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Books: Introduction to Commutative Algebra by Atiyah and Macdonald. Commutative Algebra
by Miles Reid.

1 Rings and Ideals

All rings R in this course will be commutative with a 1 = 1R.
We include the zero ring 0 = {0} with 1 = 0. (in all other rings 1 6= 0)

Example. Algebraic geometry: k[x1, ..., xn] with k a �eld. (The polynomial ring)
Number Theory: Z, + rings of algebraic integers e.g. Z[i]
Plus other rings from these by taking quotients, homomorphic images, localization,...

Ring homomorphisms: R→ S (maps 1R 7→ 1S)
Subrings: S ≤ R (≤ means subring) is a subset which is also a ring with the same operations and

the same 1S = 1R.
Ideals: I CR: a subgroup such that RI ⊆ I
Quotient Ring: R/I the set of cosets of I in R (x+I) with a natural multiplication (x+I)(y+I) =

xy + I
Associated surjective homomorphism: π : R→ R/I de�ned by x 7→ x+ I
1 to 1 correspondence: {ideals J of R withJ ≥ I} ↔ {ideals J̃ of R/I} de�ned by J 7→ J̃ = π(J) =

{x+ I : x ∈ J} and J̃ 7→ J = π−1(J̃)
More generally if f : R→ S is a ring homomorphism then ker(f) = f−1(0)CR and im(f) = f(R) ≤

S and R/ ker(f) ∼= im(f) de�ned by x + ker(f) 7→ f(x) and we have a bijection {idealsJ of R, J ≥
ker(f)} ↔ {ideals J̃ of im(f)}.

Example. f : Z → Z/nZ. ker(f) = nZ, im(f) = Z/nZ. Ideal of Z/nZ ↔ideals of Z,≥ nZ i.e.
mZ/nZ,m|n

1.1 Special elements, special rings

De�nition 1.1. x ∈ R is a zero-divisor if xy = 0 for some y 6= 0
x ∈ R is nilpotent if xn = 0 for some n ≥ 1 (⇒ x is a zero divisor except in 0 ring)
x ∈ R is a unit if xy = 1 for some y ∈ R (then y is uniquely determined by x and hence is denoted

x−1)
The set of all units in R forms a group under multiplication and is called the Unit Group. Denoted

R× (or R∗)
R is an integral domain (or domain) if R 6= 0 and R has no zero divisors.
Principal ideals: Every element x ∈ R generates an ideal xR = (x) = {xr : r ∈ R}. (x) = R =

(1) ⇐⇒ x ∈ R×. (x) = {0} = (0) ⇐⇒ x = 0
A �eld is a ring in which every non-zero element is a unit. In a �eld k the only ideals are (0) = {0}

and (1) = k.

Example. Z, k[x1, ..., xn] are domains but not �elds (n ≥ 1).
Q, k(x1, ..., xn) are �elds.

Z/nZ =


0 if n = 1

a �eld if n is prime

not a domain if n is not prime

De�nition 1.2. Prime ideal: P C R is prime if R/P is an integral domain. i.e. P 6= R and
xy ∈ P ⇐⇒ x ∈ P or y ∈ P

Maximal ideal: M C R is maximal if R/M is a �eld. i.e. R ≥ I ≥M ⇒ I = R or I = M
An ideal I CR is proper if I 6= R (⇐⇒ I does not contain 1⇐⇒ I does not contain any units)

Every maximal ideal is prime, but not conversely in general.

Note. 0 (the 0 ideal) is prime ⇐⇒ R is a domain. 0 is maximal ⇐⇒ R is a �eld.

Example. R = Z. 0 ideal is prime but not maximal. pZ (p is prime) is maximal.
If R is a PID (Principal Ideal Domain) then every non-zero prime is maximal:

2



Proof. R ⊇ (y) ⊇ (x) = P 6= 0 ⇒ x = yz for some z ∈ R. P prime ⇒ y ∈ P or z ∈ P . If y ∈ P then
(y) = (x) = P . On the other hand if z ∈ P then z = xt = ytz ⇒ z(1− yt) = 0, but z 6= 0 since x 6= 0
but R is a domain ⇒ yt = 1⇒ (y) = R

De�nition 1.3. The set of all prime ideals of R is called the spectrum of R, written Spec(R)
The set of all maximal ideals is Max(R) and is less important.

Let f : R → S be a ring homomorphism, and let P be a prime ideal of S then f−1(P ) is a prime

ideal of R. R
f→ S

π→ S/P has kernel f−1(P ) and S/P is a domain so f−1(P ) is prime.
Alternatively: If x, y /∈ f−1(P ) ⇒ f(x), f(y) /∈ P ⇒ f(xy) = f(x)f(y) /∈ P ⇒ xy /∈ f−1(P ).
Hence f : R→ S induces a map f∗ : Spec(S)→ Spec(R) by P 7→ f−1(P )

e.g. If f is surjective we have a bijection between {ideals of R ≥ ker(f)} ↔ {ideals of S} which
restricts to Spec(R) ⊇ {primes ideals of R ≥ ker(f)} ↔ {prime ideals S} = Spec(S) with P 7→ f∗(P ).
So f∗ is injective

Example. If f : Z ↪→ Q is the inclusion. 0 ∈ Max(Q) but f−1(0) = 0 /∈ Max(Z)
Spec(Z) = {0} ∪ {pZ : p prime},
Spec(Q) = {0} = Spec(k) for any �eld k
SpecC[x] ′ =′ {∞}

0 ideal
∪ C
a∈C→(X−a)

= P1(C)

SpecC[x, y] ′ =′ {∞}
0
∪ {irreducible curves in C2}

e.g. linesX+Y=0

∪ C2

(a,b)↔(X−a,X−b)={f :f(a,b)=0}

Theorem 1.4. Every non-zero ring has a maximal ideal

Proof. Uses Zorn's Lemma:

Lemma. Let S,≤ be a partially ordered set (so ≤ is transitive and antisymmetric x ≤ y and y ≤
x ⇐⇒ x = y)

If S has the property that every totally ordered subset T ⊆ S has an upper bound in S, then S has
a maximal element.

We apply this to the set of all proper ideals in R. Let T be a totally ordered set of proper ideals
of R. Set I =

⋃
J∈T J . Claim: I C R, I 6= R then I is an upper bound for the set T so Zorn ⇒ ∃

maximal proper ideal.

1. Let x ∈ I, r ∈ R⇒ x ∈ J for some J ∈ T ⇒ rx ∈ J ⊆ I ⇒ rx ∈ I

2. Let x, y ∈ I then x ∈ J1 and y ∈ J2. Either J1 ⊆ J2 ⇒ x, y ∈ J2 ⇒ x+ y ∈ J2 ⊆ I or similarly
J2 ⊆ J1.

Notice that 1 /∈ J ∀J hence 1 /∈ ∪J so I is a proper ideal of R

The same proof can be used to show

Corollary 1.5. Every proper ideal I is contained in a maximal ideal (Apply theorem to R/I)

Corollary 1.6. Every non-unit of R is contained in a maximal ideal (can use corollary 1.5)

De�nition 1.7. A local ring is one with exactly one maximal ideal (it may have other prime ideals!)

Example. p prime number Z(p) = {ab ∈ Q : p - b} ≤ Q
≥Z

has unique maximal ideal pZ(p) with

Z(p)/pZ(p) ≡ Z/pZ = {ab : p | a, p - b}. Z(p) \ pZ(p) = {ab : p - a, p - b} = set of units in Z(p) In general
in a local ring R with maximal ideal M the set of units R× = R \M . Note that (0) is a prime ideal
of Z(p)

k �eld, R = k[[x]] = {power series in X with coe�cients in k} = {f =
∑∞
i=1 aix

i : ai ∈ k}. Can
check f is a unit ⇐⇒ a0 6= 0. f is not a unit ⇐⇒ a0 = 0 ⇐⇒ f ∈ (x) ⇒ (x) = M is the unique
maximal ideal.
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1.2 Two radicals: The nilradical N(R) and the Jacobson radical J(R)

De�nition 1.8. N(R) = {x ∈ R : x is nilpotent}

Proposition 1.9.

1. N(R) CR

2. N(R/N(R)) = 0

Proof.

1. (a) Let x ∈ N(R), r ∈ R. So xn = 0 for some n ≥ 1⇒ (rx)n = rnxn = 0⇒ rx ∈ N(R).

(b) xn = 0, ym = 0 (m,n ≥ 1)⇒ (x+ y)m+n+1 = 0, cxiyj = 0 since i+ j = m+ n+ 1⇒ either
i ≥ n or j ≥ m

2. Need to show that R/N(R) has no non-zero nilpotents.

xn +N(R) = (x+N(R))n = 0 = 0 +N(R) (in R/N(R))

⇒ xn ∈ N(R)

⇒ (xn)m = 0

⇒ xmn = 0

⇒ x ∈ N(R)

⇒ x+N(R) = 0 in R/N(R)

Proposition 1.10. N(R) is the intersection of all the prime ideals of R

Proof. Let x ∈ N(R) so xn = 0 but since 0 ∈ P ∀P ∈ SpecR hence xn ∈ P ∀P ∈ SpecR ⇒ x ∈ P
since P is prime ⇒ x ∈

⋂
P∈SpecR P

For the other way we use the contrapositive. Let x /∈ N(R). So x, x2, x3, . . . are all non-zero.
Consider all ideals I which contain no power of x e.g. 0. In this collection there is a maximal element
say P . Then P C R and x /∈ P . We need to show that P is prime. Let y, z /∈ P , then P + (y) ) P
and P + (z) ) P . By maximality of P each of P + (y), P + (z) contains a power of x. Say (p1, P2 ∈
P, y′, z′ ∈ R)

xn = p1 + yy′

xm = p2 + zz′

⇒ xm+n = p1p2 + p1zz
′ + p2yy

′︸ ︷︷ ︸
∈P

+ yz(y′z′)

⇒ xm+n ∈ P + (yz)

⇒ P + (yz) 6= P

⇒ yz /∈ P

De�nition 1.11. J(R) = intersection of all maximal ideals of R. N(R) ⊆ J(R) (since maximals are
primes)

Proposition 1.12. x ∈ J(R) ⇐⇒ 1− xy ∈ R× ∀y ∈ R.

Proof. ”⇒ ”: If 1− xy /∈ R× then 1− xy ∈M for some ideal maximal ideal M ⇒ x /∈M (else 1 ∈M
contradicting maximality of M) ⇒ x /∈ J(R)
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”⇐ ”:

x /∈ J(R) ⇒ x /∈M for some M

⇒ M + (x) = R

⇒ 1 = m+ xy (m ∈M,y ∈ R)

⇒ 1− xy = m /∈ R×

Example. R = A [[x]] (A is a ring). R× = {
∑∞
i=0 aix

i : a0 ∈ A×} (Exercise).
⇒ x ∈ J(R) since 1− xf ∈ R× ∀x ∈ R.

1.3 New ideals from old

Sum If I, J CR then I + J = {x+ y : x ∈ I, y ∈ J}CR. (The smallest ideal ⊇ both I and J)

Intersection I ∩ J CR (The largest ideal ⊆ both I and J)

Product IJ = ideal generated by all xy with x ∈ I, y ∈ J = {
∑n
i=1 xiyi : xi ∈ I, yi ∈ J}. IJ ⊆ I ∩J ,

equality does not hold in general.

Powers: In =ideal generated by all product x1x2 . . . xn (xi ∈ I)

Example. R = Z.

• (m) + (n) = (d) where d = gcd(m,n)

• (m) ∩ (n) = (l) where l = lcm(m,n)

• (m)(n) = (mn)

• (m)k = (mk)

R = k[x1, . . . , xn]. Let M = (x1, x2, . . . , xn) = (x1) + (x2) + · · · + (xn). (M = ker(φ : R → k) where
φ(f) = f(0, 0, . . . , 0)) R/M ∼= k
M2 = (. . . , xixj , . . . ) = {polynomials with 0 constant terms and 0 linear terms}

These operation are commutative and associative, not all distributive.

• I(J +K) = IJ + IK

Proof. Each side is generated by xy, xz for x ∈ I, y ∈ J, z ∈ K

• If I + J = (1) then I ∩ J = IJ

Proof. Take (I+J)(I∩J) = I(I∩J)+J(I∩J) ⊆ IJ+JI = IJ so I+J = (1) then I∩J ⊆ IJ

De�nition 1.13. I and J are coprime/comaximal/relatively prime if and only if I + J = (1) ⇐⇒
x+ y = 1 for some x ∈ I, y ∈ J .

Example. For R = Q[x, y] we have (x)+(y) = (x, y) = {elements f ∈ R such that f(0, 0) = 0} 6= (1).
So (x) and (y) are distinct prime ideals but they are not coprime.

Lemma 1.14. If I and J are coprime then Im and Jn are coprime for any n,m ≥ 1.

Proof. x+ y = 1 for certain x ∈ I, y ∈ J . Consider 1 = (x+ y)m+n−1 ∈ Im + Jn hence Im and Jn are
coprime.
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Chinese Remainder Theorem. If I1, . . . , In are pairwise coprime ideals of R then

n∏
i=1

Ii =

n⋂
i=1

Ii

R/

n∏
i=1

Ii =

n∏
i=1

(R/Ii)

Proof. The �rst equation is true for n = 2. We are going to use induction so assume n > 2 and
the statement is true for n − 1. Let J =

∏n−1
i=1 Ii =

⋂n−1
i=1 Ii by the induction hypothesis. We have

Ii + In = (1) for all i = 1, . . . , n − 1. So take xi + yi = 1 for some xi ∈ Ii and yi ∈ In then
n−1∏
i=1

xi︸ ︷︷ ︸
∈J

=
∏n−1
i=1 (1− yi) ≡ 1 mod In so J + In = (1). Hence

∏n
i=1 Ii = JIn = J ∩ In =

⋂n
i=1 Ii

De�ne ϕ : R→
∏n
i=1R/Ii by x 7→ (x+ I1, x+ I2, ..., x+ In). Kernel is

⋂n
i=1 Ii =

∏n
i=1 Ii, now we

just need to show surjectivity. The element
∏n−1
i=1 xi maps to (0, . . . , 0, 1) (the xi are taken from the

�rst paragraph). By symmetry all �unit vectors� of
∏

(R/Ii) are in the image hence ϕ is surjective.
Then we use the �rst isomorphism theorem to get R/

∏
Ii →

∏
(R/Ii)

If ideals are not coprime, still get a ring homomorphismR/ (
⋂n
i=1 Ii) ↪→

∏
(R/Ii) but not surjective.

Proposition 1.15. 1. If I ⊆
⋃n
i=1 Pi with Pi prime, then I ⊆ Pi for some i

2. If P ⊇
⋂n
i=1 Ii and P is prime, then P ⊇ Ii for some i

3. 2. is also true with �=�

Proof. 1. We prove by induction if I * Pi for all i then I *
⋃n
i=1 Pi. In the case n = 1 it is obvious.

So suppose n > 1 and the statement is true for n − 1. Suppose I * Pi ∀i. Then by induction
I *

⋃
j 6=i Pj hence ∃xi ∈ I such that xi /∈

⋃
j 6=i Pj so for all j 6= i we have xi /∈ Pj . If for some

i we have xi /∈ Pi then xi ∈ I \
⋃n
j=1 Pj and we are done. So assume xi ∈ Pi for all i. Let

y =
∑n
i=1 x1x2 . . . xi−1xi+1 . . . xn ∈ I. The ith term is in Pj for all j 6= i but not in Pi. Given j

we see that all but the jth term are in Pj so y /∈ Pj , hence y /∈
⋃n
j=1 Pj

2. Suppose P + Ii ∀i, then ∃xi ∈ Ii \ P for every i. Then
∏
xi ∈ (

⋂
Ii) \ P

3. If P =
⋂
Ii then P ⊇ Ii for some i by part 2 and P =

⋂
Ii ⊆ Ii hence P = Ii

1.4 Quotients and radicals

De�nition 1.16. Let I, J be ideals, de�ne the quotient (I : J) = {x ∈ R | xJ ⊆ I} (This is an ideal,
but not exactly the same as in algebraic number theory)

Special case: (0 : J) =annihilator of J = Ann(J)

Example. IF R = Z, ((15) : (6)) = (5). More generally if m =
∏
peii and n =

∏
pfii then ((m) :

(n)) = (a) where a =
∏
p

max{ei−fi,0}
i .

Fact. 1. I ⊆ (I : J) (since IJ ⊆ I)

2. (I : J)J ⊆ I

3. ((I : J) : K) = (I : JK) = ((I : K) : J)

4. (
⋂
Ii : J) =

⋂
(Ii : J)

5. (I :
∑
Ji) =

⋂
(I : Ji)

De�nition 1.17. Let I be an ideal, de�ne the radical of I to be r(I) := {x ∈ R|xn ∈ I for some n ≥ 1}
Special case: r(0) = N(R)
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Given I, let ϕ : R → R/I. Then ϕ−1(N(R/I)) = {x ∈ R : ϕ(x)n = 0 for some n} = r(I). Hence
r(I) is an ideal.

Example. R = Z. If m =
∏
pkii , ki ≥ 1 then r((m)) = (

∏
pi)

Fact. 1. If I ⊆ J then r(I) ⊆ r(J).

2. r(I) ⊇ I (take n = 1 in the de�nition)

3. r(r(I)) = r(I) ((xm)n = xmn)

4. r(IJ) = r(I ∩ J) = r(I) ∩ r(J)

5. r(I) = (1) ⇐⇒ I = (1) (use 1 ∈ r(I))

6. r(I + J) = r(r(I) + r(J))

7. r(Pn) = P where P is a prime ideal and n ≥ 1

8. r(I) =
⋂

P⊇I
P prime

P

Proposition 1.18. I, J are coprime if and only if r(I), r(J) are coprime if and only if Im, Jn are
coprime for every/any m,n ≥ 1

Proof. I and J coprime then Im, Jn coprime for all m,n was lemma 1.14 . If ∀m,n Im, Jn are coprime
⇒ ∃m,n Im, Jn are coprime is trivial.If ∃m,n ≥ 1 such that Im, Jn are coprime then I+J ⊇ Im+Jn =
(1) hence I + J = (1) (i.e they are coprime)

We now just need to prove I, J coprime ⇐⇒ r(I), r(J) are coprime
�⇒� obvious because r(I) + r(J) ⊇ I + J = (1), so r(I) + r(J) = (1)
�⇐� r(I + J) = r(r(I) + r(J)) = r((1)) = (1) hence by fact 5. we have I + J = (1)

1.5 Extension and Contractions

De�nition 1.19. Let f : R → S be a ring homomorphism. For I C R, let the extension of I, Ie be
the ideal generated by {f(x) ∈ S | x ∈ I}. So Ie = {

∑
finite sif(xi) | si ∈ S, xi ∈ I}

For J C S, let the contraction of J , Jc = f−1(J) ⊆ R (this is an ideal)

Example. If R ↪→ S then Jc = J ∩R, Ie = {
∑
sixi | si ∈ S, xi ∈ I} = the S-ideal generated by I

Fact. If P is a prime ideal of S then P c is a prime ideal of R (seen). This is not true for extensions:

Example. Z ↪→ Z[i]. If we take (5)e = 5Z[i] = (2 + i)(2− i)Z[i] is not a prime ideal.

Proposition 1.20. Let I CR and J C S

1. I ⊆ Iec (since x ∈ f−1 (f(x)) )

2. J ⊇ Jce (easy)

3. Ie = Iece and Jc = Jcec

4. Let C = set of contracted ideals in R and E = set of extended ideals in S. Then C = {I CR|I =
Iec}, E = {J C S|J = Jce} and there is a bijection C → E given by e whose inverse is c.

Proof. 1 and 2 are easy. For 3 we have Ie ⊇ Iece by 2 applied to J = Ie but by 1 we have I ⊆ Iec and
apply extension hence Ie ⊆ Iece. 4 is easy to prove using 3

Example. Counter example to reverse inclusion of 1. Z ↪→ Q, (2)ec = Qc = Z = (1) 6= (2)

Theorem 1.21. Let f : R → S be a ring homomorphism and I → Ie and J → Jc be the extension
and contraction maps. Then

• Extension:

1. (I1 + I2)e = Ie1 + Ie2
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2. (I1 ∩ I2)e ⊆ Ie1 ∩ Ie2
3. (I1I2)e = Ie1I

e
2

4. (I1 : I2)e ⊆ Ie1 : Ie2

5. r(I)e ⊆ r(Ie)

• Contraction:

1. (J1 + J2)c ⊇ Jc1 + Jc2

2. (J1 ∩ J2)c = Jc1 ∩ Jc2
3. (J1J2)c ⊇ Jc1Jc2
4. (J1 : J2)c ⊆ Jc1 : Jc2

5. r(J)c = r(Jc)

Proof. None of these is too hard to show

Example. Counter example to show cases where equality does not hold

• Contraction 1: Take f : k ↪→ k[x] (with k any �eld), J1 = (x) and J2 = (x + 1). Then
Jc1 = Jc2 = (0) but J1 + J2 = (1) which contracts to (1).

• Extension 2: Take f : Z[x] → Z to be the �evaluation homomorphism� which maps x 7→ 2. Let
I1 = (x) and I2 = (2) then I1 ∩ I2 = (2x) so (I1 ∩ I2)e = (2x)e = 4Z while Ie1 = Ie2 = 2Z so
Ie1 ∩ Ie2 = 2Z

• Contraction 3: Take f : Z ↪→ Z[i], J1 = (2 + i), J2 = (2− i). Then Jc1 = Jc2 = (J1J2)c = (5)

• Extension 4: Take f : Z[x] → Z to be the �evaluation homomorphism� which maps x 7→ 2. Let
I1 = (x) and I2 = (2) then (I1 : I2) = I1 (since x|2f ⇐⇒ x|f) so (I1 : I2)e = (x)e = 2Z while
Ie1 = Ie2 = 2Z with quotient Z

• Contraction 4: Take f : Z ↪→ Z[i], J1 = (2 + i), J2 = (2− i). Then Jc1 = Jc2 = (5) so (Jc1 : Jc2) = Z
but (J1 : J2) = J1 which contracts to (5).

• Extension 5: Take f : Z ↪→ Z[i], I = 2Z. Then r(I)e = (2Z)e = 2Z[i] while r((2)e) = r(2Z[i]) =
(1 + i)Z[i]

From the theorem we can see that the set of extended ideals of S is closed under the sum and
product, while the set of contracted ideals of R is closed under intersection and radical.
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2 Modules

De�nition 2.1. An R-module is an abelian group M with a scalar multiplication R×M →M
(r,m) 7→rm

sat-

isfying

1. (r1 + r2)m = r1m+ r2m

2. r(m1 +m2) = rm1 + rm2

3. r1(r2m) = (r1r2)m

4. 1Rm = m

For each r ∈ R the map M → M,m 7→ rm is an endomorphism of M (by 2.) 1,3,4 says R →
End(M) is a ring homomorphism

Example. 1. R itself is an R-module. So are all ideals of R

2. If R is a �eld k then an R-module is a k-vector space

3. Every abelian group A is a Z-module

4. A k[x]-module is kvector space V together with a k-linear map V → V given the scalar multi-
plication by x

5. Let G be a �nite group (abelian). Let R = k[G] the group algebra. Then a k[G] module is a
representation of G.

De�nition 2.2. An R-module homomorphism f : M → N is a map M → N which satis�es

1. f(m1 +m2) = f(m1) + f(m2)

2. f(rm) = rf(m)

Where M,N are both R-module. f is called R-linear
HomR(M,N) = {all R-linear map f : M → N} is another R-module with point-wise operations

Example. HomR(R,M) ∼= M by f ↔ f(1R) since f(r) = f(r · 1) = rf(1)

De�nition 2.3. N ⊆ M is a submodule if it is closed under addition and scalar multiplication, (in
particular 0 ∈ N). We will use N ≤M as notation.

Example. R-submodules of R are the ideals of R.

De�nition 2.4. Quotient Modules: If N ≤M thenM/N is again an R-module via r(x+N) = rx+N
(well-de�ned since rN ⊆ N)

Kernels and Cokernels: If f ∈ HomR(M,N) then ker(f) ≤ M , im(f) ≤ N and coker(f) =
N/ im(f)

So f is injective ⇐⇒ ker(f) = 0. f is surjective ⇐⇒ coker(f) = 0 ⇐⇒ im(f) = N

First Isomorphism Theorem. If f ∈ HomR(M,N) then M/ ker(f) ∼= im(f) via m+ker(f) 7→ f(m)

De�nition 2.5. Sums of Submodules: Let Mi ≤ M for i ∈ I. Then
∑
i∈IMi = {all �nite sums∑

i∈I mi with mi ∈Mi} ≤M
Intersection of Submodules: Let Mi ≤M for i ∈ I. Then

⋂
i∈IMi ≤M

Second Isomorphism Theorem. Let N ≤M ≤ L be submodules of R. Then

L/N

M/N
∼=

L

M

Proof. The map L/N → L/M de�ned by x+N 7→ x+M (x ∈ L) is surjective with kernel M/N , then
use the �rst isomorphism theorem.
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Third Isomorphism Theorem. Let M1,M2 ≤M be R-modules. Then

M1 +M2

M1

∼=
M2

M1

⋂
M2

Proof. The map M → M1 +M2 → (M1 +M2)/M1 de�ned by y 7→ 0 + y 7→ y +M1is surjective with
kernel M1

⋂
M2. Then use the �rst isomorphism theorem.

De�nition 2.6. Product of Ideal and Modules: Let I CR and M a R-module. De�ne the product of
I and M to be IM = {

∑n
i=1 aimi|ai ∈ I,mi ∈M} ≤M .

A special case I = (r) we write rM = {rm|m ∈M} ≤M
Quotient: Let M,N be R-module such that they both are submodules of L, we de�ne the quotient

to be (M : N) = {r ∈ R : rN ⊆M}CR
Special case: M = 0, (0 : N) = {r ∈ R : rN = 0} = AnnR(N) CR
M is a faithful R-module if AnnRM = 0

If I ⊆ AnnRM then M may be regarded as an R/I-module via (r + I)m = rm. In particular
taking I = AnnRM we may view M as a faithful R/AnnRM -module.

Example. If A is an abelian group (hence a Z-module) which is p-torsion (meaning pA = 0 for some
prime p) then A is Z/pZ-module, i.e., a vector space over Fp.

De�nition 2.7. Cyclic Submodules: x ∈ M an R-module generates (x) = Rx = {rx|r ∈ R} ≤ M
is the cyclic submodule generated by x. In particular if M = Rx for some x then M is cyclic and
M ∼= R/AnnR x (as R-modules)

Finitely Generated Module: We say M is �nitely generated (f.g.) if M =
∑n
i=1Rxi for some �nite

collection x1, . . . , xn ∈ M . More generally {xi}i∈I generates M if every x ∈ M is a �nite R-linear
collection of the xi ∈M .

Example. M = R[x] is generated by 1, x, x2, x3, . . . but M is not �nitely generated.

De�nition 2.8. Let M,N be R-modules. We de�ne:
Direct Sum: M ⊕N = {(m,n) : m ∈M,n ∈ N} is an R-module with coordinate operations.
Direct Product: M ×N = {(m,n) : m ∈M,n ∈ N} is an R-module with coordinate operations.
Similarly if Mi (i = 1, . . . , n) are R-modules we can form ⊕ni=1Mi = {(m1, . . . ,mn)|mi ∈ Mi ∀i ≤

n} =
∏n
i=1Mi

In�nite Direct Sum: If we start with {Mi}i∈I we de�ne ⊕i∈IMi = {(mi)i∈I : mi ∈ Mi ∀i,all but
�nitely many mi = 0}

In�nite Direct Product: If we start with {Mi}i∈I we de�ne
∏
i=IMi = {(mi)i∈I : mi ∈Mi ∀i}

Example. As anR-moduleR[x] ∼= ⊕∞i=0R where the isomorphism is de�ned by
∑d
i=0 rix

i 7→ (r0, r1, r2, . . . , rd, 0, 0, . . . )
R [[x]] ∼=

∏∞
i=0R (as R-modules)

De�nition 2.9. Free Modules: M is free if M ∼= ⊕i∈IMi where each Mi
∼= R.

A �nitely generated free module M ∼= R⊕ · · · ⊕R︸ ︷︷ ︸
n

= Rn

Lemma 2.10. M is �nitely generated if and only if M ∼= a quotient of Rn for some n

Proof. �⇒�: If x1, . . . , xn generates M then map Rn → M by (r1, . . . , rn) 7→
∑n
i=1 rixi is surjective

(since M is �nitely generated) so Rn/ ker ∼= M
�⇐�: Rn is �nitely generated by (1, 0, . . . 0), (0, 1, 0, . . . , 0), . . . So Rn/K is �nitely generated by

images of these in Rn/K

Proposition 2.11. LetM be a �nitely generated R-module, JCR and ϕ ∈ EndR(M) = HomR(M,M).
Suppose that ϕ(M) ⊆ JM . Then ∃a1, a2, . . . , an ∈ J such that

ϕn + a1ϕ
n−1 + a2ϕ

n−2 + · · ·+ anIM = 0

in EndR(M) and IM is the identity map M →M
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Proof. Let x1, . . . , xn generate M . ∀i ≤ n, ϕ(xi) =
∑n
j=1 ajxj where aj ∈ J .

n∑
j=1

(δijϕ− aijI)xi = 0

for i = 1, . . . , n where δij =

{
0 i 6= j

1 i = j
. We can rewrite this as (Iϕ − A)X = 0 where A = (aij), I =

(δij), X = (x1, . . . , xn)T . Multiply by adj(Iϕ−A) whose entries are all in EndR(M)⇒ det(Iϕ−A)xi =
0∀i⇒ det(Iϕ−A) = 0 ∈ EndR(M). If we multiply out det(Iϕ−A) to get the equation above.

Applications:

1. x ∈ C. If M is a non-zero �nitely generated Q-submodule of C such that xM ⊆ M then x is
algebraic.

Corollary 2.12. The set of all algebraic numbers in C forms a �eld.

2. x ∈ C,M ⊆ C a non-zero �nitely generated Z-submodule such that xM ⊆M ⇒ x is an algebraic
integer

Corollary 2.13. The set of algebraic integers in C is a ring.

Proof Of Applications and Corollary. α ∈ C is algebraic ⇐⇒ ∃monic f ∈ Q[x] such that deg f =
n ≥ 1 and f(α) = 0 ⇐⇒ ∃M ⊆ C a �nitely generated Q-submodule of C with αM ⊆ M . (For ⇒:
M = Q[α] = Q + Qα+ Qα2 + · · ·+ Qαn−1)

α ∈ C is an algebraic integer ⇐⇒ ∃ monic f ∈ Z[x], such thatdeg f = n ≥ 1 and f(α) = 0 ⇐⇒
M ⊂ C a �nitely generated Z-module with αM ⊆M (Again for⇒: M = Z[α] = Z+Zα+ · · ·+Zαn−1)

Let R = Q or Z and let α, β be {algebraic numbers or algebraic integers respectively}, then
α±β, αβ are also {algebraic numbers, algebraic integers}. Let the polynomial of α be f(x),deg f = n
and of β be g(x),deg g = m with f, g ∈ R[x] monic. Let M be the R-submodule of C generated by
αiβj , 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1, i.e., M =

∑
i,j Rα

iβj . Clearly αM ⊆ M and βM ⊆ M . Then
(α± β)M ⊆M and αβM ⊆M quite clearly hence α± β are {algebraic numbers, algebraic integers}.
Hence both sets are subrings of C. If α is an algebraic number α 6= 0 then α−1 is also algebraic (easy)
so {algebraic numbers} is a sub�eld of C.

Corollary 2.14. If M is an �nitely generated R-module and J CR such that JM = M then ∃r ∈ R
such that rM = 0 and r ≡ 1 mod J (i.e., r − 1 ∈ J)

Proof. Apply the proposition with ϕ = identity map. So the proposition tells us (1+a1+· · ·+an−1)M =
0 with ai ∈ J . So let r = 1 + a1 + · · ·+ an−1.

Corollary 2.15 (Nakayama's Lemma). If M is a �nitely generated R-module and I C R such that
I ⊆ J(R). If IM = M then M = 0

Proof. By Corollary 2.14 ∃r ∈ R such that rM = 0 and r− 1 ∈ I ⇒ r− 1 ∈ J(R) but this implies (by
Proposition 1.12 )r ∈ R∗ so M = r−1rM = 0

Corollary 2.16. Let M be �nitely generated and I C R such that I ⊆ J(R). Let N ≤ M . If
M = IM +N then M = N .

Proof. Apply Corollary 2.15 to M/N (which is still �nitely generated), using I(M/N) = (IM +
N)/N (∗), since M = IM + N ⇒ I(M/N) = M/N ⇒ M/N = 0 ⇒ M = N . To check (∗) holds we
use the map φ : IM +N → I(M/N) de�ned by am+ n 7→ a(m+N). φ is clearly surjective and has
kernel = N (hence use the �rst isomorphism theorem)

Corollary 2.17. LetM be a �nitely generated R-module, where R is a local ring with (unique) maximal
ideal P and residue �eld k = R/P . Then

1. M/PM is a �nite dimensional vector space over k

11



2. x1, . . . , xn generates M as an R-module ⇐⇒ x1, . . . , xn generates M/PM as a k-vector space.
(Here x = x+ PM ∈M/PM)

Proof. 1. M/PM is an R-module which is annihilated by P hence is a module over R/P = k.

2. �⇒�: Clear. x ∈M/PM ⇒ ∃xi ∈ R such that x =
∑n
i=1 rixi ⇒ x =

∑n
i=1 rixi. (Note that this

also proves the �nite dimensional claim of part 1)
�⇐�: Let x1, . . . , xn ∈ M be such that x1, . . . , xn generates M/PM . Set M =

∑n
i=1Rxi ≤ M .

We want to show M = N . We are going to use Corollary 2.16, noting that J(R) = P , with
I = P . Then we can apply the Corollary if M = PM +N . Let x ∈M , then x ∈M/PM so ∃ri
such that x =

∑
rixi in M/PM ⇒ x−

∑
rixi ∈ PM ⇒ x ∈ N + PM

Example. R = Z(5) = {ab ∈ Q | 5 - b}. This is a local ring with maximal ideal P = 5R. We can
check that R/P ∼= Z/5Z. Let M = Q, but PQ = Q ⇒ Q/PQ is 0 but Q is not �nitely generated as
an R-module. (see exercise)

2.1 Exact Sequences

De�nition 2.18. Let L,M,N be R-module. A sequence L
α // M

β // N of R-module homo-
morphism is exact if im(α) = ker(β).

Note: This implies β · α = 0 (⇐⇒ im(α) ⊆ ker(β))

Example. Key Examples:

• L
α // M // 0 is exact ⇐⇒ α is surjective

• 0 // M
α // N is exact ⇐⇒ α is injective

• A longer sequence . . . // Mi−1

αi−1 // Mi
αi // Mi+1

αi+1 // . . . is exact ⇐⇒ ker(αi) =

im(αi−1)∀i

• Short Exact Sequence 0 // L
α // M

β // N // 0 is exact ⇐⇒

� α is injective (L ↪→M)

� β is surjective (so N ∼= M/ kerβ)

� im(α) = ker(β)

� That is L ∼= α(L) ≤M and M/α(L) ∼= N

2.2 Tensor products of modules

Let R be a ring. Given two R-modules, A,B we will de�ne/construct an R-module C = A⊗R B with
the following properties

1. C is an R-module and there is an R-bilinear map g : A×B → C

2. (Universal property) For any R-bilinear map f : A× B → D (with D any R-module) there is a
unique R-linear map h : C → D such that f = h ◦ g

C = A⊗R B

h

��

A×B

g 55

f ))
D

These properties uniquely determine A⊗R B up to unique isomorphism. This is because:

• Taking D = C shows that idC : C → C is the only map such that g = idC ◦g
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• If D also satis�es 1., 2. then ∃h1 : C → D such that f = h1 ◦ g and ∃h2 : D → C such that
g = h2 ◦ f . Then we see that f = h1 ◦h2 ◦ f ⇒ h1 ◦h2 = idD and g = h2 ◦h1 ◦ g ⇒ h2 ◦h1 = idC

Existence:

We construct C as follows

• Take the free R-module F with A × B as generating set i.e. generators (a, b)∀a ∈ A, b ∈ B.
F = {

∑n
i=1 ri(ai, bi)|ri ∈ R, ai ∈ A, bi ∈ B}

• Factor out the submodule L consisting of all elements of the form (r1a1 + r2a2, b) − r1(a1, b) −
r2(a2, b) and (a, r1b1 − r2b2)− r1(a, b1)− r2(a, b2)∀r1, r2 ∈ R, a, a1, a2 ∈ A, b, b1, b2 ∈ B

• Set C = F/L. Denote the image in F/L of (a, b) by a⊗ b. Then F/L is generated by {a⊗ b|a ∈
A, b ∈ B} with �relations� (r1a1 + r2a2) ⊗ b = r1(a1 ⊗ b) + r2(a2 ⊗ b) and a ⊗ (r1b1 + r2b2) =
r1(a⊗ b1) + r2(a⊗ b2) (∗)

So each elements of A⊗R B has the form
∑n
i=1 ri(ai⊗ bi). But (by (∗)) we have r(a⊗ b) = (ra)⊗ b =

a⊗ (rb). Using this, every element of A⊗RB is a �nite sum of �atomic tensors� a⊗ b. Can we simplify
these sums further? Not in general! e.g. a1 ⊗ b1 + a2 ⊗ b2 can not, in general, be rewritten as a single
�atom� a⊗ b.

Example. If A,B are both cyclic R-modules, say A = Rx,B = Ry then every a ∈ A has the
form a = rx for some r ∈ R and similarly every b ∈ B has the form b = sy for some s ∈ R. Then
a⊗b = rx⊗sy = rs(x⊗y). A general element of A⊗RB is thus a �nite sum of

∑n
i=1 ti(x⊗y) = t(x⊗y)

where t =
∑n
i=1 ti ∈ R. Hence A⊗R B is cyclic, generated by x⊗ y

Fact. More generally if A,B are �nitely generated by x1, . . . , xn for A and y1, . . . , ym for B. Then
(
∑
rixi)⊗ (

∑
sjyj) =

∑
i,j(risj)(xi ⊗ yj). Hence A⊗R B is also �nitely generated by xi ⊗ yj

Exercise. R = k a �eld. x1, . . . , xn a basis for A and y1, . . . , yn a basis for B then the xi ⊗ yj are a
basis for A⊗k B and hence dimk A⊗k B = mn = (dimk A)(dimk B)

Similarly we can de�ne A⊗RB⊗RC for any three R-modules A,B,C and A1⊗RA2⊗R · · ·⊗RAn
for any n R-modules A1, . . . , An. We get nothing essentially new since A⊗R B ⊗R C turns out to be
isomorphic to (A⊗R B)⊗R C and to A⊗R (B ⊗R C)

Lemma 2.19. 1. A⊗R B ∼= B ⊗R A

2. A⊗R R ∼= A

3. (A⊕B)⊗R C ∼= (A⊗R C)⊕ (B ⊗R C)

Proof. 1. We have an R-bilinear map A×B → B⊗RA via (a, b) 7→ b⊗a. (Since (r1a1 + r2a2, b) 7→
b⊗(r1a1 +r2a2) = r1(b⊗a1)+r2(b⊗a2)← r1(a1, b)+r2(a2, b)). Hence there is a unique R-linear
map h1 : A⊗R B → B ⊗R A with a⊗ b 7→ b⊗ a. Similarly we get h2 : B ⊗R A→ A⊗R B with
b⊗ a 7→ a⊗ b, hence h1 ◦ h2 = id and h2 ◦ h1 = id

2. De�ne a map A × R → A by (a, r) 7→ ra. It is surjective (take r = 1) and R-bilinear, hence
induces a map f : A ⊗R R → A with a ⊗ r 7→ ra surjective. De�ne g : A → A ⊗R R by
g(a) = a⊗ 1 ∈ A⊗R R. We can easily check that f ◦ g = idA and g ◦ f = idA⊗RR .

3. Exercise

De�nition 2.20. Tensoring maps (i.e., R-module homomorphism): Let f : A1 → A2, g : B1 → B2 be
R-linear maps where A1, A2, B1, B2 are R-modules. Then there is an R-linear map f⊗g : A1⊗RB1 →
A2⊗RB2 which sends a⊗b 7→ f(a)⊗g(b). This is induced by the R-bilinear map A1×B1 → A2⊗RB2

which sends (a1, b1) 7→ f(a1)⊗ g(b1)
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2.3 Restriction and Extension of Scalars

Or: How we usually think about tensor products Let f : R→ S be a ring homomorphism.
Then every S-module becomes an R-module via rx = f(r)x.

Example. Special Cases:

1. S is an R-module (rs = f(r)s)

2. R a subring of S and f the inclusion map R ↪→ S. Then every S-module is an R-module too.

Example. If K,L are �elds with K ⊂ L (i.e., L is an extension of K) then L-vector space is a
K-vector space. (Restriction of scalars). In particular L is a vector space over K. dimK L is the
degree of the extension (≤ ∞).

Standard Fact: If L ⊃ K ⊃ F (�elds) and L is a �nite extension of K and K is �nite over F
then L is �nite over F .

Proposition 2.21. Let f : R → S be as above. If M is a �nitely generated S-module and S is a
�nitely generated R-module then M is a �nitely generated R-module.

Proof. Straightforward

We are now going to try to go the other way. Let f : R → S and M be an R-module. Let
MS = S⊗RM , this is an R-module. It can be made into an S-module via s′(s⊗m) = (s′s)⊗m. (The
R-module structure of MS can be done in two ways r(s⊗m) = (f(r)s)⊗m = s⊗ rm). If R = S and
f = id we just get R⊗RM ∼= M (= MR)

De�nition 2.22. We say that MS is obtained from M by extension of scalars

Remark. If {xi}i∈I generates M as an R-module then {1⊗ xi}i∈I generates MS as an S-module. i.e.,
M =

∑
i∈I Rxi ⇒ MS =

∑
i∈I S(1 ⊗ xi). By abuse of notation we often just write MS =

∑
i∈I Sxi

where
∑
sixi is shorthand for

∑
si ⊗ xi.

Example. 1. Q(i)⊗Q R ∼= C. Q(i) is generated as Q-module by 1, i hence Q(i)⊗Q R is generated
as an R-module by 1⊗ 1, i⊗ 1. And we abbreviate x(1⊗ 1) + y(1⊗ i) as x+ yi where x, y ∈ R.

2. Let R and S be two ring with f : R → S is the �structure map� giving S the structure of an
R-module. Then R[x]⊗R S ∼= S[x]. Strictly: elements of the left side are polynomials in x⊗ 1

3. Rn⊗RS ∼= Sn. If e1, . . . , enare the �standard� generators (1, 0, . . . , 0), . . . , (0, . . . 0, 1) for Rn then
Rn ⊗R S is freely generated by ei ⊗ 1.

2.4 Algebras

De�nition 2.23. 1. Let R be a ring. An R-algebra is a ring A with a ring homomorphism f :
R→ A, which turns A into an R-module. (via ra = f(r)a)

2. Conversely if A is both a ring and an R-module ((r, a) 7→ r · a)then it is an R-algebra if the two
structures of A are compatible, i.e.:

• (r1 + r2) · a = r1 · a+ r2 · a
• r1(r2 · a) = (r1r2) · a
• 1 · a = a

• r · (a1a2) = (r · a1)a2 = a1 · (ra2)

We recover the structure map f : R→ A by setting f(r) = r · 1A ∈ A.

To go from one de�nition to the other: 1 ⇒ 2: De�ne r · a = f(r)a (show that this satisfy the
axiom given).

2⇒ 1: De�ne f(r) = r · 1a ∈ A (Show that this does give a ring homomorphism)
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De�nition 2.24. Let A,B be R-algebra with structure maps f : R → A, g : R → B. Then an
R-algebra homomorphism from A→ B is a map h : A→ B which is both a ring homomorphism and
R-linear such that g = h ◦ f

A

h

��
R

f 88

g &&
B

h(a1 + a”) = h(a1) + h(a2)

h(ra) = rh(a)∀a ∈ A, r ∈ R
⇐⇒ h(f(r)a) = g(r)h(a)

⇐⇒ h(f(r))h(a) = g(r)h(a)

⇐⇒ h(f(r)) = g(r)

⇐⇒ h ◦ f = g

What we have proved: A ring homomorphism h : A→ B is anR-module homomorphism ⇐⇒ h◦f = g
Special Cases:

1. R = k a �eld, A 6= 0 then the structure map f : k → A must be injective (f(1k) = 1A so f 6= 0).
So A is a ring with k as a subring.

Example. A = k[X] is a k-algebra, C is an R-algebra (and a Q-algebra)

2. R = Z. Any ring A is a Z-algebra whose structure map is the unique ring homomorphism Z→ A,
n 7→ n · 1A = 1 + 1 + · · ·+ 1︸ ︷︷ ︸

n>0

3. k a �eld. Extension �elds of k are k-algebra. If k ⊂ L1, k ⊂ L2 (L1, L2 are �elds). Then a map
h : L1 → L2 is a k-algebra homomorphism if it is a ring homomorphism (necessarily injective)
such that h(x) = x ∀x ∈ k.

L1

h

��
k
+ �

99

� s

%%
L2

2.5 Finite conditions

Let A be an R-algebra.

De�nition 2.25. A is a �nite R-algebra if it is �nitely generated as an R-module, i.e., ∃a1, . . . , a2 ∈ A
such that A = Ra1 + · · ·+Ran

A is a �nitely generated R-algebra if there is a surjective ring homomorphism R[x1, . . . xn] → A
for some n de�ned by xi 7→ ai. Denote this by A = R[a1, . . . , an]. Hence every element of A is a
polynomial in the �nite set a1, . . . , an

Example. A = R[x] is a �nitely generated R-algebra (generator = x), but it is not a �nite R-algebra
since it is not �nitely generated as an R-module. (it is generated by 1, x, x2, . . . but not by any �nite
set of polynomials)

If α ∈ C then Q[α] is a �nitely generated Q-algebra, and is a �nite Q-algebra ⇐⇒ α is an algebraic
number.

A = Z[α] is �nitely generated Z-algebra, and is a �nite Z-algebra ⇐⇒ α is an algebraic integer.
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2.6 Tensoring Algebras

Let A,B be R-algebras with structure maps f : R→ A, g : R→ B. The R-module C = A⊗R B may
be turned into a ring and hence an R-algebra by setting (a1 ⊗ b1)(a2 ⊗ b2) = a1a2 ⊗ b1b2. (extended
by linearity)

Proof that this is well de�ned and turns A⊗R B into a ring. MapA×B×A×B → C by (a1, b1, a2, b2) 7→
a1a2 ⊗ b1b2. This is clearly R-multilinear and hence induces an R-linear map from (A ⊗R B) ⊗R
(A ⊗R B) → C, i.e, C ⊗R C → C is a well de�ned map, which in turns gives our multiplication.
1C = 1A ⊗ 1B and 0C = 0A ⊗ 0B . Checking C is a ring is straightforward. The structure map R→ C
is r 7→ r · (1⊗ 1) = 1⊗ g(r) = f(r)⊗ 1

A
id⊗1:a7→a⊗1

((
R

f <<

g ""

// C = A⊗R B

B
1⊗id:b 7→1⊗b

66
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3 Localization

Rings and Modules of Quotients Recall: If R is an integral domain then we construct its �eld
of fractions as follows: take the set of ordered pairs (r, s), r ∈ R, s ∈ R \ {0} with equivalence relation
(r1, s1) ∼ (r2, s2) ⇐⇒ r1s2 = r2s1. Denote the class of (r, s) by r

s . De�ne ring operations by via the
usual formulas r1

s1
+ r2

s2
= r1s2+r2s1

s1s2
. Lots of checking of well-de�ned-ness and axioms shows that this

is a �eld K. 0 = 0
1 , 1 = 1

1 ,
r
s = 0 ⇐⇒ r = 0 so we get R ↪→ K by r 7→ r

1 , so if rs 6= 0 ⇒ s
r ∈ K and

r
s
s
r = 1

1

De�nition 3.1. A multiplicatively closed set (MCS) in a ring R is a subset S ofR such that:

1. 1 ∈ S

2. s1, s2 ∈ S ⇒ s1s2 ∈ S

We'll often assume 0 /∈ S

Example. If R is an integral domain, S = R \ {0}.
R any ring, P prime ideal of R, S = R \ P

Given a MCS S take the set of pairs R × S with the relation: (r1, s1) ∼ (r2, s2) ⇐⇒ ∃s ∈ S
such that s(r1s2 − r2s1) = 0. This is an equivalence relation: Re�exivity and Symmetry are trivial.
For Transitivity: (r1, s2) ∼ (r2, s2) and (r2, s2) ∼ (r3, s3) ⇒ ∃s, t ∈ S such that s(r1s2 − r2s1) =
0, t(r2s3 − r3s2) = 0⇒ s2st(r1s3 − r3s1) = sts1r2s3 − sts3r2s1 = 0.

Let S−1R = { rs : r ∈ R, s ∈ S} where r
s is the equivalence class of (r, s). So r1

s1
= r2

s2
⇐⇒

s(r1s2 − r2s1) = 0 for some s ∈ S. This forms a ring under the usual addition and multiplication
of fractions. (Check ring axioms + well-de�ned-ness). 0S−1R = 0

1 , 1S−1R = 1
1 and we have a ring

homomorphism f : R→ S−1R de�ned by r 7→ r
1 which is not injective in general. r1

1 = r2
1 ⇐⇒ ∃s ∈ S

such that s(r1 − r2) = 0, i.e., r1 − r2 ∈ {r ∈ R : rs = 0 for some s ∈ S} = ker(f) CR.

Note. f(s) is a unit in S−1R: since f(s) = s
1 and s

1
1
s = 1

1 = 1.

Proposition 3.2. Let S be a MCS in R and f : R → S−1R as above. If g : R → R′ is a ring
homomorphism such that g(s) is a unit in R′ for all s ∈ S then there is a unique map h : S−1R→ R′

such that g = h ◦ f
S−1R

h

��

R

f ::

g $$
R′

�g factors through h�

Proof. Uniqueness: Suppose such an h exists. Let r
s ∈ S−1R, s

1
r
s = r

1 ⇒ h( s1 )h( rs ) = h( r1 ) but
h( r1 ) = h(f(r)) = g(r)⇒ g(s)h( rs ) = g(r)⇒ h( rs ) = g(r)g(s)−1

Existence: De�ne h : S−1R → R′ by h( rs ) = g(r)g(s)−1. It it well-de�ned? r1
s1

= r2
s2
⇒ s(r1s2 −

r2s1) = 0 for some s ∈ S ⇒ g(s)(g(r1)g(s2)− g(r2)g(s1)) = 0⇒ g(r1)g(s2) = g(r2)g(s1) (Since g(s) is
a unit) ⇒ g(r1)g(s1)−1 = g(r2)g(s2)−1 (again because g(s1) and g(s2) are units). It is easy to check
that h is a ring homomorphism. h(f(r)) = h( r1 ) = g(r)g(1)−1 = g(r) ∀r ∈ R⇒ h ◦ f = g

So the pair (S−1R, f) with f : R→ S−1R is determined up to isomorphism by:

1. s ∈ S ⇒ f(s) is a unit

2. f(r) = 0 ⇐⇒ rs = 0 for some s ∈ S

3. S−1R = {f(r)f(s)−1|r ∈ R, s ∈ S}
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Example. 1. P CR prime ideal and S = R \ P . Set RP = S−1R in this case. �the localization of
R at P �. f : R → RP , r 7→ r

1 , the extension of P to RP is PRP = { rs : r ∈ P, s /∈ P} which is
the set of non-units in RP . So this is the unique maximal ideal in RP , so RP is a local ring.
Special Case:

(a) R an integral domain, P = 0 then RP is the �eld of fractions of R. (e.g., R = Z then
RP = Q)

(b) R = Z, P = pZ (p a prime number) ⇒ RP = Z(p) = { rs ∈ Q : r ∈ Z, s ∈ Z \ pZ} ⊆ Q
Let f ∈ Z. Write f(p) to be the image of f in Z/pZ = Fp. Then p is a zero of
f ⇐⇒ f(p) = 0 ⇐⇒ f ∈ pZ. What about f ∈ Q? Write f = r

s , f(p) ={
r(p)s(p)−1 if p - s (⇐⇒ s(p) 6= 0)

∞ otherwise
. So f gives a function on SpecZ with f(p) ∈

{
Fp ∪ {∞} if p is a prime

Q if p = 0

(c) R = k[x1, . . . , xn] where k is an algebraically closed �eld (e.g., k = C). M C R,M =
(x1 − a1, . . . , xn − an) where (a1, a2, . . . , an) := a ∈ kn.
Note. i. M is ker(evala : R→ k de�ned by f 7→ f(a))⇒M is maximal since R/M ∼= k

ii. Every maximal ideal of R has this form (by the Hilbert's Nullstellensatz)

R ⊂ RM ⊂ k(x1, . . . , xn) and RM = { fg : f, g ∈ R, g(a) 6= 0} = subring of k(x1, . . . , xn)
consisting of rational functions which are �de�ned at a�. The unique maximal ideal in Rm
is MRM = { fg : f(a) = 0, g(a) 6= 0}. Finally RM/MRM ∼= k = R/M

2. 0 ∈ S ⇒ S−1R = 0 (The zero ring)

3. If S ⊂ R× then f : R→ S−1R is an isomorphism (and conversely)

4. f ∈ R,S = {1, f, f2, . . . } then S−1R is denoted Rf = { rfn |r ∈ R,n ≥ 0}

Example. R = Z, f = 2, Rf = Z[ 1
2 ]

3.1 Localization of Modules

Given an R-module M and a multiplicatively closed set S ⊂ R, let S−1M = {equivalence classes: m
s

of pairs (m, s) with m ∈ M, s ∈ S modulo the relation (m, s) ∼ (m′, s′) ⇐⇒ r(sm′ − s′m) = 0 for
some t ∈ S}. De�ne m1

s1
+ m2

s2
= s2m1+s1m2

s1s2
and r

s1
m
s2

= rm
s1s2

. This turns S−1M into an S−1R-module.

Also if φ : M → N is an R-linear map then we de�ne S−1φ : S−1M → S−1N by (S−1φ)(ms ) = φ(m)
s .

This is an S−1R-linear map.

If we have M1
ψ→ M2

φ→ M3 is a sequence of R-linear map then S−1(φψ) = (S−1φ)(S−1ψ) :

S−1M1 → S−1M3 since they both map m
s →

φ(ψ(m))
s ∀ms ∈ S

−1M1

Proposition 3.3. IfM1
ψ→M2

φ→M3 is an exact sequence of R-modules then S−1M1
S−1ψ→ S−1M2

S−1φ→
S−1M3 is an exact sequence of S−1R-modules.

Proof. We need to prove that: imψ = kerφ⇒ im(S−1ψ) = ker(S−1φ)
imψ ⊆ kerφ⇒ φψ = 0⇒ (S−1φ)(S−1ψ) = S−1(φψ) = S−10 = 0⇒ im(S−1ψ) ⊆ ker(S−1φ)

Conversely: Let m2

s ∈ ker(S−1φ). Then 0 = φ(m2)
s so ∃t ∈ S such that tφ(m2) = 0⇒ φ(tm2) = 0.

So ∃m1 ∈ M1 such that tm2 = ψ(m1). Now m1

ts

S−1ψ7→ ψ(tm1)
ts = tm2

ts = m2

s . So m2

s ∈ im(S−1ψ) as
required.

Special Case: M1 = 0, i.e., φ injective: If M ≤ N then S−1M ≤ S−1N

Corollary 3.4. Let N,N1, N2 be R-modules of M . Then:

1. S−1(N1 +N2) = S−1N1 + S−1N2 (as submodules of S−1M)

2. S−1(N1 ∩N2) = S−1N1 ∩ S−1N2 (as submodules of S−1M)

3. S−1(M/N) ∼= S−1M/S−1N
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Proof. 1. Trivial: Both sides consist of elements of x1+x2

s = x1

s + x2

s (xi ∈ Ni, s ∈ S), and x1

s1
+ x2

s2
=

s2x1+s1x2

s1s2
, the numerator is in N1 + N2 and denominator in S, hence the whole fraction is in

S−1(N1 +N2)

2. Exercise

3. Apply the proposition to the short exact sequence 0 → N → M → M/N → 0 to get that 0 →
S−1N → S−1M → S−1(M/N) → 0 is exact then by �rst isomorphism theorem S−1(M/N) ∼=
S−1M/S−1N

Proposition 3.5. S−1M ∼= S−1R ⊗R M via the map r
s ⊗ m 7→

rm
s . That is S−1M is obtain via

�extension of scalars� using the standard map f : R→ S−1R as the structure map

Proof. Map S−1R ×M → S−1M by ( rs ,m) 7→ rm
s . This is bilinear so it induces a well de�ned map

g : S−1R⊗RM → S−1M as in the theorem. We check g is an isomorphism.
g is surjective: g( 1

s ⊗m) = m
s

Observe that every element of S−1R⊗RM has the form 1
s ⊗m since

∑n
i=1

ri
si
⊗mi =

∑n
i=1

r′i
s ⊗mi

where s = s1s2 . . . sn. But
∑n
i=1

r′i
s ⊗ mi =

∑n
i=1

1
s ⊗ r

′
imi = 1

s ⊗ (
∑n
i=1 r

′
imi). Now we show g is

injective. Suppose g( 1
s ⊗ m) = 0 ⇒ m

s = 0 ⇒ ∃t ∈ S such that tm = 0. Now 1
s ⊗ m = t

ts ⊗ m =
1
ts ⊗ tm = 1

ts ⊗ 0 = 0. Hence g is injective.

Proposition 3.6. Let M,N be R-modules and S a MCS. Then S−1M ⊗s−1R S
−1N ∼= S−1(M ⊗RN)

(as S−1R-modules)

Proof.

S−1M ⊗S−1R S
−1N ∼= (M ⊗R S−1R)⊗S−1R S

−1N by the preceding proposition
∼= M ⊗R (S−1R⊗S−1R S

−1N) by associativity
∼= M ⊗R S−1N by Lemma 2.19
∼= M ⊗R (S−1R⊗R N) by preceding proposition
∼= S−1R⊗R (M ⊗R N) rearranging terms
∼= S−1(M ⊗R N) by preceding proposition

Special Case: Let P C R be a prime ideal. Let S = R \ P and denote S−1M by MP . (which is a
module over the local ring RP = S−1R). Then MP ⊗RP

NP ∼= (M ⊗R N)P

3.2 Local Properties

De�nition 3.7. A property of R-modules is called local if: M has the property if and only if MP has
the property ∀P ∈ SpecR

Proposition 3.8 (Being zero is a local property). Let M be an R-module. Then the following are
equivalent:

1. M = 0

2. MP = 0 for all prime P CR

3. MP = 0 for all maximals P CR

Proof. 1⇒2⇒ 3 is trivial. To show 3⇒ 1, suppose M 6= 0. Let x ∈M,x 6= 0, set I = AnnR x = {r ∈
R : rx = 0} C R, 6= R (as 1 /∈ I), so there exists a maximal ideal P ⊇ I. Then x

1 ∈ MP is non-zero:
for x

1 = 0 ⇐⇒ sx = 0 for some s ∈ R \ P , which is a contradiction.

Proposition 3.9. Let φ : M → N be a homomorphism of R-modules. The following are equivalent:

1. φ is injective
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2. φP : MP → NP is injective for all primes P

3. φP : MP → NP is injective for all maximals P

Moreover the same holds with �injective� replaced by �surjective� throughout.

Proof. Surjective case: 1⇒M
φ→ N → 0 is exact ⇒MP

φP→ NP → 0 is exact for all primes P⇒ φP is
surjective for all P⇒ 2.

2⇒ 3 is trivial

3⇒ 1: Let N ′ = φ(M) ≤ N . ThenM → N → N/N ′ → 0 is exact. ⇒MP
φP→ NP → (N/N ′)P → 0

is exact ∀ maximal P ⇒ (N/N ′)P = 0 for all maximal P ⇒ N/N ′ = 0 (by previous proposition)
⇒ N = N ′ hence φ is surjective.

(Injective case uses the same argument with the exact sequence 0→M → N)

3.3 Localization of Ideals

R is a ring, S a multiplicatively closed set ⊂ R, f : R→ S−1R de�ned by r 7→ r
1 . Recall that for ICR

we have Ie = S−1I = { rs : r ∈ I, s ∈ S}C S−1R. (We will use I CR and J C S−1R)

Note. Any �nite sum
∑ ri

si
can be put over a common denominator

Proposition 3.10. 1. Every ideal J CS−1R is the extension of an ideal I CR. (Namely J = Jce)

2. If I CR then Iec = ∪s∈S(I : s); hence Ie = (1) if and only if I ∩ S 6= ∅.

3. If I C R then I is the contraction of some ideal J C S−1R if and only if no element of S is a
zero divisor in R/I.

4. The correspondence P ↔ S−1P gives an order-preserving bijection between the prime ideals P
of R which do not meet S and the prime ideals S−1P of S−1R.

5. S−1 commutes with sums, products, intersections and radicals:

(a) S−1(I1 + I2) = S−1I1 + S−1I2

(b) S−1(I1I2) = (S−1I1)(S−1I2)

(c) S−1(I1 ∩ I2) = S−1I1 ∩ S−1I2

(d) S−1(r(I)) = r(S−1I)

Proof. 1. We always have J ⊇ Jce. We prove the containment the other way, let r
s ∈ J C S−1R⇒

r
1 ∈ J ⇒ r ∈ Jc ⇒ r

s = 1
s
r
1 ∈ (Jc)e. Hence J = Jec.

2.

r ∈ Iec = (S−1I)c ⇐⇒ r

1
=
a

s
for some a ∈ I, s ∈ S

⇐⇒ t(sr − a) = 0 for some a ∈ I, s, t ∈ S
⇐⇒ rs1 ∈ I for some s1 ∈ S
⇐⇒ r ∈ (I : s1) for some s1 ∈ S
⇐⇒ r ∈ ∪s∈S(I : S)

So Ie = (1) ⇐⇒ Iec = (1)︸ ︷︷ ︸
Ie=Iece

⇐⇒ 1 ∈ ∪s∈S(I : s) ⇐⇒ I ∩ S 6= ∅

3. I is a contraction ⇐⇒ Iec ⊆ I ⇐⇒ (sr ∈ I for some s ∈ S ⇒ r ∈ I) ⇐⇒ (s̄r̄ = 0in R/I for
some s ∈ S ⇒ r̄ = 0) ⇐⇒ ∀s ∈ S, s̄ is not a zero divisor in R/I

4. One way is clear: If Q is a prime of S−1R then Qc is a prime of R. Conversely: let P be a prime
of R ⇒ R/P is a domain. Now S̄−1(R/P ) ∼= S−1R/S−1P (where S̄ is the image of S in R/P ).
But S̄−1(R/P ) is a subring of the �eld of fractions of R/P , so is either 0 or an integral domain.
If 0 then S−1P = S−1R = (1). If 6= 0 then S−P is a prime ideal of S−1R. The �rst case occurs
⇐⇒ 0 ∈ S̄ ⇐⇒ S ∩ P 6= ∅.
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5. Easy Exercise

Remark. Here's a quick proof that f ∈ R not nilpotent ⇒ ∃P with f /∈ P and P prime.
Take S = {1, f, f2, . . . } 63 0⇒ S−1R is a non-zero ring, so it has a maximal ideal Q⇒ Qc = P is a

prime of R,P ∩ S = ∅ ⇒ f /∈ P .

Corollary 3.11. N(S−1R) = S−1(N(R))

Corollary 3.12 (Special case when S = R \ P, P prime). I ∩ S = ∅ ⇐⇒ I ⊆ P . Hence the proper
ideals of RP are in bijection with the ideals of R which are contained in P .

R S−1R

P

−I oo // J−

0 0

Corollary 3.13. The �eld of fractions of the domain R/P (P is prime) is isomorphic to the residue
�eld of RP

Proof. S = R\P . The residue �eld of RP is RP /S
−1P = S−1R/S−1P = S̄−1(R/P ) = �eld of fraction

of R/P since S̄ = (R/P ) \ {0}.

Corollary 3.14. If P1 ⊂ P2 are primes of R then (R/P1)P2 = RP2/P1P2
- a ring whose prime

correspond to primes of R between P1 and P2
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Geometrical Interlude I

Let k be an algebraically closed �eld (e.g. k = C). Let kn be a�ne n-space over k: {a = (a1, . . . , an) :
aj ∈ k}. Algebraic geometry studies solutions to polynomial equations S = {fj(x1, . . . , nn)} ⊆
k[x1, . . . , xn]. V (S) = {a ∈ kn : fj(a) = 0∀fj ∈ S}.

De�nition. The set V (S) is an a�ne algebraic set

Clearly V (S) = V (I) where I is the ideal of k[x1, . . . , xn] generated by S and V (I) = V (r(I)),
since f ∈ r(I) ⇐⇒ fn ∈ I (n ≥ 1)

Hilbert Basis Theorem. Every ideal I C k[x1, . . . , xn] is �nitely generated

Proof. Later

If I = (f1, . . . , fk) then V (I) = V ({f1, . . . , fk}). It is not hard to check that:

• V (0) = kn

• V (1) = ∅

• V (∪jSj) = ∩jV (Sj)

• V (IJ) = V (I) ∪ V (J)

Hence the collection of all algebraic subsets of kn is closed under intersections and �nite unions, so
they form the closed sets of a topology on kn called the Zariski topology on kn.

In the other direction: let S ⊂ kn and de�ne I(S) = {f ∈ k[x1, . . . , xn] : f(a) = 0 ∀a ∈ S}, which
is an ideal of k[x1, . . . , xn], and in fact r(I(S)) = I(S).

Fact. V (I(S)) = S (for S ⊂ kn, S is the closure of S in kn)

Fact. I(V (J)) = r(J) for J C k[x1, . . . , xn]. This is called �Hilbert's Nullstellensatz�, we will prove
this later.

The conclusion is that V and I gives (inclusion order-reversing) bijections between radical ideals
of k[x1, . . . , xn] and closed subsets of kn.

De�nition 3.15. An algebraic set is irreducible if it is not the union of two proper closed subsets.
(⇐⇒ any two non-empty open subsets intersects non-trivially). These are V (P ) for P a prime ideal
of k[x1, . . . , xn]. Irreducible algebraic sets are often called algebraic varieties

Example. n = 1: kn = k1 = k. Now k[x] is a UFD so the primes are (0) and (x − a) with a ∈ k
(since k is algebraically closed). Note (x− a) are maximals and correspond to points of k while
(0) is not maximal and correspond to the whole of k. The closed sets are k itself and all the
�nite subsets of k. (So every in�nite subset of k is dense)

n = 2: k[x1, x2] = k[x, y]. Primes have 3 types:

• (0)↔ V (0) = k2

• P = (f(x, y)) ↔ V (f) = irreducible curves in k2 (f irreducible). e.g., V (x2 + y2 − 1) =
circle in k2

• M = (x− a, y − b)↔ V (M) = {(a, b)} singleton in k2 (a, b ∈ k)

Coordinate rings (of algebraic sets)

Every element f ∈ k[x1, . . . , xn] de�nes a polynomial function kn → k (de�ned by a 7→ f(a)). f, g
agree on V (I) ⇐⇒ f − g ∈ I(V (I)). Without loss of generality we can assume I = r(I) so f, g agree
on V (I) ⇐⇒ f − g ∈ I.

De�nition. De�ne k[V ] = k[x1, . . . , xn]/I. Then k[V ] is the ring of polynomial function on V . This
is called the coordinate ring of V .
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Ideals of k[V ]↔ ideals J with I ⊆ JCk[x1, . . . , xn]. Ma = Maximal ideals of k[V ]↔maximal ideals

M ⊇ I, i.e.,M = (x1−a1, . . . , xn−an) with a = (a1, . . . , an) ∈ V . Ma = {f ∈ k[V ] : f(a) = 0} =kernel

of map k[V ]→ k de�ned by f 7→ f(a).
If V is a variety then k[V ] is an integral domain, (since V = V (P ) so K[V ] = k[x1, . . . , kn]/P where

P is prime)
We have a correspondence between

• Algebraic sets (or varieties) in kn

• �nitely generated k-algberas (or domains)

This correspondence extends to one which takes polynomial maps between algebraic sets to morphism
of k-algebras.
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4 Integral Dependence

De�nition 4.1. Let A be a subring of the ring B. An element b ∈ B is integral over A if it satis�es
an equation

bn + an−1b
n−1 + · · ·+ a0 = 0, ai ∈ A (4.1)

Let f(x) = x2 + an−1x
n−1 + · · ·+ a0 ∈ A[x]. If a ∈ A then a is a root of x− a, so a is integral over

A

Example. A = Z, B = C, z ∈ C is integral over Z ⇐⇒ z is an algebraic integer
A = Q, B = C gives algebraic numbers
A = Z, B = Q, z ∈ Q integral over Z ⇐⇒ z ∈ Z, i.e., let x = r

s , r, s ∈ Z coprime. If
(
r
s

)n
+· · ·+a0 =

0 then rn + an−1r
ns+ · · ·+ a0s

n = 0⇒ s|rn ⇒ s = ±1, x ∈ Z.
A is a UFD, B its �eld of fraction gives similar result as the previous example.

Theorem 4.2. Let A be a subring of B, b ∈ B. Then the following are equivalent:

1. b is integral over A

2. A[b] is a �nitely generated A-module

3. B contains a subring C ⊇ A[b] which is �nitely generated as an A-module

4. There exists a faithful A[b]-module M which is �nitely generated as an A-module

Proof. 1⇒ 2: If b satis�es equation (4.1) then A[b] is generated by 1, b, . . . , bn−1 since equation (4.1)
⇒ bn = −(an−1b

n−1 + · · ·+ a0)
2⇒ 3: Take C = A[b]
3⇒ 4: M = C. This is a faithful A[b]-module as A[b] is a subring C and 1 ∈ C. So if rx = 0 ∀r ∈

A[b], x ∈M = C then r1 = 0, hence r = 0.
4 ⇒ 1: Given M as in 4. let m1, . . . ,mnbe generators of M as an A-module. Let φ : M → M be

the map de�ned by x 7→ bx. This is A-linear so φ ∈ EndA(M). Hence there exists a0, . . . , an−1 ∈ A
such that φn + an−1φ

n−1 + · · · + a0 = 0 (in EndA(M)), i.e., (φn + · · · + a0)y = 0 ∀y ∈ M ⇒
(bn + an−1b

n−1 + · · ·+ a0)y = 0∀y ∈M ⇒
M faithful

bn + an−1b
n−2 + · · ·+ a0 = 0

Corollary 4.3. For all n ≥ 1, if b1, . . . , bn ∈ B are all integral over A then A[b1, . . . , bn] is �nitely
generated as an A-module.

Proof. We prove this using induction on n.
n = 1: Use the previous theorem.
In general: Let A1 = A[b1, . . . , bn−1]. Then A1 is �nitely generated as an A module. A[b1, . . . , bn] =

A1[bn], but bn is integral over A1, hence A1[bn] is �nitely generated as an A1-module, so A1[bn] is �nitely
generated as an A-module

Corollary 4.4. Let C = {b ∈ B|b integral over A} ⊆ B. Then C is a subring of B containing A.

Proof. We need to show that for all x, y ∈ C then x ± y, xy ∈ C. Since x, y ∈ C by the previous
corollary we know A[x, y] is �nitely generate as an A-module and it contains x±y, xy. By the previous
theorem (3.⇒1.) all elements of A[x, y] are integral over A

De�nition 4.5. Using the notation of Corollary 4.4, C is the integral closure of A in B.
If C = B we say B is integral over A
If C = A we say A is integrally closed in B

Example. Z is integrally closed over Q
The integral closure of Z in C is the ring of algebraic integers.

De�nition 4.6. If A is an integral domain, we say that A is integrally closed if A is integrally closed
in its �eld of fractions.

Example. Z is integrally closed
Any UFD is integrally closed
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Corollary 4.7. If A ⊆ B ⊆ C then C is integral over A ⇐⇒ B is integral over A and C is integral
over B

Proof. �⇒�: Obvious
�⇐�: Let c ∈ C. Then cn + bn−1c

n−1 + · · · + b0 = 0, bi ∈ B. De�ne B0 := A[b0, . . . , bn−1]. Then
c is integral over B0 and B0 is �nitely generated as an A-module. By the theorem c is integral over
A

Corollary 4.8. The integral closure of A in B is integrally closed in B

Proof. Trivially follows from previous corollary

Example. Let K be a number �eld (that is a �eld containing Q with �nite degree). Then the integral
closure of Z in K is the ring of algebraic integers of K, called the ring of integers. That is, the ring of
integers is K ∩ {ring of all algebraic integers}. We will denote this OK (or ZK). e.g.:

• K = Q(i), OK = Z[i] (the Gaussian integers)

• K = Q(
√
−3), OK contains Z[

√
−3]. In fact OK = Z[ 1+

√
−3

2 ]

• K = Q( 3
√

10). The integral closure of Z in K is OK = Z[ 1+ 3√10+ 3√100
3 ]

Proposition 4.9. Let B be an integral extension of A. Then:

1. For all J CB, I = Jc = J ∩A we have B/J is integral over A/I

2. If S is a multiplicatively closed set in A then S−1B is integral over S−1A.
Special Case: P a prime of A, S = A \ P ⇒ BP is integral over AP

Proof. Let b ∈ B satisfy bn + a1b
n−1 + · · ·+ an = 0 (in B) ⇒ b̄n + ā1b̄

n−1 + · · ·+ ān = 0 (in B/J)⇒ b̄
is integral over A/I

b
s ∈ S

−1B ⇒
(
b
s

)n
+ a1

s ( bs )n−1 + · · ·+ an−1

sn−1 ( bs ) + an
sn = 0⇒ b

s is integral over S−1A

Lemma 4.10. Let B be an integral extension of A, with A and B both domains. Then B is a �eld if
and only if A is a �eld

Proof. Assume A is a �eld. Let b ∈ B, b 6= 0. Let bn + a1b
n−1 + · · · + an−1b + an = 0 be an integral

equation of minimal degree n. Then an 6= 0 so a−1
n exists in A. Hence the equation can be rewritten

as b(bn−1 + · · ·+ an−1) = −an ⇒ b−1 = −a−1
n (bn−1 + · · ·+ an−1) ∈ B. Hence b as an inverse, so B is

a �eld.
Conversely suppose B is a �eld. Let a ∈ A, a 6= 0. Then a−1 exists in B. So there is an

equation: (a−1)n + a1(a−1)n−1 + · · · + an = 0 (ai ∈ A), which can be rearranged to give a−1 =
−(a1 + a2a+ · · ·+ ana

n−1) ∈ A.

Lemma 4.11. Let B be an integral extension of A. Let QC B be prime and P = Q ∩ A, a prime of
A. Then P is maximal if and only if Q is maximal

Proof. By Proposition 4.9 B/Q is integral over A/P so by Lemma 4.10 Q is maximal ⇐⇒ B/Q is a
�eld ⇐⇒ A/P is a �eld ⇐⇒ P is maximal

Theorem 4.12. Let B be an integral extension of A and P a prime of A. Then:

1. There exists a prime Q of B with P = Q ∩A

2. If Q1, Q2 are primes of B with Q1 ∩A = P = Q2 ∩A and Q1 ⊇ Q2 then Q1 = Q2.

Proof. Consider the following commutative diagram:

A �
� int //

α ��

B
β��

AP
� � int // BP
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Let M be a maximal ideal in BP . Let Q = β−1(M), a prime in B. Now Q ∩ A = P since M ∩ AP is
maximal in AP (Lemma 4.11) but AP has only one maximal ideal namely PAP , which contracts to
P : α−1(M ∩AP ) = P = A ∩ β−1(M) = A ∩Q.

Let Q1 and Q2 be as in the statement. Then let N1 = Q1BP and N2 = Q2BP their extension in
BP . These are primes of BP (by Proposition 3.10, and the fact that Qj ∩ S = ∅ where S = A \ P ).

Claim: N1, N2 are maximal.
This follow from Nj ∩AP are maximal (using Lemma 4.11), but N1 ∩AP = N2 ∩AP = PAP since

both contract to P . Hence each Nj is maximal. But if Q1 ⊇ Q2 ⇒ N1 ⊇ N2 ⇒ N1 = N2 ⇒ Q1 =
β−1(N1) = β−1(N2) = Q2

Example (Counter-Example showing the requirement of part 2). A = Z, B = Z[i], P = 5Z, then if
we let Q1 = (2 + i), Q2 = (2− i) we �nd Q1 ∩ Z = 5Z and Q2 ∩ Z = 5Z

The �Going Up� Theorem. Consider the following set-up.

B Q1 ⊆ · · · ⊆ Qm(primes of B)

A
?�

int

OO

P1 ⊆ P2 ⊆ · · · ⊆ Pm ⊆ · · · ⊆ Pn (primes of A)

with Qi ∩ A = Pi (for all 1 ≤ i ≤ m). With that set-up there exists Qm+1, . . . , Qn primes of B with
Qm ⊆ Qm+1 ⊆ · · · ⊆ Qn and Qi ∩A = Pi (for m+ 1 ≤ i ≤ n)

Proof. By induction we reduce to the case m = 1, n = 2. That is we must �nd Q2 such that Q1 ⊆ Q2

and Q2 ∩A = P2. (where P1 ⊆ P2 and Q1 ∩A = P1)
Let Ā = A/P1, B̄ = B/Q1. Then B̄ is integral over Ā (by Proposition 4.9) and P2/P1 is a prime

of Ā so there exists a prime of B̄ above it. This prime has the form Q2/Q1 with Q2 ⊇ Q1 and Q2 a
prime of B. Then (Q2/Q1) ∩ Ā = P2/P1 ⇒ Q2 ∩A = P2

4.1 Valuation Rings

De�nition 4.13. A valuation ring is an integral domain R such that for every x ∈ K (the �eld of
fractions of R) either x ∈ R or x−1 ∈ R

Example. Z is not a valuation ring ( 2
3 /∈ Z, 3

2 /∈ Z)
Z(p) is a valuation ring
R = K: any �eld is a valuation ring.

Proposition 4.14. Let R be a valuation ring with �eld K. Then:

1. R is a local ring

2. R ⊆ R′ ⊆ K ⇒ R′ is a valuation ring

3. R is integrally closed

Proof. 2. trivial
1. The units of R are the (non-zero) x ∈ K with both x, x−1 ∈ R. Let M = {non-units in

R} = {x ∈ R : x−1 /∈ R} ∪ {0}. We'll show that M CR, then it's the unique maximal ideal of R. Let
x ∈ M, r ∈ R. Then rx is not a unit since otherwise x−1 = r(rx)−1 ∈ R, contradiction, i.e., rx ∈ M .
Let x, y ∈ M be non-zero. Then either x

y ∈ R or y
x ∈ R. If x

y ∈ R then x + y = y(xy + 1) ∈ M .

Otherwise if yx ∈ R then x+ y = x(1 + y
x ) ∈M

3. Let x ∈ K be integral over R. Then xn + r1x
n−1 + · · · + rn = 0 (ri ∈ R). If x ∈ R there is

nothing to prove. If x−1 ∈ R then x+ (r1 + r2x
−1 + · · ·+ rn(x−1)n−1) = 0⇒ x ∈ R

De�nition 4.15. Let K be a �eld. A discrete valuation on K is a function v : K∗ → Z such that:

1. v(xy) = v(x) + v(y)∀x, y ∈ K∗

2. v(x+ y) ≥ min{v(x), v(y)} ∀x, y ∈ K∗ with x+ y 6= 0

We extend v to a function K → Z ∪ {∞} by setting v(0) = ∞. Now 1., 2. holds for all x, y ∈ K
with the obvious conventions.
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Example 4.16. K = Q, p a prime number, v = ordp de�ned as follows: for x ∈ Q∗ write x = pn ab
where a, b ∈ Z and p - a, b and n ∈ Z. Set ordp(x) = n.

Associated to every discrete valuation of K there is a valuation ring Rv. Rv = {x ∈ K : v(x) ≥ 0}.
Clearly Rv is a ring (by 1. and 2.). Also Rv is a valuation ring since v(x−1) = −v(x) for all x ∈ K∗.

De�nition 4.17. These Rv are called discrete valuation ring (DVR)

Example. K = Q has a DVR for each prime p, namely v = ordp then Rv = Z(p).

Note. ∩pZ(p) = Z

Exercise. Every valuation ring of Q is Q itself or Z(p) for some prime p.

Example. Let K = k(x) where k is a �eld. K is the �eld of fractions of k[x]. Let p(x) be a monic
irreducible polynomial in k[x]. Every element of K∗ can be written as pn ab where a, b ∈ k[x] and p - a, b
with n ∈ Z. In this case n is uniquely determined. De�ne ordp(p

n a
b ) = n, just as for K = Q this is a

discrete valuation. The associated valuation ring is { f(x)
g(x) ∈ k[x] : p(x) - g(x)}

e.g. K = C(x). The monic irreducible monic polynomial are p(x) = x − a (x ∈ C). Then

ordp(h) =


n > 0 if h has a zero of order n at a

n < 0 if h has a pole of order n at a

0 if neither

.

e.g. K = k(x). De�ne v( fg ) = deg(g) − deg(f) then v is a discrete valuation. Note k(x) = k( 1
x ).

This v is just ord1/x

Let v be a discrete valuation on K such that v : K∗ → Z is surjective. (This only involves rescaling
v, unless v is identically 0). Let π ∈ K be such that v(π) = 1.

Rv = {x ∈ K : v(x) ≥ 0} - Mv ∪ Uv
Mv = {x ∈ K : v(x) > 0} - maximal ideal of Rv
Uv = {x ∈ K : v(x) = 0} - set of units in Rv
If x, y ∈ Rv then x|y ⇐⇒ y

x ∈ Rv ⇐⇒ v( yx ) ≥ 0 ⇐⇒ v(y) ≥ v(x). So if xn is an element with
v(xn) = n (for all n ∈ Z) then xn|xn+1 ∀n hence Rv ⊃ (x1) ⊃ (x2) ⊃ . . .

Every x ∈ R \ {0} can be written uniquely as x = πnu where n = v(x) ≥ 0 and u ∈ Uv. (Since if
n = v(x) then u = π−nx⇒ v(u) = −n+ v(x) = 0⇒ u ∈ Uv), i.e., Rv is a UFD with only one prime,
namely π.

Every ideal in Rv is principal: the only non-zero ideals are (πn), n ≥ 0. Mv = (π) since x ∈Mv ⇐⇒
v(x) ≥ 1 = v(π) ⇐⇒ π|x. If I C Rv, I 6= 0 let n = min{v(x) : x ∈ I}. Then I = (πn) since ∃x ∈ I
with v(x) = n ∀y ∈ I, v(y) ≥ n⇒ x|y so I = (x), and v(x) = v(πn)⇒ x = πnu⇒ (x) = (πn) = (π)n.
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Geometrically Interlude II: Hilbert's Nullstellensatz.

Algebraic form of Nullstellensatz. Let k be a �eld and let F be a �eld which is a �nitely generated
k-algebra. Then F is a �nite algebraic extension of k. In particular if k is algebraically closed then
F = k.

Weak form of Nullstellensatz. Let k be an algebraically closed �eld and ICk[x1, . . . , xn]. If I 6= (1)
then V (I) 6= ∅ (i.e., ∃a ∈ kn such that f(a) = 0∀f ∈ I)

Corollary 4.18. The maximal ideals in k[x1, . . . , xn] (k algebraically closed) are precisely the ideals
Ma = (x1 − a1, . . . , xn − an), a ∈ kn

Strong form of Nullstellensatz. Let k be an algebraically closed �eld and I C k[x1, . . . , xn]. Then
I(V (I)) = r(I) (i.e., if g(a) = 0 whenever f(a) = 0∀f ∈ I then gN ∈ I)

Proof that Algebraic form ⇒ Weak form. Let k be a algebraically closed �eld and I C
6=
k[x1, . . . , xn]⇒

I ⊆ M a maximal ideal. Consider k → k[x1, . . . , xn] → k[x1, . . . , xn]/M . Now k[x1, . . . , xn]/M is
a �eld which is a �nitely generated k-algebra. By the Algebraic form the composite of the previous
map is surjective (k[x1, . . . , xn]/M ∼= k as k is algebraically closed), so for all i, ∃ai ∈ k such that
xi − ai ∈ M . So M ⊇ (x1 − a1, . . . , xn − an) = Ma. But Ma is maximal so M = Ma. Now for all
f ∈ I ⇒ f ∈M ⇒ f(a) = 0

Proof that Weak form ⇒ Strong form. I C k[x1, . . . , xn]. We know that I(V (I)) ⊇ r(I) since g ∈
r(I)⇒ gN ∈ I ⇒ gN (a) = 0∀a ∈ V (I)⇒ g(a) = 0⇒ g ∈ I(V (I)).

Conversely let g ∈ I(V (I)), then (∗) (f(a) = 0∀f ∈ I)⇒ g(a) = 0.
Extend the ring k[x1, . . . , xn] by adding a new variable y to get k[x1, . . . , xn, y]. In k[x1, . . . , xn, y]

form the ideal J generated by all f ∈ I and 1−g(x1, . . . , xn)y, i.e., J = (1−g(x)y)+I ·k[x1, . . . , xn, y].
Now V (J) = ∅ (in kn+1) since if (a1, . . . , an, b) ∈ V (J) then

1. f(a1, . . . , an) = 0∀f ∈ I

2. 1− g(a1, . . . , an)b = 0

This is clearly a contradiction to (∗). So by the Weak form, we have J = k[x1, . . . , xn, y], i.e., 1 ∈ J .
So

1 = h(x1, . . . , xn, y)(1− g(x1, . . . , xn)y) +
∑
j

hj(x1, . . . , xn, y)fj(x1, . . . , xn) fj ∈ I.

Substitute y = 1
g(x1,...xn) to get an equation in k(x1, . . . , xn).

1 =
∑
j

hj(x1, . . . , xn,
1

g(x1, . . . , xn
)fj(x1, . . . , xn)

The RHS is a rational function whose denominator is a power of g. So for large enough N ≥ 0:

gN =
∑
j

h̃j(x1, . . . , xn)fj(x1, . . . , xn) ∈ I

for some h̃j ∈ k[x1, . . . , xn]. Hence g ∈ r(I)

Proof of Algebraic Form of Nullstellensatz. F = k[x1, x2, . . . , xn] (where xi ∈ F are the generators of
F ) is a �eld. We must show that each xi is algebraic over k. We are going to use induction on n

n = 1: F = k[x1]. Write x−1
1 as a polynomial in x1, then we can get an equation for x1 over k.

(Alternative: if x1 were not algebraic then k[x1] is a polynomial ring, not a �eld)
Inductive Step: F = k(x1)[x2, . . . , xn] (since F is a �eld) is a �nitely generated algebra over k(x1)

with only n − 1 generators. So each xj for j ≥ 2 is algebraic over k(x1). If we can show that x1 is
algebraic over k then we are done. For all j ≥ 2, we have a polynomial equation for xj over k(x1).
Let f ∈ A := k[x1] be a common denominator for all coe�cient for all these polynomials. Consider
the ring Af = S−1A where S = {1, f, f2, f3, . . . }. All the n − 1 polynomials are monic in with
coe�cients in Af . Hence each xj (j ≥ 2) is integral over Af . It follows that F is integral over Af
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since F = A[x2, . . . , xn] = Af [x2, . . . , xn]. By Lemma 4.10, since F is a �eld, so is Af . Let K = k(x1),
a sub�eld of F , the �eld of fractions of both A and Af . Now A = k[x1] ⊆ Af ⊆ K = k(x1) and Af a
�eld implies that Af = K (since K is the smallest �eld containing A, being its �eld of fractions)

If x1 were not algebraic over k then A = k[x1] would be the polynomial ring in one variable over
k and k(x1) = K its �eld of fractions. Take any irreducible g ∈ k[x1] with g - f , then 1

g /∈ Af . (NB:
k[x1] would have in�nitely many irreducible) This leads to a contradiction hence x1 is algebraic
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5 Noetherian and Artinian modules and rings

Proposition 5.1 (De�nition). An R-module M is Noetherian if it satis�es one of the following
equivalent conditions:

1. ACC (Ascending Chain Condition): any ascending chain M1 ⊆ M2 ⊆ M3 ⊆ . . . of submodules
of M terminates, i.e., for some n we have Mn = Mn+1 = . . .

2. Every non-empty collection of submodules of M has a maximal element

3. Every submodule of M is �nitely generated

De�nition 5.2. A ring R is Noetherian if it is so as an R-module, i.e., the ideals of R satis�es ACC
and every ideal if �nitely generated.

Proposition 5.3 (De�nition). An R-module M is Artinian if it satis�es the following equivalent
conditions

1. DCC (Descending Chain Condition): any descending chain M1 ⊇M2 ⊇M3 ⊇ . . . of submodule
of M terminates, i.e., for some n we have Mn = Mn+1 = . . .

2. Every non-empty collection of submodules has a minimal element

Proof of Proposition5.1. 1) ⇐⇒ 2): If we had an in�nite AC M1 $ M2 $ M3 $ . . . then {Mn : n ≥
1} has no maximal elements. Conversely if S is a non-empty set of submodules of M with no maximal
elements, then pick M1 ∈ S, ∃M2 %M1,∃M3 %M2, . . .

2)⇒ 3): Let S be the set of �nitely generated submodules of N , where N ≤M . 0 ∈ S so S has a
maximal elements, say N0. So N0 ≤ N and N0 is �nitely generated, if N0 6= N take x ∈ N \N0, then
N0 +Rx % N0 and is �nitely generated, contradiction.

3) ⇒ 1): Given M1 ⊆ M2 ⊆ M3 ⊆ . . . , let N = ∪∞n=1Mn. Then N is a submodule of M . Let
x1, . . . , xn generate N . For large enough k, Mk contains contain all of the xi. Then Mk = N =
Mk+1 = Mk+1 = . . .

Note that the proof of 1) ⇐⇒ 2) can easily be adapted to prove Proposition 5.3

Example. 1. Every �nite Z-module is both Noetherian and Artinian

2. If R is a �eld k then R-modules are k-vector spaces and they are Noetherian ⇐⇒ they are �nite
dimensional ⇐⇒ they are Artinian.

3. Z is a Noetherian ring (every ideal is generated by 1 element) but is not Artinian: Z ⊃ (2) ⊃
(4) ⊃ (8) ⊃ · · · ⊃ (2n) ⊃ . . . .

4. R = k[x1, x2, . . . ] polynomials in a countable (non-�nite) number of variables. R is neither
Noetherian nor Artinian: (x1) ⊂ (x1, x2) ⊂ (x1, x2, x3) ⊂ . . . and (x1) ⊃ (x2

1) ⊃ (x3
1) ⊃ . . .

Proposition 5.4. If 0 → M1
α→ M2

β→ M3 → 0 is a short exact sequence of R-modules then M2 is
Noetherian ⇐⇒ both M1,M3 are. Similarly M2 is Artinian ⇐⇒ both M1,M3 are.

Proof. The proof for both cases are the similar, so we are just going to prove the Artinian case.
�⇒� : Suppose M2 is Artinian. Any Descending Chain in M1maps isomorphically under α to a

Descending Chain inM2 which terminates. Similarly any Descending Chain inM3 lifts to a Descending
Chain in M2 via β−1 , hence terminates

�⇐�: Suppose M1,M3 Artinian. Let N1 ⊇ N2 ⊇ N3 ⊇ . . . be a Descending Chain in M2. Then
α−1(N1) ⊇ α−1(N2) ⊇ . . . is a Descending Chain in M1,hence stops, and β(N1) ⊆ β(N2) ⊆ . . . is a
Descending Chain in M3, hence stops. So there exists n such that α−1(Nn) = α−1(Nn+1) = . . . and
β(Nn) = β(Nn+1) = . . . . This implies Nn = Nn+1 since let x ∈ Nn, then β(x) ∈ β(Nn) = β(Nn+1)⇒
∃y ∈ Nn+1 with β(x) = β(y). So x− y ∈ ker(β) = im(α), so x− y = α(z) for some z ∈M1 and since
α(z) = x− y ∈ Nn, z ∈ α−1(Nn) = α−1(Nn+1)⇒ α(z) ∈ Nn+1 so x = y + α(z) ∈ Nn+1.
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Corollary 5.5. Any �nite sum of Noetherian (respectively Artinian) modules is again Noetherian
(respectively Artinian)

Proof. The sequence 0→M1 →M1 ⊕M2 →M2 → 0 is exact.

Note. A subring of a Noetherian ring is not necessarily Noetherian, e.g. R = k[x1, x2, . . . ] ⊂ k(x1, x2, . . . ).

Corollary 5.6. If R is Noetherian and M is a �nitely generated R-module then M is Noetherian.
Same for Artinian.

Proof. Rn = R⊕R⊕· · ·⊕R is a Noetherian R-module, since R is. Every �nitely generated R-module
M = Rx1 + · · · + Rxn is the homomorphic image of some Rn, i.e., 0 → ker → Rn → M → 0 is
exact.

Later we'll prove that R Noetherian ⇒ R[x] is Noetherian (Hilbert Basis Theorem). Hence
R[x1, . . . , xn] is Noetherian, e.g, R = k a �eld. Hence any �nitely generated R-algebra is Noeth-
erian.

5.1 Noetherian Rings

Lemma 5.7. If R is a Noetherian ring and f : R → S a surjective ring homomorphism then S is
Noetherian

Proof. R/ ker(f) ∼= S⇒ S is Noetherian as an R-module⇒ S is Noetherian.

Lemma 5.8. Let R ≤ S with R Noetherian. If S is �nitely generated as an R-module then S is
Noetherian.

Proof. S is Noetherian as R-module by Corollary 5.6 hence is also Noetherian as S-module.

Example. Z is Noetherian ⇒ any ring which is �nitely generated as Z-module is Noetherian.
Z[α] with α an algebraic integer is Noetherian

Lemma 5.9. If R is a Noetherian ring and S a multiplicatively closed set in R then S−1R is Noeth-
erian.

Proof. By Proposition 3.10 there is a bijection, preserving inclusion, between the set of ideals of S−1R
and a subset of the ideals of R. So Ascending Chain Condition for R ⇒ Ascending Chain Condition
for S−1R

Corollary 5.10. If R is Noetherian and P CR prime then RP is a Noetherian local ring

Hilbert Basis Theorem. If R is a Noetherian ring then so is R[x]

Proof. Let J C R[x]. For n ≥ 0 let In be the ideal of R consisting of all leading coe�cients of f ∈ J
with deg(f) = n and 0. It is easy to check that In is an ideal. Then I0 ⊆ I1 ⊆ I2 ⊆ . . . since
deg(f) = n ⇒ deg(xf) = n + 1 and they have the same leading coe�cients. By Ascending Chain
Condition for R there exists n such that In = In+1 = . . . . Let f1,n, f2,n, . . . , fkn,n ∈ J be polynomials
of degree n whose leading coe�cients generates In. For each 0 ≤ m < n let f1,m, . . . , fkm,m (km ≥ 0)
be polynomials in J of degree m whose leading coe�cients generates Im. (Use km = 0 if Im = 0)

Claim: J is generated by all fi,m, with m ≤ n, i ≤ km.
Let g ∈ J . Proceed by induction on deg(g). Our base case is the 0 polynomial, since this is trivial.

Case 1. deg(g) ≥ n: Then the leading coe�cient of g are in In ⇒ ∃r1, . . . rkn ∈ R such that

lc(g) = lc(
∑kn
i=1 rifi,n) where lc(f) = leading coe�cient of f . ⇒ leading term of g =

leading term of (g1 =
∑
rix

deg(g)−nf1,n), g1 ∈ (fi,j). So g2 = g− g1 has deg(g2) < deg(g1).
By induction g2 ∈ (fi,j) so g ∈ (fi,j)

Case 2. deg(g) = m < n: Now an R-linear combination of fi,m (1 ≤ i ≤ km) has the same leading
term as g. The rest is as in Case 1.

Hence J is generated by the �nite set {fi,j : 1 ≤ i ≤ km, 0 ≤ j ≤ n}. Hence every ideal in R[x] is
�nitely generated, so R[x] is a Noetherian ring
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Corollary 5.11. If R is Noetherian so is R[x1, x2, . . . , xn] for all n ≥ 1

Proof. Since R[x1, . . . , xn−1][xn] = R[x1, x2, . . . , xn]

In particular if k is a �eld then k[x1, . . . , xn] is Noetherian. Hence any system of polynomial
equation has the same set of zeros as a �nite system

Corollary 5.12. If R is Noetherian then so is any �nitely generated R-algebra.

Proof. Any �nitely generated R-algebra is of the form R[α1, . . . , αn] - a quotient of R[x1, . . . , xn]

Example. Any �nitely generated k-algebra (k a �eld) is Noetherian.
Any �nitely generated Z-algebra is Noetherian. (e.g., the ring of integers in a number �eld is

Noetherian: NB theses do not all have the form Z[α] with a single generator)

32



6 Primary Decomposition

In general rings we don't have a factorization theory which expresses elements as products of prime
powers. Instead we make do with writing ideals as intersections of primary ideals.

De�nition 6.1. A primary ideal Q C R is a proper ideal such that xy ∈ Q ⇒ x ∈ Q or yn ∈ Q for
some n ≥ 1, i.e., xy ∈ Q⇒ either x ∈ Q or y ∈ r(Q).

Equivalently: R/Q 6= 0 and every zero-divisor is nilpotent.

Proposition 6.2. 1. Every prime ideal is primary.

2. The contraction of a primary is primary.

3. If Q is primary then r(Q) is prime. It is the smallest prime containing Q.

Proof. 1. Clear from the de�nition (n = 1)

2. Let f : A → B be a ring homomorphism, Q C B primary ⇒ Qc = f−1(Q) C A is primary. To
see this: 1 /∈ Qc since f(1) = 1 /∈ Q, hence A/Qc 6= 0. Also note that f induces an injective map
A/Qc ↪→ B/Q so A/Qc also has the property that zero-divisors are nilpotent.

3. Let P = r(Q). Suppose xy ∈ P . Then xnyn ∈ Q (for some n ≥ 1) so either xn ∈ Q or (yn)m ∈ Q
(for some m ≥ 1), so either x ∈ P or y ∈ P . For the last sentence use the fact that the radical
of I is the intersection of prime ideals containing I

De�nition 6.3. If Q is primary and r(Q) = P we say that Q is P -primary

Example. 1. In Z the primary ideals are (0) and (pn), p prime, n ≥ 1.

2. R = k[x, y]. Let Q = (x, y2) ⇒ P = r(Q) = (x, y). P 2 = (x2, xy, y2) $ Q $ P . Now
R/Q ∼= k[y]/(y2) in which we see that {nilpotent} = {zero-divisors} = {multiples of y}. This is
an example of a primary which is not a prime power.

3. An example of prime power needs not be primary. Let R = k[X,Y, Z]/(XY − Z2) = k[x, y, z]
where x, y, z satis�es the relation xy = z2. Let P = (x, y), then R/P ∼= k[X,Y, Z]/(X,Y ) ∼=
k[Y ]⇒ P prime. Now xy = z2 ∈ P 2 which is not primary, since x /∈ P 2 and y /∈ P .

Proposition 6.4. 1. If r(I) is maximal then I is primary

2. If M is maximal then Mn is M -primary for all n ≥ 1

Proof. 1. Let M = r(I). Then M/I is the nilradical of R/I, and M/I is prime so R/I has a
unique prime ideal, namely M/I. So every non-nilpotent element of R/I is a unit, so it is not a
zero-divisor.

2. r(Mn) = M (since r(Mn) ⊇M and M is maximal)

Lemma 6.5. Any �nite intersection of P -primary ideals is again P -primary.

Proof. Let Qi be P -primary for i = 1, . . . , n. Set Q = ∩ni=1Qi. Then r(Q) = r(∩ni=1Qi) = ∩ni=1r(Qi) =
∩ni=1P = P . If xy ∈ Q and x /∈ Q then ∃i such that xy ∈ Qi but x /∈ Qi. Hence y ∈ r(Qi) = P ⇒ y ∈
r(Q)

Lemma 6.6. Let Q be P -primary and let x ∈ R. Then:

1. x ∈ Q⇒ (Q : x) = R

2. x /∈ Q⇒ (Q : x) is P -primary

3. x /∈ P ⇒ (Q : x) = Q

To make sense of the three cases remember that Q ⊆ P ⊆ R.
Recall: (Q : x) = {y ∈ R : xy ∈ Q} ⊇ Q
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Proof. 1. If x ∈ Q then xy ∈ Q∀y ∈ R.

2. We have Q ⊆ (Q : x) ⊆ P , where the second containment holds because xy ∈ Q, x /∈ Q⇒ y ∈ P .
So r(Q) = P ⊆ r(Q : x) ⊆ r(P ) = P ⇒ r(Q : x) = P . Now suppose yz ∈ (Q : x) with
y /∈ P ⇒ yxz ∈ Q⇒ y(xz) ∈ Q⇒ xz ∈ Q⇒ z ∈ (Q : x). So (Q : x) is indeed P -primary.

3. If xy ∈ Q but x /∈ P ⇒ y ∈ Q.

De�nition 6.7. A primary decomposition of an ideal I CR is an expression I = Q1 ∩Q2 ∩ · · · ∩Qn
with each Qi primary.

Remark. Such a decomposition may or may not exist. It does always exists when R is Noetherian.

Let Pi = r(Qi) - the primes associated with the decomposition.

Minimality Condition 1 If some Qj ⊇ ∩i6=jQi then Qj may be omitted.

Minimality Condition 2 If more than one Qi has the same radical we may combine them (using
Lemma 6.5)

We call the decomposition minimal if:

1. No Qj ⊇ ∩j 6=iQi.

2. The Pi are distinct.

It will turn out that the primes Pi are uniquely determined by I, but the Qi need not be.

Example. Let I = (x2, xy) C k[x, y] where k is any �eld. Then I = P1 ∩ P 2
2 where P1 = (x) and

P2 = (x, y) (note P1 is prime hence primary, and P2 is maximal hence P 2
2 is primary). This is a

minimal primary decomposition. Note that P1 ⊂ P2 (this means V (P2) ⊂ V (P1), we say P2 is an
embedded prime). Also I = P1 ∩Q2 where Q2 = (x2, y) with r(Q2) = P2 again.

Theorem 6.8. Let I = Q1 ∩ Q2 ∩ · · · ∩ Qn be a minimal primary decomposition. Let Pi = r(Qi).
Then Pi, . . . , Pn are all the prime ideals in the set {r(I : x)|x ∈ R}. Hence the set of Pi is uniquely
determined by I, independent of the decomposition.

Proof. Consider (I : x) = (∩ni=1Qi : x) = ∩ni=1(Qi : x) by the Fact on page 6. This means r(I :

x) = r(∩ni=1(Qi : x)) = ∩ni=1r(Qi : x). But r(Qi : x) =

{
R x ∈ Qi
Pi x /∈ Qi

by Lemma 6.6. Hence

r(I : x) = ∩i:x/∈Qi
Pi.

If r(I : x) is prime, P say, then P = ∩x/∈Qi
Pi ⇒ P = Pi by Proposition 1.15.

Conversely for each i choose x ∈ Qj (∀j 6= i), x /∈ Qi (this is possible by minimality condition 1)
then r(I : x) = Pi.

Notation 6.9. To each I with a primary decomposition we have a set of primes Pi called the associated
primes of I. Any minimal elements of this set is called an isolated or minimal prime of I. Any other
primes associated to I are called embedded primes.

We'll prove later that Pi isolated ⇒ Qi is uniquely determined.

Corollary 6.10. Suppose that 0 is decomposable. Then D := {zero-divisors in R} =union of all
primes associated to 0.

N = {nilpotent in R} = N(R) = intersection of all minimal primes associated to 0

Proof. Note that D is not an ideal (in general), but we can still de�ne r(D) = {x ∈ R : xn ∈ D for
some n ≥ 1} = D (exercise: if xn is a zero-divisor, so is x). Note that D = ∪x 6=0(0 : x) so if we take
radicals D = r(D) = ∪x 6=0r(0 : x). Let 0 = Q1 ∩ Q2 ∩ · · · ∩ Qn be minimal primary decomposition.
Let x 6= 0, r(0 : x) = ∩x/∈Qj

Pj ⊆ Pj0 where x /∈ Qj0 . Note that j0 exists since x 6= 0. Hence
D = ∪x 6=0r(x : 0) ⊆ ∪nj=1Pj . But each Pj = r(0 : x) for some x 6= 0 so each Pj ⊆ D

N(R) = r(0) = ∩r(Qi) = ∩Pi.
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Corollary 6.11. Let I = Q1 ∩ Q2 ∩ · · · ∩ Qn be a minimal primary decomposition and Pi = r(Qi).
Then ∪ni=1Pi = {x ∈ R : (I : x) 6= I} (∗)

Proof. Apply the previous corollary to R/I: Note that I = Q1∩Q2∩· · ·∩Qn ⇒ 0 = Q1∩Q2∩· · ·∩Qn
where as usual Qi CR/I. Each Qi is primary in R/I since (R/I)/Qi ∼= R/Qi. So the zero-divisors in
R/I are the union of all r(Qi) = r(Qi) = Pi and y is a zero-divisors in R/I ⇐⇒ ∃x /∈ I : yx ∈ I ⇐⇒
y in RHS of (∗). While y ∈ ∪Pi ⇐⇒ y ∈ ∪Pi

6.1 Primary Decomposition and Localization

Proposition 6.12. Let Q be P -primary and S a multiplicatively closed set in R

1. S ∩ P 6= ∅ ⇒ S ∩Q 6= ∅ and S−1Q = S−1R

2. S ∩ P = ∅ ⇒ S−1Q is S−1P -primary and (S−1Q)c = Q

Proof. 1. S ∩ P 6= ∅, then there exists s ∈ S ∩ P ⇒ sm ∈ S ∩ Q for some m. We can now use
Proposition 3.10 (part 2.) to show S−1Q = S−1R.

2. Qec = ∪s∈S(Q : s) by Proposition 3.10 (part 2.) but x ∈ (Q : s) ⇒ x · s ∈ Q, s 6= P ⊃
Q ⇒ Sn /∈ Q∀n ⇒ x ∈ Q⇒ Qec = Q. To show that S−1Q is S−1P -primary, note r(Qe) =
r(S−1Q) = S−1r(Q) = S−1P , also if xs ·

y
t ∈ S

−1Q (so there exist u ∈ S such that uxy ∈ Q) and
x
s /∈ S

−1Q⇒ x /∈ Q but Q is still primary, hence uy ∈ P, u ∈ S and S ∩ P = ∅ ⇒ y ∈ P ⇒ y
t =

uy
ut ∈ S

−1P ⇒ S−1Q is S−1P -primary.

Notation. We denote S(I) = (S−1I)c = ∪s∈S(I : s)

Proposition 6.13. Let S be a multiplicatively closed set in R and I = Q1 ∩ · · · ∩ Qn be a minimal

primary decomposition of I numbered so that

{
S ∩ Pi = ∅ 1 ≤ i ≤ m
S ∩ Pi 6= ∅ m+ 1 ≤ i ≤ n

. Then S−1I = ∩mi=1S
−1Qi

and S(I) = ∩mi=1Qi. Both of these decomposition are minimal primary decompositions.

Proof. For i ∈ {1, . . . ,m} we have S−1Qi is S
−1Pi-primary by the previous proposition, furthermore

S−1Pi are distinct primes of S−1R (by Proposition 3.10 part 4.) therefore S−1I = S−1(∩ni=1Qi) =
∩ni=1S

−1Qi =
i>m⇒S−1Qi=S−1R

∩mi=1S
−1Qi is a minimal primary decomposition. From this it is clear

that S(I) = ∩mi=1Qi.

Recall: A prime P is minimal (or isolated) for an ideal I if it is minimal under inclusion in the set
of associated primes of I. More generally we de�ne:

De�nition 6.14. A set P of primes associated to I to be isolated if P ∈ P, P ′ ⊂ P and P ′ is
associated to I then we have P ′ ∈P.

Theorem 6.15. Let I be an ideal of the ring R. Let P = {P1, . . . , Pn} be an isolated set of primes
associated to I. Then Q1 ∩ · · · ∩Qm is independent of the minimal primary decomposition of I.

Proof. Let S = R\∪mi=1Pi then S is a multiplicatively closed set and Pj ∩S = ∅ ⇐⇒ Pj ∈P. Indeed
Pj ∈P means Pj ∩ S = ∅ and conversely Pj /∈P ⇒ Pj * Pi ∀Pi ∈P ⇒ Pj * ∪mi=1Pi ⇒ Pj ∩ S 6= ∅.
Therefore S(I) = Q1 ∩Q2 ∩ · · · ∩Qm. This ideal only depends on the primes in P.

Corollary 6.16. The isolated primary component of I are uniquely determined.

Proof. Choose P = {P} where P is a minimal prime, let S = R \ P , then S(I) = Q with Q is the
unique P -primary factor of I.
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6.2 Primary Decomposition in a Noetherian Ring

The main aim of this sub-section is to prove the existence of primary decomposition in a Noetherian
ring.

De�nition 6.17. An ideal I is irreducible if I = J1 ∩ J2 then I = J1 or I = J2.

Lemma 6.18. In a Noetherian ring R, every ideal is a �nite intersection of irreducible ideals.

Proof. Let S be the set of ideals which are not �nite intersections of irreducible ideals. If S 6= ∅ then S
has a maximal element, I (since R is Noetherian). Then I is not irreducible, therefore I = J1∩J2 with
J1, J2 % I. So J1, J2 /∈ S, hence they are �nite intersection of irreducible ideals. Since the intersection
of two �nite intersection of irreducible ideals, I is the intersection of irreducible ideals, i.e., I /∈ S. This
is a contradiction. Hence S = ∅

Lemma 6.19. In a Noetherian ring R, all irreducible ideals are primary.

Proof. Let I be irreducible. Let x, y ∈ R with xy ∈ I. We must show that either x ∈ I or yn ∈ I for
some n ≥ 1.

De�ne In = (I : ym) for m = 1, 2, . . . . Then I ⊆ I1 ⊆ I2 ⊆ . . . , since R is Noetherian there exists
N such that In = In+1

Claim: I = (I + (x)) ∩ (I + (yn))
It is clear that I ⊆ (I + (x))∩ (I + (yn)). Let z ∈ (I + (x))∩ (I + (yn)), so z = i1 + r1x = i2 + r2y

n

for some i1, i2 ∈ I and r1, r2 ∈ R. Then yz = i1y+ r1xy ∈ I (since i1, xy ∈ I). So r2y
n+1 = yz− i2y ∈

I ⇒ r2 ∈ (I : yn+1) = In+1 = In ⇒ r2y
n ∈ I, hence z ∈ I. So (I + (x)) ∩ (I + (yn)) ⊆ I

Since I is irreducible, either:

• I + (x) = I, in which case x ∈ I

• or I + (yn) = I, in which case yn ∈ I

Theorem 6.20. In a Noetherian ring R, every ideal I has a primary decomposition.

Proof. This follows directly from the previous two lemma.

Proposition 6.21. Let R be a Noetherian ring, every ideal I contains a power of its radical. In
particular, the nilradical is nilpotent.

Proof. Let x1, . . . , xk generate r(I) (R is Noetherian). For large enough n we have xni ∈ I ∀i. Now
r(I)kn ⊆ I since r(I)kn is generated by elements of the form xm1

1 xm2
2 . . . xmk

k where
∑
mi = nk, so at

least of one of the mi ≥ n⇒ the generators of r(I)kn is in I, hence r(I)kn ⊆ I.
For the in particular part, just apply the proposition to I = 0.

Corollary 6.22. Let R be a Noetherian ring, M a maximal ideal and Q an ideal. Then the following
are equivalent:

1. Q is M -primary

2. r(Q) = M

3. Mn ⊆ Q ⊆M for some n ≥ 1.

Proof. 1. ⇐⇒ 2. (by De�nition 6.3)
2.⇒ 3.: By the previous Proposition
3.⇒ 2.: Take the radicals M = r(Mn) ⊆ r(Q) ⊆ r(M) = M ⇒ r(Q) = M

Krull's Theorem. Let I be an ideal in a Noetherian ring R. Then ∩∞n=1I
n = 0 if and only if 1 + I

contains no zero-divisors.
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Proof. �⇒�: If 1 + I contains a zero-divisor 1− x, with x ∈ I, such that (1− x)y = 0 for some y 6= 0,
then y = xy = x2y = x3y = · · · = xny ∈ In. So y ∈ ∩∞n=1I

n, hence ∩∞n=1I
n 6= 0

�⇐�: Let J = ∩∞n=1I
n

Claim: IJ = J .
Certainly IJ ⊆ J . Let IJ = Q1 ∩ Q2 ∩ · · · ∩ Qn be a minimal primary decomposition of IJ with

r(Qi) = Pi, so we must show that J ⊆ Qi ∀i. We have IJ ⊆ Qi.

Case 1. If I ⊆ Pi then Qi ⊇ Pmi (by Proposition 6.21) ⊇ Im ⊇ J ⇒ J ⊆ Qi

Case 2. If I * Pi then J ⊆ Qi since if x ∈ I, x /∈ Pi then xJ ⊆ IJ ⊆ Qi so for all y ∈ J, xy ∈ Qi
but x /∈ r(Qi) = Pi ⇒ y ∈ Qi.

Hence J ⊆ ∩Qi = IJ so J = IJ .
By Nakayama's Lemma since J is �nitely generated, xJ = 0 for some x ∈ 1 + I. If 1 + I has no

zero-divisors then x is not a zero-divisor, so xJ = 0⇒ J = 0.

Corollary 6.23. In a Noetherian domain R, if I 6= R then ∩∞n=1I
n = 0

Proof. Obvious

Corollary 6.24. If I ⊂ J(R) then ∩∞n=1I
n = 0

Proof. Obvious from Proposition 1.12

Corollary 6.25. In a Noetherian local ring with maximal idea M , ∩∞n=1M
n = 0

Proof. Obvious since M = J(R).
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7 Rings of small dimension

Proposition 7.1. In the ring R, suppose 0 = M1M2 . . .Mn with Mi maximal ideals. Then R is
Noetherian if and only if R is Artinian.

Proof. R ⊃M1 ⊇M1M2 ⊇M1M2M3 ⊇ · · · ⊇M1M2 . . .Mn = 0. Let Vi := M1M2 . . .Mi−1/M1M2 . . .Mi,
notice that each Vi is a module over the �eld R/Mi, i.e, is a vector space. So each Vi is Noetherian
⇐⇒ Artinian ⇐⇒ �nite dimensional. We then use Proposition 5.4, over and over again on the
following set of short exact sequences.

0 // M1
// R // V1

// 0 R Noetherian ⇐⇒ M1, V1 are both Noetherian

0 // M1M2
// M1

// V2
// 0 ⇐⇒ M1M2, V1, V2 are all Neotherian

0 // M1M2M3
// M1M2

// V3
// 0 ⇐⇒ M1M2M3, V1, V2, V3 are all Noetherian

... . . . . . .

0 //
M1M2...Mn

= 0 // M1M2 . . .Mn−1
// Vn // 0 ⇐⇒ V1, V2, . . . Vn are all Noetherian

0 //
M1M2...Mn

= 0 // M1M2 . . .Mn−1
// Vn // 0 ⇐⇒ V1, V2, . . . , Vn are all Artinian

... . . . . . .

0 // M1
// R // V1

// 0 ⇐⇒ R is Artinian

Proposition 7.2. Let R be a Noetherian local ring with maximal ideal M . Then either Mn 6= Mn+1

for all n ≥ 1. Or Mn = 0 for some n in which case R is Artinian and M is its only prime ideal.

Proof. Suppose Mn = Mn+1 for some n. Then Mn = Mn+1 = Mn+1 = . . . . So ∩∞k=1M
k = Mn, but

by Corollary 6.25 we have ∩∞k=1M
k = 0, hence Mn = 0. By previous proposition, R is Artinian.

Let P be a prime of R. Then P ⊇ 0 = Mn, taking radicals P = r(P ) ⊇ r(Mn) = M , so P = M

De�nition 7.3. A ring in which every prime is maximal is said to have dimension 0.

Example. Any �eld
Z/nZ (since primes are pZ/nZ, p - n)
Any �nite ring (since every �nite integral domain is a �eld)

Proposition 7.4. Artinian rings have dimension 0.

Proof. Let P C R be a prime. Let R = R/P , a domain. Let x ∈ R, x 6= 0 (so x ∈ R \ P ). Now in R
we have (x) ⊇ (x2) ⊇ (x3) ⊇ . . . . By Descending Chain Condition in R (which is also Artinian) there
exists n such that (xn) = (xn+1), so xn = xn+1y for some y ∈ R. Since x 6= 0 and R is a domain,
cancel x from both sides n times to get 1 = xy. Hence R is a �eld and P is maximal.

Proposition 7.5. An Artinian ring R has only �nitely many maximal ideals.

Proof. Consider the set of all �nite intersections of maximal ideals M1 ∩M2 ∩ · · · ∩Mn, n ≥ 1. Since
R Artinian, this set has a minimal element M1 ∩M2 ∩ · · · ∩Mn = I. Let M be any maximal ideal in
R. Then M ∩ I ⊆ I, so by minimality of I we have M ∩ I = I ⇒M ⊇ I = M1 ∩ · · · ∩Mn ⇒M ⊇Mi

for some i by Proposition 1.15, hence M = Mi for some i.

Proposition 7.6. Let R be an Artinian ring, then N(R) = J(R) is nilpotent, i.e., (N(R))k = 0 for
some k ≥ 1.
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Proof. Let N := N(R), and consider N ⊇ N2 ⊇ N3 ⊇ . . . so by the Descending Chain Condition
there exists k such that Nk = Nk+1 = Nk+2 = · · · =: I. We want to show that I = 0. Suppose
I 6= 0. Let S = {ideals J C R such that IJ 6= 0}. Notice S 6= ∅ since R ∈ S as I 6= 0. So let J ∈ S
be minimal (which exists since R is Artinian). Then ∃x ∈ J such that xI 6= 0, so (x) ⊆ (J) and
(x)I 6= 0 so (x) ∈ S and by minimality J = (x). Now ((x)I)I = (x)I2 = (x)I 6= 0 since I2 = I, so
(x)I ∈ S and (x)I ⊆ (x) = J so by minimality of J we have (x)I = (x). So there exist y ∈ I such that
xy = x ⇒ xy = xy2 = xy3 = · · · = xyn = . . . , but y ∈ I ⊆ N so y is nilpotent, so yn = 0 for some
n⇒ x = 0. This contradicts the fact I 6= 0 = (x)

Proposition 7.7. Every Artinian ring R is Noetherian

Proof. LetM1,M2, . . . ,Mn be the complete set of all maximal ideals of R (by Proposition 7.5). So N =
N(R) = J(R) = ∩ni=1Mi. Also N

k = 0 for some k ≥ 1. Consider Mk
1M

k
2 . . .M

k
n = (M1M2 . . .Mn)k ⊆

(M1∩M2∩· · ·∩Mn)k = Nk = 0. SoMk
1M

k
2 . . .M

k
n = 0 so by Proposition 7.1 we have that R Artinian

⇒ R Noetherian.

Remark. Every Noetherian ring of dimension 0 is Artinian. (c.f. Atiyah and Macdonald pg.90)

The Structure Theorem for Artinian Rings. Every Artinian ring is uniquely isomorphic to a
�nite direct product of Artinian local rings.

Proof. Existence: Let M1, . . . ,Mn be the maximal ideals of R. Then
∏n
i=1M

k
i = 0 for some k. The

ideals Mk
i are pairwise comaximal so by the Chinese Remainder Theorem we have

R = R/0

= R/

n∏
i=1

Mk
i

= R/

n⋂
i=1

Mk
i by comaximality

∼=
n⊕
i=1

R/Mk
i by Chinese Remainder Theorem

Now each R/Mk
i has only one maximal ideal, Mi/M

k
i so is an Artinian local ring.

Uniqueness: c.f. Atiyah and Macdonald pg. 90

7.1 Noetherian integral domains of dimension 1

Including Dedekind domain and Discrete Valuation Rings

De�nition 7.8. The dimension of a ring R is the maximal length (≥ 0) of a chain of prime ideals
P0 $ P1 $ · · · $ Pn in R.

Dim0: All primes are maximal

Dim1: e.g., R = Z and any integral domain, not a �eld in which all non-zero primes are maximal.

Example. k[x1, . . . , xn] has dimension n.

Proposition 7.9. Let R be a Noetherian domain of dimension 1. Then every non-zero ideal I of R
has a unique expression as a product of primary ideals with distinct radicals.

Proof. Let I = Q1 ∩ · · · ∩Qn with each Qi primary and each Pi = r(Qi) maximal. (Pi ⊇ Qi ⊇ I 6= 0).
No Pi ⊆ Pj (i 6= j) so no embedding primes, hence the Qi are unique. The Pi are pairwise comaximal
(Pi + Pj = R for all i 6= j) hence so are the Qi. To see this r(Qi + Qj) = r(Pi + Pj) = r(1) = (1) ⇒
Qi +Qj = (1). Hence Q1 ∩ · · · ∩Qn = Q1 . . . Qn.

Conversely if I = Q′1Q
′
2 . . . Q

′
m where Q′i are primary with distinct radicals r(Q′i) . As before the

Q′i are comaximal, so I =
∏
Q′i = ∩Q′i. By uniqueness of primary decomposition, m = n and Qi = Q′i

after permuting.
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Recall: A DVR (Discrete Valuation Ring) is the valuation ring R of a (Z-valued) discrete valuation
ν : R→ Z ∪ {∞}. Such an R has the properties:

• R is local with maximal ideal M = {x : ν(x) ≥ 1}

• M is principal: M = (π) with ν(π) = 1

• All non-zero ideals of R are Mn = (πn), n ≥ 0.

• Hence R is Noetherian (it's a PID) and a domain

• R has dimension 1 since the only primes are 0 and M

Lemma 7.10. Let R be a Noetherian integral domain of dimension 1 which is local, with maximal
ideal M and residue �eld k = R/M . Then

1. Every ideal I 6= (0), (1) is M -primary, so I ⊇Mn for some n.

2. Mn 6= Mn+1 ∀n ≥ 0

Proof. R has two prime ideal, (0) and M . Let I CR with I 6= (0), (1), then r(I) = intersections of the
primes containing I. So r(I) = M , and M is maximal, hence I is M -primary. Now I ⊇Mn for some
n ≥ 1 since R is Noetherian.

If Mn = Mn+1 then Mn = 0 which implies R has dimension 0.

Proposition 7.11. Let R be a Noetherian integral domain of dimension 1 which is local, with maximal
ideal M and residue �eld k = R/M . Then the following are equivalent:

1. R is a DVR,

2. R is integrally closed,

3. M is principal,

4. dimk(M/M2) = 1,

5. every non-zero ideal of R is a power of M ,

6. there exists π ∈ R such that every non-zero ideal is principal, of the form (πn), n ≥ 0.

Proof. 1⇒ 2: Every valuation ring is integrally closed (See Proposition 4.14)

2⇒ 3: Let a ∈ M , a 6= 0. If (a) = M we are done. Otherwise (a) $ M . Choose n ≥ 0 such that
Mn ⊆ (a),Mn−1 * (a). Such an n exists since (by the previous lemma) r((a)) is a power of
M and (a) ⊇ Mn for some n. Choose b ∈ Mn−1 \ (a) so b

a /∈ R. Let x = a
b ∈ K, the �eld of

fractions of R.

Claim M = (x).

Since b /∈ (a), x−1 /∈ R. Since R is integrally closed, x−1 is not integral over R. This means that
x−1M *M . To see this suppose x−1M ⊆M , then M is a module over the ring R[x−1] which is
a �nitely generated R-module, since R is Noetherian, and faithful as an R[x−1]-module (since K
has no zero-divisors so if y ∈ R[x−1] satis�es yM = 0 then y = 0); and these would imply that
x−1 is integral over R. But x−1M ⊆ R, since bM ⊆Mn−1M = Mn ⊆ (a). So x−1M is an ideal
of R not contained in its unique maximal ideal. Hence x−1M = R, and hence M = (x) proving
the claim.

3⇒ 4: LetM = (x), i.e., x generatesM (as R-module), so x generatesM/M2 (as k = R/M -module),
i.e., dimkM/M2 ≤ 1. But M 6= M2 ⇒M/M2 6= 0 hence dimkM/M2 ≥ 1.

4⇒ 5: For any x which generates M/M2, the element x ∈ R generates M . (By Corollary 2.17).
So M = (x), so Mn = (xn) (∀n ≥ 0). Let I be a proper non-zero ideal of R. So I ⊆ M ,
since ∩∞k=1M

k = 0 there exists n ≥ 1 such that I ⊆ Mn and I * Mn+1. Let y ∈ I \Mn+1,
since y ∈ I ⊆ Mn = (xn), we have y = cxn, with c /∈ M = (x). So c is a unit of R, so
Mn = (xn) = (y) ⊆ I ⊆Mn. Therefore I = Mn

40



5⇒ 6: Let π ∈M \M2. Then (π) = M by 5. so every non-zero ideal I = Mn = (πn).

6⇒ 1: Note that M = (π) where π is given as in 6. So Mn = (πn) ∀n ≥ 0. Let a ∈ R, a 6= 0,
then (a) = Mn for some n ≥ 0. De�ne ν(a) = n. Extend to a function ν : K∗ → Z by setting
ν(ab ) = ν(a)− ν(b) ∈ Z. Easy check that:

1. ν is well de�ne

2. ν is a group homomorphism. (ν(xy) = ν(y) + ν(x))

3. ν(π) = 1⇒ ν is surjective

4. ν(x+ y) ≥ min{ν(x), ν(y)}

So ν is a discrete valuation and R = {x ∈ K : ν(x) ≥ 0}

7.2 Dedekind Domains

These are Noetherian integral domains R of dimension 1 such that every localization Rp (for all
maximal p) is a DVR.

Lemma 7.12 (De�nition). A Dedekind Domain R is a Noetherian integral domain of dimension 1
satisfying any of the following equivalent conditions:

1. R is integrally closed.

2. Every primary ideal of R is a prime power.

3. Every localization Rp (at non-zero primes P ) is a DVR.

Proof. 1 ⇐⇒ 3: Since being integrally closed is a local property, so we use the Proposition 7.11.

2⇒ 3: Let P be a non-zero prime and let M = Pp be the extension of P to Rp, so M is the unique
maximal ideal in Rp. Every ideal (6= (0), (1)) in Rp is M -primary. Every P -primary ideal of R
is a power of P (by condition 2.) so its extension to Rp is M -primary and is a power of M . So
all non-zero ideals of Rp are powers of M . So we can use 5. from Proposition 7.11 and hence Rp
is a DVR.

3⇒ 2: Let Q be P -primary in R (where P is a non-zero prime). Its extension to Rp is M -primary so
is a power of M , hence Q is a power of P . Since Q = (Mn)c = (M c)n = Pn

Corollary 7.13. In a Dedekind domain, every non-zero ideal has a unique factorization as a product
of prime ideals.

Let I be an ideal of a Dedekind domain R. Then I = Pn1
1 Pn2

2 . . . Pnk

k with each Pi distinct maximal
and ni ≥ 1. If P is any non-zero prime the extension of I in RP is the product of the extensions of
the Pni

i in Rp. If Pi 6= P , the extension is the whole ring Rp. If Pi = P the extension is the maximal
ideal of Rp, Pp. So Ip = Pnp where n is the exponent of P in the factorization of I, n ≥ 0.

De�ne νp to be the discrete valuation which has valuation ring Rp, so νp is a discrete valuation of
the �eld of fractions K of R. Hence

I =
∏

P non−zero prime

P νP (I).

Consequences:

• I ⊆ JKS

��

ks +3 J |I
KS

��
∀P : IP ⊆ JP ks +3 νp(J) ≤ νp(I)∀P

Note Ip = P
νp(I)
p , Jp = P

νp(J)
p . Therefore I ⊆ J ⇐⇒ J |I

�to contain is to divide�
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• νp(I + J) = min{νp(I), νp(J)}

• νp(I ∩ J) = max{νp(I), νp(J)}

• νp(IJ) = νp(I) + νp(J)

7.3 Examples of Dedekind Domains

1. Every PID is a Dedekind Domain.

• Noetherian (every ideal has 1 generator)

• Integrally closed (since a UFD)

• Dimension 1 (the non-zero primes are (π) with π irreducible - these are maximal)

2. Let K be a number �eld, i.e, a �nite extension (�eld) of Q, of degree n. n = [K : Q] = dimQK.

The ring of integers OK is the integral closure of Z in K, i.e., OK is the set of all algebraic
integers in K.

Claim: OK is a Dedekind Domain

Proposition. OK is a free Z-module of rank n, i.e., there exists α1, . . . , αn ∈ OK such that
OK = Zα1 + Zα2 + · · ·+ Zαn ( �integral basis�). This implies K = Qα1 + . . .Qαn.

Proof. Omitted (See Algebraic Number Theory Course)

Corollary 7.14. OK is Noetherian.

OK is integrally closed, being in the integral closure of Z in K. We need to check that it has
dimension 1. Let P be a non-zero prime of OK . We want to show that P is maximal.

Method 1: Show OK/P is �nite. (In fact P is also a free Z-module of rank n). Now every
�nite integral domain is a �eld so P is maximal.

Method 2: Consider P ∩ Z, this is a prime ideal of Z. It is non-zero since OK is an integral
extension of Z so we cannot have both 0 and P (prime of OK) contracting to 0, primes of
Z. So P ∩ Z = pZ for some prime number p. Now pZ is maximal so P is maximal.

All of this proves that OK is a Dedekind Domain.

Two special properties of OK , not shared by Dedekind Domains in general:

(a) (Dirichlet) O×K (the group of units) is �nitely generated. If K = Q(α), where α has minimal
polynomial f(x)Q[x], irreducible of degree n (the degree of the number �eld). Let m be the
number of irreducible factors of f in R[x]. Then there exists units ε1, . . . , εm−1 ∈ O×K such
that every unit is uniquely ζεn1

1 εn2
2 . . . ε

nm−1

m−1 , where ζ is a root of unity and nj ∈ Z.
(b) Let I, J C OK be non-zero ideals. De�ne an equivalence relation: I ∼ J ⇐⇒ αI = βJ

with α, β ∈ OK and non-zero. In particular I ∼ OK if and only if I is principal.

Exercise. I ∼ J ⇐⇒ I ∼= J as OK-module

The equivalence classes form a group (induced by ideal multiplication), i.e., ∀I there exists
J such that IJ is principal. This is called the ideal class group (attached to any Dedekind
Domain). For rings of integers OK it is a �nite group.

3. The coordinate ring of a smooth irreducible plane curve C. Let f ∈ C[X,Y ] be irreducible then
C = {(a, b) ∈ C2 : f(a, b) = 0}. The coordinate ring of C is R = C[X,Y ]/(f) = C[x, y] with
f(x, y) = 0. This is an integral domain (since f is irreducible)

Claim R is a Dedekind Domain:

• R is Noetherian (By the Hilbert Basis Theorem)

• Every non-zero prime of R is maximal.
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Proof. Let P be a prime of C[X,Y ] with P % (f). Let g ∈ P \ (f), so gcd(f, g) = 1.
View f, g ∈ C(X)[Y ] (as this as Euclidean property), then there exists a, b ∈ C(X)[Y ] such
that af + bg = 1. Write a = a1

d , b = b1
d where a1, b1 ∈ C[X,Y ] and d ∈ C[X], d 6= 0. So

a1f + b1g = d ⇒ the set of common zero of f, g has only �nitely many x-coordinate (roots
of d). So f, g have only �nitely many common zeroes. In fact there is only one common
zero, (x0, y0), (after some work) this implies P = (X − x0, Y − y0) which is maximal. (Fill
in the gaps yourself)

• We'll show that every localization RP is a DVR, where P a non-zero prime of R. Without
loss of generality, P = (x, y), i.e., P is associated to the point of (0, 0). P is smooth:
∂f
∂Xx ,

∂df
∂Y do not vanish at (0, 0). So f = aX+ bY+higher term, a, b not both zero. Without

loss of generality, we can assume a = 0 and b = 1. So Y = 0 at the tangent to C at (0, 0).
Now f(X,Y ) = Y ·G(X,Y )+X2H(X) with G(0, 0) = 1. Module f we have 0 = y ·g+x2 ·h
where g = G(x, y), h = h(x) ∈ R. The maximal ideal of RP is generated by x, y. RP =

{ r(x,y)
s(x,y) |r, s ∈ R, s(0, 0) 6= 0}. The maximal ideal PRP is { rs : r(0, 0) = 0, s(0, 0) 6= 0}, i.e.,
r ∈ P . But yg = −x2h so y = −x2 h

g where g(0, 0) = 1 6= 0, so −x2 h
g ∈ RP . So x alone

generates P ·RP , hence RP is a DVR.
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