A second course in Algebraic Number Theory

Vlad Dockchitser

Prerequisites:

- Galois Theory
- Representation Theory

Overview:

- 1. Number Fields (Review, $K, \mathcal{O}_K, \mathcal{O}^*, \operatorname{Cl}_K, \operatorname{etc}$)
- 2. Decomposition of primes (how primes behave in field extensions and what does Galois's do)
- 3. L-series (Dirichlet's Theorem on primes in arithmetic progression, Artin L-functions, Cheboterev's density theorem)

1 Number Fields

1.1 Rings of integers

Definition 1.1. A number field is a finite extension of \mathbb{Q}

Definition 1.2. An algebraic integer α is an algebraic number that satisfies a monic polynomial with integer coefficients

Definition 1.3. Let K be a number field. It's ring of integer \mathcal{O}_K consists of the elements of K which are algebraic integers

Proposition 1.4.

- 1. \mathcal{O}_K is a (Noetherian) Ring
- 2. $\operatorname{rk}_{\mathbb{Z}} \mathcal{O}_K = [K : \mathbb{Q}], i.e., \mathcal{O}_K \cong \mathbb{Z}^{[K:\mathbb{Q}]}$ as an abelian group
- 3. Each $\alpha \in K$ can be written as $\alpha = \beta/n$ with $\beta \in \mathcal{O}_K$ and $n \in \mathbb{Z}$

Example.

K	\mathcal{O}_K
Q	\mathbb{Z}
$\mathbb{Q}(\sqrt{a}) \ (a \in \mathbb{Z} \setminus \{0,1\}, a \text{ square free})$	$\begin{cases} \mathbb{Z}[\sqrt{a}] & a \equiv 2,3 \mod 4 \\ \mathbb{Z}[\frac{1+\sqrt{a}}{2}] & a \equiv 1 \mod 4 \end{cases}$
$\mathbb{Q}(\zeta_n)$ where ζ_n is a primitive <i>n</i> th root of unity	$\mathbb{Z}[\zeta_n]$

Proposition 1.5.

1. \mathcal{O}_K is the maximal subring of K which is finitely generated as an abelian group

2. $\mathcal{O}_{\mathcal{K}}$ is integrally closed - if $f \in \mathcal{O}_K[x]$ is monic and $f(\alpha) = 0$ for some $\alpha \in K$, then $\alpha \in \mathcal{O}_K$.

Example (Of Factorisation). \mathbb{Z} is UFD. When factorisation can only get different orders of factors and different signs. The latter come from the <u>units</u> ± 1 in \mathbb{Z} .

 \mathcal{O}_K may not even be a UFD, e.g., $K = \mathbb{Q}(\sqrt{-5}), \mathcal{O}_K = \mathbb{Z}[\sqrt{-5}], 6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}).$ To fix this one works with ideals.

1.2 Units

Definition 1.6. A *unit* in a number field K is an element α of \mathcal{O}_K with $\alpha^{-1} \in \mathcal{O}_K$. The group of units is denoted \mathcal{O}_K^* .

Example.

K	\mathcal{O}_K	\mathcal{O}_K^*
Q	Z	$\{\pm 1\}$
$\mathbb{Q}(i)$	$\mathbb{Z}[i]$	$\{\pm 1,\pm i\}$
$\mathbb{Q}\left(\sqrt{2}\right)$	$\mathbb{Z}[\sqrt{2}]$	$\left\{\pm(1+\sqrt{2})^n:n\in\mathbb{Z}\right\}$

Dirichlet's Unit Theorem. Let K be a number field. Then \mathcal{O}_K^* is finitely generated. More precisely

$$\mathcal{O}_K^* = \Delta \times \mathbb{Z}^{r_1 + r_2 - 1}$$

where Δ is the (finite) group of roots of unity in K, r_1 is the number of distinct embeddings of K into \mathbb{R} , r_2 the number of pairs of complex conjugates K into \mathbb{C} with image not in \mathbb{R} . (Hence $r_1 + 2r_2 = [K : \mathbb{Q}]$)

Corollary. The only number fields with finitely many units are \mathbb{Q} and $\mathbb{Q}(\sqrt{-D})$ for D > 0 integer.

1.3 Ideals

Example. $K = \mathbb{Q}$, $\mathcal{O}_K = \mathbb{Z}$, $\underline{a} = (17)$ =all multiples of 17. So $\alpha \in \underline{a}$ if and only if $\alpha = 17n$ for some $n \in \mathbb{Z}$. Multiplication: (3) \cdot (17) = (51).

Unique factorisation of ideals. Let K be a number field. Every non-zero ideals of \mathcal{O}_K admits a factorisation into prime ideals. This factorisation is unique up to order.

Definition 1.7. Let $\underline{a}, \underline{b} \triangleleft \mathcal{O}_K$ be two ideals. Then \underline{a} divides \underline{b} (written $\underline{a}|\underline{b}$) if $\underline{a} \cdot c = \underline{b}$ for some ideal \underline{c} . (Equivalently if in the prime factorisation, $\underline{a} = p_1^{n_1} \cdots p_k^{n_k}, \underline{b} = p_1^{m_1} \cdots p_k^{m_k}$ we have $n_i \leq m_i$ for all i)

Remark.

- 1. For $\alpha, \beta \in \mathcal{O}_K$, $(\alpha) = (\beta)$ if and only if $\alpha = \beta u$ for some $u \in \mathcal{O}_K^*$.
- 2. For ideals $\underline{a}, \underline{b}$ then $\underline{a}|\underline{b}$ if and only $\underline{a} \supseteq \underline{b}$.
- 3. To multiply ideals, just multiply their generators, e.g. $(2) \cdot (3) = (6), (2, 1 + \sqrt{-5}) \cdot (2, 1 \sqrt{-5}) = (4, 2 + 2\sqrt{-5}, 2 2\sqrt{-5}, 6) = (2)$
- 4. To add ideals, combine their generators, e.g., $(2) + (3) = (2,3) = (1) = \mathcal{O}_K$.

Lemma 1.8. $\underline{a}, \underline{b} \triangleleft \mathcal{O}_K, \underline{a} = \prod_i p_i^{n_i}, \underline{b} = \prod_i p_i^{m_i} \text{ with } n_i, m_i \geq 0 \text{ and } p_i \text{ prime ideals. Then}$

- 1. $\underline{a} \cap \underline{b} = \prod_{i} p_{i}^{\max(n_{i}, m_{i})}$ (lowest common multiple)
- 2. $\underline{a} + \underline{b} = \prod_{i} p_{i}^{\min(n_{i}, m_{i})}$ (greatest common divisor)

Lemma 1.9. Let $\alpha \in \mathcal{O}_K \setminus \{0\}$. Then there exists $\beta \in \mathcal{O}_K \setminus \{0\}$ such that $\alpha\beta \in \mathbb{Z} \setminus \{0\}$.

Proof. Let $X^n + a_{n-1}X^{n-1} + \dots + a_1X + a_0$ (with $a_i \in \mathbb{Z}$) be the minimal polynomial of α . Then $\alpha^n + a_{n-1}\alpha^{n-1} + \dots + \alpha_1\alpha = -a_0 \in \mathbb{Z}$, so take $\beta = \alpha^{n-1} + a_{n-1}\alpha^{n-2} + \dots + a_1$.

Corollary 1.10. If $\underline{a} \triangleleft \mathcal{O}_K$ is a non-zero ideal, then $[\mathcal{O}_K : \underline{a}]$ is finite.

Proof. Pick $\alpha \in \underline{a} \setminus \{0\}$ and $\beta \in \mathcal{O}_K$ with $N = \alpha \beta \in \mathbb{Z} \setminus \{0\}$. Then $N \in \underline{a}$ and $[\mathcal{O}_K : \underline{a}] \leq [\mathcal{O}_K : (\alpha)] \leq [\mathcal{O}_K : (N)] = [\mathcal{O}_K : N\mathcal{O}_K] = |N|^{[K:\mathbb{Q}]}$ (By Proposition 1.4)

Definition 1.11. The norm of a non-zero ideal $\underline{a} \triangleleft \mathcal{O}_K$ is $N(\underline{a}) = [\mathcal{O}_K : \underline{a}].$

Lemma 1.12. Let $\alpha \in \mathcal{O}_K \setminus \{0\}$, then $|N_{K/\mathbb{Q}}(\alpha)| = N((\alpha))$

Proof. Let v_1, \ldots, v_n be a \mathbb{Z} -basis for \mathcal{O}_K and $T_\alpha: K \to K$ for the \mathbb{Q} -linear map $T_\alpha(v) = \alpha v$. Then

$$|N_{K/\mathbb{Q}}(\alpha)| = |\det T_{\alpha}|$$

= $[\langle v_1, \dots, v_n \rangle : \langle \alpha v_1, \dots, \alpha v_n \rangle]$
= $[\mathcal{O}_K : (\alpha)]$
= $N((\alpha))$

1.4 Ideal Class Group

Let K be a number field. We can define an equivalence relation on non-zero ideals of \mathcal{O}_K by $\underline{a} \sim \underline{b}$ if and only if there exists $\lambda \in K^*$ such that $\underline{a} = \lambda \underline{b}$. The *ideal class group* of K denoted Cl_K , is the set of classes {non-zero ideals}/ \sim . It is a group, the group structure coming from multiplication of ideals. The identity is {principal ideals} and \mathcal{O}_K . Note that PID if and only if $\operatorname{Cl}_K = 1$ if and only if UFD

Theorem 1.13. Cl_K is finite

1.5 Primes and Modular Arithmetic

Definition 1.14. A prime p in a number field K is a non-zero prime ideal in \mathcal{O}_K

Its residue field is $\mathcal{O}_K/p = \mathbb{F}_p$.

Its residue characteristic, p, is the characteristic of \mathcal{O}_K/p .

Its (absolute) residue degree is $f_p = \left[\mathcal{O}_K/\underline{p}: \mathbb{F}_p\right]$.

Lemma 1.15. The residue field of a prime is indeed a finite field.

Proof. Let \underline{p} be a prime, then $\mathcal{O}_K/\underline{p}$ is an integral domain. Furthermore $|\mathcal{O}_K/\underline{p}| = [\mathcal{O}_K : \underline{p}] = N(\underline{p})$ which is finite by Corollary 1.10. Hence $\mathcal{O}_K/\underline{p}$ is a field.

Note. The size of the residue field is N(p)

Example. Let $K = \mathbb{Q}$ then $O_K = \mathbb{Z}$. Let p = (17), then the residue field $\mathcal{O}_K/p = \mathbb{Z}/(17) = \mathbb{F}_{17}$.

Let $K = \mathbb{Q}(i)$ then $\mathcal{O}_K = \mathbb{Z}[i]$. Let $\underline{p} = \overline{(2+i)}$, then $\mathcal{O}_K/\underline{p} = \mathbb{F}_5$ and its representatives can be $\{0, 1, 1+i, 2i, 2i+1\}$. Let $\underline{p} = (3)$, then $\mathcal{O}_K/\underline{p} = \mathbb{F}_9$ (= " $\overline{\mathbb{F}}_3[i]$ ")

Let $K = \mathbb{Q}(\sqrt{d})$ where $d \equiv 2, 3 \mod 4$, so $\mathcal{O}_K = \mathbb{Z}\left[\sqrt{d}\right]$. Let \underline{p} be a prime with residue characteristic p, then

 $\mathcal{O}_K/\underline{p}$ is generated by \mathbb{F}_p and the image of \sqrt{d} . Thus $\mathcal{O}_K/\underline{p} = \mathbb{F}_p\left[\sqrt{d}\right] = \begin{cases} \mathbb{F}_p & \text{if } d \text{ a square mod } p \\ \mathbb{F}_{p^2} & \text{else} \end{cases}$

Notation. If $\underline{a} \triangleleft \mathcal{O}_K$ is a non-zero ideal, we say that $x \equiv y \mod \underline{a}$ if $x - y \in \underline{a}$.

Theorem 1.16 (Chinese Remainder Theorem). Let K be a number field and p_1, \ldots, p_k be distinct primes. Then

$$\mathcal{O}_K / \left(\underline{p}_1^{n_1} \dots \underline{p}_k^{n_k} \right) \to \mathcal{O}_K / \underline{p}_1^{n_1} \times \dots \times \mathcal{O}_K / \underline{p}_k^{n_k}$$

via $x \mod \underline{p}_1^{n_1} \dots \underline{p}_k^{n_k} \mapsto \left(x \mod \underline{p}_1^{n_1}, \dots, x \mod \underline{p}_k^{n_k} \right)$ is a ring isomorphism.

Proof. Let $\psi : \mathcal{O}_K \to \mathcal{O}_K / \underline{p}_1^{n_1} \times \cdots \times \mathcal{O}_K / \underline{p}_k^{n_k}$ by $x \mapsto \left(x \mod \underline{p}_1^{n_1}, \ldots, x \mod \underline{p}_k^{n_k}\right)$. This is a ring homomorphism with ker $\psi = \bigcap_{i=1}^k p_i^{n_i} = \prod_{i=1}^k p_i^{n_i}$ (by Lemma 1.8).

with $\ker \psi = \bigcap_{i=1}^{k} \underline{p}_{i}^{n_{i}} = \prod_{i=1}^{k} \underline{p}_{i}^{n_{i}}$ (by Lemma 1.8). So it remains to prove that ψ is surjective, so that we can apply the first isomorphism theorem. By Lemma 1.8, $\underline{p}_{j}^{n_{j}} + \prod_{i \neq j} \underline{p}_{i}^{n_{i}} = \mathcal{O}_{K}$, so there $\alpha \in \underline{p}_{j}^{n_{j}}$ and $\beta \in \prod_{i \neq j} \underline{p}_{i}^{n_{i}}$ such that $\alpha + \beta = 1$, now $\beta \equiv 0 \mod \underline{p}_{i}^{n_{i}}$ for all $i \neq j$ and $\beta \equiv 1 \mod \underline{p}_{j}^{n_{j}}$. So $\operatorname{im} \psi \ni \psi(\beta) = (0, 0, \dots, 0, 1, 0, \dots, 0)$. This is true for all j, hence ψ is surjective. *Remark.* CRT implies that we can solve any system of congruences, i.e., $x \equiv a_i \mod \underline{p}_i^{n_i}$ for $1 \leq i \leq k$. (This is called the Weak Approximation Theorem)

Lemma 1.17. Let $p \triangleleft \mathcal{O}_K$ be prime

1.
$$|\mathcal{O}_K/\underline{p}^n| = N(\underline{p})^n$$

2. $\underline{p}^n/\underline{p}^{n+1} = \mathcal{O}_K/\underline{p}$ as \mathcal{O}_K -module

Proof. 2. implies 1. as

$$\begin{aligned} \left| \mathcal{O}_K / \underline{p}^n \right| &= \left| \mathcal{O}_K / \underline{p} \right| \cdot \left| \underline{p} / \underline{p}^2 \right| \cdots \left| \underline{p}^n / \underline{p}^{n+1} \right| \\ &= N(p)^n \end{aligned}$$

2.) By unique factorisation $\underline{p}^n \neq \underline{p}^{n+1}$, so pick $\pi \in \underline{p}^n \setminus \underline{p}^{n+1}$. Thus $\underline{p}^n \mid (\pi)$ and $\underline{p}^{n+1} \nmid (\pi)$. So $(\pi) = \underline{p}^n \cdot \underline{a}$ with $\underline{p} \nmid \underline{a}$. So define $\phi : \mathcal{O}_K \to \mathcal{O}_K / \underline{p}^{n+1}$ by $\phi(x) = \pi x \mod \underline{p}^{n+1}$, an \mathcal{O}_K -map. Note that ker $\phi = \{x : \underline{p}^{n+1} \mid (\pi x)\} = \underline{p}$ and im $\phi = (\pi) + \underline{p}^{n+1} \mod \underline{p}^{n+1} = \underline{p}^n \mod \underline{p}^{n+1}$ (by Lemma 1.8). Hence $\mathcal{O}_K / \underline{p} \stackrel{\cong}{\to} \underline{p}^n / \underline{p}^{n+1}$.

Corollary 1.18. $N(\underline{ab}) = N(\underline{a})N(\underline{b}).$

Proof. Use Theorem 1.16 and Lemma 1.17.

Lemma 1.19. $N(\underline{a}) \in \underline{a}$

Proof. $N(\underline{a})$ is zero in any abelian group of order $N(\underline{a})$, in particular in $\mathcal{O}_K/\underline{a}$.

1.6 Enlarging the field

Example. Consider $\mathbb{Q}(i)/\mathbb{Q}$. Take primes in \mathbb{Q} and factorise them in $\mathbb{Q}(i)$.

- $(2) = (1+i)^2$
- (3) remains prime
- (5) = (2+i)(2-i)

We only see those three properties/behaviour in $\mathbb{Q}(i)$, so we say

- \bullet "2 ramifies"
- "3 is inert"
- "5 splits"

Note that \underline{p} (prime of $\mathbb{Q}(i)$) contains $p = \operatorname{char}\mathbb{Z}[i]/\underline{p}$, so $\underline{p}|(p)$. Thus factorising 2, 3, 5, 7, ... will yield all the primes of $\mathbb{Z}[i]$.

Definition 1.20. Let L/K be an extension of number fields and $\underline{a} \triangleleft \mathcal{O}_K$ an ideal. Then the *conorm* of \underline{a} is the ideal $\underline{a}\mathcal{O}_L$ of \mathcal{O}_L . I.e., the ideal generated by the elements of \underline{a} in \mathcal{O}_L . Equivalently, if $\underline{a} = (\alpha_1, \ldots, \alpha_n)$ as an \mathcal{O}_K -ideal, then $\underline{a}\mathcal{O}_L = (\alpha_1, \ldots, \alpha_n)$ as an \mathcal{O}_L -ideal.

Note. $(\underline{a}\mathcal{O}_L)(\underline{b}\mathcal{O}_L) = (\underline{a}\underline{b})\mathcal{O}_L$ $(\underline{a}\mathcal{O}_M) = (\underline{a}\mathcal{O}_L)\mathcal{O}_M$ when $K \le L \le M$

<u>Warning</u>: Sometimes write \underline{a} for $\underline{a}\mathcal{O}_L$.

Proposition 1.21. Let L/K be an extension of number fields and $\underline{a} \in \mathcal{O}_K$ a non-zero ideal. Then $N(\underline{a}\mathcal{O}_L) = N(\underline{a})^{[L:K]}$.

Proof. If $\underline{a} = (\alpha)$ is principal, then by Lemma 1.12, we get

$$N(\underline{a}\mathcal{O}_L) = |N_{L/\mathbb{Q}}(\alpha)|$$

= $|N_{K/\mathbb{Q}}(\alpha)|^{[L:K]}$
= $|N(\underline{a})|^{[L:K]}$

In general, as Cl_K is finite, $\underline{a}^k = (\alpha)$ for some $k \ge 1$. Hence

$$N(\underline{a}\mathcal{O}_L)^k = N(\underline{a}^k\mathcal{O}_L)$$
$$= N(\underline{a}^k)^{[L:K]}$$
$$= N(\underline{a})^{k[L:K]}$$

Hence $N(\underline{a}\mathcal{O}_L) = N(\underline{a})^{[L:K]}$.

Definition 1.22. A prime q of L lies above a prime of K if $q|p\mathcal{O}_L$. (Equivalently if $q \supseteq p$ as sets)

Lemma 1.23. Let L/K be a number field. Every prime of L lies above a unique prime of K. In fact \underline{q} lies above $q \cap \mathcal{O}_K = p$.

Proof. $\underline{q} \cap \mathcal{O}_K$ is a prime ideal of \mathcal{O}_K and is non-zero as it contains $N(\underline{q})$. So \underline{q} lies above $\underline{p} = \underline{q} \cap \mathcal{O}_K$. If q also lies above p' then $q \supseteq p + p' = \mathcal{O}_K \ni \{1\}$, which is a contradiction.

Lemma 1.24. Suppose $\underline{q} \triangleleft \mathcal{O}_L$ lies above $\underline{p} \triangleleft \mathcal{O}_K$ (primes). Then $\mathcal{O}_L/\underline{q}$ is a field extension of $\mathcal{O}_K/\underline{p}$ with $\phi : \mathcal{O}_K/\underline{p} \hookrightarrow \mathcal{O}_L/\underline{q}$ given by $\phi(x \mod \underline{p}) = x \mod \underline{q}$.

Proof. ϕ is well-define as $\underline{q} \supseteq \underline{p}$ and is a ring homomorphism, so has no kernel as $\mathcal{O}_K/\underline{p}$ is a field. Hence ϕ is an embedding $\mathcal{O}_K/\underline{p} \hookrightarrow \mathcal{O}_L/\underline{q}$ \Box

Definition 1.25. If \underline{q} lies above \underline{p} then its residue degree is $f_{q/p} = [\mathcal{O}_L/\underline{q} : \mathcal{O}_K/\underline{p}].$

Its ramification degree is the exponent, $e_{\underline{q}/\underline{p}}$, in the prime factorisations $\underline{p}\mathcal{O}_L = \prod_{i=1}^n \underline{q}_i^{e_{\underline{q}_i/\underline{p}}}$.

Theorem 1.26. Let L/K be an extension of number fields, p a prime of K.

1. If $\underline{p}\mathcal{O}_L$ decomposes as $\underline{p}\mathcal{O}_L = \prod_{i=1}^m \underline{q}_i^{e_i}$ (with \underline{q}_i distinct and $e_i = e_{\underline{q}_i/\underline{p}}$). Then $\sum_{i=1}^m e_{\underline{q}_i/\underline{p}} f_{\underline{q}_i/\underline{p}} = [L:K]$.

2. If M/L is a further extension, \underline{r} lies above \underline{q} , which lies above \underline{p} , then $e_{\underline{r}/\underline{p}} = e_{\underline{r}/\underline{q}}e_{\underline{q}/\underline{p}}$ and $f_{\underline{r}/\underline{p}} = f_{\underline{r}/\underline{q}}f_{\underline{q}/\underline{p}}$. Proof.

1.

$$N(\underline{p})^{[L:K]} = N(\underline{p}\mathcal{O}_L)$$

= $N(\prod_i \underline{q}_i^{e_i})$
= $\prod_i N(\underline{q}_i)^{e_i}$
= $\prod_i N(\underline{p})^{f_i e_i}$
= $N(p)^{\sum e_i f_i}$

2. Multiplicativity for e is trivial.

For f just apply the Tower law

Definition 1.27. Let L/K be extensions of number fields, \underline{p} a prime of K with $\underline{p}\mathcal{O}_L = \prod_{i=1}^m \underline{q}_i^{e_i}$ (\underline{q}_i distinct). Then:

- p splits completely in L if m = [L:K], i.e., $e_i = f_i = 1$
- p splits in L if m > 1
- p is totally ramified if m = f = 1, e = [L:K]

We'll see that when L/K is Galois, then $e_j = e_i$ and $f_i = f_j$ for all i, j. Then we say \underline{p} is ramified if $e_1 > 1$ and unramified if $e_1 = 1$.

Pseudo-example Let $F = \mathbb{Q}(i)/\mathbb{Q}$, $\mathcal{O}_F = \mathbb{Z}[i]$, and $f(X) = X^2 + 1$ Observe:

 $(2) = (i+1)^2 X^2 + 1 = (X+1)^2 \mod 2$

 $(5) = (i+2)(i-2) X^2 + 1 = (X+2)(X-2) \mod 5$

(3) prime $X^2 + 1 \mod 3$ is irreducible

Theorem 1.28 (Kummer - Dedekind). Let L/K be an extension of number fields. Suppose $\mathcal{O}_K[\alpha] \leq \mathcal{O}_L$ has finite index N, for some $\alpha \in \mathcal{O}_L$ with minimal polynomial $f(X) \in \mathcal{O}_K[X]$. Let \underline{p} be a prime of K not dividing N (equivalently char $\mathcal{O}_K/\underline{p} \nmid N$).

If

$$f(X) \mod \underline{p} = \prod_{i=1}^{m} \overline{g}_i(X)^{e_i}$$

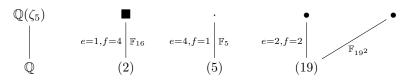
where g_i are distinct irreducible, then

$$\underline{p}\mathcal{O}_L = \prod_{i=1}^m \underline{q}_i^{e_i}$$

with $\underline{q}_i = \underline{p}\mathcal{O}_L + g_i(\alpha)\mathcal{O}_L$, where $\underline{g}_i(\alpha) \in \mathcal{O}_K[\alpha]$ satisfy $\overline{g}_i(x) = g_i(x) \mod \underline{p}$. The \underline{q}_i are distinct primes of L with $e_{q_i/p} = e_i$ and $f_{q_i/p} = \deg \overline{g}_i(X)$.

Example. Let $K = \mathbb{Q}$, $L = \mathbb{Q}(\zeta_5)$, $\mathcal{O}_L = \mathbb{Z}[\zeta_5]$. Take $\alpha = \zeta_5$, so N = 1 and $f(X) = X^4 + X^3 + X^2 + X + 1$. Now $f(X) \mod 2$ is irreducible, hence (2) is prime in \mathcal{O}_L . $f(X) = (X - 1)^4 \mod 5$, hence $(5) = (5, \zeta_5 - 1)^5$

 $f(X) = (X^2 + 5X + 1)(X^2 - 4X + 1) \mod 19, \text{ hence } (19) = (19, \zeta_5^2 + 5\zeta_5 + 1)(19, \zeta_5^2 - 4\zeta_5 + 1).$



Proof of Theorem 1.28.

Claim. 1: \underline{q}_i are primes with $f_{\underline{q}_i/\underline{p}} = \deg \overline{q}_i$

Set $A = \mathcal{O}_K[\alpha]$, $\mathbb{F} = \mathcal{O}_K/p$, $p = \text{char}\mathbb{F}$. Use the map $x \mapsto \alpha$ to define a map

$$\begin{array}{rcl} A/\underline{p}A + g_i(\alpha)A & \leftarrow & \mathcal{O}_K[x]/(f(x),\underline{p},\underline{g}_i(x)) \\ & \cong & \mathbb{F}[x]/(\overline{f}(x),\overline{g}_i(x)) \\ & \cong & \mathbb{F}[x]/(\overline{g}_i(x)) \end{array}$$

a field of degree $f_i = \deg \overline{g}_i$ over \mathbb{F} , as \overline{g}_i is irreducible

Now pick $M \in \mathbb{Z}$ such that $NM \equiv 1 \mod p$ and consider $\phi : A/pA + g_i(\alpha)A \to \mathcal{O}_L/\underline{q}_i$ defined by $\phi(x) \mod (\underline{p}A + g_i(\alpha)A) \to x \mod \underline{q}_i$, it is well defined as $\underline{q}_i \supseteq \underline{p}A + g_i(\alpha)\overline{A}$. It is surjective since: if $x \in \mathcal{O}_L$ then $Nx \in \overline{A}$ and $M(Nx) = MNx \mod \underline{q}_i = x \mod \underline{q}_i$ (since $MN \equiv 1 \mod \underline{q}_i$). Now $\mathcal{O}_L/\underline{q}_i$ is non-zero: otherwise $1 \in \underline{p}\mathcal{O}_L + g_i(\alpha)\mathcal{O}_L$, so both \underline{p} and $\overline{MN} \in \underline{p}A + g_i(\alpha)A$, hence $1 \in \underline{p}A + g_i(\alpha)A$ a contradiction as this is a proper ideal of A. Therefore $\mathcal{O}_L/\underline{q}_i$ is a field (hence \underline{q}_i is prime) with degree f_i over \mathbb{F} .

Claim. 2: $\underline{q}_i \neq \underline{q}_j$ for $i \neq j$ As $gcd(\overline{g}_i(x), \overline{g}_j(x)) = 1$ can find $\lambda(x), \mu(x) \in \mathcal{O}_K[x]$ such that

As $\operatorname{gcd}(\overline{g}_i(x), \overline{g}_j(x)) = 1$ can find $\lambda(x), \mu(x) \in \mathcal{O}_K[x]$ such that $\lambda(x)g_i(x) + \mu(x)g_j(x) = 1 \mod \underline{p}$. Then $\underline{q}_i + \underline{q}_j$ contains both \underline{p} and $\lambda(\alpha)g_i(\alpha) + \mu(\alpha)g_j(\alpha) = 1 \mod \underline{p}$, hence $\underline{q}_i + \underline{q}_j = \mathcal{O}_L$

Claim. $\underline{p}\mathcal{O}_L = \prod_i \underline{q}_i^{e_i}$

$$\prod_{i} \underline{q}_{i}^{e_{i}} = \prod_{i} (\underline{p}\mathcal{O}_{L} + g_{i}(\alpha)\mathcal{O}_{L})$$
$$\subseteq \underline{p}\mathcal{O}_{L} + \prod g_{i}(\alpha)^{e_{i}}\mathcal{O}_{L}$$
$$= p\mathcal{O}_{L}$$

as $\prod g_i(\alpha)^{e_i} \equiv f(\alpha) \equiv 0 \mod p$. But

$$N(\prod_{i=1}^{m} \underline{q}_{i}^{e_{i}}) = \prod_{i} |\mathbb{F}|^{e_{i}f_{i}}$$
$$= |\mathbb{F}|^{\deg f(x)}$$
$$= |\mathbb{F}|^{[L:K]}$$
$$= N(\underline{p}\mathcal{O}_{L})$$

Example. Let $K = \mathbb{Q}$, $L = \mathbb{Q}(\zeta_{p^n})$, p prime, $\mathcal{O}_L = \mathbb{Z}[\zeta_{p^n}]$ and $\alpha = \zeta_{p^n}$. Then N = 1, $f(X) = \frac{X^{p^n} - 1}{X^{p^{n-1}} - 1}$. Now $f(X) = (X-1)^{p^n - p^{n-1}} \mod p$, hence (p) is totally ramified in $\mathbb{Q}(\zeta_{p^n})/\mathbb{Q}$. If $q \neq p$ is also prime, then, working $\mod q$, $\gcd(X^{p^n} - 1, \frac{d}{dx}(X^{p^n} - 1)) = 1$, hence $X^{p^n} - 1$ has no repeated

If $q \neq p$ is also prime, then, working $\mod q$, $\gcd(X^{p^n} - 1, \frac{d}{dx}(X^{p^n} - 1)) = 1$, hence $X^{p^n} - 1$ has no repeated roots in $\overline{\mathbb{F}}_q$. In particular, $f(X) \mod q$ has no repeated factors, so all e_i are 1, i.e., q is unramified in $\mathbb{Q}(\zeta_{p^n})/\mathbb{Q}$.

Remark. Can't always find α such that $\mathcal{O}_L = \mathcal{O}_K[\alpha]$. But by Primitive Element Theorem, there exists α such that $[\mathcal{O}_L : \mathcal{O}_K[\alpha]] < \infty$, so can decompose almost all primes.

Proposition 1.29. Let L/\mathbb{Q} be a finite extension, $\alpha \in \mathcal{O}_L$ with $L = \mathbb{Q}(\alpha)$ and minimal polynomial $f(X) \in \mathbb{Z}[X]$. If $f(X) \mod p$ has distinct roots in $\overline{\mathbb{F}}_p$ (equivalently $p \nmid \operatorname{disc} f$) then $[\mathcal{O}_L : \mathbb{Z}[\alpha])$ is coprime to p (so Kummer -Dedekind applies)

Proof. Let β_1, \ldots, β_n be a \mathbb{Z} -basis for \mathcal{O}_L so

$$\begin{pmatrix} 1\\ \alpha_1\\ \vdots\\ \alpha^{n-1} \end{pmatrix} = M \begin{pmatrix} \beta_1\\ \beta_2\\ \vdots\\ \beta_n \end{pmatrix}$$

for some $M \in \operatorname{Mat}_{n \times n}(\mathbb{Z})$ with $|\det M| = [\mathcal{O}_L : \mathbb{Z}[\alpha]].$

Let F be a splitting field for f(X). Write $\sigma_1, \ldots, \sigma_n$ for the embeddings of $L \hookrightarrow F$ and $\alpha_i = \sigma(\alpha)$ for the roots of f(x). Then

$$p \nmid \operatorname{disc}(f) = \prod_{i < j} (\alpha_i - \alpha_j)^2$$

$$= \begin{vmatrix} 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_n \\ \alpha_1^2 & \alpha_2^{n-1} & \alpha_n^2 \\ \vdots & \vdots & \vdots \\ \alpha_1^{n-1} & \alpha_2^{n-1} & \cdots & \alpha_n^{n-2} \end{vmatrix}^2$$

$$= \det \left(M \begin{pmatrix} \sigma_1(\beta_1) & \cdots & \sigma_n(\beta_1) \\ \vdots & \vdots \\ \sigma_1(\beta_n) & \cdots & \sigma_n(\beta_n) \end{pmatrix} \right)^2$$

$$= [\mathcal{O}_L : \mathbb{Z}[\alpha]] \cdot B$$

for some $B \in \mathcal{O}_F \setminus \{0\}$, hence $p \nmid [\mathcal{O}_L : \mathbb{Z}[\alpha]]$.

Proposition 1.30. Let L/K be a finite extension of number fields, \underline{p} a prime of K. Suppose $L = K(\alpha)$ for some $\alpha \in \mathcal{O}_L$ satisfying an Eisenstein minimal polynomial with respect to \overline{p} , i.e.,

$$f(X) = X^{n} + a_{n-1}X^{n-1} + \dots + a_{1}X + a_{0}$$

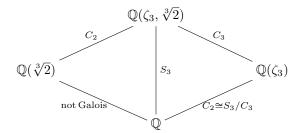
with $\underline{p}|(a_i)$ and $\underline{p}^2 \nmid (a_0)$. Then \underline{p} is totally ramified in L/KProof. Omitted

2 Decomposition of primes

2.1 Action of the Galois group

Let F/K be a Galois extension of number fields:

- $\operatorname{Gal}(F/K) = \operatorname{Aut}(F/K).$
- F/K is normal (is $f(X) \in K[X]$ is irreducible and acquire a root in F then f splits completely)
- $|\operatorname{Gal}(F/K)| = [F:K]$
- $H < \operatorname{Gal}(F/K) \to F^H$, $\operatorname{Gal}(F/L) \leftarrow K \le L \le F$ a 1-1 correspondence



Lemma 2.1. Let $g \in \operatorname{Gal}(F/K)$:

1. $\alpha \in \mathcal{O}_L$ then $g\alpha \in \mathcal{O}_F$

- 2. $\underline{a} \in \mathcal{O}_F$ is an ideal, then $g(\underline{a}) \triangleleft \mathcal{O}_F$ ideal
- Let <u>a</u>, <u>b</u> ⊲ O_F be ideals, then g(<u>a</u> · <u>b</u>) = g(<u>a</u>)g(<u>b</u>), g(<u>a</u> + <u>b</u>) = g(<u>a</u>) + g(<u>b</u>).
 If q is a prime of F above p, a prime of K, then
- 4. g(q) is a prime of F above p (so Gal(F/K) permutes the primes above p)

5.
$$e_{\underline{q}/\underline{p}} = e_{g(\underline{q})/\underline{p}}$$
 and $f_{\underline{q}/\underline{p}} = f_{g(\underline{q})/\underline{p}}$

Proof. Clear

Example. Let $K = \mathbb{Q}$, $F = \mathbb{Q}(i)$, then $\mathcal{O}_F = \mathbb{Z}[i]$ and $\operatorname{Gal}(F/K) = C_2 = \{\operatorname{id}, \operatorname{complex conjugation}\}.$

Consider (1 + i), it is fixed by $\operatorname{Gal}(F/K)$. (3) is also fixed by $\operatorname{Gal}(F/K)$. But (2 + i) and (2 - i) are swapped by $\operatorname{Gal}(F/K)$.

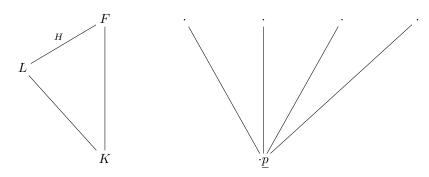
Theorem 2.2. Let F/K be a Galois extension of number fields, let \underline{p} be a prime of K. Then Gal(F/K) act transitively on the primes of F above p.

Proof. Let $\underline{q}_1, \ldots, \underline{q}_n$ be the primes above \underline{p} . We need to show that there exists $g \in \operatorname{Gal}(F/K)$ such that $g(\underline{q}_1) = \underline{q}_2$. Pick $x \in \mathcal{O}_F$ such that $x \equiv 0 \mod q_1$ but $x \not\equiv 0 \mod q_i$ for all $i \neq 1$. This is possible by the Chinese Remainder Theorem (Theorem 1.16). Then $\prod_{h \in \operatorname{Gal}(F/K)} h(x) \in \underline{q}_1 \cap \mathcal{O}_K = \underline{p} \subseteq \underline{q}_2$. So for some $g, g(x) \equiv 0 \mod \underline{q}_2$, hence $x \equiv 0 \mod g^{-1}(\underline{q}_2)$. Therefore $g^{-1}(\underline{q}_2) = \underline{q}_1$ by choice of \underline{x} . I.e., $\underline{q}_2 = g(\underline{q}_1)$.

Corollary 2.3. Let F/K be a Galois extension. If $\underline{q}_1, \underline{q}_2$ lie above \underline{p} , then $e_{\underline{q}_1/\underline{p}} = e_{\underline{q}_2/\underline{p}}$ and $f_{\underline{q}_1/\underline{p}} = f_{\underline{q}_2/\underline{p}}$.

Hence we can write e_p and f_p in the case of Galois extensions

Example. Suppose $\operatorname{Gal}(F/K) = S_4$ and \underline{p} splits into $\underline{q}_1, \underline{q}_2, \underline{q}_3, \underline{q}_4$ in F, with the usual action of S_4 on 4 elements



Say $H = \{ \mathrm{id}, (12)(34) \} \cong C_2, L = F^H$. *H*-orbits of $\{\underline{q}_1, \dots, \underline{q}_4\}$ are $\{\underline{q}_1, \underline{q}_2\}$ and $\{\underline{q}_3, \underline{q}_4\}$, so there exists 2 primes $\underline{r}_1, \underline{r}_2$ in *L* above \underline{p} . (\underline{r}_1 splits into \underline{q}_1 and \underline{q}_2 in *F* and \underline{r}_2 splits into \underline{q}_3 and \underline{q}_4)

2.2 Decomposition Group

Notation. If p is prime of K, write $\mathbb{F}_p = \mathcal{O}_K/p$.

Definition 2.4. Let F/K be a Galois extension of number fields, \underline{q} a prime of F above \underline{p} , a prime of K. The decomposition group $D_{\underline{q}} = D_{\underline{q}/\underline{p}}$ of \underline{q} (over \underline{p}) is $D_{\underline{q}/\underline{p}} = \operatorname{Stab}_{\operatorname{Gal}(F/K)}(\underline{q})$

Remark. $g \in D_q$ fixes \underline{q} so it acts on \mathbb{F}_q by $x \mod \underline{q} \mapsto g(x) \mod \underline{q}$. This gives a natural map $D_q \to \operatorname{Gal}(\mathbb{F}_q/\mathbb{F}_p)$

Example. Let $K = \mathbb{Q}$, $F = \mathbb{Q}(i)$. Let p = 3 and q = (3), complex conjugations fixes \underline{q} and acts as $a + bi \mod (3) \mapsto a - bi \mod 3 = (a + bi)^3 \mod 3$. I.e., exactly as the frobenius automorphism $x \to x^3$ on \mathbb{F}_q .

Theorem 2.5. Let F/K be a Galois extension of number fields, \underline{q} a prime of F above \underline{p} , a prime of K. Then the natural map $D_q \to \operatorname{Gal}(\mathbb{F}_q/\mathbb{F}_p)$ is surjective.

Proof. Pick $\beta \in \mathbb{F}_{\underline{q}}$ such that $\mathbb{F}_{\underline{p}}(\beta) = \mathbb{F}_{\underline{q}}$. Let $f(x) \in \mathbb{F}_{\underline{p}}[x]$ be its minimal polynomial and $\beta = \beta_1, \beta_2, \ldots, \beta_n \in \mathbb{F}_{\underline{q}}$ be its roots (in $\mathbb{F}_{\underline{q}}$ as $\mathbb{F}_{\underline{q}}/\mathbb{F}_{\underline{p}}$ is Galois). Since $g(\beta)$ determines $g \in \text{Gal}(\mathbb{F}_{\underline{q}}/\mathbb{F}_{\underline{p}})$ so is suffices to prove that there exists $g \in D_q$ with $g(\beta) = g(\beta_2)$.

Pick $\alpha \in \mathcal{O}_K$ with $\alpha \equiv \beta \mod \underline{q}$ and $\alpha \equiv 0 \mod \underline{q'}$ for all other primes $\underline{q'}$ above \underline{p} (possible by CRT Theorem 1.16). Let $F(X) \in \mathcal{O}_K[X]$ be its minimal polynomial over K, and $\alpha = \alpha_1, \alpha_2, \ldots, \alpha_m \in \mathcal{O}_F$ be its roots (in F as F/K is Galois). $F(X) \mod \underline{q}$ has β as a root, hence f(x) divides $F(X) \mod \underline{q}$, hence β_2 also is a root of $F(X) \mod \underline{q}$. Without loss of generality $\alpha_2 \mod \underline{q} = \beta_2$. Take $g \in \text{Gal}(F/K)$ with $g(\alpha) = \alpha_2$. Then $g(\alpha) \neq 0 \mod \underline{q}$, hence $g(\underline{q}) = \underline{q}$ so $g \in D_q$, and $g(\beta) = \beta_2$

Corollary 2.6. Let K be a number field, F/K the splitting field of a monic irreducible $f(x) \in \mathcal{O}_K[x]$, of degree n. Suppose for some prime \underline{p} of K, $f(x) \mod \underline{p} = g_1(x)g_2(x)\dots g_k(x)$ with $g_i(x) \in \mathbb{F}_{\underline{p}}[x]$ be distinct irreducible with $\deg g_i = d_i$. Then $\operatorname{Gal}(F/K) \subseteq S_n$ contains an element of cycle type (d_1, d_2, \dots, d_k)

Proof. Let $\alpha_1, \ldots, \alpha_n \in \mathcal{O}_K$ be the roots of f(x). Then $\beta_i = \alpha_i \mod \underline{q}$ (\underline{q} any prime above \underline{p}) are precisely the roots of $f(x) \mod \underline{p}$ in $\mathbb{F}_{\underline{q}}$. Their generator of $\operatorname{Gal}(\mathbb{F}_{\underline{q}}/\mathbb{F}_{\underline{p}})$ permutes the β_i with cycle type (d_1, \ldots, d_k) . Hence its lift to $D_q \leq \operatorname{Gal}(F/K)$ has the claimed cycle type.

Definition 2.7. Let F/K be Galois, \underline{q} a prime above \underline{p} . The *inertia subgroup* $I_{\underline{q}} = I_{\underline{q}/\underline{p}}$ is the (normal) subgroup of D_q that acts trivially on \mathbb{F}_q , i.e., $I_q = \ker(D_q \to \operatorname{Gal}(\mathbb{F}_q/\mathbb{F}_p))$.

Note that as the amp is surjective $D_{\underline{q}}/I_{\underline{q}} \cong \operatorname{Gal}(\mathbb{F}_{\underline{q}}/\mathbb{F}_{\underline{p}})$. The latter group is cyclic and is generated by the frobenius map $\phi: x \to x^{\#\mathbb{F}_{\underline{p}}}$.

Definition 2.8. The (arithmetic) Frobenius element $\operatorname{Frob}_{q/p}$ is the element of D_q/I_q that maps to ϕ .

Theorem 2.9. Let F/K be Galois extensions of number field, q a prime of F above p, a prime of K. Then

- 1. $\left| D_{\underline{q}/\underline{p}} \right| = e_{\underline{q}/\underline{p}} \cdot f_{\underline{q}/\underline{p}}$
- 2. Order of $\operatorname{Frob}_{q/p}$ is $f_{q/p}$
- 3. $\left| I_{\underline{q}/\underline{p}} \right| = e_{\underline{q}/\underline{p}}$

If $K \leq L \leq F$ and \underline{s} is above \underline{p} , below \underline{q}

4.
$$D_{\underline{q}/\underline{s}} = D_{\underline{q}/\underline{p}} \cap \operatorname{Gal}(F/L)$$

5. $I_{q/s} = I_{q/p} \cap \operatorname{Gal}(F/L)$

Proof.

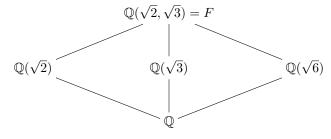
1. Let n = #primes above p. Then

$$\begin{array}{lll} n \cdot \left| D_{\underline{q}/\underline{p}} \right| &=& |\mathrm{Gal}(F/K)| \ (\mathrm{orbit} - \mathrm{stabiliser}) \\ &=& [F:K] \\ &=& \sum e_i f_i \ (\mathrm{Theorem}\, 1.26) \\ &=& n e_{\underline{q}/\underline{p}} f_{\underline{q}/\underline{p}} \end{array}$$

2.
$$f_{\underline{q}/\underline{p}} = [\mathbb{F}_{\underline{q}} : \mathbb{F}_{\underline{p}}] = \left| \operatorname{Gal}(\mathbb{F}_{\underline{q}}/\mathbb{F}_{\underline{p}}) \right| = \text{order of } \operatorname{Frob}_{\underline{q}/\underline{p}}$$

3. $\left| D_{\underline{q}/\underline{p}} \right| = \left| I_{\underline{q}/\underline{p}} \right| \cdot \text{order of } \operatorname{Frob}_{\underline{q}/\underline{p}}, \text{ hence } \left| I_{\underline{q}/\underline{p}} \right| = e_{\underline{q}/\underline{p}}$
4. and 5. Just from definition.

Example.



Now 2 ramifies in all three quadratic fields:

- $(2) = (\sqrt{2})^2$
- $(x^2 3) = (x + 1)^2 \mod 2$
- $(x^2 6) = x^2 \mod 2$

and use Kummer - Dedekind. Let \underline{q} in F, hence $e \ge 2$, so $\left|I_{\underline{q}}\right| \ge 2$, so $I_{\underline{q}}$ contains $\operatorname{Gal}(F/\mathbb{Q}(\sqrt{d}))$ for some d. So the prime above 2 in $F/\mathbb{Q}(\sqrt{d})$ is ramified, so $e_q = 2 \cdot 2 = 4$ and $I_q = C_2 \times C_2$.

Example. Let $K = \mathbb{Q}$, $F = \mathbb{Q}(\zeta_n)$. Let $p \nmid n$ be a prime, \underline{q} a prime of F above \underline{p} . We know that \underline{p} is unramified, so $I_{\underline{q}/\underline{p}} = \{\text{id}\}$ and $D_{\underline{q}/\underline{p}} = \langle \operatorname{Frob}_{\underline{q}/\underline{p}} \rangle$. Now $\operatorname{Frob}_{\underline{q}/\underline{p}}(\zeta_n) \equiv \zeta_n^p \mod \underline{q}$ and hence $\operatorname{Frob}_{\underline{q}/\underline{p}}(\zeta_n) = \zeta_n^p$ as ζ_n^i are distinct in $\mathbb{F}_{\underline{q}}$. (Since $x^n - 1 \mod \underline{p}$ has distinct roots). In particular, $e_{\underline{q}/\underline{p}} = 1$ and $f_{\underline{q}/\underline{p}} = \text{order of Frob}_{\underline{q}/\underline{p}} = \text{order of } p$ in $(\mathbb{Z}/n\mathbb{Z})^*$.

2.3 Counting primes

Lemma 2.10. Let F/K be a Galois extension of number fields.

- 1. primes of K are in 1-1 correspondence with $\operatorname{Gal}(F/K)$ -orbits on primes of F via $p \leftrightarrow \operatorname{primes}$ of F above p.
- 2. If \underline{q} lies above \underline{p} then $gD_q \mapsto g(\underline{q})$ is a $\operatorname{Gal}(F/K)$ set isomorphism from {primes above \underline{p} } to G/D_q
- 3. $D_{g(\underline{q})} = gD_{\underline{q}}g^{-1}, I_{g(\underline{q})} = gI_{\underline{q}}g^{-1}$ and $\operatorname{Frob}_{g(\underline{q})/\underline{p}} = g\operatorname{Frob}_{\underline{q}/\underline{p}}g^{-1}$.

Proof. 1. is from transitivity of the Galois action while 2. and 3. are elementary check

Corollary 2.11. Let F/K be Galois, $K \leq L \leq F$, $G = \operatorname{Gal}(F/K)$, $H = \operatorname{Gal}(F/L)$. Then

 $\{\text{primes of } L \text{ above } \underline{p}\} \leftrightarrow H - \text{orbits on primes of } F \text{ above } \underline{p} \leftrightarrow H \backslash G / D_q = \{HgD_q\}$

 $via \ \underline{s} \mapsto$ elements that sent q to some prime above \underline{s} .

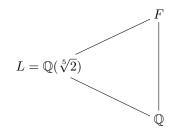
Proposition 2.12. Let F/K be Galois extension of number fields, $L = K(\alpha)$ an intermediate field, G = Gal(F/K) and H = Gal(F/L). Let $X = \{\text{roots of min poly of } \alpha\} \cong \{\text{embeddings } L \hookrightarrow F\} = H \setminus G \text{ a } G\text{-set of size } [L : F].$

Then {primes of L above \underline{p} } $\stackrel{1:1}{\leftrightarrow} D_q$ -orbits on X with

- size $D_{\underline{q}}$ -orbits= $e_{\underline{s}/\underline{p}} \cdot f_{\underline{s}/\underline{p}}$
- size I_q -suborbits = $e_{\underline{s}/p}$
- number I_q -suborbits= $f_{\underline{s}/p}$

Explicitly, $\underline{s} \mapsto \text{Orbits of } g^{-1}(\alpha)$ where g(q) lies above \underline{s} .

Example. Let $K = \mathbb{Q}, F = \mathbb{Q}(\zeta_5, \sqrt[5]{2}), p = 73$, Let \underline{q} be a prime of F above \underline{p}



Now \underline{p} is unramified in F with residue degree 4 (use Kummer - Dedekind on L/\mathbb{Q} and $\mathbb{Q}(\zeta_5)/\mathbb{Q}$ and that $\operatorname{Gal}(F/\mathbb{Q})$ has no element of order 20). Now $\operatorname{Gal}(F/\mathbb{Q})$ permutes $\sqrt[5]{2}, \zeta \sqrt[5]{2}, \ldots$ transitively, $e_{\underline{q}/73} = 1$, hence $I_{\underline{q}}$ -orbits are trivial. $f_{\underline{q}} = 4$ hence $\left| D_{\underline{q}} \right| = 4$, $D_{\underline{q}} \cong C_4$ (generated by Frob). Without loss of generality $D_{\underline{q}}$ fixes $\sqrt[5]{2}$ and permutes the rest cyclically. Hence there are 2 primes in L above 73 with residue degree 1 and 4 and ramification degrees 1 and 1.

Proof of Theorem 2.12. We have

$$\begin{array}{ll} \{ \mathrm{primes} \mbox{ of } L \mbox{ above } p \} & \leftrightarrow & H \backslash G / D_{\underline{q}} \\ & \leftrightarrow & D_{q} - \mbox{orbits} \mbox{ on } H \backslash G =: X \end{array}$$

 $(D_{\underline{q}} \text{ acts by } d(Hg) = Hgd^{-1}).$ Size of $D_{\underline{q}}\text{-orbits of}$

$$g^{-1}(\alpha) = \frac{\left|D_{\underline{q}}\right|}{\left|\operatorname{Stab}_{D_{\underline{q}}}(g^{-1}(\alpha))\right|}$$
$$= \frac{\left|D_{\underline{q}}\right|}{\left|\operatorname{Stab}_{gD_{\underline{q}}g^{-1}}(\alpha)\right|}$$
$$= \frac{\left|D_{\underline{q}}\right|}{\left|gDg^{-1} \cap H\right|}$$
$$= \frac{\left|D_{\underline{q}}\right|}{\left|D_{g(\underline{q})/\underline{p}}\right|}$$
$$= \frac{e_{\underline{q}/\underline{p}} \cdot f_{\underline{q}/\underline{p}}}{e_{\underline{q}/\underline{s}} \cdot f_{\underline{q}/\underline{s}}}$$
$$= e_{\underline{s}/p} \cdot f_{\underline{s}/p}$$

Similarly, size of $I_{\underline{q}}$ -orbits is $e_{\underline{s}/\underline{p}}$ (same calculations as above, replacing $D_{\underline{q}}$ with $I_{\underline{q}}$). And hence $\#I_{\underline{q}}$ -suborbits is $\frac{e_{\underline{s}/\underline{p}} \cdot f_{\underline{s}/\underline{p}}}{e_{\underline{s}/\underline{p}}} = f_{\underline{s}/\underline{p}}$.

2.4 Representation of the decomposition group

Let F/K be a Galois Extensions of number fields. Let $G = \operatorname{Gal}(F/K)$, \underline{p} a prime in \mathcal{O}_K , \underline{q} a prime above \underline{p} in \mathcal{O}_F . Let $D = D_{q/p}$ and $I = I_{q/p}$, Frob = $\operatorname{Frob}_{q/p}$.

Definition 2.13. A representation V of D is unramified if I acts trivially on V, therefore $V^{I} = V$ (F/K is unramified if and only if all V are unramified)

Notation. For a $f_{\underline{q}/\underline{p}}^{\text{th}}$ -root of unity ζ , define the representation $\Psi_{\underline{q}/\underline{p},\zeta} = \Psi_{\zeta} : D \to \mathbb{C}^* = \text{GL}_1(\mathbb{C})$ such that $\Psi_{\zeta}(h) = 1$ $(h \in I)$, $\Psi_{\zeta}(\text{Frob}) = \zeta$. Thus $\Psi_{\zeta}(g) = \zeta^k$ if g acts as $x \mapsto x^{(\#\mathbb{F}_{\underline{p}})^k}$ on \mathbb{F}_q .

Lemma 2.14. If V is a irreducible representation of D then either $V^I = 0$ or V is unramified and $V = \Psi_{\zeta}$ for some ζ with $\zeta^{f_{\underline{q}/\underline{p}}} = 1$.

Proof. Since $I \triangleleft D$ it follows that V^I is a subrepresentation of V. Then either $V^I = 0$ or $V^I = V$. In the latter case, the action of D factors through $D/I = \langle \text{Frob} \rangle$ and hence V is 1-dimensional and $V = \Psi_{\zeta}$ for some ζ .

Notation. If $\underline{q}' = g(\underline{q})$ is another prime above \underline{p} for some $g \in G$ and (ρ, V) a representation of D, we write (ρ^g, V^g) for the corresponding representation of $D_{q//p}$ given by $\rho^g(h) = \rho(ghg^{-1})$. Clearly $D_{q/p} \cong D_{q'/p}$ as groups.

Example. Let $G \cong S_4$, $D = D_8$ and $I = C_4$. Then there are |G/D|-prime above \underline{p} . $D_8 \cong D_{\underline{q}/\underline{p}}$. Others are the two other subgroup of S_4 isomorphic to D_8 .

D_8	e	(1234)	(13)(24)	(12)(34)	(13)	
1	1	1	1	1	1	
ϵ_1	1	1	1	-1	1	r
ϵ_2	1	-1	1	1	-1	-
ϵ_3	1	-1	1	-1	1	
ρ	2	0	-2	0	0	

The 2-dimensional irreducible representation of $D_{\underline{q}'/\underline{p}}$ is ob-

tained as $\rho'(h) = \rho(g^{-1}hg)$.

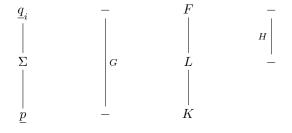
Lemma 2.15.

- 1. If $\underline{q}' = g(\underline{q})$ another prime over \underline{p} then $\Psi_{\underline{q}'/\underline{p},\zeta} = \Psi_{q/p,\zeta}^g$
- 2. If L is an intermediate field, Σ is a prime below \underline{q} then $\operatorname{Res}_{D_{\underline{q}/\Sigma}}\Psi_{\zeta} = \Psi_{\underline{q}/\Sigma,\zeta^f}$ whence $f = f_{\Sigma/\underline{p}}$. In particular $\operatorname{Res}_{D_{\underline{q}/\Sigma}}\Psi_{q/p,\zeta} = \mathbb{I} \iff \zeta^{f_{\Sigma/\underline{p}}} = 1$

Proof.

- 1. Follows from $D_{\underline{q}'/\underline{p}} = gDg^{-1}, \ I_{\underline{q}'/\underline{p}} = gIg^{-1}$ and $\operatorname{Frob}_{\underline{q}'/\underline{p}} = g\operatorname{Frob}g^{-1}$
- 2. $\operatorname{Res}_{D_{\underline{q}/\Sigma}}\Psi_{\underline{q}/\underline{p},\zeta}$ sends $I_{\underline{q}/\Sigma}$ to 1 and $\operatorname{Frob}_{\underline{q}/\Sigma}$ to ζ^f because $\operatorname{Frob}_{\underline{q}/\Sigma}$ acts as $x \to x^{(\#\mathbb{F}_{\underline{p}})^f}$ on $\mathbb{F}_{\underline{q}}$.

Proposition 2.16. Let $K \subseteq L \subseteq F$, H = Gal(F/L)



Let $\{\Sigma_i\}$ be the set of primes of L above \underline{p} and pick $\underline{q}_i = g_i(\underline{q})$ above Σ_i for each i. For V a representation of H

$$\operatorname{Res}_D^G \operatorname{Ind}_H^G V \cong \bigoplus_{\Sigma_i} \left(\operatorname{Ind}_{D_{\underline{q}_i/\Sigma_i}}^{D_{\underline{q}_i/\underline{p}}} \operatorname{Res}_{D_{\underline{q}_i/\Sigma_i}}^H V \right)^{g_i^{-1}}.$$

In particular

$$\left\langle \Psi_{\zeta}, \operatorname{Res}_{D} \operatorname{Ind}_{H}^{G} V \right\rangle = \sum_{\Sigma_{i}} \left\langle \Psi_{\underline{q}_{i}/\Sigma_{i}, \rho^{f_{\Sigma_{i}/\underline{p}}}}, \operatorname{Res}_{D_{\underline{q}_{i}, \Sigma_{i}}} V \right\rangle.$$

Proof. The main claim is precisely Mackey's formula for $H, D \leq G$. The second claim then follows from

$$\begin{split} \left\langle \Psi_{\zeta}, (\mathrm{IndRes}V)^{g_i^{-1}} \right\rangle_{D_{\underline{q}/\underline{p}}} &= \left\langle \Psi_{\underline{q}_i/\underline{p},\zeta}, \mathrm{IndRes}V \right\rangle_{D_{\underline{q}_i/\underline{p}}} \\ &= \left\langle \mathrm{Res}\Psi_{\underline{q}_i/\underline{p},\zeta}, \mathrm{Res}V \right\rangle_{D_{\underline{q}_i/\Sigma_i}} \text{ by Frobenius reciprocity} \\ &= \left\langle \Psi_{\underline{q}_i/\Sigma_i,\zeta}^{f_{\Sigma_i/\underline{p}}}, \mathrm{Res}V \right\rangle \end{split}$$

Corollary 2.17. Let ζ be a primitive n^{th} root of unity with $n|f_{\underline{q}/\underline{p}}$. Then $K \subseteq L \subseteq F$ with H = Gal(F/L). The number of primes of L above $\underline{p} = \langle \Psi_{\zeta}, \text{Res}_D^G \text{Ind}_J^G \mathbb{I} \rangle$

Proof. By previous proposition, the Right Hand Side is $\sum_{\Sigma \text{ above } \underline{p}} \left\langle \Psi_{\underline{q}'/\Sigma', \zeta^{f_{\Sigma/\underline{p}}}}, \mathbb{I} \right\rangle = \#\Sigma \text{ with } \zeta^{f_{\Sigma/\underline{p}}} = 1$

3 L-series

Aim:

1. If gcd(a, n) = 1 then there are infinitely many primes $p \equiv a \mod n$

2. If $f(x) \in \mathbb{Z}[x]$ monic and $f(x) \mod p$ has a root mod p for all p, then f(x) is reducible.

Definition 3.1. An ordinary Dirichlet series is a series $f(s) = \sum_{s=1}^{\infty} a_n n^{-s}$ $(a_n \in \mathbb{C}, s \in \mathbb{C})$.

Convention: $s = \sigma + it$.

Convergence Property

Lemma 3.2 (Abel's Lemma).
$$\sum_{n=N}^{M} a_n b_n = \sum_{n=N}^{M-1} (\sum_{k=N}^n a_k) (b_n - b_{n+1}) + (\sum_{k=N}^M a_k) b_M$$

Proof. Elementary rearrangement (c.f., integration by part)

Proposition 3.3. Let $f(s) = \sum_{n=1}^{\infty} a_n e^{-\lambda_n s}$ for $\lambda_n \to \infty$ an increasing sequence of the real number

- 1. If the partial sums $\sum_{N}^{M} a_n$ are bounded, then the series converges locally uniformly of $\operatorname{Re}(s) > 0$ to an analytic functions
- 2. If the series f(s) converges for $s = s_0$, then it converges uniformly on $\operatorname{Re}(s) > \operatorname{Re}(s_0)$ to an analytic function.

Note. Dirichlet series are the case $\lambda_n = \log n$

Proof. Note that 1. implies 2. by the change of variables $s' = s - s_0$ and $a'_n = e^{-\lambda_n s_0} a_n$. The new series converges at 0 and so must have $\sum_{n=1}^{M} a'_n$ bounded

For 1. we will show uniform convergence on $-A < \arg(s) < A$ and $\operatorname{Re}(s) > \delta$. This will suffice as the uniform limit of analytic functions is analytic and these regions cover $\operatorname{Re}(s) > 0$.

Let $\epsilon > 0$, find N_0 such that $n > N_0$, $|e^{-\lambda_n s}| < \epsilon$ in this domain. Now compute: for $N_1 M \ge N_0$

$$\begin{aligned} \left| \sum_{n=N}^{M} a_n e^{-\lambda_n s} \right| &= \left| \sum_{n=N}^{n-1} \left(\sum_{k=N}^{n} a_k \right) \left(e^{-\lambda_n s} - e^{-\lambda_{n+1} s} \right) + \left(\sum_{N}^{M} a_k \right) e^{-\lambda_M s} \right| \\ &\leq B \sum_{n=N}^{M-1} \left| e^{-\lambda_n s} - e^{-\lambda_{n+1} s} \right| + B\epsilon \end{aligned}$$

where B is the bound for the partial sums.

Observe:

$$\begin{aligned} |e^{-\alpha s} - e^{-\beta s}| &= \left| s \int_{\alpha}^{\beta} e^{-xs} dx \right| \\ &\leq |s| \int_{\alpha}^{\beta} e^{-x\sigma} dx \\ &= \frac{|s|}{\sigma} (e^{-\alpha \sigma} - e^{-\beta \sigma}) \end{aligned}$$

where $\sigma = \operatorname{Re}(s)$ for $\alpha > \beta$. So

$$\sum_{n=N}^{M} a_n e^{-\lambda_n s} \leq B \frac{|s|}{\sigma} \sum_{N}^{M-1} \left(e^{-\lambda_n \sigma} - e^{-\lambda_{n+1} \sigma} \right) + B\epsilon$$
$$\leq B \frac{|s|}{\sigma} \epsilon + B\epsilon$$
$$\leq \epsilon (BK+B)$$

where $\left|\frac{s}{\sigma}\right| \leq K$ in our domain.

Proposition 3.4. Let $f(s) = \sum a_n e^{-\lambda_n s}$ for $\lambda_n \to \infty$ an increasing sequence of positive reals. Suppose

- $a_n \ge 0$ is real
- f(s) converges on $\operatorname{Re}(s) > R \ (\in \mathbb{R})$ and hence is analytic
- it has an analytic continuation to a neighbourhood of s = R

Then f(s) converges on $\operatorname{Re}(s) > R - \epsilon$ for some $\epsilon > 0$.

Proof. Again, we can assume R = 0. As f is analytic on $\operatorname{Re}(s) > 0$ and $|s| < \delta$. Hence f is analytic on $|s-1| \le 1 + \epsilon$. The Taylor Series of f around s = 1 converges on all of $|s-1| \le 1 + \epsilon$. In particular $f(-\epsilon) = \sum_{k=0}^{\infty} \frac{1}{k!} (-1)^k (1+\epsilon)^k f^{(k)}(1)$ converges. For $\operatorname{Re}(s) > 0$ $f^{(k)}(s) = \sum_{n=1}^{\infty} a_n (-\lambda_n)^k e^{-\lambda_n}$ (ok since uni-

form convergence). Hence $(-1)f^{(k)}(s) = \sum_{n=1}^{\infty} a_n \lambda_n^k e^{-\lambda_n}$. Hence

$$f(-\epsilon) = \sum_{k=0}^{\infty} \frac{1}{k!} (1+\epsilon)^k \sum_{n=1}^{\infty} a_n \lambda_n^k e^{-\lambda_n}$$

$$= \sum_{k,n} a_n \lambda_n^k e^{-\lambda_n} e^{-\lambda_n} \frac{1}{k!} (1+\epsilon)^k \text{ as all terms positive}$$

$$= \sum_{n=1}^{\infty} a_n e^{-\lambda_n} e^{-\lambda_n (1+\epsilon)}$$

$$= \sum_{n=1}^{\infty} a_n e^{\lambda_n \epsilon}$$

is a convergent series for f converges at $s = -\epsilon$. This implies the result.

Theorem 3.5.

- 1. If a_n are bounded, then $\sum_{n>1} a_n n^{-s}$ converges absolutely on $\operatorname{Re}(s) > 1$ to an analytic function.
- 2. If the partial sums $\sum_{N=0}^{M} a_n$ are bounded then $\sum a_n n^{-s}$ converges absolutely on $\operatorname{Re}(s) > 0$ to an analytic function.

Proof.

- 1. $\left|\frac{a_n}{n^s}\right| \le k \frac{1}{n^{\sigma}}$ where $\sigma = \operatorname{Re}(s)$ and $\sum_{n=1}^{\infty} \frac{1}{n^x}$ does converge for x > 1 real. Analytic comes from Proposition 3.3
- 2. See Proposition 3.3

Remark. If $\sum a_n n^{-s}$ and $\sum b_n n^{-s}$ converges on $\operatorname{Re}(s) > \sigma_0$ to the same function f(s), then $a_n = b_n$ for all n.

3.1 Dirichlet *L*-functions

Definition 3.6. Let $N \ge 1$ be an integer $\psi : (\mathbb{Z}/N\mathbb{Z})^* \to \mathbb{C}^*$ a group homomorphism. Extend ψ to a function on \mathbb{Z} by $\psi(n) = \begin{cases} \psi(n \mod N) & \gcd(n, N) = 1 \\ 0 & \text{else} \end{cases}$. Such a function is called a *Dirichlet character modulo* N.

Its *L*-series (or *L*-function) is $L_N(\psi, s) = \sum_{n=1}^{\infty} \psi(n) n^{-s}$.

Lemma 3.7. Let ψ be a Dirichlet character modulo N. Then

- 1. $\psi(a+N) = \psi(a)$ (so ψ is periodic)
- 2. $\psi(ab) = \psi(a)\psi(b)$ (so ψ is strictly multiplicative)
- 3. The L-series for ψ converges absolutely on $\operatorname{Re}(s) > 1$ and satisfies the Euler product

$$L_n(\psi, s) = \prod_{p \text{ prime}} \frac{1}{1 - \psi(p)p^{-s}}.$$

Proof. 1. and 2. are clear from the definition. 3. the *L*-series coefficients $a_n = \psi(n)$ are bounded, so absolute convergence follows from Theorem 3.5. For $\operatorname{Re}(s) > 1$

$$\sum \psi(n)n^{-1} = \prod_{p \text{ prime}} (1 + \psi(p)p^{-s} + \psi(p)^2 p^{-2s} + \dots) \text{ (by 2. and abs conv)}$$
$$= \prod_{p \text{ prime}} \frac{1}{1 - \psi(p)p^{-s}} \text{ (geometric series)}$$

Remark. The case $\psi(n) = 1$ for all $n \in (\mathbb{Z}/N\mathbb{Z})^*$ gives the *trivial* Dirichlet character modulo N. In this case

$$L_N(\psi, s) = \prod_{\substack{p \text{ prime}}} \frac{1}{1 - p^{-s}}$$
$$= \zeta(s) \cdot \prod_{\substack{p \mid N, \text{ prime}}} (1 - p^{-s})$$

where $\zeta(s)$ is the Riemann ζ -function.

Example. Take N = 10, so $(\mathbb{Z}/N\mathbb{Z})^* = \{1, 3, 7, 9\} \cong C_4$, and $\psi(1) = 1$, $\psi(3) = i$, $\psi(7) = -i$ and $\psi(9) = -1$. Then $L_{10}(\psi, s) = 1 + \frac{i}{3^s} - \frac{i}{7^s} - \frac{1}{11^s} + \frac{i}{13^s} - \frac{i}{17^s} - \frac{1}{19^s} + \dots$ Note that by the alternating series test (applied to the real part and imaginary part separately) implies convergence on s > 0 real.

Theorem 3.8. Let $N \geq 1$ and $\psi : (\mathbb{Z}/N\mathbb{Z})^* \to \mathbb{C}^*$.

- 1. If ψ is trivial then $L_N(\psi, s)$ has an analytic continuation to $\operatorname{Re}(s) > 0$ except for a simple pole at s = 1
- 2. If ψ is non-trivial, then $L_N(\psi, s)$ is analytic on $\operatorname{Re}(s) > 0$

Proof.

- 1. Follows from the previous remark and that $\zeta(s)$ has an analytic continuation to $\operatorname{Re}(s) > 0$ with a simple pole at s = 1.
- 2. $\sum_{n=A}^{A+N-1} \psi(n) = \sum_{n \in (\mathbb{Z}/N\mathbb{Z})^*} \psi(n) \cdot \overline{1} = \psi(N) \langle \psi, \mathbb{I} \rangle = 0$ as $\psi \neq 1$. So the partial sums $\sum_{A}^{B} \psi(n)$ are bounded and the result follows from Theorem 3.5ii)

Theorem 3.9. Let ψ be a non-trivial Dirichlet character modulo N. Then $L_N(\psi, 1) \neq 0$.

Proof. Let

$$\zeta_N(s) = \prod_{\chi: (\mathbb{Z}/N\mathbb{Z})^* \to \mathbb{C}^*} L_N(\chi, s)$$

If $L_N(\psi, 1) = 0$ then $\zeta_N(s)$ has an analytic continuation to $\operatorname{Re}(s) > 0$, the pole form $L_N(\mathbb{I}, s)$ having been killed by the zero on $L_N(\psi, s)$. We'll show that this is not the case (and hence has a simple pole at s = 1)

On $\operatorname{Re}(s) > 1$, $\zeta_N(s)$ has the absolutely convergent expression

$$\begin{aligned} \zeta_N(s) &= \prod_{\chi} \prod_{p \nmid N} \frac{1}{1 - \chi(p)p^{-s}} \\ &= \prod_{p \nmid N} \prod_{\chi} \frac{1}{1 - \chi(p)p^{-s}} \\ &= \prod_{p \nmid N} \frac{1}{(1 - p^{-f_p s})^{\phi(N)/f_p}} \end{aligned}$$

where ϕ is the Euler totient function and f_p the order of p in $(\mathbb{Z}/N\mathbb{Z})^*$. Hence

$$\zeta_N(s) = \prod_{p \nmid N} \left(1 + p^{-f_p s} + p^{-2f_p s} + \dots \right)^{\phi(N)/f_p}.$$

This is a Dirichlet series with positive real coefficient so if it has an analytic continuation to $\operatorname{Re}(s) > 0$, it must converge there by Proposition 3.4. But for s > 0 real it dominates

$$\prod_{p \nmid N} (1 + p^{-\phi(N)s} + p^{-2\phi(N)s} + \dots) = L_N(\mathbb{I}, \phi(N)s)$$

which diverges for $s = 1/\phi(N)$.

3.2 Primes in Arithmetic Progression

Strategy: $\sum_{p \equiv a \mod N} p^{-s} = \sum_{\chi} \lambda_{\chi} \sum_{p} \chi(p) p^{-s}$ with $\lambda_{\mathbb{I}} \neq 0$. This is approximately $\sum_{\chi} \lambda_{\chi} \log L_N(\chi, s) \sim \lambda_{\mathbb{I}} \log \frac{1}{s-1} \to \infty$ as $s \to 1$.

Proposition 3.10. Let ψ be a Dirichlet character modulo N

- 1. The Dirichlet series $\sum_{\substack{p \text{ prime}, n \geq 2 \\ (a \text{ branch of}) \log L_N(\psi, s) \text{ there.}}} \frac{\psi(p)^n}{n} p^{-ns}$ converges on $\operatorname{Re}(s) > 1$ so it is an analytic function and defines
- 2. If ψ is non-trivial then $\sum_{p,n} \frac{\psi(p)^n}{n} p^{-ns}$ is bounded as $s \to 1$. If $\psi = \mathbb{I}$ then $\sum_{p,n} \frac{1}{n} p^{-ns} \sim \log \frac{1}{1-s}$ as $s \to 1$.

Proof.

1. The series has bounded coefficients so converges absolutely on $\operatorname{Re}(s) > 1$ to an analytic function by Theorem 3.5 1. For a fixed s with $\operatorname{Re}(s) > 1$

$$\sum_{p,n} \frac{\psi(p)^n}{n} p^{-ns} = \sum_p \left(\psi(p) p^{-s} + \frac{(\psi(p) p^{-s})^2}{2} + \dots \right)$$
$$= \sum_p \log \frac{1}{1 - \psi(p) p^{-s}} \text{ (branch with } \log(1+x) = x - \frac{x^2}{2} + \dots)$$
$$= \log \prod_p \frac{1}{1 - \psi(p) p^{-s}} \text{ (possibly a diff branch)}$$
$$= \log L_N(\psi, s)$$

Hence $\sum_{p,n} \frac{\psi(p)^n}{n} p^{-ns}$ gives an analytic branch of $\log L_N(\psi, s)$ on $\operatorname{Re}(s) > 1$.

2. By Theorem 3.8, for $\psi \neq \mathbb{I}$, $L_N(\psi, s)$ converges to a non-zero value as $s \to 1$, so $\log L_N(\psi, s)$ is bounded as $s \to 1$. For $L_N(\mathbb{I}, s)$ has a simple pole at s = 1 (hence $\sim \frac{\lambda}{s-1}$) so $\log L_N(\mathbb{I}, s) \sim \log \frac{1}{s-1}$ as $s \to 1$.

Corollary 3.11. If ψ is non-trivial then $\sum_{p \text{ prime}} \psi(p)p^{-s}$ is bounded as $s \to 1$. If $\psi = \mathbb{I}$, then $\sum_{p \text{ prime}} \psi(p)p^{-s} = \sum_{p \nmid N} p^{-s} \sim \log \frac{1}{s-1}$ as $s \to 1$ and in particular tends to ∞ as $s \to 1$.

Proof. $\sum_{p} \psi(p) p^{-s} = \log L_N(\psi, s) - \sum_{p,n \ge 2} \frac{\psi(p)^n}{n} p^{-ns}$ so it suffices to check that the last term is bounded on $\operatorname{Re}(s) > 1$.

$$\sum_{p,n\geq} \frac{\psi(p)^n}{n} p^{-ns} \left| \leq \sum_{p \text{ prime},n\geq 2} \frac{1}{n} \right|$$
$$\leq \sum_{p \text{ prime},n\geq 2} \frac{1}{p^n}$$
$$= \sum_{p} \frac{1}{p(p-1)}$$
$$\leq \sum_{k\geq 1} \frac{1}{k^2} < \infty$$

Dirichlet's Theorem on primes in Arithmetic Progression. Let a, N be coprime integers. Then there are infinitely many primes $p \equiv a \mod N$. Moreover if $P_{a,N}$ is the set of these primes then $\sum_{p \in P_{a,N}} \frac{1}{p^{-s}} \sim \frac{1}{\phi(N)} \log \frac{1}{s-1}$ as $s \to 1$.

Proof. The first statement follows from the second as $\log \frac{1}{s-1} \to \infty$ as $s \to 1$. Consider the (class-)function $\mathcal{C}_{a,N} : (\mathbb{Z}/N\mathbb{Z})^* \to \mathbb{C}^*$ with $C_{a,N}(n) = \begin{cases} 1 & \text{if } n = a \\ 0 & \text{else} \end{cases}$. Then

$$\begin{aligned} \langle \mathcal{C}_{a,N}, \chi \rangle &= \frac{1}{\phi(N)} \sum_{n \in (\mathbb{Z}/N\mathbb{Z})^*} C_{a,N}(n) \overline{\chi(n)} \\ &= \frac{1}{\phi(N)} \overline{\chi(a)} \end{aligned}$$

so $C_{a,n} = \sum_{\chi} \overline{\frac{\chi(a)}{\phi(N)}} \chi$ by Character theory. Hence

$$\sum_{p \in P_{a,N}} \frac{1}{p^s} = \sum_{p \text{ prime}} C_{a,n}(p) p^{-s}$$
$$= \sum \frac{\overline{\chi(a)}}{\psi(N)} \sum_p \frac{\chi(p)}{p^s}$$

By Corollary 3.11, each term on RHS is bounded as $s \to 1$ except for $\chi = \mathbb{I}$, and

$$\frac{\mathbb{I}}{\phi(N)} \sum \frac{\mathbb{I}(p)}{p^s} = \frac{1}{\phi(N)} \sum_{p \nmid N} \frac{1}{p^s}$$
$$\sim \frac{1}{\phi(N)} \log \frac{1}{s-1}$$

as $s \to 1$.

3.3 Artin *L*-functions

Definition 3.12. Let F/K be a Galois extension of number fields and ρ a Gal(F/K)-representation. The Artin L-function of ρ is defined by the Euler product

$$\begin{split} L(F/K,\rho,s) &= L(\rho,s) \\ &= \prod_{p \text{ prime of } K} \frac{1}{P_{\underline{p}}(\rho,N(\underline{p})^{-s})} \end{split}$$

where the *local polynomial* of ρ at \underline{p} , $P_{\underline{p}}(\rho, T)$ is defined by $P_{\underline{p}}(\rho, T) = \det(1 - \operatorname{Frob}_{\underline{p}}T|\rho^{I_{\underline{p}}})$. (= $\det(I - MT)$ where M is the matrix by which $\operatorname{Frob}_{\underline{p}}$ acts on $\rho^{I_{\underline{p}}}$). Note that here $I_{\underline{p}} = I_{\underline{q}/\underline{p}}$ and $\operatorname{Frob}_{\underline{p}} = \operatorname{Frob}_{\underline{q}/\underline{p}}$ for some (Any) prime \underline{q} above \underline{p} .

Example.

- Take $K = \mathbb{Q}$, F arbitrary, $\rho = \mathbb{I}$. Then $P_{\underline{p}}(\mathbb{I}, t) = \det(1 1 \cdot t) = 1 t$ for all \underline{p} . Hence $L(\mathbb{I}, s) = \prod_{p \mid 1 p^{-s}} = \zeta(s)$.
- Similarly, for general K and $\rho = \mathbb{I}$ we get $P_{\underline{p}}(\mathbb{I}, t) = 1 t \forall \underline{p}$. Then $L(F/K, \mathbb{I}, s) = \prod_{\underline{p}} \frac{1}{1 N(\underline{p})^{-s}} = \zeta_K(s)$ (The Dedekind ζ -function of K)
- $K = \mathbb{Q}, F = \mathbb{Q}(i), \rho : \operatorname{Gal}(F/K) = C_2 \to \{\pm 1\}$ non-trivial 1-dimensional representation. Then

$$P_{\underline{p}}(\rho, T) = \begin{cases} 1 & \underline{p} = 2 \Rightarrow \rho^{I_{\underline{p}}} = 0\\ 1 - t & p \equiv 1 \mod 4 \Rightarrow \operatorname{Frob}_{\underline{p}} = \operatorname{id}\\ 1 + t & p \equiv 3 \mod 4 \Rightarrow \operatorname{Frob}_{\underline{p}} \neq \operatorname{id} \end{cases}$$

Hence $L(\rho, s) = \prod_{p \equiv 1 \mod 4} \frac{1}{1-p^{-s}} \prod_{p \equiv 3 \mod 4} \frac{1}{1+p^{-s}} = \prod_p \frac{1}{1-\chi(p)p^{-s}}$ where $\chi : \mathbb{Z} \to \mathbb{C}^*$ is the non-trivial Dirichlet character mod 4. That is $L(\rho, s) = L_4(\chi, s)$ a Dirichlet *L*-function.

Lemma 3.13. The local polynomial $P_{\underline{p}}(\rho, T)$ is independent of the choice of \underline{q} above \underline{p} and of the choice of $\operatorname{Frob}_{\underline{p}}$. *Proof.* For a fixed \underline{q} above \underline{p} , independence of the choice of $\operatorname{Frob}_{\underline{p}}$ is clear. Since two choices differ by an element $\sigma \in I_{\underline{p}}$, which acts trivially on $\rho^{I_{\underline{p}}}$. Hence $\det(1 - \operatorname{Frob}_{\underline{p}}t|\rho^{I_{\underline{p}}}) = \det(1 - \sigma \operatorname{Frob}_{\underline{p}}t|\rho^{I_{\underline{p}}})$.

If $\underline{q}' = g(\underline{q})$ is another prime above \underline{p} , then the matrix of $\rho(d)$ for $d \in \operatorname{Gal}(\overline{F}/K)$ with respect to a basis $\{e_i\}$ is the same as that of $\rho(gdg^{-1})$ with respect to a basis $\{ge_i\}$. As $d \to gdg^{-1}$ maps $D_{\underline{q}/\underline{p}}$ to $D_{\underline{q}'/\underline{p}}$, $I_{\underline{q}/\underline{p}}$ to $I_{\underline{q}'/\underline{p}}$ and $\operatorname{Frob}_{\underline{q}/\underline{p}}$ to $\operatorname{Frob}_{\underline{q}'/\underline{p}}$ the result follows.

Remark. If dim $\rho = 1$ then

$$P_{\underline{p}}(\rho, t) = \begin{cases} 1 - \rho(\operatorname{Frob}_{\underline{p}})t & \text{if } \rho^{I} = \rho\\ 1 & \text{if } \rho^{I} = 0 \end{cases}$$

In general it is essentially the characteristic polynomials of $\operatorname{Frob}_{\underline{p}}$ on $\rho^{I_{\underline{p}}}$: If $P_{\underline{p}}(\rho, t) = 1 + a_1 t + a_n t^2 + \dots + a_n t^n$ then characteristic polynomials is $t^n + a_1 t^{n-1} + \dots + a_n$.

Remark. The polynomial $P_p(\rho, T)$ has the form $1 - (aT + bT^2 + ...)$ so (ignoring convergence questions)

$$\frac{1}{P_{\underline{p}}(\rho,T)} = 1 + (aT + bT^2 + \dots) + (aT + bT^2 + \dots)^2 + \dots$$
$$= 1 + a_pT + a_{p^2}T + \dots$$

for some $a_{p^i} \in \mathbb{C}$. Formally substituting this to the Euler product gives the Artin L-series for ρ .

$$L(\rho, s) = \prod_{\underline{p}} (1 + a_{\underline{p}} N(\underline{p})^{-s} + a_{\underline{p}^s} N(\underline{p})^{-2s} + \dots)$$
$$= \sum_{\underline{n} \text{ non-zero ideal of } K} a_{\underline{n}} N(\underline{n})^{-s}$$

for some $a_{\underline{n}} \in \mathbb{C}$. Note that grouping ideals of equal norm yields an expression for $L(\rho, s)$ as an ordinary Dirichlet series.

Lemma 3.14. The L-series expression for $L(\rho, s)$ agrees with the Euler product on $\operatorname{Re}(s) > 1$ where they converge absolutely to an analytic function.

Proof. It suffices to prove that $\prod_{\underline{p} \text{ prime of } K} (1 + a_{\underline{p}} N(\underline{p})^{-s} + \dots)$ (as in the previous remark) converges absolutely on $\operatorname{Re}(s) > 1$. This justifies rearrangement of the terms, and the expression as an ordinary Dirichlet series for $L(\rho, s)$ then proves analytically (Proposition 3.3). The polynomial $P_{\underline{p}}(\rho, T)$ factors over \mathbb{C} as $P_{\underline{p}}(\rho, T) = (1 - \lambda_1 T)(1 - \lambda_2 T) \dots (1 - \lambda_k T)$ for some $k \leq \dim \rho$ with all $|\lambda_i| = 1$. So the coefficients of

$$\frac{1}{P_{\underline{p}}(\rho,T)} = \frac{1}{\prod(1-\lambda_i T)}$$
$$= 1 + a_{\underline{p}}T + a_{\underline{p}^2}T^2 + \dots$$

are bounded in absolute value by those of

$$\frac{1}{(1-T)^{\dim \rho}} = (1+T+T^2+\dots)^{\dim \rho}$$

Hence

$$\begin{split} \prod_{\underline{p}} \sum_{n} \left| a_{\underline{p}^{n}} \right| \left| N(\underline{p})^{-s} \right| &\leq \prod_{\underline{p}} \frac{1}{\left(1 - \left| N(\underline{p})^{-s} \right| \right)^{\dim \rho}} \\ &\leq \prod_{\underline{p}} \left(\frac{1}{1 - \left| p^{-s} \right|} \right)^{\dim \rho} (\underline{p} \text{above } p) \\ &= \zeta(\sigma)^{\dim_{\rho}[K:\mathbb{Q}]} \end{split}$$

where $\sigma = \operatorname{Re}(s)$.

Proposition 3.15. Let F/K be a Galois extension of number fields ρ a Gal(F/K) representation.

- 1. If ρ' is another $\operatorname{Gal}(F/K)$ -representation then $L(\rho \oplus \rho', s) = L(\rho, s)L(\rho', s)$
- 2. If $N \triangleleft \operatorname{Gal}(F/K)$ lies in $\ker(\rho)$ so that ρ comes from a representation ρ'' of $\operatorname{Gal}(F^N/K) = G/N$ then $L(F/K, \rho, s) = L(F^N/K, \rho'', s).$
- 3. (Artin Formalisation) If $\rho = \operatorname{Ind}_{H}^{G} \rho'''$ for a representation of $H \leq G$ then $L(F/K, \rho, s) = L(F/F^{H}, \rho''', s)$

Proof. It suffices to check the statement prime-by-prime for the local polynomials

- 1. Clear (Note $(\rho \oplus \rho')^{I_p} = \rho^{I_p} \oplus \rho'^{I_p}$)
- 2. Straight from the definitions using: if G = Gal(F/K), $N \lhd G$, \underline{q} a prime above \underline{s} in F^N , above \underline{p} is K. Then $D_{\underline{s}/p} = D_{q/p}N/N$, $I_{\underline{s}/p} = I_{q/p}N/N$, $\text{Frob}_{q/p}N = \text{Frob}_s/\underline{p}$ (proof, exercise)
- 3. This follows from Proposition 2.16: the second formula there show that the number of times $(1 \zeta T)$ in $P_p(\rho, T)$ and in $\prod_{\Sigma \text{ above } p} P_{\underline{s}}(p''', T^{\underline{p}_{\Sigma_i/\underline{p}}})$ is the same.

Example. Let $K = \mathbb{Q}$, $F = \mathbb{Q}(\zeta_N)$. $G = \operatorname{Gal}(F/K) \cong (\mathbb{Z}/N\mathbb{Z})^*$. Then

$$\begin{aligned} \zeta_F(s) &= L(F/F,\mathbb{I},s) \\ &= L(F/\mathbb{Q},\operatorname{Ind}\mathbb{I},s) \\ &= \prod_{\chi\in\widehat{G}} L(\chi,s) \end{aligned}$$

where \widehat{G} is the set of irreducible representations of G. For general F/\mathbb{Q} would have

$$\zeta_F(s) = \prod_{\rho \in \widehat{G}} L(\rho, s)^{\dim \rho}$$

3.4 Artin *L*-series for 1-dimensional representation

Lemma 3.16. Let $F = \mathbb{Q}(\zeta_N)$ and $\chi : \operatorname{Gal}(F/\mathbb{Q}) \cong (\mathbb{Z}/N\mathbb{Z})^* \to \mathbb{C}^*$. Then

$$L(F/\mathbb{Q},\chi,s) = L_N(\chi,s) \cdot \prod_{p|N} \frac{1}{P_p(\chi,q^{-1})}$$

Proof. We can compare the Euler factor prime by prime. For p|N we have equality as the one for $L_N(\chi, s)$ is 1 $(\chi(p) = 0)$.

For $p \nmid N$, p is unramified in $\mathbb{Q}(\zeta_N)$ so $I_p = \{ \text{id} \}$ (so $\chi^{I_p} = \chi \}$ and $\operatorname{Frob}_p(\zeta_N) = \zeta_N^p \leftrightarrow p \mod (\mathbb{Z}/N\mathbb{Z})^*$. Thus

$$P_p(\chi, T) = \det(1 - \operatorname{Frob}_p T | \chi^{I_p})$$

= $1 - \chi(\operatorname{Frob}_p)T$
= $1 - \chi(p)T$

as required

Remark. When N is minimal, the last term is 1 and $L(\chi, s) = L_N(\chi, s)$.

Remark. By the Kroneckar-Weber theorem, every abelian extension of \mathbb{Q} lies inside $\mathbb{Q}(\zeta_N)$ for some N. So if ρ : $\operatorname{Gal}(F/\mathbb{Q}) \to \mathbb{C}^*$ is a 1-dimensional representation then by Proposition 3.15 2. $L(\rho, s) = L(\rho'', s)$ for some $\rho'' : \operatorname{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q}) \to \mathbb{C}^*$ which is then essentially a Dirichlet *L*-function.

Theorem 3.17. (Hecke (1920) + some Class Field Theory) Let F/K be a Galois extension of number fields and $\psi : \operatorname{Gal}(F/K) \to \mathbb{C}^*$ a 1-dimensional representation. Then $L(\psi, s)$ has an analytic continuation to \mathbb{C} , except for a simple pole at s = 1 when $\psi = \mathbb{I}$.

Remark. When $K = \mathbb{Q}$ and $F = \mathbb{Q}(\zeta_N)$ this recovers Theorem 3.8

Proof. Way beyond the scope of this course

Corollary 3.18. If $\psi \neq \mathbb{I}$ then $L(\psi, 1) \neq 0$.

Proof. By Proposition 3.15 2. we may assume F/K is abelian. Then by Proposition 3.15 1. and 3.

$$\begin{aligned} \zeta_F(s) &= L(F/K, \operatorname{Ind}\mathbb{I}, s) \\ &= \prod_{\chi \in \widehat{G}} L(F/K, \chi, s) \\ &= \zeta_K(s) \prod_{\chi \neq \mathbb{I}} L(F/K, \chi, s) \end{aligned}$$

22

As both ζ -functions have a simple pole and the rest are analytic, this implies $L(F/K, \chi, 1) \neq 0$.