
A second course in Algebraic Number Theory

Vlad Dockchitser

Prerequisites:

• Galois Theory

• Representation Theory

Overview:

1. Number Fields (Review, K,OK ,O∗,ClK , etc)

2. Decomposition of primes (how primes behave in �eld extensions and what does Galois's do)

3. L-series (Dirichlet's Theorem on primes in arithmetic progression, Artin L-functions, Cheboterev's density
theorem)

1 Number Fields

1.1 Rings of integers

De�nition 1.1. A number �eld is a �nite extension of Q
De�nition 1.2. An algebraic integer α is an algebraic number that satis�es a monic polynomial with integer
coe�cients

De�nition 1.3. Let K be a number �eld. It's ring of integer OK consists of the elements of K which are algebraic
integers

Proposition 1.4.

1. OK is a (Noetherian) Ring

2. rkZOK = [K : Q], i.e., OK ∼= Z[K:Q] as an abelian group

3. Each α ∈ K can be written as α = β/n with β ∈ OK and n ∈ Z
Example.

K OK
Q Z

Q(
√
a) (a ∈ Z \ {0, 1},a square free)

{
Z[
√
a] a ≡ 2, 3 mod 4

Z[ 1+
√
a

2 ] a ≡ 1 mod 4

Q(ζn) where ζn is a primitive nth root of unity Z[ζn]

Proposition 1.5.

1. OK is the maximal subring of K which is �nitely generated as an abelian group

2. O‘K is integrally closed - if f ∈ OK [x] is monic and f(α) = 0 for some α ∈ K, then α ∈ OK .
Example (Of Factorisation). Z is UFD. When factorisation can only get di�erent orders of factors and di�erent
signs. The latter come from the units ±1 in Z.
OK may not even be a UFD, e.g., K = Q(

√
−5), OK = Z[

√
−5], 6 = 2 · 3 = (1 +

√
−5)(1−

√
−5).

To �x this one works with ideals.
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1.2 Units

De�nition 1.6. A unit in a number �eld K is an element α of OK with α−1 ∈ OK . The group of units is denoted
O∗K .

Example.

K OK O∗K
Q Z {±1}

Q(i) Z[i] {±1,±i}
Q
(√

2
)

Z[
√

2]
{
±(1 +

√
2)n : n ∈ Z

}
Dirichlet's Unit Theorem. Let K be a number �eld. Then O∗K is �nitely generated. More precisely

O∗K = ∆× Zr1+r2−1

where ∆ is the (�nite) group of roots of unity in K, r1 is the number of distinct embeddings of K into R, r2 the
number of pairs of complex conjugates K into C with image not in R. (Hence r1 + 2r2 = [K : Q])

Corollary. The only number �elds with �nitely many units are Q and Q(
√
−D) for D > 0 integer.

1.3 Ideals

Example. K = Q, OK = Z, a = (17) =all multiples of 17. So α ∈ a if and only if α = 17n for some n ∈ Z.
Multiplication: (3) · (17) = (51).

Unique factorisation of ideals. Let Kbe a number �eld. Every non-zero ideals of OK admits a factorisation
into prime ideals. This factorisation is unique up to order.

De�nition 1.7. Let a, bCOK be two ideals. Then a divides b (written a|b) if a·c = b for some ideal c. (Equivalently
if in the prime factorisation, a = pn1

1 · · · p
nk
k , b = pm1

1 . . . pmkk we have ni ≤ mi for all i)

Remark.

1. For α, β ∈ OK , (α) = (β) if and only if α = βu for some u ∈ O∗K .

2. For ideals a, b then a|b if and only a ⊇ b.

3. To multiply ideals, just multiply their generators, e.g. (2) · (3) = (6), (2, 1 +
√
−5) · (2, 1 −

√
−5) = (4, 2 +

2
√
−5, 2− 2

√
−5, 6) = (2)

4. To add ideals, combine their generators, e.g., (2) + (3) = (2, 3) = (1) = OK .

Lemma 1.8. a, bCOK , a =
∏
i p
ni
i , b =

∏
i p
mi
i with ni,mi ≥ 0 and pi prime ideals. Then

1. a ∩ b =
∏
i p

max(ni,mi)
i (lowest common multiple)

2. a+ b =
∏
i p

min(ni,mi)
i (greatest common divisor)

Lemma 1.9. Let α ∈ OK \ {0}. Then there exists β ∈ OK \ {0} such that αβ ∈ Z \ {0}.

Proof. Let Xn+an−1X
n−1 + · · ·+a1X+a0 (with ai ∈ Z) be the minimal polynomial of α. Then αn+an−1α

n−1 +
· · ·+ α1α = −a0 ∈ Z, so take β = αn−1 + an−1α

n−2 + · · ·+ a1.

Corollary 1.10. If aCOK is a non-zero ideal, then [OK : a] is �nite.

Proof. Pick α ∈ a \ {0} and β ∈ OK with N = αβ ∈ Z \ {0}. Then N ∈ a and [OK : a] ≤ [OK : (α)] ≤ [OK :

(N)] = [OK : NOK ] = |N |[K:Q]
(By Proposition 1.4)

De�nition 1.11. The norm of a non-zero ideal aCOK is N(a) = [OK : a].
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Lemma 1.12. Let α ∈ OK \ {0}, then
∣∣NK/Q(α)

∣∣ = N((α))

Proof. Let v1, . . . , vn be a Z-basis for OK and Tα : K → K for the Q-linear map Tα(v) = αv. Then∣∣NK/Q(α)
∣∣ = |detTα|

= [〈v1, . . . , vn〉 : 〈αv1, . . . , αvn〉]
= [OK : (α)]

= N((α))

1.4 Ideal Class Group

Let K be a number �eld. We can de�ne an equivalence relation on non-zero ideals of OK by a ∼ b if and only
if there exists λ ∈ K∗ such that a = λb. The ideal class group of K denoted ClK , is the set of classes {non-zero
ideals}/ ∼. It is a group, the group structure coming from multiplication of ideals. The identity is {principal ideals}
and OK . Note that PID if and only if ClK = 1 if and only if UFD

Theorem 1.13. ClK is �nite

1.5 Primes and Modular Arithmetic

De�nition 1.14. A prime p in a number �eld K is a non-zero prime ideal in OK
Its residue �eld is OK/p = Fp.
Its residue characteristic, p, is the characteristic of OK/p.
Its (absolute) residue degree is fp =

[
OK/p : Fp

]
.

Lemma 1.15. The residue �eld of a prime is indeed a �nite �eld.

Proof. Let p be a prime, then OK/p is an integral domain. Furthermore
∣∣OK/p∣∣ =

[
OK : p

]
= N(p) which is �nite

by Corollary 1.10. Hence OK/p is a �eld.

Note. The size of the residue �eld is N(p)

Example. Let K = Q then OK = Z. Let p = (17), then the residue �eld OK/p = Z/(17) = F17.
Let K = Q(i) then OK = Z[i]. Let p = (2+ i), then OK/p = F5 and its representatives can be {0, 1, 1+ i, 2i, 2i+

1}. Let p = (3), then OK/p = F9 (= �F3[i]�)

Let K = Q(
√
d) where d ≡ 2, 3 mod 4, so OK = Z

[√
d
]
. Let p be a prime with residue characteristic p, then

OK/p is generated by Fp and the image of
√
d. Thus OK/p = Fp

[√
d
]

=

{
Fp if d a square mod p

Fp2 else

Notation. If aCOK is a non-zero ideal, we say that x ≡ y mod a if x− y ∈ a.

Theorem 1.16 (Chinese Remainder Theorem). Let K be a number �eld and p
1
, . . . , p

k
be distinct primes. Then

OK/
(
pn1

1
. . . pnk

k

)
→ OK/pn1

1
× · · · × OK/pnkk

via x mod pn1

1
. . . pnk

k
7→
(
x mod pn1

1
, . . . , x mod pnk

k

)
is a ring isomorphism.

Proof. Let ψ : OK → OK/pn1

1
×· · ·×OK/pnkk by x 7→

(
x mod pn1

1
, . . . , x mod pnk

k

)
. This is a ring homomorphism

with kerψ = ∩ki=1p
ni
i

=
∏k
i=1 p

ni
i

(by Lemma 1.8).
So it remains to prove that ψ is surjective, so that we can apply the �rst isomorphism theorem. By Lemma 1.8,

p
nj
j +

∏
i 6=j p

ni
i

= OK , so there α ∈ p
nj
j and β ∈

∏
i 6=j p

ni
i

such that α+ β = 1, now β ≡ 0 mod pni
i
for all i 6= j and

β ≡ 1 mod p
nj
j . So imψ 3 ψ(β) = (0, 0, . . . , 0, 1, 0, . . . , 0). This is true for all j, hence ψ is surjective.
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Remark. CRT implies that we can solve any system of congruences, i.e., x ≡ ai mod pni
i

for 1 ≤ i ≤ k. (This is
called the Weak Approximation Theorem)

Lemma 1.17. Let pCOK be prime

1.
∣∣OK/pn∣∣ = N(p)n

2. pn/pn+1 = OK/p as OK-module

Proof. 2. implies 1. as ∣∣OK/pn∣∣ =
∣∣OK/p∣∣ · ∣∣p/p2

∣∣ · · · ∣∣pn/pn+1
∣∣

= N(p)n

2.) By unique factorisation pn 6= pn+1, so pick π ∈ pn \ pn+1. Thus pn| (π) and pn+1 - (π). So (π) = pn · a with

p - a. So de�ne φ : OK → OK/pn+1 by φ(x) = πx mod pn+1, an OK-map. Note that kerφ =
{
x : pn+1| (πx)

}
= p

and imφ = (π) + pn+1 mod pn+1 = pn mod pn+1 (by Lemma 1.8). Hence OK/p
∼=→ pn/pn+1.

Corollary 1.18. N(ab) = N(a)N(b).

Proof. Use Theorem 1.16 and Lemma 1.17.

Lemma 1.19. N(a) ∈ a

Proof. N(a) is zero in any abelian group of order N(a), in particular in OK/a.

1.6 Enlarging the �eld

Example. Consider Q(i)/Q. Take primes in Q and factorise them in Q(i).

• (2) = (1 + i)2

• (3) remains prime

• (5) = (2 + i)(2− i)

We only see those three properties/behaviour in Q(i), so we say

• �2 rami�es�

• �3 is inert�

• �5 splits�

Note that p (prime of Q(i)) contains p = charZ[i]/p, so p|(p). Thus factorising 2, 3, 5, 7, . . . will yield all the primes
of Z[i].

De�nition 1.20. Let L/K be an extension of number �elds and aCOK an ideal. Then the conorm of a is the ideal
aOL of OL. I.e., the ideal generated by the elements of a in OL. Equivalently, if a = (α1, . . . , αn) as an OK-ideal,
then aOL = (α1, . . . , αn) as an OL-ideal.

Note. (aOL)(bOL) = (ab)OL
(aOM ) = (aOL)OM when K ≤ L ≤M
Warning: Sometimes write a for aOL.

Proposition 1.21. Let L/K be an extension of number �elds and a ∈ OK a non-zero ideal. Then N(aOL) =
N(a)[L:K].
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Proof. If a = (α) is principal, then by Lemma 1.12, we get

N(aOL) =
∣∣NL/Q(α)

∣∣
=

∣∣NK/Q (α)
∣∣[L:K]

= |N(a)|[L:K]

In general, as ClK is �nite, ak = (α) for some k ≥ 1. Hence

N(aOL)k = N(akOL)

= N(ak)[L:K]

= N(a)k[L:K]

Hence N(aOL) = N(a)[L:K].

De�nition 1.22. A prime q of L lies above a prime of K if q|pOL. (Equivalently if q ⊇ p as sets)

Lemma 1.23. Let L/K be a number �eld. Every prime of L lies above a unique prime of K. In fact q lies above
q ∩ OK = p.

Proof. q ∩ OK is a prime ideal of OK and is non-zero as it contains N(q). So q lies above p = q ∩ OK .
If q also lies above p′ then q ⊇ p+ p′ = OK 3 {1}, which is a contradiction.

Lemma 1.24. Suppose q C OL lies above p C OK (primes). Then OL/q is a �eld extension of OK/p with φ :
OK/p ↪→ OL/q given by φ(x mod p) = x mod q.

Proof. φ is well-de�ne as q ⊇ p and is a ring homomorphism, so has no kernel as OK/p is a �eld. Hence φ is an
embedding OK/p ↪→ OL/q

De�nition 1.25. If q lies above p then its residue degree is fq/p = [OL/q : OK/p].
Its rami�cation degree is the exponent, eq/p, in the prime factorisations pOL =

∏n
i=1 q

eq
i
/p

i .

Theorem 1.26. Let L/K be an extension of number �elds, p a prime of K.

1. If pOL decomposes as pOL =
∏m
i=1 q

ei
i

(with q
i
distinct and ei = eq

i
/p). Then

∑m
i=1 eqi/p

fq
i
/p = [L : K].

2. If M/L is a further extension, r lies above q, which lies above p, then er/p = er/qeq/p and fr/p = fr/qfq/p.

Proof.

1.

N(p)[L:K] = N(pOL)

= N(
∏
i

qei
i

)

=
∏
i

N(q
i
)ei

=
∏
i

N(p)fiei

= N(p)
∑
eifi

2. Multiplicativity for e is trivial.

For f just apply the Tower law
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De�nition 1.27. Let L/K be extensions of number �elds, p a prime of K with pOL =
∏m
i=1 q

ei
i

(q
i
distinct).

Then:

• p splits completely in L if m = [L : K], i.e., ei = fi = 1

• p splits in L if m > 1

• p is totally rami�ed if m = f = 1, e = [L : K]

We'll see that when L/K is Galois, then ej = ei and fi = fj for all i, j. Then we say p is rami�ed if e1 > 1 and
unrami�ed if e1 = 1.

Pseudo-example

Let F = Q(i)/Q, OF = Z[i], and f(X) = X2 + 1
Observe:

(2) = (i+ 1)2 X2 + 1 = (X + 1)2 mod 2

(5) = (i+ 2)(i− 2) X2 + 1 = (X + 2)(X − 2) mod 5

(3) prime X2 + 1 mod 3 is irreducible

Theorem 1.28 (Kummer - Dedekind). Let L/K be an extension of number �elds. Suppose OK [α] ≤ OL has �nite
index N , for some α ∈ OL with minimal polynomial f(X) ∈ OK [X]. Let p be a prime of K not dividing N
(equivalently charOK/p - N).

If

f(X) mod p =

m∏
i=1

gi(X)ei

where g
i
are distinct irreducible, then

pOL =

m∏
i=1

qei
i

with q
i

= pOL + gi(α)OL, where gi(α) ∈ OK [α] satisfy gi(x) = gi(x) mod p. The q
i
are distinct primes of L with

eq
i
/p = ei and fq

i
/p = deg gi(X).

Example. Let K = Q, L = Q(ζ5), OL = Z[ζ5]. Take α = ζ5, so N = 1 and f(X) = X4 +X3 +X2 +X + 1.
Now f(X) mod 2 is irreducible, hence (2) is prime in OL.
f(X) = (X − 1)4 mod 5, hence (5) = (5, ζ5 − 1)5

f(X) = (X2 + 5X + 1)(X2 − 4X + 1) mod 19, hence (19) = (19, ζ2
5 + 5ζ5 + 1)(19, ζ2

5 − 4ζ5 + 1).

Q(ζ5) � · • •

Q (2)

F16e=1,f=4

(5)

F5e=4,f=1

(19)

e=2,f=2
F192

Proof of Theorem 1.28.

Claim. 1: q
i
are primes with fq

i
/p = deg qi

Set A = OK [α], F = OK/p, p = charF. Use the map x 7→ α to de�ne a map

A/pA+ gi(α)A ← OK [x]/(f(x), p, g
i
(x))

∼= F[x]/(f(x), gi(x))
∼= F[x]/(gi(x))

a �eld of degree fi = deg gi over F, as gi is irreducible
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Now pick M ∈ Z such that NM ≡ 1 mod p and consider φ : A/pA + gi(α)A → OL/qi de�ned by φ(x)
mod (pA + gi(α)A) → x mod q

i
, it is well de�ned as q

i
⊇ pA + gi(α)A. It is surjective since: if x ∈ OL then

Nx ∈ A and M(Nx) = MNx mod q
i

= x mod q
i
(since MN ≡ 1 mod q

i
). Now OL/qi is non-zero: otherwise

1 ∈ pOL + gi(α)OL, so both p and MN ∈ pA+ gi(α)A, hence 1 ∈ pA+ gi(α)A a contradiction as this is a proper
ideal of A. Therefore OL/qi is a �eld (hence q

i
is prime) with degree fi over F.

Claim. 2: q
i
6= q

j
for i 6= j

As gcd(gi(x), gj(x)) = 1 can �nd λ(x), µ(x) ∈ OK [x] such that λ(x)gi(x) + µ(x)gj(x) = 1 mod p. Then q
i
+ q

j

contains both p and λ(α)gi(α) + µ(α)gj(α) = 1 mod p, hence q
i
+ q

j
= OL

Claim. pOL =
∏
i q
ei
i

∏
i

qei
i

=
∏
i

(pOL + gi(α)OL)

⊆ pOL +
∏

gi(α)eiOL
= pOL

as
∏
gi(α)ei ≡ f(α) ≡ 0 mod p. But

N(

m∏
i=1

qei
i

) =
∏
i

|F|eifi

= |F|deg f(x)

= |F|[L:K]

= N(pOL)

Example. Let K = Q, L = Q(ζpn), p prime, OL = Z[ζpn ] and α = ζpn . Then N = 1, f(X) = Xp
n
−1

Xpn−1−1
. Now

f(X) = (X − 1)p
n−pn−1

mod p, hence (p) is totally rami�ed in Q(ζpn)/Q.
If q 6= p is also prime, then, working mod q, gcd(Xpn − 1, ddx (Xpn − 1)) = 1, hence Xpn − 1 has no repeated

roots in Fq. In particular, f(X) mod q has no repeated factors, so all ei are 1, i.e., q is unrami�ed in Q(ζpn)/Q.

Remark. Can't always �nd α such that OL = OK [α]. But by Primitive Element Theorem, there exists α such that
[OL : OK [α]] <∞, so can decompose almost all primes.

Proposition 1.29. Let L/Q be a �nite extension, α ∈ OL with L = Q(α) and minimal polynomial f(X) ∈ Z[X].
If f(X) mod p has distinct roots in Fp (equivalently p - discf) then [OL : Z[α]) is coprime to p (so Kummer -
Dedekind applies)

Proof. Let β1, . . . , βn be a Z-basis for OL so 
1
α1

...
αn−1

 = M


β1

β2

...
βn


for some M ∈ Matn×n(Z) with |detM | = [OL : Z[α]].
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Let F be a splitting �eld for f(X). Write σ1, . . . σn for the embeddings of L ↪→ F and αi = σ(α) for the roots
of f(x). Then

p - disc(f) =
∏
i<j

(αi − αj)2

=

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
α1 α2 · · · αn
α2

1 αn−1
2 α2

n
...

...
...

αn−1
1 αn−1

2 · · · αn−2
n

∣∣∣∣∣∣∣∣∣∣∣

2

= det

M
σ1(β1) · · · σn(β1)

...
...

σ1(βn) · · · σn(βn)




2

= [OL : Z[α]] ·B

for some B ∈ OF \ {0}, hence p - [OL : Z[α]].

Proposition 1.30. Let L/K be a �nite extension of number �elds, p a prime of K. Suppose L = K(α) for some
α ∈ OL satisfying an Eisenstein minimal polynomial with respect to p, i.e.,

f(X) = Xn + an−1X
n−1 + · · ·+ a1X + a0

with p|(ai) and p2 - (a0). Then p is totally rami�ed in L/K

Proof. Omitted

2 Decomposition of primes

2.1 Action of the Galois group

Let F/K be a Galois extension of number �elds:

• Gal(F/K) = Aut(F/K).

• F/K is normal (is f(X) ∈ K[X] is irreducible and acquire a root in F then f splits completely)

• |Gal(F/K)| = [F : K]

• H < Gal(F/K)→ FH , Gal(F/L)← K ≤ L ≤ F a 1-1 correspondence

Q(ζ3,
3
√

2)

Q( 3
√

2)

C2

Q(ζ3)

C3

Q
not Galois C2

∼=S3/C3

S3

Lemma 2.1. Let g ∈ Gal(F/K):

1. α ∈ OL then gα ∈ OF
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2. a ∈ OF is an ideal, then g(a)COF ideal

3. Let a, bCOF be ideals, then g(a · b) = g(a)g(b), g(a+ b) = g(a) + g(b).

If q is a prime of F above p, a prime of K, then

4. g(q) is a prime of F above p (so Gal(F/K) permutes the primes above p)

5. eq/p = eg(q)/p and fq/p = fg(q)/p

Proof. Clear

Example. Let K = Q, F = Q(i), then OF = Z[i] and Gal(F/K) = C2 = {id, complex conjugation}.
Consider (1 + i), it is �xed by Gal(F/K). (3) is also �xed by Gal(F/K). But (2 + i) and (2 − i) are swapped

by Gal(F/K).

Theorem 2.2. Let F/K be a Galois extension of number �elds, let p be a prime of K. Then Gal(F/K) act
transitively on the primes of F above p.

Proof. Let q
1
, . . . , q

n
be the primes above p. We need to show that there exists g ∈ Gal(F/K) such that g(q

1
) = q

2
.

Pick x ∈ OF such that x ≡ 0 mod q1 but x 6≡ 0 mod qi for all i 6= 1. This is possible by the Chinese Remainder
Theorem (Theorem 1.16). Then

∏
h∈Gal(F/K) h(x) ∈ q

1
∩ OK = p ⊆ q

2
. So for some g, g(x) ≡ 0 mod q

2
, hence

x ≡ 0 mod g−1(q
2
). Therefore g−1(q

2
) = q

1
by choice of x. I.e., q

2
= g(q

1
).

Corollary 2.3. Let F/K be a Galois extension. If q
1
, q

2
lie above p, then eq

1
/p = eq

2
/p and fq

1
/p = fq

2
/p.

Hence we can write epand fp in the case of Galois extensions

Example. Suppose Gal(F/K) = S4 and p splits into q
1
, q

2
, q

3
, q

4
in F , with the usual action of S4on 4 elements

F · · · ·

L

H

K ·p

Say H = {id, (12)(34)} ∼= C2, L = FH . H-orbits of
{
q

1
, . . . , q

4

}
are

{
q

!
, q

2

}
and

{
q

3
, q

4

}
, so there exists 2 primes

r1, r2 in L above p. (r1 splits into q
1
and q

2
in F and r2 splits into q

3
and q

4
)

2.2 Decomposition Group

Notation. If p is prime of K, write Fp = OK/p .

De�nition 2.4. Let F/K be a Galois extension of number �elds, q a prime of F above p, a prime of K. The
decomposition group Dq = Dq/p of q (over p) is Dq/p = StabGal(F/K)(q)

Remark. g ∈ Dq �xes q so it acts on Fq by x mod q 7→ g(x) mod q. This gives a natural map Dq → Gal(Fq/Fp)
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Example. Let K = Q, F = Q(i). Let p = 3 and q = (3), complex conjugations �xes q and acts as a + bi

mod (3) 7→ a− bi mod 3 = (a+ bi)3 mod 3. I.e., exactly as the frobenius automorphism x→ x3 on Fq.

Theorem 2.5. Let F/K be a Galois extension of number �elds, q a prime of F above p, a prime of K. Then the
natural map Dq → Gal(Fq/Fp) is surjective.

Proof. Pick β ∈ Fq such that Fp(β) = Fq. Let f(x) ∈ Fp[x] be its minimal polynomial and β = β1, β2, . . . , βn ∈ Fq
be its roots (in Fq as Fq/Fp is Galois). Since g(β) determines g ∈ Gal(Fq/Fp) so is su�ces to prove that there exists

g ∈ Dq with g(β) = g(β2).

Pick α ∈ OK with α ≡ β mod q and α ≡ 0 mod q′ for all other primes q′ above p (possible by CRT Theorem
1.16). Let F (X) ∈ OK [X] be its minimal polynomial over K, and α = α1, α2, . . . , αm ∈ OF be its roots (in F as
F/K is Galois). F (X) mod q has β as a root, hence f(x) divides F (X) mod q, hence β2 also is a root of F (X)
mod q. Without loss of generality α2 mod q = β2. Take g ∈ Gal(F/K) with g(α) = α2. Then g(α) 6= 0 mod q,
hence g(q) = q so g ∈ Dq, and g(β) = β2

Corollary 2.6. Let K be a number �eld, F/K the splitting �eld of a monic irreducible f(x) ∈ OK [x], of degree n.
Suppose for some prime p of K, f(x) mod p = g1(x)g2(x) . . . gk(x) with gi(x) ∈ Fp[x] be distinct irreducible with

deg gi = di. Then Gal(F/K) ⊆ Sn contains an element of cycle type (d1, d2, . . . , dk)

Proof. Let α1, . . . , αn ∈ OK be the roots of f(x). Then βi = αi mod q (q any prime above p) are precisely the
roots of f(x) mod p in Fq. Their generator of Gal(Fq/Fp) permutes the βi with cycle type (d1, . . . , dk). Hence its

lift to Dq ≤ Gal(F/K) has the claimed cycle type.

De�nition 2.7. Let F/K be Galois, q a prime above p. The inertia subgroup Iq = Iq/p is the (normal) subgroup

of Dq that acts trivially on Fq, i.e., Iq = ker(Dq → Gal(Fq/Fp)).

Note that as the amp is surjective Dq/Iq ∼= Gal(Fq/Fp). The latter group is cyclic and is generated by the

frobenius map φ : x→ x#Fp .

De�nition 2.8. The (arithmetic) Frobenius element Frobq/p is the element of Dq/Iq that maps to φ.

Theorem 2.9. Let F/K be Galois extensions of number �eld, q a prime of F above p, a prime of K. Then

1.
∣∣∣Dq/p

∣∣∣ = eq/p · fq/p

2. Order of Frobq/p is fq/p

3.
∣∣∣Iq/p∣∣∣ = eq/p

If K ≤ L ≤ F and s is above p, below q

4. Dq/s = Dq/p ∩Gal(F/L)

5. Iq/s = Iq/p ∩Gal(F/L)

Proof.

1. Let n = #primes above p . Then

n ·
∣∣∣Dq/p

∣∣∣ = |Gal(F/K)| (orbit− stabiliser)

= [F : K]

=
∑

eifi (Theorem 1.26)

= neq/pfq/p
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2. fq/p = [Fq : Fp] =
∣∣∣Gal(Fq/Fp)

∣∣∣ =order of Frobq/p

3.
∣∣∣Dq/p

∣∣∣ =
∣∣∣Iq/p∣∣∣ ·order of Frobq/p, hence

∣∣∣Iq/p∣∣∣ = eq/p

4. and 5. Just from de�nition.

Example.

Q(
√

2,
√

3) = F

Q(
√

2) Q(
√

3) Q(
√

6)

Q

Now 2 rami�es in all three quadratic �elds:

• (2) =
(√

2
)2

• (x2 − 3) = (x+ 1)2 mod 2

• (x2 − 6) = x2 mod 2

and use Kummer - Dedekind. Let q in F , hence e ≥ 2, so
∣∣∣Iq∣∣∣ ≥ 2, so Iq contains Gal(F/Q

(√
d
)

) for some d. So

the prime above 2 in F/Q(
√
d) is rami�ed, so eq = 2 · 2 = 4 and Iq = C2 × C2.

Example. Let K = Q, F = Q(ζn). Let p - n be a prime, q a prime of F above p. We know that p is unrami�ed,

so Iq/p = {id} and Dq/p =
〈

Frobq/p

〉
. Now Frobq/p(ζn) ≡ ζpn mod q and hence Frobq/p(ζn) = ζpn as ζin are distinct

in Fq. (Since xn − 1 mod p has distinct roots). In particular, eq/p = 1 and fq/p =order of Frobq/p =order of p in

(Z/nZ)∗.

2.3 Counting primes

Lemma 2.10. Let F/K be a Galois extension of number �elds.

1. primes of K are in 1-1 correspondence with Gal(F/K)-orbits on primes of F via p↔primes of F above p.

2. If q lies above p then gDq 7→ g(q) is a Gal(F/K) set isomorphism from {primes above p} to G/Dq

3. Dg(q) = gDqg
−1, Ig(q) = gIqg

−1 and Frobg(q)/p = gFrobq/pg
−1.

Proof. 1. is from transitivity of the Galois action while 2. and 3. are elementary check

Corollary 2.11. Let F/K be Galois, K ≤ L ≤ F , G = Gal(F/K), H = Gal(F/L). Then

{primes of L above p} ↔ H−orbits on primes of F above p↔ H\G/Dq = {HgDq}

via s 7→elements that sent q to some prime above s.

Proposition 2.12. Let F/K be Galois extension of number �elds, L = K(α) an intermediate �eld, G = Gal(F/K)
and H = Gal(F/L). Let X = {roots of min poly of α} ∼= {embeddings L ↪→ F} = H\G a G-set of size [L : F ].

Then {primes of L above p} 1:1↔ Dq-orbits on X with

11



• size Dq-orbits= es/p · fs/p

• size Iq-suborbits = es/p

• number Iq-suborbits= fs/p

Explicitly, s 7→Orbits of g−1(α) where g(q) lies above s.

Example. Let K = Q, F = Q(ζ5,
5
√

2), p = 73, Let q be a prime of F above p

F

L = Q( 5
√

2)

Q

Now p is unrami�ed in F with residue degree 4 (use Kummer - Dedekind on L/Q and Q(ζ5)/Q and that Gal(F/Q)

has no element of order 20). Now Gal(F/Q) permutes 5
√

2, ζ 5
√

2, . . . transitively, eq/73 = 1, hence Iq-orbits are

trivial. fq = 4 hence
∣∣∣Dq

∣∣∣ = 4, Dq
∼= C4 (generated by Frob). Without loss of generality Dq �xes

5
√

2 and permutes

the rest cyclically. Hence there are 2 primes in L above 73 with residue degree 1 and 4 and rami�cation degrees 1
and 1.

Proof of Theorem 2.12. We have

{primes of L above p} ↔ H\G/Dq

↔ Dq−orbits onH\G =: X

(Dq acts by d(Hg) = Hgd−1). Size of Dq-orbits of

g−1(α) =

∣∣∣Dq

∣∣∣∣∣∣StabDq (g
−1(α))

∣∣∣
=

∣∣∣Dq

∣∣∣∣∣∣StabgDqg−1(α)
∣∣∣

=

∣∣∣Dq

∣∣∣
|gDg−1 ∩H|

=

∣∣∣Dq

∣∣∣∣∣∣Dg(q)/p

∣∣∣
=

eq/p · fq/p
eq/s · fq/s

= es/p · fs/p

Similarly, size of Iq-orbits is es/p (same calculations as above, replacing Dq with Iq). And hence #Iq -suborbits

is
es/p·fs/p
es/p

= fs/p.
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2.4 Representation of the decomposition group

Let F/K be a Galois Extensions of number �elds. Let G = Gal(F/K), p a prime in OK , q a prime above p in OF .
Let D = Dq/p and I = Iq/p, Frob = Frobq/p.

De�nition 2.13. A representation V of D is unrami�ed if I acts trivially on V , therefore V I = V (F/K is
unrami�ed if and only if all V are unrami�ed)

Notation. For a f th
q/p-root of unity ζ, de�ne the representation Ψq/p,ζ = Ψζ : D → C∗ = GL1(C) such that Ψζ(h) = 1

(h ∈ I) , Ψζ(Frob) = ζ. Thus Ψζ(g) = ζk if g acts as x 7→ x(#Fp)k on Fq.

Lemma 2.14. If V is a irreducible representation of D then either V I = 0 or V is unrami�ed and V = Ψζ for

some ζ with ζfq/p = 1.

Proof. Since ICD it follows that V I is a subrepresentation of V . Then either V I = 0 or V I = V .In the latter case,
the action of D factors through D/I = 〈Frob〉 and hence V is 1-dimensional and V = Ψζ for some ζ.

Notation. If q′ = g(q) is another prime above p for some g ∈ G and (ρ, V ) a representation of D, we write (ρg, V g)

for the corresponding representation of Dq//p given by ρg(h) = ρ(ghg−1). Clearly Dq/p
∼= Dq′/p as groups.

Example. Let G ∼= S4, D = D8 and I = C4. Then there are |G/D|-prime above p. D8
∼= Dq/p. Others are the

two other subgroup of S4 isomorphic to D8.

D8 e (1234) (13)(24) (12)(34) (13)

1 1 1 1 1 1
ε1 1 1 1 −1 1
ε2 1 −1 1 1 −1
ε3 1 −1 1 −1 1
ρ 2 0 −2 0 0

The 2-dimensional irreducible representation of Dq′/p is ob-

tained as ρ′(h) = ρ(g−1hg).

Lemma 2.15.

1. If q′ = g(q) another prime over p then Ψq′/p,ζ = Ψg
q/p,ζ

2. If L is an intermediate �eld, Σ is a prime below q then ResDq/ΣΨζ = Ψq/Σ,ζf whence f = fΣ/p. In particular

ResDq/Σ
Ψq/p,ζ = I ⇐⇒ ζfΣ/p = 1

Proof.

1. Follows from Dq′/p = gDg−1, Iq′/p = gIg−1 and Frobq′/p = gFrobg−1

2. ResDq/Σ
Ψq/p,ζ sends Iq/Σ to 1 and Frobq/Σ to ζf because Frobq/Σ acts as x→ x(#Fp)f on Fq.

Proposition 2.16. Let K ⊆ L ⊆ F , H = Gal(F/L)

q
i

− F −

Σ L −

H

p −

G

K
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Let {Σi} be the set of primes of L above p and pick q
i

= gi(q) above Σi for each i. For V a representation of H

ResGDIndGHV
∼=
⊕
Σi

(
Ind

Dq
i
/p

Dq
i
/Σi

ResHDq
i
/Σi
V
)g−1

i

.

In particular 〈
Ψζ ,ResDIndGHV

〉
=
∑
Σi

〈
Ψ
q
i
/Σi,ρ

fΣi/p
,ResDq

i
,Σi
V

〉
.

Proof. The main claim is precisely Mackey's formula for H,D ≤ G. The second claim then follows from〈
Ψζ , (IndResV )g

−1
i

〉
Dq/p

=
〈

Ψq
i
/p,ζ , IndResV

〉
Dq

i
/p

=
〈

ResΨq
i
/p,ζ ,ResV

〉
Dq

i
/Σi

by Frobenius reciprocity

=

〈
Ψ
q
i
/Σi,ζ

fΣi/p
,ResV

〉

Corollary 2.17. Let ζ be a primitive nth root of unity with n|fq/p. Then K ⊆ L ⊆ F with H = Gal(F/L). The

number of primes of L above p =
〈

Ψζ ,ResGDIndGJ I
〉

Proof. By previous proposition, the Right Hand Side is
∑

Σ above p

〈
Ψ
q′/Σ′,ζ

fΣ/p , I
〉

= #Σ with ζfΣ/p = 1

3 L-series

Aim:

1. If gcd(a, n) = 1 then there are in�nitely many primes p ≡ a mod n

2. If f(x) ∈ Z[x] monic and f(x) mod p has a root mod p for all p, then f(x) is reducible.

De�nition 3.1. An ordinary Dirichlet series is a series f(s) =
∑∞
s=1 ann

−s (an ∈ C, s ∈ C).

Convention: s = σ + it.

Convergence Property

Lemma 3.2 (Abel's Lemma).
∑M
n=N anbn =

∑M−1
n=N (

∑n
k=N ak) (bn − bn+1) +

(∑M
k=N ak

)
bM

Proof. Elementary rearrangement (c.f., integration by part)

Proposition 3.3. Let f(s) =
∑∞
n=1 ane

−λns for λn →∞ an increasing sequence of the real number

1. If the partial sums
∑M
N an are bounded, then the series converges locally uniformly of Re(s) > 0 to an analytic

functions

2. If the series f(s) converges for s = s0, then it converges uniformly on Re(s) > Re(s0) to an analytic function.

Note. Dirichlet series are the case λn = log n
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Proof. Note that 1. implies 2. by the change of variables s′ = s− s0 and a′n = e−λns0an. The new series converges

at 0 and so must have
∑M
N a′n bounded

For 1. we will show uniform convergence on −A < arg(s) < A and Re(s) > δ. This will su�ce as the uniform
limit of analytic functions is analytic and these regions cover Re(s) > 0.

Let ε > 0, �nd N0 such that n > N0,
∣∣e−λns∣∣ < ε in this domain. Now compute: for N1M ≥ N0∣∣∣∣∣

M∑
n=N

ane
−λns

∣∣∣∣∣ =

∣∣∣∣∣
n−1∑
n=N

(
n∑

k=N

ak

)(
e−λns − e−λn+1s

)
+

(
M∑
N

ak

)
e−λMs

∣∣∣∣∣
≤ B

M−1∑
n=N

∣∣e−λns − e−λn+!s
∣∣+Bε

where B is the bound for the partial sums.
Observe:

∣∣e−αs − e−βs∣∣ =

∣∣∣∣∣s
ˆ β

α

e−xsdx

∣∣∣∣∣
≤ |s|

ˆ β

α

e−xσdx

=
|s|
σ

(e−ασ − e−βσ)

where σ = Re(s) for α > β. So

M∑
n=N

ane
−λns ≤ B

|s|
σ

M−1∑
N

(
e−λnσ − e−λn+1σ

)
+Bε

≤ B
|s|
σ
ε+Bε

≤ ε(BK +B)

where
∣∣ s
σ

∣∣ ≤ K in our domain.

Proposition 3.4. Let f(s) =
∑
ane
−λns for λn →∞ an increasing sequence of positive reals. Suppose

• an ≥ 0 is real

• f(s) converges on Re(s) > R (∈ R) and hence is analytic

• it has an analytic continuation to a neighbourhood of s = R

Then f(s) converges on Re(s) > R− ε for some ε > 0.

Proof. Again, we can assume R = 0. As f is analytic on Re(s) > 0 and |s| < δ. Hence f is analytic on
|s− 1| ≤ 1 + ε. The Taylor Series of f around s = 1 converges on all of |s− 1| ≤ 1 + ε. In particular
f(−ε) =

∑∞
k=0

1
k! (−1)k(1 + ε)kf (k)(1) converges. For Re(s) > 0 f (k)(s) =

∑∞
n=1 an(−λn)ke−λn (ok since uni-
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form convergence). Hence (−1)f (k)(s) =
∑∞
n=1 anλ

k
ne
−λn . Hence

f(−ε) =

∞∑
k=0

1

k!
(1 + ε)k

∞∑
n=1

anλ
k
ne
−λn

=
∑
k,n

anλ
k
ne
−λne−λn

1

k!
(1 + ε)k as all terms positive

=

∞∑
n=1

ane
−λne−λn(1+ε)

=

∞∑
n=1

ane
λnε

is a convergent series for f converges at s = −ε. This implies the result.

Theorem 3.5.

1. If an are bounded, then
∑
n≥1 ann

−s converges absolutely on Re(s) > 1 to an analytic function.

2. If the partial sums
∑M
N an are bounded then

∑
ann

−s converges absolutely on Re(s) > 0 to an analytic
function.

Proof.

1.
∣∣an
ns

∣∣ ≤ k 1
nσ where σ = Re(s) and

∑∞
n=1

1
nx does converge for x > 1 real. Analytic comes from Proposition 3.3

2. See Proposition 3.3

Remark. If
∑
ann

−s and
∑
bnn
−s converges on Re(s) > σ0 to the same function f(s), then an = bn for all n.

3.1 Dirichlet L-functions

De�nition 3.6. Let N ≥ 1 be an integer ψ : (Z/NZ)∗ → C∗ a group homomorphism. Extend ψ to a function on

Z by ψ(n) =

{
ψ(n mod N) gcd(n,N) = 1

0 else
. Such a function is called a Dirichlet character modulo N .

Its L-series (or L-function) is LN (ψ, s) =
∑∞
n=1 ψ(n)n−s.

Lemma 3.7. Let ψ be a Dirichlet character modulo N . Then

1. ψ(a+N) = ψ(a) (so ψ is periodic)

2. ψ(ab) = ψ(a)ψ(b) (so ψ is strictly multiplicative)

3. The L-series for ψ converges absolutely on Re(s) > 1 and satis�es the Euler product

Ln(ψ, s) =
∏

p prime

1

1− ψ(p)p−s
.

Proof. 1. and 2. are clear from the de�nition. 3. the L-series coe�cients an = ψ(n) are bounded, so absolute
convergence follows from Theorem 3.5. For Re(s) > 1∑

ψ(n)n−1 =
∏

p prime

(1 + ψ(p)p−s + ψ(p)2p−2s + . . . ) (by 2. and abs conv)

=
∏

p prime

1

1− ψ(p)p−s
(geometric series)
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Remark. The case ψ(n) = 1 for all n ∈ (Z/NZ)
∗
gives the trivial Dirichlet character modulo N . In this case

LN (ψ, s) =
∏

p prime

1

1− p−s

= ζ(s) ·
∏

p|N, prime

(1− p−s)

where ζ(s) is the Riemann ζ-function.

Example. Take N = 10, so (Z/NZ)∗ = {1, 3, 7, 9} ∼= C4, and ψ(1) = 1, ψ(3) = i, ψ(7) = −i and ψ(9) = −1. Then
L10(ψ, s) = 1 + i

3s −
i

7s −
1

11s + 1
11s + i

13s −
i

17s −
1

19s + . . . . Note that by the alternating series test (applied to the
real part and imaginary part separately) implies convergence on s > 0 real.

Theorem 3.8. Let N ≥ 1 and ψ : (Z/NZ)∗ → C∗.

1. If ψ is trivial then LN (ψ, s) has an analytic continuation to Re(s) > 0 except for a simple pole at s = 1

2. If ψ is non-trivial, then LN (ψ, s) is analytic on Re(s) > 0

Proof.

1. Follows from the previous remark and that ζ(s) has an analytic continuation to Re(s) > 0 with a simple pole
at s = 1.

2.
∑A+N−1
n=A ψ(n) =

∑
n∈(Z/NZ)∗ ψ(n) · 1 = ψ(N) 〈ψ, I〉 = 0 as ψ 6= 1. So the partial sums

∑B
A ψ(n) are bounded

and the result follows from Theorem 3.5ii)

Theorem 3.9. Let ψ be a non-trivial Dirichlet character modulo N . Then LN (ψ, 1) 6= 0.

Proof. Let

ζN (s) =
∏

χ:(Z/NZ)∗→C∗
LN (χ, s)

If LN (ψ, 1) = 0 then ζN (s) has an analytic continuation to Re(s) > 0, the pole form LN (I, s) having been killed by
the zero on LN (ψ, s). We'll show that this is not the case (and hence has a simple pole at s = 1)

On Re(s) > 1, ζN (s) has the absolutely convergent expression

ζN (s) =
∏
χ

∏
p-N

1

1− χ(p)p−s

=
∏
p-N

∏
χ

1

1− χ(p)p−s

=
∏
p-N

1

(1− p−fps)φ(N)/fp

where φ is the Euler totient function and fp the order of p in (Z/NZ)∗. Hence

ζN (s) =
∏
p-N

(
1 + p−fps + p−2fps + . . .

)φ(N)/fp
.

This is a Dirichlet series with positive real coe�cient so if it has an analytic continuation to Re(s) > 0, it must
converge there by Proposition 3.4. But for s > 0 real it dominates∏

p-N

(1 + p−φ(N)s + p−2φ(N)s + . . . ) = LN (I, φ(N)s)

which diverges for s = 1/φ(N).
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3.2 Primes in Arithmetic Progression

Strategy:
∑
p≡a mod N p

−s =
∑
χ λχ

∑
p χ(p)p−s with λI 6= 0. This is approximately

∑
χ λχ logLN (χ, s) ∼

λI log 1
s−1 →∞ as s→ 1.

Proposition 3.10. Let ψ be a Dirichlet character modulo N

1. The Dirichlet series
∑
p prime,n≥2

ψ(p)n

n p−ns converges on Re(s) > 1 so it is an analytic function and de�nes
(a branch of) logLN (ψ, s) there.

2. If ψ is non-trivial then
∑
p,n

ψ(p)n

n p−ns is bounded as s→ 1. If ψ = I then
∑
p,n

1
np
−ns ∼ log 1

1−s as s→ 1.

Proof.

1. The series has bounded coe�cients so converges absolutely on Re(s) > 1 to an analytic function by Theorem
3.5 1. For a �xed s with Re(s) > 1∑

p,n

ψ(p)n

n
p−ns =

∑
p

(
ψ(p)p−s +

(ψ(p)p−s)2

2
+ . . .

)

=
∑
p

log
1

1− ψ(p)p−s
(branch with log(1 + x) = x− x2

2
+ . . . )

= log
∏
p

1

1− ψ(p)p−s
(possibly a diff branch)

= logLN (ψ, s)

Hence
∑
p,n

ψ(p)n

n p−ns gives an analytic branch of logLN (ψ, s) on Re(s) > 1.

2. By Theorem 3.8, for ψ 6= I, LN (ψ, s) converges to a non-zero value as s → 1, so logLN (ψ, s) is bounded as
s→ 1. For LN (I, s) has a simple pole at s = 1 (hence ∼ λ

s−1 ) so logLN (I, s) ∼ log 1
s−1 as s→ 1.

Corollary 3.11. If ψ is non-trivial then
∑
p prime ψ(p)p−s is bounded as s→ 1. If ψ = I, then

∑
p prime ψ(p)p−s =∑

p-N p
−s ∼ log 1

s−1 as s→ 1 and in particular tends to ∞ as s→ 1.

Proof.
∑
p ψ(p)p−s = logLN (ψ, s) −

∑
p,n≥2

ψ(p)n

n p−ns so it su�ces to check that the last term is bounded on
Re(s) > 1.

∣∣∣∣∣∣
∑
p,n≥

ψ(p)n

n
p−ns

∣∣∣∣∣∣ ≤
∑ 1

n |ps|n

≤
∑

p prime,n≥2

1

pn

=
∑
p

1

p(p− 1)

≤
∑
k≥1

1

k2
<∞

Dirichlet's Theorem on primes in Arithmetic Progression. Let a,N be coprime integers. Then there are
in�nitely many primes p ≡ a mod N . Moreover if Pa,N is the set of these primes then

∑
p∈Pa,N

1
p−s ∼

1
φ(N) log 1

s−1
as s→ 1.
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Proof. The �rst statement follows from the second as log 1
s−1 → ∞ as s → 1. Consider the (class-)function

Ca,N : (Z/NZ)∗ → C∗ with Ca,N (n) =

{
1 if n = a

0 else
. Then

〈Ca,N , χ〉 =
1

φ(N)

∑
n∈(Z/NZ)∗

Ca,N (n)χ(n)

=
1

φ(N)
χ(a)

so Ca,n =
∑
χ
χ(a)
φ(N)χ by Character theory. Hence∑

p∈Pa,N

1

ps
=

∑
p prime

Ca,n(p)p−s

=
∑ χ(a)

ψ(N)

∑
p

χ(p)

ps

By Corollary 3.11, each term on RHS is bounded as s→ 1 except for χ = I, and

I
φ(N)

∑ I(p)
ps

=
1

φ(N)

∑
p-N

1

ps

∼ 1

φ(N)
log

1

s− 1

as s→ 1.

3.3 Artin L-functions

De�nition 3.12. Let F/K be a Galois extension of number �elds and ρ a Gal(F/K)-represnetation. The Artin
L-function of ρ is de�ned by the Euler product

L(F/K, ρ, s) = L(ρ, s)

=
∏

p prime of K

1

Pp(ρ,N(p)−s)

where the local polynomial of ρ at p, Pp(ρ, T ) is de�ned by Pp(ρ, T ) = det(1−FrobpT |ρIp). (= det(I −MT ) where

M is the matrix by which Frobp acts on ρ
Ip). Note that here Ip = Iq/p and Frobp = Frobq/p for some (Any) prime

q above p.

Example.

• TakeK = Q, F arbitrary, ρ = I. Then Pp(I, t) = det(1−1·t) = 1−t for all p. Hence L(I, s) =
∏
p

1
1−p−s = ζ(s).

• Similarly, for general K and ρ = I we get Pp(I, t) = 1− t∀p. Then L(F/K, I, s) =
∏
p

1
1−N(p)−s = ζK(s) (The

Dedekind ζ-function of K)

• K = Q,F = Q(i), ρ : Gal(F/K) = C2 → {±1} non-trivial 1-dimensional representation. Then

Pp(ρ, T ) =


1 p = 2⇒ ρIp = 0

1− t p ≡ 1 mod 4⇒ Frobp = id

1 + t p ≡ 3 mod 4⇒ Frobp 6= id

Hence L(ρ, s) =
∏
p≡1 mod 4

1
1−p−s

∏
p≡3 mod 4

1
1+p−s =

∏
p

1
1−χ(p)p−s where χ : Z → C∗ is the non-trivial

Dirichlet character mod 4. That is L(ρ, s) = L4(χ, s) a Dirichlet L-function.
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Lemma 3.13. The local polynomial Pp(ρ, T ) is independent of the choice of q above p and of the choice of Frobp.

Proof. For a �xed q above p , independence of the choice of Frobp is clear. Since two choices di�er by an element

σ ∈ Ip, which acts trivially on ρIp . Hence det(1− Frobpt|ρIp) = det(1− σFrobpt|ρIp).

If q′ = g(q) is another prime above p, then the matrix of ρ(d) for d ∈ Gal(F/K) with respect to a basis {ei} is
the same as that of ρ(gdg−1) with respect to a basis {gei}. As d → gdg−1 maps Dq/p to Dq′/p, Iq/p to Iq′/p and
Frobq/p to Frobq′/p the result follows.

Remark. If dim ρ = 1 then

Pp(ρ, t) =

{
1− ρ(Frobp)t if ρI = ρ

1 if ρI = 0

In general it is essentially the characteristic polynomials of Frobp on ρ
Ip : If Pp(ρ, t) = 1 + a1t + a”t

2 + · · · + ant
n

then characteristic polynomials is tn + a1t
n−1 + · · ·+ an.

Remark. The polynomial Pp(ρ, T ) has the form 1− (aT + bT 2 + . . . ) so (ignoring convergence questions)

1

Pp(ρ, T )
= 1 + (aT + bT 2 + . . . ) + (aT + bT 2 + . . . )2 + . . .

= 1 + apT + ap2T + . . .

for some api ∈ C. Formally substituting this to the Euler product gives the Artin L-series for ρ.

L(ρ, s) =
∏
p

(1 + apN(p)−s + apsN(p)−2s + . . . )

=
∑

n non−zero ideal of K

anN(n)−s

for some an ∈ C. Note that grouping ideals of equal norm yields an expression for L(ρ, s) as an ordinary Dirichlet
series.

Lemma 3.14. The L-series expression for L(ρ, s) agrees with the Euler product on Re(s) > 1 where they converge
absolutely to an analytic function.

Proof. It su�ces to prove that
∏
p prime of K(1+apN(p)−s+ . . . ) (as in the previous remark) converges absolutely on

Re(s) > 1. This justi�es rearrangement of the terms, and the expression as an ordinary Dirichlet series for L(ρ, s)
then proves analytically (Proposition 3.3). The polynomial Pp(ρ, T ) factors over C as Pp(ρ, T ) = (1 − λ1T )(1 −
λ2T ) . . . (1− λkT ) for some k ≤ dim ρ with all |λi| = 1. So the coe�cients of

1

Pp(ρ, T )
=

1∏
(1− λiT )

= 1 + apT + ap2T 2 + . . .

are bounded in absolute value by those of

1

(1− T )dim ρ
= (1 + T + T 2 + . . . )dim ρ

Hence ∏
p

∑
n

∣∣∣apn ∣∣∣ ∣∣N(p)−s
∣∣ ≤ ∏

p

1(
1−

∣∣N(p)−s
∣∣)dim ρ

≤
∏
p

(
1

1− |p−s|

)dim ρ

(pabove p)

= ζ(σ)dimρ[K:Q]

where σ = Re(s).
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Proposition 3.15. Let F/K be a Galois extension of number �elds ρ a Gal(F/K) representation.

1. If ρ′ is another Gal(F/K)-representation then L(ρ⊕ ρ′, s) = L(ρ, s)L(ρ′, s)

2. If N C Gal(F/K) lies in ker(ρ) so that ρ comes from a representation ρ′′ of Gal(FN/K) = G/N then
L(F/K, ρ, s) = L(FN/K, ρ′′, s).

3. (Artin Formalisation) If ρ = IndGHρ
′′′ for a representation of H ≤ G then L(F/K, ρ, s) = L(F/FH , ρ′′′, s)

Proof. It su�ces to check the statement prime-by-prime for the local polynomials

1. Clear (Note (ρ⊕ ρ′)Ip = ρIp ⊕ ρ′Ip)

2. Straight from the de�nitions using: if G = Gal(F/K), N CG, q a prime above s in FN , above p is K. Then
Ds/p = Dq/pN/N , Is/p = Iq/pN/N , Frobq/pN = Frobs/p (proof, exercise)

3. This follows from Proposition 2.16: the second formula there show that the number of times (1 − ζT ) in

Pp(ρ, T ) and in
∏

Σ above p Ps(p
′′′, T

p
Σi/p) is the same.

Example. Let K = Q, F = Q(ζN ). G = Gal(F/K) ∼= (Z/NZ)∗. Then

ζF (s) = L(F/F, I, s)
= L(F/Q, IndI, s)

=
∏
χ∈Ĝ

L(χ, s)

where Ĝ is the set of irreducible representations of G. For general F/Q would have

ζF (s) =
∏
ρ∈Ĝ

L(ρ, s)dim ρ

3.4 Artin L-series for 1-dimesnional representation

Lemma 3.16. Let F = Q(ζN ) and χ : Gal(F/Q) ∼= (Z/NZ)∗ → C∗. Then

L(F/Q, χ, s) = LN (χ, s) ·
∏
p|N

1

Pp(χ, q−1)

Proof. We can compare the Euler factor prime by prime. For p|N we have equality as the one for LN (χ, s) is 1
(χ(p) = 0).

For p - N , p is unrami�ed in Q(ζN ) so Ip = {id} (so χIp = χ) and Frobp(ζN ) = ζpN ↔ p mod (Z/NZ)∗. Thus

Pp(χ, T ) = det(1− FrobpT |χIp)

= 1− χ(Frobp)T

= 1− χ(p)T

as required

Remark. When N is minimal, the last term is 1 and L(χ, s) = LN (χ, s).

Remark. By the Kroneckar-Weber theorem, every abelian extension of Q lies inside Q(ζN ) for some N . So if
ρ : Gal(F/Q) → C∗ is a 1-dimensional representation then by Proposition 3.15 2. L(ρ, s) = L(ρ′′, s) for some
ρ′′ : Gal(Q(ζN )/Q)→ C∗ which is then essentially a Dirichlet L-function.
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Theorem 3.17. (Hecke (1920)+ some Class Field Theory) Let F/K be a Galois extension of number �elds and
ψ : Gal(F/K)→ C∗ a 1-dimensional representation. Then L(ψ, s) has an analytic continuation to C, except for a
simple pole at s = 1 when ψ = I.

Remark. When K = Q and F = Q(ζN ) this recovers Theorem 3.8

Proof. Way beyond the scope of this course

Corollary 3.18. If ψ 6= I then L(ψ, 1) 6= 0.

Proof. By Proposition 3.15 2. we may assume F/K is abelian. Then by Proposition 3.15 1. and 3.

ζF (s) = L(F/K, IndI, s)

=
∏
χ∈Ĝ

L(F/K,χ, s)

= ζK(s)
∏
χ 6=I

L(F/K,χ, s)

As both ζ-functions have a simple pole and the rest are analytic, this implies L(F/K,χ, 1) 6= 0.
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