A second course in Algebraic Number Theory

Vlad Dockchitser

Prerequisites:

- Galois Theory
- Representation Theory

Overview:

1. Number Fields (Review, $K, \mathcal{O}_{K}, \mathcal{O}^{*}, \mathrm{Cl}_{K}$, etc)
2. Decomposition of primes (how primes behave in field extensions and what does Galois's do)
3. L-series (Dirichlet's Theorem on primes in arithmetic progression, Artin L-functions, Cheboterev's density theorem)

1 Number Fields

1.1 Rings of integers

Definition 1.1. A number field is a finite extension of \mathbb{Q}
Definition 1.2. An algebraic integer α is an algebraic number that satisfies a monic polynomial with integer coefficients
Definition 1.3. Let K be a number field. It's ring of integer \mathcal{O}_{K} consists of the elements of K which are algebraic integers

Proposition 1.4.

1. \mathcal{O}_{K} is a (Noetherian) Ring
2. $\operatorname{rk}_{\mathbb{Z}} \mathcal{O}_{K}=[K: \mathbb{Q}]$, i.e., $\mathcal{O}_{K} \cong \mathbb{Z}^{[K: \mathbb{Q}]}$ as an abelian group
3. Each $\alpha \in K$ can be written as $\alpha=\beta / n$ with $\beta \in \mathcal{O}_{K}$ and $n \in \mathbb{Z}$

Example.

K	\mathcal{O}_{K}
\mathbb{Q}	\mathbb{Z}
$\mathbb{Q}(\sqrt{a})(a \in \mathbb{Z} \backslash\{0,1\}, a$ square free $)$	$\begin{cases}\mathbb{Z}[\sqrt{a}] & a \equiv 2,3 \bmod 4 \\ \mathbb{Z}\left[\frac{1+\sqrt{a}}{2}\right] & a \equiv 1 \bmod 4\end{cases}$
$\mathbb{Q}\left(\zeta_{n}\right)$ where ζ_{n} is a primitive nth root of unity	$\mathbb{Z}\left[\zeta_{n}\right]$

Proposition 1.5.

1. \mathcal{O}_{K} is the maximal subring of K which is finitely generated as an abelian group
2. $\mathcal{O}^{‘} \mathcal{K}$ is integrally closed - if $f \in \mathcal{O}_{K}[x]$ is monic and $f(\alpha)=0$ for some $\alpha \in K$, then $\alpha \in \mathcal{O}_{K}$.

Example (Of Factorisation). \mathbb{Z} is UFD. When factorisation can only get different orders of factors and different signs. The latter come from the units ± 1 in \mathbb{Z}.
\mathcal{O}_{K} may not even be a UFD, e.g., $K=\mathbb{Q}(\sqrt{-5}), \mathcal{O}_{K}=\mathbb{Z}[\sqrt{-5}], 6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$.
To fix this one works with ideals.

1.2 Units

Definition 1.6. A unit in a number field K is an element α of \mathcal{O}_{K} with $\alpha^{-1} \in \mathcal{O}_{K}$. The group of units is denoted \mathcal{O}_{K}^{*}.

Example.

K	\mathcal{O}_{K}	\mathcal{O}_{K}^{*}
\mathbb{Q}	\mathbb{Z}	$\{ \pm 1\}$
$\mathbb{Q}(i)$	$\mathbb{Z}[i]$	$\{ \pm 1, \pm i\}$
$\mathbb{Q}(\sqrt{2})$	$\mathbb{Z}[\sqrt{2}]$	$\left\{ \pm(1+\sqrt{2})^{n}: n \in \mathbb{Z}\right\}$

Dirichlet's Unit Theorem. Let K be a number field. Then \mathcal{O}_{K}^{*} is finitely generated. More precisely

$$
\mathcal{O}_{K}^{*}=\Delta \times \mathbb{Z}^{r_{1}+r_{2}-1}
$$

where Δ is the (finite) group of roots of unity in K, r_{1} is the number of distinct embeddings of K into \mathbb{R}, r_{2} the number of pairs of complex conjugates K into \mathbb{C} with image not in \mathbb{R}. (Hence $r_{1}+2 r_{2}=[K: \mathbb{Q}]$)
Corollary. The only number fields with finitely many units are \mathbb{Q} and $\mathbb{Q}(\sqrt{-D})$ for $D>0$ integer.

1.3 Ideals

Example. $K=\mathbb{Q}, \mathcal{O}_{K}=\mathbb{Z}, \underline{a}=(17)=$ all multiples of 17 . So $\alpha \in \underline{a}$ if and only if $\alpha=17 n$ for some $n \in \mathbb{Z}$. Multiplication: $(3) \cdot(17)=(51)$.

Unique factorisation of ideals. Let Kbe a number field. Every non-zero ideals of \mathcal{O}_{K} admits a factorisation into prime ideals. This factorisation is unique up to order.

Definition 1.7. Let $\underline{a}, \underline{b} \triangleleft \mathcal{O}_{K}$ be two ideals. Then \underline{a} divides \underline{b} (written $\underline{a} \mid \underline{b}$) if $\underline{a} \cdot c=\underline{b}$ for some ideal \underline{c}. (Equivalently if in the prime factorisation, $\underline{a}=p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}, \underline{b}=p_{1}^{m_{1}} \ldots p_{k}^{m_{k}}$ we have $n_{i} \leq m_{i}$ for all i)

Remark.

1. For $\alpha, \beta \in \mathcal{O}_{K},(\alpha)=(\beta)$ if and only if $\alpha=\beta u$ for some $u \in \mathcal{O}_{K}^{*}$.
2. For ideals $\underline{a}, \underline{b}$ then $\underline{a} \mid \underline{b}$ if and only $\underline{a} \supseteq \underline{b}$.
3. To multiply ideals, just multiply their generators, e.g. (2) $\cdot(3)=(6),(2,1+\sqrt{-5}) \cdot(2,1-\sqrt{-5})=(4,2+$ $2 \sqrt{-5}, 2-2 \sqrt{-5}, 6)=(2)$
4. To add ideals, combine their generators, e.g., $(2)+(3)=(2,3)=(1)=\mathcal{O}_{K}$.

Lemma 1.8. $\underline{a}, \underline{b} \triangleleft \mathcal{O}_{K}, \underline{a}=\prod_{i} p_{i}^{n_{i}}, \underline{b}=\prod_{i} p_{i}^{m_{i}}$ with $n_{i}, m_{i} \geq 0$ and p_{i} prime ideals. Then

1. $\underline{a} \cap \underline{b}=\prod_{i} p_{i}^{\max \left(n_{i}, m_{i}\right)}$ (lowest common multiple)
2. $\underline{a}+\underline{b}=\prod_{i} p_{i}^{\min \left(n_{i}, m_{i}\right)}$ (greatest common divisor)

Lemma 1.9. Let $\alpha \in \mathcal{O}_{K} \backslash\{0\}$. Then there exists $\beta \in \mathcal{O}_{K} \backslash\{0\}$ such that $\alpha \beta \in \mathbb{Z} \backslash\{0\}$.
Proof. Let $X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0}\left(\right.$ with $\left.a_{i} \in \mathbb{Z}\right)$ be the minimal polynomial of α. Then $\alpha^{n}+a_{n-1} \alpha^{n-1}+$ $\cdots+\alpha_{1} \alpha=-a_{0} \in \mathbb{Z}$, so take $\beta=\alpha^{n-1}+a_{n-1} \alpha^{n-2}+\cdots+a_{1}$.

Corollary 1.10. If $\underline{a} \triangleleft \mathcal{O}_{K}$ is a non-zero ideal, then $\left[\mathcal{O}_{K}: \underline{a}\right]$ is finite.
Proof. Pick $\alpha \in \underline{a} \backslash\{0\}$ and $\beta \in \mathcal{O}_{K}$ with $N=\alpha \beta \in \mathbb{Z} \backslash\{0\}$. Then $N \in \underline{a}$ and $\left[\mathcal{O}_{K}: \underline{a}\right] \leq\left[\mathcal{O}_{K}:(\alpha)\right] \leq\left[\mathcal{O}_{K}:\right.$ $(N)]=\left[\mathcal{O}_{K}: N \mathcal{O}_{K}\right]=|N|^{[K: \mathbb{Q}]}$ (By Proposition 1.4)
Definition 1.11. The norm of a non-zero ideal $\underline{a} \triangleleft \mathcal{O}_{K}$ is $N(\underline{a})=\left[\mathcal{O}_{K}: \underline{a}\right]$.

Lemma 1.12. Let $\alpha \in \mathcal{O}_{K} \backslash\{0\}$, then $\left|N_{K / \mathbb{Q}}(\alpha)\right|=N((\alpha))$
Proof. Let v_{1}, \ldots, v_{n} be a \mathbb{Z}-basis for \mathcal{O}_{K} and $T_{\alpha}: K \rightarrow K$ for the \mathbb{Q}-linear map $T_{\alpha}(v)=\alpha v$. Then

$$
\begin{aligned}
\left|N_{K / \mathbb{Q}}(\alpha)\right| & =\left|\operatorname{det} T_{\alpha}\right| \\
& =\left[\left\langle v_{1}, \ldots, v_{n}\right\rangle:\left\langle\alpha v_{1}, \ldots, \alpha v_{n}\right\rangle\right] \\
& =\left[\mathcal{O}_{K}:(\alpha)\right] \\
& =N((\alpha))
\end{aligned}
$$

1.4 Ideal Class Group

Let K be a number field. We can define an equivalence relation on non-zero ideals of \mathcal{O}_{K} by $\underline{a} \sim \underline{b}$ if and only if there exists $\lambda \in K^{*}$ such that $\underline{a}=\lambda \underline{b}$. The ideal class group of K denoted Cl_{K}, is the set of classes \{non-zero ideals $\} / \sim$. It is a group, the group structure coming from multiplication of ideals. The identity is \{principal ideals\} and \mathcal{O}_{K}. Note that PID if and only if $\mathrm{Cl}_{K}=1$ if and only if UFD

Theorem 1.13. Cl_{K} is finite

1.5 Primes and Modular Arithmetic

Definition 1.14. A prime \underline{p} in a number field K is a non-zero prime ideal in \mathcal{O}_{K}
Its residue field is $\mathcal{O}_{K} / \underline{p}=\mathbb{F}_{\underline{p}}$.
Its residue characteristic, $p, \overline{\text { is }}$ the characteristic of $\mathcal{O}_{K} / \underline{p}$.
Its (absolute) residue degree is $f_{\underline{p}}=\left[\mathcal{O}_{K} / \underline{p}: \mathbb{F}_{p}\right]$.
Lemma 1.15. The residue field of a prime is indeed a finite field.
Proof. Let \underline{p} be a prime, then $\mathcal{O}_{K} / \underline{p}$ is an integral domain. Furthermore $\left|\mathcal{O}_{K} / \underline{p}\right|=\left[\mathcal{O}_{K}: \underline{p}\right]=N(\underline{p})$ which is finite by Corollary 1.10. Hence $\mathcal{O}_{K} / \underline{p}$ is a field.
Note. The size of the residue field is $N(\underline{p})$
Example. Let $K=\mathbb{Q}$ then $O_{K}=\mathbb{Z}$. Let $\underline{p}=(17)$, then the residue field $\mathcal{O}_{K} / \underline{p}=\mathbb{Z} /(17)=\mathbb{F}_{17}$.
Let $K=\mathbb{Q}(i)$ then $\mathcal{O}_{K}=\mathbb{Z}[i]$. Let $\left.\underline{p}=\overline{(2}+i\right)$, then $\mathcal{O}_{K} / \underline{p}=\mathbb{F}_{5}$ and its representatives can be $\{0,1,1+i, 2 i, 2 i+$ $1\}$. Let $\underline{p}=(3)$, then $\mathcal{O}_{K} / \underline{p}=\mathbb{F}_{9}\left(=" \overline{\mathbb{F}}_{3}[i] "\right)$

Let $\bar{K}=\mathbb{Q}(\sqrt{d})$ where $d \equiv 2,3 \bmod 4$, so $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{d}]$. Let \underline{p} be a prime with residue characteristic p, then $\mathcal{O}_{K} / \underline{p}$ is generated by \mathbb{F}_{p} and the image of \sqrt{d}. Thus $\mathcal{O}_{K} / \underline{p}=\mathbb{F}_{p}[\sqrt{d}]= \begin{cases}\mathbb{F}_{p} & \text { if } d \text { a square } \bmod p \\ \mathbb{F}_{p^{2}} & \text { else }\end{cases}$
Notation. If $\underline{a} \triangleleft \mathcal{O}_{K}$ is a non-zero ideal, we say that $x \equiv y \bmod \underline{a}$ if $x-y \in \underline{a}$.
Theorem 1.16 (Chinese Remainder Theorem). Let K be a number field and $\underline{p}_{1}, \ldots, \underline{p}_{k}$ be distinct primes. Then

$$
\mathcal{O}_{K} /\left(\underline{p}_{1}^{n_{1}} \cdots \underline{p}_{k}^{n_{k}}\right) \rightarrow \mathcal{O}_{K} / \underline{p}_{1}^{n_{1}} \times \cdots \times \mathcal{O}_{K} / \underline{p}_{k}^{n_{k}}
$$

via $x \bmod \underline{p}_{1}^{n_{1}} \ldots \underline{p}_{k}^{n_{k}} \mapsto\left(x \bmod \underline{p}_{1}^{n_{1}}, \ldots, x \bmod \underline{p}_{k}^{n_{k}}\right)$ is a ring isomorphism.
Proof. Let $\psi: \mathcal{O}_{K} \rightarrow \mathcal{O}_{K} / \underline{p}_{1}^{n_{1}} \times \cdots \times \mathcal{O}_{K} / \underline{p}_{k}^{n_{k}}$ by $x \mapsto\left(x \bmod \underline{p}_{1}^{n_{1}}, \ldots, x \bmod \underline{p}_{k}^{n_{k}}\right)$. This is a ring homomorphism with $\operatorname{ker} \psi=\cap_{i=1}^{k} \underline{p}_{i}^{n_{i}}=\prod_{i=1}^{k} \underline{p}_{i}^{n_{i}}$ (by Lemma 1.8).

So it remains to prove that ψ is surjective, so that we can apply the first isomorphism theorem. By Lemma 1.8, $\underline{p}_{j}^{n_{j}}+\prod_{i \neq j} \underline{p}_{i}^{n_{i}}=\mathcal{O}_{K}$, so there $\alpha \in \underline{p}_{j}^{n_{j}}$ and $\beta \in \prod_{i \neq j} \underline{p}_{i}^{n_{i}}$ such that $\alpha+\beta=1$, now $\beta \equiv 0 \bmod \underline{p}_{i}^{n_{i}}$ for all $i \neq j$ and $\beta \equiv 1 \bmod \underline{p}_{j}^{n_{j}}$. So $\operatorname{im} \psi \ni \psi(\beta)=(0,0, \ldots, 0,1,0, \ldots, 0)$. This is true for all j, hence ψ is surjective.

Remark. CRT implies that we can solve any system of congruences, i.e., $x \equiv a_{i} \bmod \underline{p}_{i}^{n_{i}}$ for $1 \leq i \leq k$. (This is called the Weak Approximation Theorem)

Lemma 1.17. Let $\underline{p} \triangleleft \mathcal{O}_{K}$ be prime

1. $\left|\mathcal{O}_{K} / \underline{p}^{n}\right|=N(\underline{p})^{n}$
2. $\underline{p}^{n} / \underline{p}^{n+1}=\mathcal{O}_{K} / \underline{p}$ as \mathcal{O}_{K}-module

Proof. 2. implies 1. as

$$
\begin{aligned}
\left|\mathcal{O}_{K} / \underline{p}^{n}\right| & =\left|\mathcal{O}_{K} / \underline{p}\right| \cdot\left|\underline{p} / \underline{p}^{2}\right| \cdots\left|\underline{p}^{n} / \underline{p}^{n+1}\right| \\
& =N(\underline{p})^{n}
\end{aligned}
$$

2.) By unique factorisation $\underline{p}^{n} \neq \underline{p}^{n+1}$, so pick $\pi \in \underline{p}^{n} \backslash \underline{p}^{n+1}$. Thus $\underline{p}^{n} \mid(\pi)$ and $\underline{p}^{n+1} \nmid(\pi)$. So $(\pi)=\underline{p}^{n} \cdot \underline{a}$ with $\underline{p} \nmid \underline{a}$. So define $\phi: \mathcal{O}_{K} \rightarrow \mathcal{O}_{K} / \bar{p}^{n+1}$ by $\phi(x)=\pi x \bmod \underline{p}^{n+1}$, an \mathcal{O}_{K}-map. Note that $\operatorname{ker} \phi=\left\{x: \underline{p}^{n+1} \mid(\pi x)\right\}=\underline{p}$ and $\operatorname{im} \phi=(\pi)+\underline{p}^{n+1} \bmod \underline{p}^{n+1}=\underline{p}^{n} \bmod \underline{p}^{n+1}\left(\right.$ by Lemma 1.8). Hence $\mathcal{O}_{K} / \underline{p} \xlongequal{\cong} \underline{p}^{n} / \underline{p}^{n+1}$.
Corollary 1.18. $N(\underline{a b})=N(\underline{a}) N(\underline{b})$.
Proof. Use Theorem 1.16 and Lemma 1.17.
Lemma 1.19. $N(\underline{a}) \in \underline{a}$
Proof. $N(\underline{a})$ is zero in any abelian group of order $N(\underline{a})$, in particular in $\mathcal{O}_{K} / \underline{a}$.

1.6 Enlarging the field

Example. Consider $\mathbb{Q}(i) / \mathbb{Q}$. Take primes in \mathbb{Q} and factorise them in $\mathbb{Q}(i)$.

- $(2)=(1+i)^{2}$
- (3) remains prime
- $(5)=(2+i)(2-i)$

We only see those three properties/behaviour in $\mathbb{Q}(i)$, so we say

- "2 ramifies"
- "3 is inert"
- "5 splits"

Note that \underline{p} (prime of $\mathbb{Q}(i))$ contains $p=\operatorname{char} \mathbb{Z}[i] / \underline{p}$, so $\underline{p} \mid(p)$. Thus factorising $2,3,5,7, \ldots$ will yield all the primes of $\mathbb{Z}[i]$.

Definition 1.20. Let L / K be an extension of number fields and $\underline{a} \triangleleft \mathcal{O}_{K}$ an ideal. Then the conorm of \underline{a} is the ideal $\underline{a} \mathcal{O}_{L}$ of \mathcal{O}_{L}. I.e., the ideal generated by the elements of \underline{a} in \mathcal{O}_{L}. Equivalently, if $\underline{a}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ as an \mathcal{O}_{K}-ideal, then $\underline{a} \mathcal{O}_{L}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ as an \mathcal{O}_{L}-ideal.

Note. $\left(\underline{a} \mathcal{O}_{L}\right)\left(\underline{b} \mathcal{O}_{L}\right)=(\underline{a b}) \mathcal{O}_{L}$
$\left(\underline{a} \mathcal{O}_{M}\right)=\left(\underline{a} \mathcal{O}_{L}\right) \mathcal{O}_{M}$ when $K \leq L \leq M$

Proposition 1.21. Let L / K be an extension of number fields and $\underline{a} \in \mathcal{O}_{K}$ a non-zero ideal. Then $N\left(\underline{a} \mathcal{O}_{L}\right)=$ $N(\underline{a})^{[L: K]}$.

Proof. If $\underline{a}=(\alpha)$ is principal, then by Lemma 1.12, we get

$$
\begin{aligned}
N\left(\underline{a} \mathcal{O}_{L}\right) & =\left|N_{L / \mathbb{Q}}(\alpha)\right| \\
& =\left|N_{K / \mathbb{Q}}(\alpha)\right|^{[L: K]} \\
& =|N(\underline{a})|^{[L: K]}
\end{aligned}
$$

In general, as Cl_{K} is finite, $\underline{a}^{k}=(\alpha)$ for some $k \geq 1$. Hence

$$
\begin{aligned}
N\left(\underline{a} \mathcal{O}_{L}\right)^{k} & =N\left(\underline{a}^{k} \mathcal{O}_{L}\right) \\
& =N\left(\underline{a}^{k}\right)^{[L: K]} \\
& =N(\underline{a})^{k[L: K]}
\end{aligned}
$$

Hence $N\left(\underline{a} \mathcal{O}_{L}\right)=N(\underline{a})^{[L: K]}$.
Definition 1.22. A prime \underline{q} of L lies above a prime of K if $\underline{q} \underline{p} \mathcal{O}_{L}$. (Equivalently if $\underline{q} \supseteq \underline{p}$ as sets)
Lemma 1.23. Let L / K be a number field. Every prime of L lies above a unique prime of K. In fact \underline{q} lies above $\underline{q} \cap \mathcal{O}_{K}=\underline{p}$.

Proof. $\underline{q} \cap \mathcal{O}_{K}$ is a prime ideal of \mathcal{O}_{K} and is non-zero as it contains $N(\underline{q})$. So \underline{q} lies above $\underline{p}=\underline{q} \cap \mathcal{O}_{K}$.
If \underline{q} also lies above \underline{p}^{\prime} then $\underline{q} \supseteq \underline{p}+\underline{p}^{\prime}=\mathcal{O}_{K} \ni\{1\}$, which is a contradiction.
Lemma 1.24. Suppose $\underline{q} \triangleleft \mathcal{O}_{L}$ lies above $\underline{p} \triangleleft \mathcal{O}_{K}$ (primes). Then $\mathcal{O}_{L} / \underline{q}$ is a field extension of $\mathcal{O}_{K} / \underline{p}$ with ϕ : $\mathcal{O}_{K} / \underline{p} \hookrightarrow \mathcal{O}_{L} / \underline{q}$ given by $\bar{\phi}(x \bmod \underline{p})=x \bmod \underline{q}$.

Proof. ϕ is well-define as $\underline{q} \supseteq \underline{p}$ and is a ring homomorphism, so has no kernel as $\mathcal{O}_{K} / \underline{p}$ is a field. Hence ϕ is an embedding $\mathcal{O}_{K} / \underline{p} \hookrightarrow \mathcal{O}_{L} / \underline{q}$

Definition 1.25. If \underline{q} lies above \underline{p} then its residue degree is $f_{\underline{q} / \underline{p}}=\left[\mathcal{O}_{L} / \underline{q}: \mathcal{O}_{K} / \underline{p}\right]$.
Its ramification degree is the exponent, $e_{\underline{q} / \underline{p}}$, in the prime factorisations $\underline{p} \mathcal{O}_{L}=\prod_{i=1}^{n} \underline{q}_{i}^{e^{q_{i}} / \underline{p}}$.
Theorem 1.26. Let L / K be an extension of number fields, p a prime of K.

1. If $\underline{p} \mathcal{O}_{L}$ decomposes as $\underline{p} \mathcal{O}_{L}=\prod_{i=1}^{m} \underline{q}_{i}^{e_{i}}$ (with \underline{q}_{i} distinct and $e_{i}=e_{\underline{q}_{i}} / \underline{p}$). Then $\sum_{i=1}^{m} e_{\underline{q}_{i}} / \underline{p}_{\underline{q}_{i}} / \underline{p}=[L: K]$.
2. If M / L is a further extension, \underline{r} lies above \underline{q}, which lies above \underline{p}, then $e_{\underline{r} / \underline{p}}=e_{\underline{r} / \underline{q}} e_{\underline{q} / \underline{p}}$ and $f_{\underline{r} / \underline{p}}=f_{\underline{r} / \underline{q}} f_{\underline{q} / \underline{p}}$. Proof.
3.

$$
\begin{aligned}
N(\underline{p})^{[L: K]} & =N\left(\underline{p} \mathcal{O}_{L}\right) \\
& =N\left(\prod_{i} \underline{q}_{i}^{e_{i}}\right) \\
& =\prod_{i} N\left(\underline{q}_{i}\right)^{e_{i}} \\
& =\prod_{i} N(\underline{p})^{f_{i} e_{i}} \\
& =N(\underline{p})^{\sum e_{i} f_{i}}
\end{aligned}
$$

2. Multiplicativity for e is trivial.

For f just apply the Tower law

Definition 1.27. Let L / K be extensions of number fields, \underline{p} a prime of K with $\underline{p} \mathcal{O}_{L}=\prod_{i=1}^{m} \underline{q}_{i}^{e_{i}}$ (\underline{q}_{i} distinct). Then:

- \underline{p} splits completely in L if $m=[L: K]$, i.e., $e_{i}=f_{i}=1$
- \underline{p} splits in L if $m>1$
- \underline{p} is totally ramified if $m=f=1, e=[L: K]$

We'll see that when L / K is Galois, then $e_{j}=e_{i}$ and $f_{i}=f_{j}$ for all i, j. Then we say \underline{p} is ramified if $e_{1}>1$ and unramified if $e_{1}=1$.

Pseudo-example

Let $F=\mathbb{Q}(i) / \mathbb{Q}, \mathcal{O}_{F}=\mathbb{Z}[i]$, and $f(X)=X^{2}+1$
Observe:
$(2)=(i+1)^{2} X^{2}+1=(X+1)^{2} \bmod 2$
$(5)=(i+2)(i-2) X^{2}+1=(X+2)(X-2) \bmod 5$
(3) prime $X^{2}+1 \bmod 3$ is irreducible

Theorem 1.28 (Kummer - Dedekind). Let L / K be an extension of number fields. Suppose $\mathcal{O}_{K}[\alpha] \leq \mathcal{O}_{L}$ has finite index N, for some $\alpha \in \mathcal{O}_{L}$ with minimal polynomial $f(X) \in \mathcal{O}_{K}[X]$. Let \underline{p} be a prime of K not dividing N (equivalently $\operatorname{char} \mathcal{O}_{K} / \underline{p} \nmid N$).

If

$$
f(X) \quad \bmod \underline{p}=\prod_{i=1}^{m} \bar{g}_{i}(X)^{e_{i}}
$$

where \underline{g}_{i} are distinct irreducible, then

$$
\underline{p} \mathcal{O}_{L}=\prod_{i=1}^{m} \underline{q}_{i}^{e_{i}}
$$

with $\underline{q}_{i}=\underline{p} \mathcal{O}_{L}+g_{i}(\alpha) \mathcal{O}_{L}$, where $\underline{g}_{i}(\alpha) \in \mathcal{O}_{K}[\alpha]$ satisfy $\bar{g}_{i}(x)=g_{i}(x) \bmod \underline{p}$. The \underline{q}_{i} are distinct primes of L with $e_{\underline{q}_{i} / \underline{p}} \stackrel{-i}{=} e_{i}$ and $f_{\underline{q}_{i} / \underline{p}}=\operatorname{deg} \bar{g}_{i}(X)$.

Example. Let $K=\mathbb{Q}, L=\mathbb{Q}\left(\zeta_{5}\right), \mathcal{O}_{L}=\mathbb{Z}\left[\zeta_{5}\right]$. Take $\alpha=\zeta_{5}$, so $N=1$ and $f(X)=X^{4}+X^{3}+X^{2}+X+1$.
Now $f(X) \bmod 2$ is irreducible, hence (2) is prime in \mathcal{O}_{L}.
$f(X)=(X-1)^{4} \bmod 5$, hence $(5)=\left(5, \zeta_{5}-1\right)^{5}$

$$
f(X)=\left(X^{2}+5 X+1\right)\left(X^{2}-4 X+1\right) \bmod 19, \text { hence }(19)=\left(19, \zeta_{5}^{2}+5 \zeta_{5}+1\right)\left(19, \zeta_{5}^{2}-4 \zeta_{5}+1\right)
$$

Proof of Theorem 1.28.
Claim. 1: \underline{q}_{i} are primes with $f_{\underline{q}_{i} / \underline{p}}=\operatorname{deg} \bar{q}_{i}$
Set $A=\mathcal{O}_{K}[\alpha], \mathbb{F}=\mathcal{O}_{K} / \underline{p}, p=\operatorname{char} \mathbb{F}$. Use the map $x \mapsto \alpha$ to define a map

$$
\begin{aligned}
A / \underline{p} A+g_{i}(\alpha) A & \leftarrow \mathcal{O}_{K}[x] /\left(f(x), \underline{p}, \underline{g}_{i}(x)\right) \\
& \cong \mathbb{F}[x] /\left(\bar{f}(x), \bar{g}_{i}(x)\right) \\
& \cong \mathbb{F}[x] /\left(\bar{g}_{i}(x)\right)
\end{aligned}
$$

a field of degree $f_{i}=\operatorname{deg} \bar{g}_{i}$ over \mathbb{F}, as \bar{g}_{i} is irreducible

Now pick $M \in \mathbb{Z}$ such that $N M \equiv 1 \bmod p$ and consider $\phi: A / \underline{p} A+g_{i}(\alpha) A \rightarrow \mathcal{O}_{L} / \underline{q}_{i}$ defined by $\phi(x)$ $\bmod \left(\underline{p} A+g_{i}(\alpha) A\right) \rightarrow x \bmod \underline{q}_{i}$, it is well defined as $\underline{q}_{i} \supseteq \underline{p} A+g_{i}(\alpha) A$. It is surjective since: if $x \in \mathcal{O}_{L}$ then $N x \in A$ and $M(N x)=M N x \bmod \underline{q}_{i}=x \bmod \underline{q}_{i}\left(\right.$ since $\left.M N \equiv 1 \bmod q_{i}\right)$. Now $\mathcal{O}_{L} / \underline{q}_{i}$ is non-zero: otherwise $1 \in \underline{p} \mathcal{O}_{L}+g_{i}(\alpha) \mathcal{O}_{L}$, so both \underline{p} and $\overline{M N} \in \underline{p} A+g_{i}(\alpha) A$, hence $1 \in \underline{p} A+g_{i}(\alpha) A$ a contradiction as this is a proper ideal of A. Therefore $\mathcal{O}_{L} / \underline{q}_{i}$ is a field (hence \underline{q}_{i} is prime) with degree f_{i} over \mathbb{F}.
Claim. 2: $\underline{q}_{i} \neq \underline{q}_{j}$ for $i \neq j$
As $\operatorname{gcd}\left(\bar{g}_{i}(x), \bar{g}_{j}(x)\right)=1$ can find $\lambda(x), \mu(x) \in \mathcal{O}_{K}[x]$ such that $\lambda(x) g_{i}(x)+\mu(x) g_{j}(x)=1 \bmod \underline{p}$. Then $\underline{q}_{i}+\underline{q}_{j}$ contains both \underline{p} and $\lambda(\alpha) g_{i}(\alpha)+\mu(\alpha) g_{j}(\alpha)=1 \bmod \underline{p}$, hence $\underline{q}_{i}+\underline{q}_{j}=\mathcal{O}_{L}$
Claim. $\underline{p} \mathcal{O}_{L}=\prod_{i} \underline{q}_{i}^{e_{i}}$

$$
\begin{aligned}
\prod_{i} \underline{q}_{i}^{e_{i}} & =\prod_{i}\left(\underline{p} \mathcal{O}_{L}+g_{i}(\alpha) \mathcal{O}_{L}\right) \\
& \subseteq \underline{p} \mathcal{O}_{L}+\prod g_{i}(\alpha)^{e_{i}} \mathcal{O}_{L} \\
& =\underline{p} \mathcal{O}_{L}
\end{aligned}
$$

as $\prod g_{i}(\alpha)^{e_{i}} \equiv f(\alpha) \equiv 0 \bmod \underline{p}$. But

$$
\begin{aligned}
N\left(\prod_{i=1}^{m} \underline{q}_{i}^{e_{i}}\right) & =\prod_{i}|\mathbb{F}|^{e_{i} f_{i}} \\
& =|\mathbb{F}|^{\operatorname{deg} f(x)} \\
& =|\mathbb{F}|^{[L: K]} \\
& =N\left(\underline{p} \mathcal{O}_{L}\right)
\end{aligned}
$$

Example. Let $K=\mathbb{Q}, L=\mathbb{Q}\left(\zeta_{p^{n}}\right)$, p prime, $\mathcal{O}_{L}=\mathbb{Z}\left[\zeta_{p^{n}}\right]$ and $\alpha=\zeta_{p^{n}}$. Then $N=1, f(X)=\frac{X^{p^{n}}-1}{X^{p^{n-1}-1}}$. Now $f(X)=(X-1)^{p^{n}-p^{n-1}} \bmod p$, hence (p) is totally ramified in $\mathbb{Q}\left(\zeta_{p^{n}}\right) / \mathbb{Q}$.

If $q \neq p$ is also prime, then, working $\bmod q, \operatorname{gcd}\left(X^{p^{n}}-1, \frac{d}{d x}\left(X^{p^{n}}-1\right)\right)=1$, hence $X^{p^{n}}-1$ has no repeated roots in $\overline{\mathbb{F}}_{q}$. In particular, $f(X) \bmod q$ has no repeated factors, so all e_{i} are 1, i.e., q is unramified in $\mathbb{Q}\left(\zeta_{p^{n}}\right) / \mathbb{Q}$.

Remark. Can't always find α such that $\mathcal{O}_{L}=\mathcal{O}_{K}[\alpha]$. But by Primitive Element Theorem, there exists α such that $\left[\mathcal{O}_{L}: \mathcal{O}_{K}[\alpha]\right]<\infty$, so can decompose almost all primes.

Proposition 1.29. Let L / \mathbb{Q} be a finite extension, $\alpha \in \mathcal{O}_{L}$ with $L=\mathbb{Q}(\alpha)$ and minimal polynomial $f(X) \in \mathbb{Z}[X]$. If $f(X) \bmod p$ has distinct roots in $\overline{\mathbb{F}}_{p}$ (equivalently $p \nmid \operatorname{disc} f$) then $\left[\mathcal{O}_{L}: \mathbb{Z}[\alpha]\right.$) is coprime to p (so Kummer Dedekind applies)

Proof. Let $\beta_{1}, \ldots, \beta_{n}$ be a \mathbb{Z}-basis for \mathcal{O}_{L} so

$$
\left(\begin{array}{c}
1 \\
\alpha_{1} \\
\vdots \\
\alpha^{n-1}
\end{array}\right)=M\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{n}
\end{array}\right)
$$

for some $M \in \operatorname{Mat}_{n \times n}(\mathbb{Z})$ with $|\operatorname{det} M|=\left[\mathcal{O}_{L}: \mathbb{Z}[\alpha]\right]$.

Let F be a splitting field for $f(X)$. Write $\sigma_{1}, \ldots \sigma_{n}$ for the embeddings of $L \hookrightarrow F$ and $\alpha_{i}=\sigma(\alpha)$ for the roots of $f(x)$. Then

$$
\begin{aligned}
p \nmid \operatorname{disc}(f) & =\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2} \\
& =\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} \\
\alpha_{1}^{2} & \alpha_{2}^{n-1} & & \alpha_{n}^{2} \\
\vdots & \vdots & & \vdots \\
\alpha_{1}^{n-1} & \alpha_{2}^{n-1} & \cdots & \alpha_{n}^{n-2}
\end{array}\right|^{2} \\
& =\operatorname{det}\left(M\left(\begin{array}{ccc}
\sigma_{1}\left(\beta_{1}\right) & \cdots & \sigma_{n}\left(\beta_{1}\right) \\
\vdots & & \vdots \\
\sigma_{1}\left(\beta_{n}\right) & \cdots & \sigma_{n}\left(\beta_{n}\right)
\end{array}\right)\right)^{2} \\
& =\left[\mathcal{O}_{L}: \mathbb{Z}[\alpha]\right] \cdot B
\end{aligned}
$$

for some $B \in \mathcal{O}_{F} \backslash\{0\}$, hence $p \nmid\left[\mathcal{O}_{L}: \mathbb{Z}[\alpha]\right]$.
Proposition 1.30. Let L / K be a finite extension of number fields, pa prime of K. Suppose $L=K(\alpha)$ for some $\alpha \in \mathcal{O}_{L}$ satisfying an Eisenstein minimal polynomial with respect to p, i.e.,

$$
f(X)=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0}
$$

with $\underline{p} \mid\left(a_{i}\right)$ and $\underline{p}^{2} \nmid\left(a_{0}\right)$. Then \underline{p} is totally ramified in L / K
Proof. Omitted

2 Decomposition of primes

2.1 Action of the Galois group

Let F / K be a Galois extension of number fields:

- $\operatorname{Gal}(F / K)=\operatorname{Aut}(F / K)$.
- F / K is normal (is $f(X) \in K[X]$ is irreducible and acquire a root in F then f splits completely)
- $|\operatorname{Gal}(F / K)|=[F: K]$
- $H<\operatorname{Gal}(F / K) \rightarrow F^{H}, \operatorname{Gal}(F / L) \leftarrow K \leq L \leq F$ a 1-1 correspondence

Lemma 2.1. Let $g \in \operatorname{Gal}(F / K)$:

1. $\alpha \in \mathcal{O}_{L}$ then $g \alpha \in \mathcal{O}_{F}$
2. $\underline{a} \in \mathcal{O}_{F}$ is an ideal, then $g(\underline{a}) \triangleleft \mathcal{O}_{F}$ ideal
3. Let $\underline{a}, \underline{b} \triangleleft \mathcal{O}_{F}$ be ideals, then $g(\underline{a} \cdot \underline{b})=g(\underline{a}) g(\underline{b}), g(\underline{a}+\underline{b})=g(\underline{a})+g(\underline{b})$.

If \underline{q} is a prime of F above \underline{p}, a prime of K, then
4. $g(\underline{q})$ is a prime of F above \underline{p} (so $\operatorname{Gal}(F / K)$ permutes the primes above \underline{p})
5. $e_{\underline{q} / \underline{p}}=e_{g(\underline{q}) / \underline{p}}$ and $f_{\underline{q} / \underline{p}}=f_{g(\underline{q}) / \underline{p}}$

Proof. Clear
Example. Let $K=\mathbb{Q}, F=\mathbb{Q}(i)$, then $\mathcal{O}_{F}=\mathbb{Z}[i]$ and $\operatorname{Gal}(F / K)=C_{2}=\{$ id, complex conjugation $\}$.
Consider $(1+i)$, it is fixed by $\operatorname{Gal}(F / K)$. (3) is also fixed by $\operatorname{Gal}(F / K)$. But $(2+i)$ and $(2-i)$ are swapped by $\operatorname{Gal}(F / K)$.

Theorem 2.2. Let F / K be a Galois extension of number fields, let p be a prime of K. Then $\operatorname{Gal}(F / K)$ act transitively on the primes of F above p.

Proof. Let $\underline{q}_{1}, \ldots, \underline{q}_{n}$ be the primes above \underline{p}. We need to show that there exists $g \in \operatorname{Gal}(F / K)$ such that $g\left(\underline{q}_{1}\right)=\underline{q}_{2}$.
Pick $x \in \mathcal{O}_{F}$ such that $x \equiv 0 \bmod q_{1}$ but $x \not \equiv 0 \bmod q_{i}$ for all $i \neq 1$. This is possible by the Chinese Remainder Theorem (Theorem 1.16). Then $\prod_{h \in \operatorname{Gal}(F / K)} h(x) \in \underline{q}_{1} \cap \mathcal{O}_{K}=\underline{p} \subseteq \underline{q}_{2}$. So for some $g, g(x) \equiv 0$ mod \underline{q}_{2}, hence $x \equiv 0 \bmod g^{-1}\left(\underline{q}_{2}\right)$. Therefore $g^{-1}\left(\underline{q}_{2}\right)=\underline{q}_{1}$ by choice of \underline{x}. I.e., $\underline{q}_{2}=g\left(\underline{q}_{1}\right)$.
Corollary 2.3. Let F / K be a Galois extension. If $\underline{q}_{1}, \underline{q}_{2}$ lie above \underline{p}, then $e_{\underline{q}_{1} / \underline{p}}=e_{\underline{q}_{2} / \underline{p}}$ and $f_{\underline{q}_{1} / \underline{p}}=f_{\underline{q}_{2} / \underline{p}}$.
Hence we can write $e_{\underline{p}}$ and $f_{\underline{p}}$ in the case of Galois extensions
Example. Suppose $\operatorname{Gal}(F / K)=S_{4}$ and \underline{p} splits into $\underline{q}_{1}, \underline{q}_{2}, \underline{q}_{3}, \underline{q}_{4}$ in F, with the usual action of S_{4} on 4 elements

Say $H=\{\operatorname{id},(12)(34)\} \cong C_{2}, L=F^{H} . H$-orbits of $\left\{\underline{q}_{1}, \ldots, \underline{q}_{4}\right\}$ are $\left\{\underline{q}_{1}, \underline{q}_{2}\right\}$ and $\left\{\underline{q}_{3}, \underline{q}_{4}\right\}$, so there exists 2 primes $\underline{r}_{1}, \underline{r}_{2}$ in L above \underline{p}. $\left(\underline{r}_{1}\right.$ splits into \underline{q}_{1} and \underline{q}_{2} in F and \underline{r}_{2} splits into \underline{q}_{3} and $\left.\underline{q}_{4}\right)$

2.2 Decomposition Group

Notation. If \underline{p} is prime of K, write $\mathbb{F}_{\underline{p}}=\mathcal{O}_{K} / \underline{p}$.
Definition 2.4. Let F / K be a Galois extension of number fields, \underline{q} a prime of F above \underline{p}, a prime of K. The decomposition group $D_{\underline{q}}=D_{\underline{q} / \underline{p}}$ of \underline{q} (over \underline{p}) is $D_{\underline{q} / \underline{p}}=\operatorname{Stab}_{\operatorname{Gal}(F / K)}(\underline{q})$

Remark. $g \in D_{\underline{q}}$ fixes \underline{q} so it acts on $\mathbb{F}_{\underline{q}}$ by $x \bmod \underline{q} \mapsto g(x) \bmod \underline{q}$. This gives a natural map $D_{\underline{q}} \rightarrow \operatorname{Gal}\left(\mathbb{F}_{\underline{q}} / \mathbb{F}_{\underline{p}}\right)$

Example. Let $K=\mathbb{Q}, F=\mathbb{Q}(i)$. Let $p=3$ and $q=(3)$, complex conjugations fixes \underline{q} and acts as $a+b i$ $\bmod (3) \mapsto a-b i \bmod 3=(a+b i)^{3} \bmod 3$. I.e., exactly as the frobenius automorphism $x \rightarrow x^{3}$ on \mathbb{F}_{q}.

Theorem 2.5. Let F / K be a Galois extension of number fields, \underline{q} a prime of F above \underline{p}, a prime of K. Then the natural map $D_{\underline{q}} \rightarrow \operatorname{Gal}\left(\mathbb{F}_{\underline{q}} / \mathbb{F}_{\underline{p}}\right)$ is surjective.
Proof. Pick $\beta \in \mathbb{F}_{\underline{q}}$ such that $\mathbb{F}_{\underline{p}}(\beta)=\mathbb{F}_{\underline{q}}$. Let $f(x) \in \mathbb{F}_{\underline{p}}[x]$ be its minimal polynomial and $\beta=\beta_{1}, \beta_{2}, \ldots, \beta_{n} \in \mathbb{F}_{\underline{q}}$ be its roots (in $\mathbb{F}_{\underline{q}}$ as $\mathbb{F}_{\underline{q}} / \mathbb{F}_{\underline{p}}$ is Galois). Since $g(\beta)$ determines $g \in \operatorname{Gal}\left(\mathbb{F}_{\underline{q}} / \mathbb{F}_{\underline{p}}\right)$ so is suffices to prove that there exists $g \in D_{\underline{q}}$ with $g(\beta)=g\left(\beta_{2}\right)$.

Pick $\alpha \in \mathcal{O}_{K}$ with $\alpha \equiv \beta \bmod \underline{q}$ and $\alpha \equiv 0 \bmod \underline{q}^{\prime}$ for all other primes \underline{q}^{\prime} above \underline{p} (possible by CRT Theorem 1.16). Let $F(X) \in \mathcal{O}_{K}[X]$ be its minimal polynomial over K, and $\alpha=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in \mathcal{O}_{F}$ be its roots (in F as F / K is Galois). $F(X) \bmod \underline{q}$ has β as a root, hence $f(x)$ divides $F(X) \bmod \underline{q}$, hence β_{2} also is a root of $F(X)$ $\bmod \underline{q}$. Without loss of generality $\alpha_{2} \bmod \underline{q}=\beta_{2}$. Take $g \in \operatorname{Gal}(F / K)$ with $g(\alpha)=\alpha_{2}$. Then $g(\alpha) \neq 0 \bmod \underline{q}$, hence $g(\underline{q})=\underline{q}$ so $g \in D_{\underline{q}}$, and $g(\beta)=\beta_{2}$

Corollary 2.6. Let K be a number field, F / K the splitting field of a monic irreducible $f(x) \in \mathcal{O}_{K}[x]$, of degree n. Suppose for some prime \underline{p} of $K, f(x) \bmod \underline{p}=g_{1}(x) g_{2}(x) \ldots g_{k}(x)$ with $g_{i}(x) \in \mathbb{F}_{\underline{p}}[x]$ be distinct irreducible with $\operatorname{deg} g_{i}=d_{i}$. Then $\operatorname{Gal}(F / K) \subseteq S_{n}$ contains an element of cycle type $\left(d_{1}, d_{2}, \ldots, d_{k}\right)$

Proof. Let $\alpha_{1}, \ldots, \alpha_{n} \in \mathcal{O}_{K}$ be the roots of $f(x)$. Then $\beta_{i}=\alpha_{i} \bmod \underline{q}(\underline{q}$ any prime above \underline{p}) are precisely the roots of $f(x) \bmod \underline{p}$ in $\mathbb{F}_{\underline{q}}$. Their generator of $\operatorname{Gal}\left(\mathbb{F}_{\underline{q}} / \mathbb{F}_{\underline{p}}\right)$ permutes the β_{i} with cycle type $\left(d_{1}, \ldots, d_{k}\right)$. Hence its lift to $D_{\underline{q}} \leq \operatorname{Gal}(F / K)$ has the claimed cycle type.

Definition 2.7. Let F / K be Galois, \underline{q} a prime above \underline{p}. The inertia subgroup $I_{\underline{q}}=I_{\underline{q} / \underline{p}}$ is the (normal) subgroup of $D_{\underline{q}}$ that acts trivially on $\mathbb{F}_{\underline{q}}$, i.e., $I_{\underline{q}}=\operatorname{ker}\left(D_{\underline{q}} \rightarrow \operatorname{Gal}\left(\mathbb{F}_{\underline{q}} / \mathbb{F}_{\underline{p}}\right)\right)$.

Note that as the amp is surjective $D_{\underline{q}} / I_{\underline{q}} \cong \operatorname{Gal}\left(\mathbb{F}_{\underline{q}} / \mathbb{F}_{\underline{p}}\right)$. The latter group is cyclic and is generated by the frobenius map $\phi: x \rightarrow x^{\# \mathbb{F}_{\underline{p}}}$.

Definition 2.8. The (arithmetic) Frobenius element $\operatorname{Frob}_{\underline{q} / \underline{p}}$ is the element of $D_{\underline{q}} / I_{\underline{q}}$ that maps to ϕ.
Theorem 2.9. Let F / K be Galois extensions of number field, \underline{q} a prime of F above \underline{p}, a prime of K. Then

1. $\left|D_{\underline{q} / \underline{p}}\right|=e_{\underline{q} / \underline{p}} \cdot f_{\underline{q} / \underline{p}}$
2. Order of $\operatorname{Frob}_{\underline{q} / \underline{p}}$ is $f_{\underline{q} / \underline{p}}$
3. $\left|I_{\underline{q} / \underline{p}}\right|=e_{\underline{q} / \underline{p}}$

If $K \leq L \leq F$ and \underline{s} is above \underline{p}, below \underline{q}
4. $D_{\underline{q} / \underline{s}}=D_{\underline{q} / \underline{p}} \cap \operatorname{Gal}(F / L)$
5. $I_{\underline{q} / \underline{s}}=I_{\underline{q} / \underline{p}} \cap \operatorname{Gal}(F / L)$

Proof.

1. Let $n=\#$ primes above \underline{p}. Then

$$
\begin{aligned}
n \cdot\left|D_{\underline{q} / \underline{p}}\right| & =|\operatorname{Gal}(F / K)|(\text { orbit }- \text { stabiliser) } \\
& =[F: K] \\
& =\sum e_{i} f_{i}(\text { Theorem } 1.26) \\
& =n e_{\underline{q} / \underline{p}} f_{\underline{q} / \underline{p}}
\end{aligned}
$$

2. $f_{\underline{q} / \underline{p}}=\left[\mathbb{F}_{\underline{q}}: \mathbb{F}_{\underline{p}}\right]=\left|\operatorname{Gal}\left(\mathbb{F}_{\underline{q}} / \mathbb{F}_{\underline{p}}\right)\right|=\operatorname{order}$ of $\operatorname{Frob}_{\underline{q} / \underline{p}}$
3. $\left|D_{\underline{q} / \underline{p}}\right|=\left|I_{\underline{q} / \underline{p}}\right|$ oorder of $\operatorname{Frob}_{\underline{q} / \underline{p}}$, hence $\left|I_{\underline{q} / \underline{p}}\right|=e_{\underline{q} / \underline{p}}$
4. and 5. Just from definition.

Example.

Now 2 ramifies in all three quadratic fields:

- $(2)=(\sqrt{2})^{2}$
- $\left(x^{2}-3\right)=(x+1)^{2} \bmod 2$
- $\left(x^{2}-6\right)=x^{2} \bmod 2$
and use Kummer - Dedekind. Let \underline{q} in F, hence $e \geq 2$, so $\left|I_{\underline{q}}\right| \geq 2$, so $I_{\underline{q}}$ contains $\operatorname{Gal}(F / \mathbb{Q}(\sqrt{d}))$ for some d. So the prime above 2 in $F / \mathbb{Q}(\sqrt{d})$ is ramified, so $e_{\underline{q}}=2 \cdot 2=4$ and $I_{\underline{q}}=C_{2} \times C_{2}$.
Example. Let $K=\mathbb{Q}, F=\mathbb{Q}\left(\zeta_{n}\right)$. Let $p \nmid n$ be a prime, \underline{q} a prime of F above \underline{p}. We know that \underline{p} is unramified, so $I_{\underline{q} / \underline{p}}=\{\operatorname{id}\}$ and $D_{\underline{q} / \underline{p}}=\left\langle\operatorname{Frob}_{\underline{q} / \underline{p}}\right\rangle$. Now $\operatorname{Frob}_{\underline{q} / \underline{p}}\left(\zeta_{n}\right) \equiv \zeta_{n}^{p} \bmod \underline{q}$ and hence $\operatorname{Frob}_{\underline{q} / \underline{p}}\left(\zeta_{n}\right)=\zeta_{n}^{p}$ as ζ_{n}^{i} are distinct in $\mathbb{F}_{\underline{q}}$. (Since $x^{n}-1 \bmod \underline{p}$ has distinct roots). In particular, $e_{\underline{q} / \underline{p}}=1$ and $f_{\underline{q} / \underline{p}}=$ order of Frob $\underline{q / \underline{p}}$ =order of p in $(\mathbb{Z} / n \mathbb{Z})^{*}$.

2.3 Counting primes

Lemma 2.10. Let F / K be a Galois extension of number fields.

1. primes of K are in $1-1$ correspondence with $\operatorname{Gal}(F / K)$-orbits on primes of F via $\underline{p} \leftrightarrow$ primes of F above \underline{p}.
2. If \underline{q} lies above \underline{p} then $g D_{\underline{q}} \mapsto g(\underline{q})$ is a $\operatorname{Gal}(F / K)$ set isomorphism from \{primes above $\left.\underline{p}\right\}$ to $G / D_{\underline{q}}$
3. $D_{g(\underline{q})}=g D_{\underline{q}} g^{-1}, I_{g(\underline{q})}=g I_{\underline{q}} g^{-1}$ and $\operatorname{Frob}_{g(\underline{q}) / \underline{p}}=g \operatorname{Frob}_{\underline{q} / \underline{p}} g^{-1}$.

Proof. 1. is from transitivity of the Galois action while 2. and 3. are elementary check
Corollary 2.11. Let F / K be Galois, $K \leq L \leq F, G=\operatorname{Gal}(F / K), H=\operatorname{Gal}(F / L)$. Then

$$
\{\text { primes of } L \text { above } \underline{p}\} \leftrightarrow H \text {-orbits on primes of } F \text { above } \underline{p} \leftrightarrow H \backslash G / D_{\underline{q}}=\left\{H g D_{\underline{q}}\right\}
$$

via $\underline{s} \mapsto$ elements that sent \underline{q} to some prime above \underline{s}.
Proposition 2.12. Let F / K be Galois extension of number fields, $L=K(\alpha)$ an intermediate field, $G=\operatorname{Gal}(F / K)$ and $H=\operatorname{Gal}(F / L)$. Let $X=\{$ roots of min poly of $\alpha\} \cong\{$ embeddings $L \hookrightarrow F\}=H \backslash G$ a G-set of size $[L: F]$.

Then $\{$ primes of L above $\underline{p}\} \stackrel{1: 1}{\leftrightarrow} D_{\underline{q}}$-orbits on X with

- size $D_{\underline{q}}$-orbits $=e_{\underline{s} / \underline{p}} \cdot f_{\underline{s} / \underline{p}}$
- size $I_{\underline{q}}$-suborbits $=e_{\underline{s} / \underline{p}}$
- number $I_{\underline{q}}$-suborbits $=f_{\underline{s} / \underline{p}}$

Explicitly, $\underline{s} \mapsto$ Orbits of $g^{-1}(\alpha)$ where $g(\underline{q})$ lies above \underline{s}.
Example. Let $K=\mathbb{Q}, F=\mathbb{Q}\left(\zeta_{5}, \sqrt[5]{2}\right), p=73$, Let \underline{q} be a prime of F above \underline{p}

Now \underline{p} is unramified in F with residue degree 4 (use Kummer - Dedekind on L / \mathbb{Q} and $\mathbb{Q}\left(\zeta_{5}\right) / \mathbb{Q}$ and that $\operatorname{Gal}(F / \mathbb{Q})$ has no element of order 20). Now $\operatorname{Gal}(F / \mathbb{Q})$ permutes $\sqrt[5]{2}, \zeta \sqrt[5]{2}, \ldots$ transitively, $e_{q} / 73=1$, hence $I_{\underline{q}}$-orbits are trivial. $f_{\underline{q}}=4$ hence $\left|D_{\underline{q}}\right|=4, D_{\underline{q}} \cong C_{4}$ (generated by Frob). Without loss of generality $D_{\underline{q}}$ fixes $\sqrt[5]{2}$ and permutes the rest cyclically. Hence there are 2 primes in L above 73 with residue degree 1 and 4 and ramification degrees 1 and 1.

Proof of Theorem 2.12. We have

$$
\begin{aligned}
\text { \{primes of } L \text { above } p\} & \leftrightarrow H \backslash G / D_{\underline{q}} \\
& \leftrightarrow D_{\underline{q}} \text {-orbits on } H \backslash G=: X
\end{aligned}
$$

($D_{\underline{q}}$ acts by $d(H g)=H g d^{-1}$). Size of $D_{\underline{q}}$-orbits of

$$
\begin{aligned}
g^{-1}(\alpha) & =\frac{\left|D_{\underline{q}}\right|}{\left|\operatorname{Stab}_{D_{\underline{q}}}\left(g^{-1}(\alpha)\right)\right|} \\
& =\frac{\left|D_{\underline{q}}\right|}{\left|\operatorname{Stab}_{\underline{g} D_{\underline{q}} g^{-1}}(\alpha)\right|} \\
& =\frac{\left|D_{\underline{q}}\right|}{\left|g D g^{-1} \cap H\right|} \\
& =\frac{\left|D_{\underline{q}}\right|}{\left|D_{g(\underline{q}) / \underline{p}}\right|} \\
& =\frac{e_{\underline{q} / \underline{\underline{p}}} \cdot f_{\underline{q} / \underline{\underline{p}}}}{e_{\underline{q} / \underline{s}} \cdot f_{\underline{q} / \underline{s}}} \\
& =e_{\underline{s} / \underline{p}} \cdot f_{\underline{s} / \underline{p}}
\end{aligned}
$$

Similarly, size of $I_{\underline{q}}$-orbits is $e_{\underline{s} / \underline{\underline{q}}}$ (same calculations as above, replacing $D_{\underline{q}}$ with $I_{\underline{q}}$). And hence $\# I_{\underline{q}}$-suborbits is $\frac{e_{s / p} \cdot f_{\underline{s} / p}}{e_{\underline{s} / \underline{p}}}=f_{\underline{s} / \underline{p}}$.

2.4 Representation of the decomposition group

Let F / K be a Galois Extensions of number fields. Let $G=\operatorname{Gal}(F / K), \underline{p}$ a prime in $\mathcal{O}_{K}, \underline{q}$ a prime above \underline{p} in \mathcal{O}_{F}. Let $D=D_{\underline{q} / \underline{p}}$ and $I=I_{\underline{q} / \underline{p}}$, $\operatorname{Frob}=\operatorname{Frob}_{\underline{q} / \underline{p}}$.

Definition 2.13. A representation V of D is unramified if I acts trivially on V, therefore $V^{I}=V(F / K$ is unramified if and only if all V are unramified)

Notation. For a $f_{\underline{q} / \underline{p}}^{\mathrm{th}}$-root of unity ζ, define the representation $\Psi_{\underline{q} / \underline{p}, \zeta}=\Psi_{\zeta}: D \rightarrow \mathbb{C}^{*}=\mathrm{GL}_{1}(\mathbb{C})$ such that $\Psi_{\zeta}(h)=1$ $(h \in I), \Psi_{\zeta}($ Frob $)=\zeta$. Thus $\Psi_{\zeta}(g)=\zeta^{k}$ if g acts as $x \mapsto x^{\left(\# \mathbb{F}_{\underline{p}}\right)^{k}}$ on $\mathbb{F}_{\underline{q}}$.
Lemma 2.14. If V is a irreducible representation of D then either $V^{I}=0$ or V is unramified and $V=\Psi_{\zeta}$ for some ζ with $\zeta^{f_{q} / \underline{p}}=1$.

Proof. Since $I \triangleleft D$ it follows that V^{I} is a subrepresentation of V. Then either $V^{I}=0$ or $V^{I}=V$.In the latter case, the action of D factors through $D / I=\langle$ Frob \rangle and hence V is 1-dimensional and $V=\Psi_{\zeta}$ for some ζ.

Notation. If $\underline{q}^{\prime}=g(\underline{q})$ is another prime above \underline{p} for some $g \in G$ and (ρ, V) a representation of D, we write $\left(\rho^{g}, V^{g}\right)$ for the corresponding representation of $D_{\underline{q} / / \underline{p}}$ given by $\rho^{g}(h)=\rho\left(g h g^{-1}\right)$. Clearly $D_{\underline{q} / \underline{p}} \cong D_{\underline{q}^{\prime} / \underline{p}}$ as groups.

Example. Let $G \cong S_{4}, D=D_{8}$ and $I=C_{4}$. Then there are $|G / D|$-prime above \underline{p}. $D_{8} \cong D_{\underline{q} / \underline{p}}$. Others are the two other subgroup of S_{4} isomorphic to D_{8}.

D_{8}	e	(1234)	$(13)(24)$	$(12)(34)$	(13)
1	1	1	1	1	1
ϵ_{1}	1	1	1	-1	1
ϵ_{2}	1	-1	1	1	-1
ϵ_{3}	1	-1	1	-1	1
ρ	2	0	-2	0	0

The 2-dimensional irreducible representation of $D_{\underline{q}^{\prime} / \underline{p}}$ is ob-
tained as $\rho^{\prime}(h)=\rho\left(g^{-1} h g\right)$.

Lemma 2.15.

1. If $\underline{q}^{\prime}=g(\underline{q})$ another prime over \underline{p} then $\Psi_{\underline{q}^{\prime} / \underline{p}, \zeta}=\Psi_{\underline{q} / \underline{p}, \zeta}^{g}$
2. If L is an intermediate field, Σ is a prime below \underline{q} then $\operatorname{Res}_{D_{\underline{q} / \Sigma}} \Psi_{\zeta}=\Psi_{\underline{q} / \Sigma, \zeta^{f}}$ whence $f=f_{\Sigma / \underline{p}}$. In particular $\operatorname{Res}_{D_{\underline{q} / \Sigma}} \Psi_{\underline{q} / \underline{p}, \zeta}=\mathbb{I} \Longleftrightarrow \zeta^{f_{\Sigma / \underline{p}}}=1$
Proof.
3. Follows from $D_{\underline{q}^{\prime} / \underline{p}}=g D g^{-1}, I_{\underline{q}^{\prime} / \underline{p}}=g I g^{-1}$ and $\operatorname{Frob}_{\underline{q}^{\prime} / \underline{p}}=g \operatorname{Frob}^{-1}$
4. $\operatorname{Res}_{D_{\underline{q} / \Sigma}} \Psi_{\underline{q} / \underline{p}, \zeta}$ sends $I_{\underline{q} / \Sigma}$ to 1 and $\operatorname{Frob}_{\underline{q} / \Sigma}$ to ζ^{f} because $\operatorname{Frob}_{\underline{q} / \Sigma}$ acts as $x \rightarrow x^{\left(\# \mathbb{F}_{\underline{p}}\right)^{f}}$ on $\mathbb{F}_{\underline{q}}$.

Proposition 2.16. Let $K \subseteq L \subseteq F, H=\operatorname{Gal}(F / L)$

Let $\left\{\Sigma_{i}\right\}$ be the set of primes of L above \underline{p} and pick $\underline{q}_{i}=g_{i}(\underline{q})$ above Σ_{i} for each i. For V a representation of H

$$
\operatorname{Res}_{D}^{G} \operatorname{Ind}_{H}^{G} V \cong \bigoplus_{\Sigma_{i}}\left(\operatorname{Ind}_{D_{\underline{q}_{i} / \Sigma_{i}}^{\underline{q}_{i} / p}}^{\operatorname{Res}_{D_{\underline{q}_{i}} / \Sigma_{i}}^{H}} V\right)^{g_{i}^{-1}}
$$

In particular

$$
\left\langle\Psi_{\zeta}, \operatorname{Res}_{D} \operatorname{Ind}_{H}^{G} V\right\rangle=\sum_{\Sigma_{i}}\left\langle\Psi_{\underline{q}_{i} / \Sigma_{i}, \rho^{f} \Sigma_{i} / \underline{p}}, \operatorname{Res}_{\underline{\underline{q}}_{i}, \Sigma_{i}} V\right\rangle .
$$

Proof. The main claim is precisely Mackey's formula for $H, D \leq G$. The second claim then follows from

$$
\begin{aligned}
\left\langle\Psi_{\zeta},(\operatorname{IndRes} V)^{g_{i}^{-1}}\right\rangle_{D_{\underline{q} / \underline{p}}} & =\left\langle\Psi_{\underline{q}_{i} / \underline{p}, \zeta}, \operatorname{IndRes} V\right\rangle_{D_{\underline{q}_{i} / \underline{p}}} \\
& =\left\langle\operatorname{Res} \Psi_{\underline{q}_{i} / \underline{p}, \zeta}, \operatorname{Res} V\right\rangle_{D_{\underline{q}_{i} / \Sigma_{i}}} \text { by Frobenius reciprocity } \\
& =\left\langle\Psi_{\underline{q}_{i} / \Sigma_{i}, \zeta^{f_{\Sigma_{i} / \underline{p}}}}, \operatorname{Res} V\right\rangle
\end{aligned}
$$

Corollary 2.17. Let ζ be a primitive $n^{\text {th }}$ root of unity with $n \mid f_{q}$. . Then $K \subseteq L \subseteq F$ with $H=\operatorname{Gal}(F / L)$. The number of primes of L above $\underline{p}=\left\langle\Psi_{\zeta}, \operatorname{Res}_{D}^{G} \operatorname{Ind}_{J}^{G} \mathbb{I}\right\rangle$

Proof. By previous proposition, the Right Hand Side is $\sum_{\Sigma \text { above } \underline{p}}\left\langle\Psi_{{\underline{q^{\prime}} / \Sigma^{\prime}, \zeta^{f} / \underline{p}}^{f_{\Sigma}}, \mathbb{I}}\right\rangle=\# \Sigma$ with $\zeta^{f_{\Sigma / \underline{p}}}=1$

$3 \quad L$-series

Aim:

1. If $\operatorname{gcd}(a, n)=1$ then there are infinitely many primes $p \equiv a \bmod n$
2. If $f(x) \in \mathbb{Z}[x]$ monic and $f(x) \bmod p$ has a root $\bmod p$ for all p, then $f(x)$ is reducible.

Definition 3.1. An ordinary Dirichlet series is a series $f(s)=\sum_{s=1}^{\infty} a_{n} n^{-s}\left(a_{n} \in \mathbb{C}, s \in \mathbb{C}\right)$.
Convention: $s=\sigma+i t$.

Convergence Property

Lemma 3.2 (Abel's Lemma). $\sum_{n=N}^{M} a_{n} b_{n}=\sum_{n=N}^{M-1}\left(\sum_{k=N}^{n} a_{k}\right)\left(b_{n}-b_{n+1}\right)+\left(\sum_{k=N}^{M} a_{k}\right) b_{M}$
Proof. Elementary rearrangement (c.f., integration by part)
Proposition 3.3. Let $f(s)=\sum_{n=1}^{\infty} a_{n} e^{-\lambda_{n} s}$ for $\lambda_{n} \rightarrow \infty$ an increasing sequence of the real number

1. If the partial sums $\sum_{N}^{M} a_{n}$ are bounded, then the series converges locally uniformly of $\operatorname{Re}(s)>0$ to an analytic functions
2. If the series $f(s)$ converges for $s=s_{0}$, then it converges uniformly on $\operatorname{Re}(s)>\operatorname{Re}\left(s_{0}\right)$ to an analytic function.

Note. Dirichlet series are the case $\lambda_{n}=\log n$

Proof. Note that 1. implies 2. by the change of variables $s^{\prime}=s-s_{0}$ and $a_{n}^{\prime}=e^{-\lambda_{n} s_{0}} a_{n}$. The new series converges at 0 and so must have $\sum_{N}^{M} a_{n}^{\prime}$ bounded

For 1. we will show uniform convergence on $-A<\arg (s)<A$ and $\operatorname{Re}(s)>\delta$. This will suffice as the uniform limit of analytic functions is analytic and these regions cover $\operatorname{Re}(s)>0$.

Let $\epsilon>0$, find N_{0} such that $n>N_{0},\left|e^{-\lambda_{n} s}\right|<\epsilon$ in this domain. Now compute: for $N_{1} M \geq N_{0}$

$$
\begin{aligned}
\left|\sum_{n=N}^{M} a_{n} e^{-\lambda_{n} s}\right| & =\left|\sum_{n=N}^{n-1}\left(\sum_{k=N}^{n} a_{k}\right)\left(e^{-\lambda_{n} s}-e^{-\lambda_{n+1} s}\right)+\left(\sum_{N}^{M} a_{k}\right) e^{-\lambda_{M} s}\right| \\
& \leq B \sum_{n=N}^{M-1}\left|e^{-\lambda_{n} s}-e^{-\lambda_{n+!} s}\right|+B \epsilon
\end{aligned}
$$

where B is the bound for the partial sums.
Observe:

$$
\begin{aligned}
\left|e^{-\alpha s}-e^{-\beta s}\right| & =\left|s \int_{\alpha}^{\beta} e^{-x s} d x\right| \\
& \leq|s| \int_{\alpha}^{\beta} e^{-x \sigma} d x \\
& =\frac{|s|}{\sigma}\left(e^{-\alpha \sigma}-e^{-\beta \sigma}\right)
\end{aligned}
$$

where $\sigma=\operatorname{Re}(s)$ for $\alpha>\beta$. So

$$
\begin{aligned}
\sum_{n=N}^{M} a_{n} e^{-\lambda_{n} s} & \leq B \frac{|s|}{\sigma} \sum_{N}^{M-1}\left(e^{-\lambda_{n} \sigma}-e^{-\lambda_{n+1} \sigma}\right)+B \epsilon \\
& \leq B \frac{|s|}{\sigma} \epsilon+B \epsilon \\
& \leq \epsilon(B K+B)
\end{aligned}
$$

where $\left|\frac{s}{\sigma}\right| \leq K$ in our domain.
Proposition 3.4. Let $f(s)=\sum a_{n} e^{-\lambda_{n} s}$ for $\lambda_{n} \rightarrow \infty$ an increasing sequence of positive reals. Suppose

- $a_{n} \geq 0$ is real
- $f(s)$ converges on $\operatorname{Re}(s)>R(\in \mathbb{R})$ and hence is analytic
- it has an analytic continuation to a neighbourhood of $s=R$

Then $f(s)$ converges on $\operatorname{Re}(s)>R-\epsilon$ for some $\epsilon>0$.
Proof. Again, we can assume $R=0$. As f is analytic on $\operatorname{Re}(s)>0$ and $|s|<\delta$. Hence f is analytic on $|s-1| \leq 1+\epsilon$. The Taylor Series of f around $s=1$ converges on all of $|s-1| \leq 1+\epsilon$. In particular $f(-\epsilon)=\sum_{k=0}^{\infty} \frac{1}{k!}(-1)^{k}(1+\epsilon)^{k} f^{(k)}(1)$ converges. For $\operatorname{Re}(s)>0 f^{(k)}(s)=\sum_{n=1}^{\infty} a_{n}\left(-\lambda_{n}\right)^{k} e^{-\lambda_{n}}$ (ok since uni-
form convergence). Hence $(-1) f^{(k)}(s)=\sum_{n=1}^{\infty} a_{n} \lambda_{n}^{k} e^{-\lambda_{n}}$. Hence

$$
\begin{aligned}
f(-\epsilon) & =\sum_{k=0}^{\infty} \frac{1}{k!}(1+\epsilon)^{k} \sum_{n=1}^{\infty} a_{n} \lambda_{n}^{k} e^{-\lambda_{n}} \\
& =\sum_{k, n} a_{n} \lambda_{n}^{k} e^{-\lambda_{n}} e^{-\lambda_{n}} \frac{1}{k!}(1+\epsilon)^{k} \text { as all terms positive } \\
& =\sum_{n=1}^{\infty} a_{n} e^{-\lambda_{n}} e^{-\lambda_{n}(1+\epsilon)} \\
& =\sum_{n=1}^{\infty} a_{n} e^{\lambda_{n} \epsilon}
\end{aligned}
$$

is a convergent series for f converges at $s=-\epsilon$. This implies the result.

Theorem 3.5.

1. If a_{n} are bounded, then $\sum_{n \geq 1} a_{n} n^{-s}$ converges absolutely on $\operatorname{Re}(s)>1$ to an analytic function.
2. If the partial sums $\sum_{N}^{M} a_{n}$ are bounded then $\sum a_{n} n^{-s}$ converges absolutely on $\operatorname{Re}(s)>0$ to an analytic function.
Proof.
3. $\left|\frac{a_{n}}{n^{s}}\right| \leq k \frac{1}{n^{\sigma}}$ where $\sigma=\operatorname{Re}(s)$ and $\sum_{n=1}^{\infty} \frac{1}{n^{x}}$ does converge for $x>1$ real. Analytic comes from Proposition 3.3
4. See Proposition 3.3

Remark. If $\sum a_{n} n^{-s}$ and $\sum b_{n} n^{-s}$ converges on $\operatorname{Re}(s)>\sigma_{0}$ to the same function $f(s)$, then $a_{n}=b_{n}$ for all n.

3.1 Dirichlet L-functions

Definition 3.6. Let $N \geq 1$ be an integer $\psi:(\mathbb{Z} / N \mathbb{Z})^{*} \rightarrow \mathbb{C}^{*}$ a group homomorphism. Extend ψ to a function on \mathbb{Z} by $\psi(n)=\left\{\begin{array}{ll}\psi(n \bmod N) & \operatorname{gcd}(n, N)=1 \\ 0 & \text { else }\end{array}\right.$. Such a function is called a Dirichlet character modulo N.

Its L-series (or L-function) is $L_{N}(\psi, s)=\sum_{n=1}^{\infty} \psi(n) n^{-s}$.
Lemma 3.7. Let ψ be a Dirichlet character modulo N. Then

1. $\psi(a+N)=\psi(a)($ so ψ is periodic)
2. $\psi(a b)=\psi(a) \psi(b)$ (so ψ is strictly multiplicative)
3. The L-series for ψ converges absolutely on $\operatorname{Re}(s)>1$ and satisfies the Euler product

$$
L_{n}(\psi, s)=\prod_{p \text { prime }} \frac{1}{1-\psi(p) p^{-s}}
$$

Proof. 1. and 2. are clear from the definition. 3. the L-series coefficients $a_{n}=\psi(n)$ are bounded, so absolute convergence follows from Theorem 3.5. For $\operatorname{Re}(s)>1$

$$
\begin{aligned}
\sum \psi(n) n^{-1} & =\prod_{p \text { prime }}\left(1+\psi(p) p^{-s}+\psi(p)^{2} p^{-2 s}+\ldots\right)(\text { by } 2 . \text { and abs conv }) \\
& =\prod_{p \text { prime }} \frac{1}{1-\psi(p) p^{-s}} \text { (geometric series) }
\end{aligned}
$$

Remark. The case $\psi(n)=1$ for all $n \in(\mathbb{Z} / N \mathbb{Z})^{*}$ gives the trivial Dirichlet character modulo N. In this case

$$
\begin{aligned}
L_{N}(\psi, s) & =\prod_{p \text { prime }} \frac{1}{1-p^{-s}} \\
& =\zeta(s) \cdot \prod_{p \mid N, \text { prime }}\left(1-p^{-s}\right)
\end{aligned}
$$

where $\zeta(s)$ is the Riemann ζ-function.
Example. Take $N=10$, so $(\mathbb{Z} / N \mathbb{Z})^{*}=\{1,3,7,9\} \cong C_{4}$, and $\psi(1)=1, \psi(3)=i, \psi(7)=-i$ and $\psi(9)=-1$. Then $L_{10}(\psi, s)=1+\frac{i}{3^{s}}-\frac{i}{7^{s}}-\frac{1}{11^{s}}+\frac{1}{11^{s}}+\frac{i}{13^{s}}-\frac{i}{17^{s}}-\frac{1}{19^{s}}+\ldots$. Note that by the alternating series test (applied to the real part and imaginary part separately) implies convergence on $s>0$ real.
Theorem 3.8. Let $N \geq 1$ and $\psi:(\mathbb{Z} / N \mathbb{Z})^{*} \rightarrow \mathbb{C}^{*}$.

1. If ψ is trivial then $L_{N}(\psi, s)$ has an analytic continuation to $\operatorname{Re}(s)>0$ except for a simple pole at $s=1$
2. If ψ is non-trivial, then $L_{N}(\psi, s)$ is analytic on $\operatorname{Re}(s)>0$

Proof.

1. Follows from the previous remark and that $\zeta(s)$ has an analytic continuation to $\operatorname{Re}(s)>0$ with a simple pole at $s=1$.
2. $\sum_{n=A}^{A+N-1} \psi(n)=\sum_{n \in(\mathbb{Z} / N \mathbb{Z})^{*}} \psi(n) \cdot \overline{1}=\psi(N)\langle\psi, \mathbb{I}\rangle=0$ as $\psi \neq 1$. So the partial sums $\sum_{A}^{B} \psi(n)$ are bounded and the result follows from Theorem 3.5ii)

Theorem 3.9. Let ψ be a non-trivial Dirichlet character modulo N. Then $L_{N}(\psi, 1) \neq 0$.
Proof. Let

$$
\zeta_{N}(s)=\prod_{\chi:(\mathbb{Z} / N \mathbb{Z})^{*} \rightarrow \mathbb{C}^{*}} L_{N}(\chi, s)
$$

If $L_{N}(\psi, 1)=0$ then $\zeta_{N}(s)$ has an analytic continuation to $\operatorname{Re}(s)>0$, the pole form $L_{N}(\mathbb{I}, s)$ having been killed by the zero on $L_{N}(\psi, s)$. We'll show that this is not the case (and hence has a simple pole at $s=1$)

On $\operatorname{Re}(s)>1, \zeta_{N}(s)$ has the absolutely convergent expression

$$
\begin{aligned}
\zeta_{N}(s) & =\prod_{\chi} \prod_{p \nmid N} \frac{1}{1-\chi(p) p^{-s}} \\
& =\prod_{p \nmid N} \prod_{\chi} \frac{1}{1-\chi(p) p^{-s}} \\
& =\prod_{p \nmid N} \frac{1}{\left(1-p^{-f_{p} s}\right)^{\phi(N) / f_{p}}}
\end{aligned}
$$

where ϕ is the Euler totient function and f_{p} the order of p in $(\mathbb{Z} / N \mathbb{Z})^{*}$. Hence

$$
\zeta_{N}(s)=\prod_{p \nmid N}\left(1+p^{-f_{p} s}+p^{-2 f_{p} s}+\ldots\right)^{\phi(N) / f_{p}}
$$

This is a Dirichlet series with positive real coefficient so if it has an analytic continuation to $\operatorname{Re}(s)>0$, it must converge there by Proposition 3.4. But for $s>0$ real it dominates

$$
\prod_{p \nmid N}\left(1+p^{-\phi(N) s}+p^{-2 \phi(N) s}+\ldots\right)=L_{N}(\mathbb{I}, \phi(N) s)
$$

which diverges for $s=1 / \phi(N)$.

3.2 Primes in Arithmetic Progression

Strategy: $\sum_{p \equiv a \bmod N} p^{-s}=\sum_{\chi} \lambda_{\chi} \sum_{p} \chi(p) p^{-s}$ with $\lambda_{\mathbb{I}} \neq 0$. This is approximately $\sum_{\chi} \lambda_{\chi} \log L_{N}(\chi, s) \sim$ $\lambda_{\text {I }} \log \frac{1}{s-1} \rightarrow \infty$ as $s \rightarrow 1$.
Proposition 3.10. Let ψ be a Dirichlet character modulo N

1. The Dirichlet series $\sum_{p \text { prime }, n>2} \frac{\psi(p)^{n}}{n} p^{-n s}$ converges on $\operatorname{Re}(s)>1$ so it is an analytic function and defines (a branch of) $\log L_{N}(\psi, s)$ there.
2. If ψ is non-trivial then $\sum_{p, n} \frac{\psi(p)^{n}}{n} p^{-n s}$ is bounded as $s \rightarrow 1$. If $\psi=\mathbb{I}$ then $\sum_{p, n} \frac{1}{n} p^{-n s} \sim \log \frac{1}{1-s}$ as $s \rightarrow 1$. Proof.
3. The series has bounded coefficients so converges absolutely on $\operatorname{Re}(s)>1$ to an analytic function by Theorem 3.5 1. For a fixed s with $\operatorname{Re}(s)>1$

$$
\begin{aligned}
\sum_{p, n} \frac{\psi(p)^{n}}{n} p^{-n s} & =\sum_{p}\left(\psi(p) p^{-s}+\frac{\left(\psi(p) p^{-s}\right)^{2}}{2}+\ldots\right) \\
& =\sum_{p} \log \frac{1}{1-\psi(p) p^{-s}}\left(\text { branch with } \log (1+x)=x-\frac{x^{2}}{2}+\ldots\right) \\
& =\log \prod_{p} \frac{1}{1-\psi(p) p^{-s}}(\text { possibly a diff branch }) \\
& =\log L_{N}(\psi, s)
\end{aligned}
$$

Hence $\sum_{p, n} \frac{\psi(p)^{n}}{n} p^{-n s}$ gives an analytic branch of $\log L_{N}(\psi, s)$ on $\operatorname{Re}(s)>1$.
2. By Theorem 3.8, for $\psi \neq \mathbb{I}, L_{N}(\psi, s)$ converges to a non-zero value as $s \rightarrow 1$, so $\log L_{N}(\psi, s)$ is bounded as $s \rightarrow 1$. For $L_{N}(\mathbb{I}, s)$ has a simple pole at $s=1$ (hence $\left.\sim \frac{\lambda}{s-1}\right)$ so $\log L_{N}(\mathbb{I}, s) \sim \log \frac{1}{s-1}$ as $s \rightarrow 1$.

Corollary 3.11. If ψ is non-trivial then $\sum_{p \text { prime }} \psi(p) p^{-s}$ is bounded as $s \rightarrow 1$. If $\psi=\mathbb{I}$, then $\sum_{p \text { prime }} \psi(p) p^{-s}=$ $\sum_{p \nmid N} p^{-s} \sim \log \frac{1}{s-1}$ as $s \rightarrow 1$ and in particular tends to ∞ as $s \rightarrow 1$.

Proof. $\sum_{p} \psi(p) p^{-s}=\log L_{N}(\psi, s)-\sum_{p, n \geq 2} \frac{\psi(p)^{n}}{n} p^{-n s}$ so it suffices to check that the last term is bounded on $\operatorname{Re}(s)>1$.

$$
\begin{aligned}
\left|\sum_{p, n \geq} \frac{\psi(p)^{n}}{n} p^{-n s}\right| & \leq \sum \frac{1}{n\left|p^{s}\right|^{n}} \\
& \leq \sum_{p \text { prime }, n \geq 2} \frac{1}{p^{n}} \\
& =\sum_{p} \frac{1}{p(p-1)} \\
& \leq \sum_{k \geq 1} \frac{1}{k^{2}}<\infty
\end{aligned}
$$

Dirichlet's Theorem on primes in Arithmetic Progression. Let a, N be coprime integers. Then there are infinitely many primes $p \equiv a \bmod N$. Moreover if $P_{a, N}$ is the set of these primes then $\sum_{p \in P_{a, N}} \frac{1}{p^{-s}} \sim \frac{1}{\phi(N)} \log \frac{1}{s-1}$ as $s \rightarrow 1$.

Proof. The first statement follows from the second as $\log \frac{1}{s-1} \rightarrow \infty$ as $s \rightarrow 1$. Consider the (class-)function $\mathcal{C}_{a, N}:(\mathbb{Z} / N \mathbb{Z})^{*} \rightarrow \mathbb{C}^{*}$ with $C_{a, N}(n)=\left\{\begin{array}{ll}1 & \text { if } n=a \\ 0 & \text { else }\end{array}\right.$. Then

$$
\begin{aligned}
\left\langle\mathcal{C}_{a, N}, \chi\right\rangle & =\frac{1}{\phi(N)} \sum_{n \in(\mathbb{Z} / N \mathbb{Z})^{*}} C_{a, N}(n) \overline{\chi(n)} \\
& =\frac{1}{\phi(N)} \overline{\chi(a)}
\end{aligned}
$$

so $C_{a, n}=\sum_{\chi} \frac{\overline{\chi(a)}}{\overline{\phi(N)}} \chi$ by Character theory. Hence

$$
\begin{aligned}
\sum_{p \in P_{a, N}} \frac{1}{p^{s}} & =\sum_{p \text { prime }} C_{a, n}(p) p^{-s} \\
& =\sum \frac{\overline{\chi(a)}}{\psi(N)} \sum_{p} \frac{\chi(p)}{p^{s}}
\end{aligned}
$$

By Corollary 3.11, each term on RHS is bounded as $s \rightarrow 1$ except for $\chi=\mathbb{I}$, and

$$
\begin{aligned}
\frac{\mathbb{I}}{\phi(N)} \sum \frac{\mathbb{I}(p)}{p^{s}} & =\frac{1}{\phi(N)} \sum_{p \nmid N} \frac{1}{p^{s}} \\
& \sim \frac{1}{\phi(N)} \log \frac{1}{s-1}
\end{aligned}
$$

as $s \rightarrow 1$.

3.3 Artin L-functions

Definition 3.12. Let F / K be a Galois extension of number fields and ρ a $\operatorname{Gal}(F / K)$-represnetation. The Artin L-function of ρ is defined by the Euler product

$$
\begin{aligned}
L(F / K, \rho, s) & =L(\rho, s) \\
& =\prod_{\underline{p} \text { prime of } K} \frac{1}{P_{\underline{p}}\left(\rho, N(\underline{p})^{-s}\right)}
\end{aligned}
$$

where the local polynomial of ρ at $\underline{p}, P_{p}(\rho, T)$ is defined by $P_{\underline{p}}(\rho, T)=\operatorname{det}\left(1-\operatorname{Frob}_{\underline{p}} T \mid \rho^{I_{\underline{p}}}\right)$. $(=\operatorname{det}(I-M T)$ where M is the matrix by which $\operatorname{Frob}_{\underline{p}}$ acts on $\rho^{I_{\underline{p}}}$. Note that here $I_{\underline{p}}=I_{\underline{q} / \underline{p}}$ and $\operatorname{Frob}_{\underline{p}}=\operatorname{Frob}_{\underline{q} / \underline{p}}$ for some (Any) prime \underline{q} above \underline{p}.

Example.

- Take $K=\mathbb{Q}, F$ arbitrary, $\rho=\mathbb{I}$. Then $P_{\underline{p}}(\mathbb{I}, t)=\operatorname{det}(1-1 \cdot t)=1-t$ for all \underline{p}. Hence $L(\mathbb{I}, s)=\prod_{p} \frac{1}{1-p^{-s}}=\zeta(s)$.
- Similarly, for general K and $\rho=\mathbb{I}$ we get $P_{\underline{p}}(\mathbb{I}, t)=1-t \forall \underline{p}$. Then $L(F / K, \mathbb{I}, s)=\prod_{\underline{p}} \frac{1}{1-N(\underline{p})^{-s}}=\zeta_{K}(s)$ (The Dedekind ζ-function of K)
- $K=\mathbb{Q}, F=\mathbb{Q}(i), \rho: \operatorname{Gal}(F / K)=C_{2} \rightarrow\{ \pm 1\}$ non-trivial 1-dimensional representation. Then

$$
P_{\underline{p}}(\rho, T)= \begin{cases}1 & \underline{p}=2 \Rightarrow \rho^{I_{\underline{p}}}=0 \\ 1-t & p \equiv 1 \quad \bmod 4 \Rightarrow \operatorname{Frob}_{\underline{p}}=\mathrm{id} \\ 1+t & p \equiv 3 \quad \bmod 4 \Rightarrow \operatorname{Frob}_{\underline{p}} \neq \mathrm{id}\end{cases}
$$

Hence $L(\rho, s)=\prod_{p \equiv 1 \bmod 4} \frac{1}{1-p^{-s}} \prod_{p \equiv 3 \bmod 4} \frac{1}{1+p^{-s}}=\prod_{p} \frac{1}{1-\chi(p) p^{-s}}$ where $\chi: \mathbb{Z} \rightarrow \mathbb{C}^{*}$ is the non-trivial Dirichlet character mod 4. That is $L(\rho, s)=L_{4}(\chi, s)$ a Dirichlet L-function.

Lemma 3.13. The local polynomial $P_{\underline{p}}(\rho, T)$ is independent of the choice of \underline{q} above \underline{p} and of the choice of Frob $_{\underline{p}}$. Proof. For a fixed \underline{q} above \underline{p}, independence of the choice of $\operatorname{Frob}_{\underline{p}}$ is clear. Since two choices differ by an element $\sigma \in I_{\underline{p}}$, which acts trivially on $\rho^{I_{\underline{p}}}$. Hence $\operatorname{det}\left(1-\operatorname{Frob}_{p} t \mid \rho^{I_{\underline{p}}}\right)=\operatorname{det}\left(1-\sigma \operatorname{Frob}_{p} t \mid \rho_{\underline{\underline{p}}} \underline{I_{\underline{p}}}\right)$.

If $\underline{q}^{\prime}=g(\underline{q})$ is another prime above \underline{p}, then the matrix of $\rho(d)$ for $d \in \operatorname{Gal}(\bar{F} / K)$ with respect to a basis $\left\{e_{i}\right\}$ is the same as that of $\rho\left(g d g^{-1}\right)$ with respect to a basis $\left\{g e_{i}\right\}$. As $d \rightarrow g d g^{-1}$ maps $D_{\underline{q} / \underline{p}}$ to $D_{\underline{q}^{\prime} / \underline{p}}, I_{\underline{q} / \underline{p}}$ to $I_{\underline{q}^{\prime} / \underline{p}}$ and $\mathrm{Frob}_{\underline{q} / \underline{\underline{q}}}$ to $\mathrm{Frob}_{\underline{q}^{\prime} / \underline{\underline{p}}}$ the result follows.
Remark. If $\operatorname{dim} \rho=1$ then

$$
P_{\underline{p}}(\rho, t)= \begin{cases}1-\rho\left(\operatorname{Frob}_{\underline{p}}\right) t & \text { if } \rho^{I}=\rho \\ 1 & \text { if } \rho^{I}=0\end{cases}
$$

In general it is essentially the characteristic polynomials of $\operatorname{Frob}_{\underline{p}}$ on $\rho^{I_{\underline{p}}}$: If $P_{\underline{p}}(\rho, t)=1+a_{1} t+a^{\nu} t^{2}+\cdots+a_{n} t^{n}$ then characteristic polynomials is $t^{n}+a_{1} t^{n-1}+\cdots+a_{n}$.
Remark. The polynomial $P_{\underline{p}}(\rho, T)$ has the form $1-\left(a T+b T^{2}+\ldots\right)$ so (ignoring convergence questions)

$$
\begin{aligned}
\frac{1}{P_{\underline{p}}(\rho, T)} & =1+\left(a T+b T^{2}+\ldots\right)+\left(a T+b T^{2}+\ldots\right)^{2}+\ldots \\
& =1+a_{p} T+a_{p^{2}} T+\ldots
\end{aligned}
$$

for some $a_{\underline{p}^{i}} \in \mathbb{C}$. Formally substituting this to the Euler product gives the Artin L-series for ρ.

$$
\begin{aligned}
L(\rho, s) & =\prod_{\underline{p}}\left(1+a_{\underline{p}} N(\underline{p})^{-s}+a_{\underline{p}} \underline{p}^{s} N(\underline{p})^{-2 s}+\ldots\right) \\
& =\sum_{\underline{n} \text { non-zero ideal of } K} a_{\underline{n}} N(\underline{n})^{-s}
\end{aligned}
$$

for some $a_{\underline{n}} \in \mathbb{C}$. Note that grouping ideals of equal norm yields an expression for $L(\rho, s)$ as an ordinary Dirichlet series.
Lemma 3.14. The L-series expression for $L(\rho, s)$ agrees with the Euler product on $\operatorname{Re}(s)>1$ where they converge absolutely to an analytic function.
Proof. It suffices to prove that $\prod_{\underline{p} \text { prime of } K}\left(1+a_{\underline{p}} N(\underline{p})^{-s}+\ldots\right)$ (as in the previous remark) converges absolutely on $\operatorname{Re}(s)>1$. This justifies rearrangement of the terms, and the expression as an ordinary Dirichlet series for $L(\rho, s)$ then proves analytically (Proposition 3.3). The polynomial $P_{p}(\rho, T)$ factors over \mathbb{C} as $P_{p}(\rho, T)=\left(1-\lambda_{1} T\right)(1-$ $\left.\lambda_{2} T\right) \ldots\left(1-\lambda_{k} T\right)$ for some $k \leq \operatorname{dim} \rho$ with all $\left|\lambda_{i}\right|=1$. So the coefficients of

$$
\begin{aligned}
\frac{1}{P_{\underline{p}}(\rho, T)} & =\frac{1}{\prod\left(1-\lambda_{i} T\right)} \\
& =1+a_{\underline{\underline{p}}} T+a_{\underline{\underline{p}}^{2}} T^{2}+\ldots
\end{aligned}
$$

are bounded in absolute value by those of

$$
\frac{1}{(1-T)^{\operatorname{dim} \rho}}=\left(1+T+T^{2}+\ldots\right)^{\operatorname{dim} \rho}
$$

Hence

$$
\begin{aligned}
\prod_{\underline{p}} \sum_{n}\left|a_{\underline{p}^{n}}\right|\left|N(\underline{p})^{-s}\right| & \leq \prod_{\underline{p}} \frac{1}{\left(1-\left|N(\underline{p})^{-s}\right|\right)^{\operatorname{dim} \rho}} \\
& \leq \prod_{\underline{p}}\left(\frac{1}{1-\left|p^{-s}\right|}\right)^{\operatorname{dim} \rho}(\underline{p} \text { above } p) \\
& =\zeta(\sigma)^{\operatorname{dim}_{\rho}[K: \mathbb{Q}]}
\end{aligned}
$$

where $\sigma=\operatorname{Re}(s)$.

Proposition 3.15. Let F / K be a Galois extension of number fields $\rho a \operatorname{Gal}(F / K)$ representation.

1. If ρ^{\prime} is another $\operatorname{Gal}(F / K)$-representation then $L\left(\rho \oplus \rho^{\prime}, s\right)=L(\rho, s) L\left(\rho^{\prime}, s\right)$
2. If $N \triangleleft \operatorname{Gal}(F / K)$ lies in $\operatorname{ker}(\rho)$ so that ρ comes from a representation $\rho^{\prime \prime}$ of $\operatorname{Gal}\left(F^{N} / K\right)=G / N$ then $L(F / K, \rho, s)=L\left(F^{N} / K, \rho^{\prime \prime}, s\right)$.
3. (Artin Formalisation) If $\rho=\operatorname{Ind}_{H}^{G} \rho^{\prime \prime \prime}$ for a representation of $H \leq G$ then $L(F / K, \rho, s)=L\left(F / F^{H}, \rho^{\prime \prime \prime}, s\right)$

Proof. It suffices to check the statement prime-by-prime for the local polynomials

1. Clear (Note $\left(\rho \oplus \rho^{\prime}\right)^{I_{p}}=\rho^{I_{p}} \oplus \rho^{\prime I_{p}}$)
2. Straight from the definitions using: if $G=\operatorname{Gal}(F / K), N \triangleleft G, \underline{q}$ a prime above \underline{s} in F^{N}, above \underline{p} is K. Then $D_{\underline{s} / \underline{p}}=D_{\underline{q} / \underline{p}} N / N, I_{\underline{s} / \underline{p}}=I_{\underline{q} / \underline{p}} N / N, \operatorname{Frob}_{\underline{q} / \underline{\underline{p}}} N=\operatorname{Frob}_{s} / \underline{p}$ (proof, exercise)
3. This follows from Proposition 2.16: the second formula there show that the number of times $(1-\zeta T)$ in $P_{\underline{p}}(\rho, T)$ and in $\Pi_{\Sigma \text { above } \underline{p}} P_{\underline{\underline{s}}}\left(p^{\prime \prime \prime}, T^{\underline{p}_{\Sigma_{i}} / \underline{p}}\right)$ is the same.

Example. Let $K=\mathbb{Q}, F=\mathbb{Q}\left(\zeta_{N}\right) . G=\operatorname{Gal}(F / K) \cong(\mathbb{Z} / N \mathbb{Z})^{*}$. Then

$$
\begin{aligned}
\zeta_{F}(s) & =L(F / F, \mathbb{I}, s) \\
& =L(F / \mathbb{Q}, \operatorname{IndI}, s) \\
& =\prod_{\chi \in \widehat{G}} L(\chi, s)
\end{aligned}
$$

where \widehat{G} is the set of irreducible representations of G. For general F / \mathbb{Q} would have

$$
\zeta_{F}(s)=\prod_{\rho \in \widehat{G}} L(\rho, s)^{\operatorname{dim} \rho}
$$

3.4 Artin L-series for 1-dimesnional representation

Lemma 3.16. Let $F=\mathbb{Q}\left(\zeta_{N}\right)$ and $\chi: \operatorname{Gal}(F / \mathbb{Q}) \cong(\mathbb{Z} / N \mathbb{Z})^{*} \rightarrow \mathbb{C}^{*}$. Then

$$
L(F / \mathbb{Q}, \chi, s)=L_{N}(\chi, s) \cdot \prod_{p \mid N} \frac{1}{P_{p}\left(\chi, q^{-1}\right)}
$$

Proof. We can compare the Euler factor prime by prime. For $p \mid N$ we have equality as the one for $L_{N}(\chi, s)$ is 1 $(\chi(p)=0)$.

For $p \nmid N, p$ is unramified in $\mathbb{Q}\left(\zeta_{N}\right)$ so $I_{p}=\left\{\operatorname{id\} }\left(\right.\right.$ so $\left.\chi^{I_{p}}=\chi\right)$ and $\operatorname{Frob}_{p}\left(\zeta_{N}\right)=\zeta_{N}^{p} \leftrightarrow p \bmod (\mathbb{Z} / N \mathbb{Z})^{*}$. Thus

$$
\begin{aligned}
P_{p}(\chi, T) & =\operatorname{det}\left(1-\operatorname{Frob}_{p} T \mid \chi^{I_{p}}\right) \\
& =1-\chi\left(\operatorname{Frob}_{p}\right) T \\
& =1-\chi(p) T
\end{aligned}
$$

as required
Remark. When N is minimal, the last term is 1 and $L(\chi, s)=L_{N}(\chi, s)$.
Remark. By the Kroneckar-Weber theorem, every abelian extension of \mathbb{Q} lies inside $\mathbb{Q}\left(\zeta_{N}\right)$ for some N. So if $\rho: \operatorname{Gal}(F / \mathbb{Q}) \rightarrow \mathbb{C}^{*}$ is a 1-dimensional representation then by Proposition 3.15 2. $L(\rho, s)=L\left(\rho^{\prime \prime}, s\right)$ for some $\rho^{\prime \prime}: \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{N}\right) / \mathbb{Q}\right) \rightarrow \mathbb{C}^{*}$ which is then essentially a Dirichlet L-function.

Theorem 3.17. (Hecke (1920)+ some Class Field Theory) Let F / K be a Galois extension of number fields and $\psi: \operatorname{Gal}(F / K) \rightarrow \mathbb{C}^{*}$ a 1-dimensional representation. Then $L(\psi, s)$ has an analytic continuation to \mathbb{C}, except for a simple pole at $s=1$ when $\psi=\mathbb{I}$.

Remark. When $K=\mathbb{Q}$ and $F=\mathbb{Q}\left(\zeta_{N}\right)$ this recovers Theorem 3.8
Proof. Way beyond the scope of this course
Corollary 3.18. If $\psi \neq \mathbb{I}$ then $L(\psi, 1) \neq 0$.
Proof. By Proposition 3.15 2. we may assume F / K is abelian. Then by Proposition 3.15 1. and 3.

$$
\begin{aligned}
\zeta_{F}(s) & =L(F / K, \operatorname{Ind} \mathbb{I}, s) \\
& =\prod_{\chi \in \widehat{G}} L(F / K, \chi, s) \\
& =\zeta_{K}(s) \prod_{\chi \neq \mathbb{I}} L(F / K, \chi, s)
\end{aligned}
$$

As both ζ-functions have a simple pole and the rest are analytic, this implies $L(F / K, \chi, 1) \neq 0$.

