1).
(3 points in P2) Let Z = {P0, P1, P2} be three distinct points. Let I = {all f ∈ k[x0, x1, x2]|f(Pi) = 0∀i}. The

coordinate ring S = k[x0, x1, x2]/I = ⊕Sd depends on whether the Pi are collinear or not. Fixing a choice of coordin-
ates on Pi, it is clear that k[x0, x1, x2]1 → k3 (linear functions ax0 +bx1 +cx2) de�ned by f 7→ (f(P0), f(P1), f(P2))
is onto if Pi are not collinear, and has 2-dimensional image if the Pi are collinear. So dim I1 = 0, dimS1 = 3 if Pi are
not collinear, but dim I1 = 1 and dimS1 = 2 is Pi are collinear. For d ≥ 2, it is easy to check that k[x0, x1, x2]d → k3

de�ned by f 7→ (f(P0), f(P1), f(P2)) is onto. So dimSd = 3. Hence dimk Sd =

{
(2, 3, 3, . . . ) Pi collinear

(3, 3, 3, . . . ) else
.

Hilbert-Serre Theorem implies that for every Z ⊆ Pn closed, I = {f |f(Z) = 0}, S = k[x0, . . . , xn]/I, the
sequence dimSd stabilises for d � 0 to coincide with values of a unique polynomial HZ(d), whose degree is the
dimension of Z.

De�nition 10.1. HZ(d) is the Hilbert polynomial of Z. Its leading coe�cients times (dimZ)! is the degree of Z in
Pn.

Example. (Points) Z = {pt}, then HZ(d) = 1 (degZ = 1)
(Linear subspaces) Pm ⊆ Pn, then HZ(d) = 1

m!d(d− 1) . . . (d−m+ 1) and degZ = 1.
(3 points in P2) Z = {P1, P2, P3}, HZ(d) = 3 (degZ = 3).
H ⊆ Pn hypersurface, given by f = 0, degH = deg f as before.

This polynomial captures the discrete invariants of Z.

Theorem 10.2. For every polynomial H(d), the functor S →families Y ⊆ S × Pn of closed subsets with Hilbert
polynomial H(d) over S is representable by a projective scheme HilbH .

Other closely related functors:

• Hil(Pn) =
∐
H HilbH all closed subsets of Pn (or rather, �at families of them)
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• Hilb(X) closed subsets of an arbitrary projective variety

• Hom(X,Y ) : S 7→ HomS(X × S, Y × S) (sits inside Hilb(X × Y ) open, X,Y projective)

• Isom(X,Y ) : S 7→ IsomS(X × S, Y × S) (sits inside Hom open)

• Aut(X) : T 7→ AutT (X × T ) (Take X = Y )

These are all representable (by schemes) if X,Y are projective.

• Pic(X) : S 7→ PicS(X×S)
Pic(S) is also representable if X is complete [and in fact, representable over any �eld K, if

X/K has a K-rational point]

Example. Let C/K be a complete nonsingular curve, C(K) 6= ∅. Then PicC has a structure of a projective
scheme, which is a group and Pic0(C) is an abelian variety of dimension equal to the genus of C. It is called the
Jacobian variety of C, also denote Pic0(C) or Jac(C).
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