Commutative Algebra

John Cremona
Notes by Florian Bouyer
Copyright (C) Bouyer 2012.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license can be found at http://www.gnu.org/licenses/fdl.html

Contents

1 Rings and Ideals 2
1.1 Special elements, special rings 2
1.2 Two radicals: The nilradical $N(R)$ and the Jacobson radical $J(R)$ 4
1.3 New ideals from old 5
1.4 Quotients and radicals 6
1.5 Extension and Contractions 7
2 Modules 9
2.1 Exact Sequences 12
2.2 Tensor products of modules 12
2.3 Restriction and Extension of Scalars 14
2.4 Algebras 14
2.5 Finite conditions 15
2.6 Tensoring Algebras 16
3 Localization 17
3.1 Localization of Modules 18
3.2 Local Properties 19
3.3 Localization of Ideals 20
4 Integral Dependence 24
4.1 Valuation Rings 26
5 Noetherian and Artinian modules and rings 30
5.1 Noetherian Rings 31
6 Primary Decomposition 33
6.1 Primary Decomposition and Localization 35
6.2 Primary Decomposition in a Noetherian Ring 36
7 Rings of small dimension 38
7.1 Noetherian integral domains of dimension 1 39
7.2 Dedekind Domains 41
7.3 Examples of Dedekind Domains 42

Books: Introduction to Commutative Algebra by Atiyah and Macdonald. Commutative Algebra by Miles Reid.

1 Rings and Ideals

All rings R in this course will be commutative with a $1=1_{R}$.
We include the zero ring $0=\{0\}$ with $1=0$. (in all other rings $1 \neq 0$)
Example. Algebraic geometry: $k\left[x_{1}, \ldots, x_{n}\right]$ with k a field. (The polynomial ring)
Number Theory: $\mathbb{Z},+$ rings of algebraic integers e.g. $\mathbb{Z}[i]$
Plus other rings from these by taking quotients, homomorphic images, localization,...
Ring homomorphisms: $R \rightarrow S$ (maps $1_{R} \mapsto 1_{S}$)
Subrings: $S \leq R$ (\leq means subring) is a subset which is also a ring with the same operations and the same $1_{S}=1_{R}$.

Ideals: $I \triangleleft R$: a subgroup such that $R I \subseteq I$
Quotient Ring: R / I the set of cosets of I in $R(x+I)$ with a natural multiplication $(x+I)(y+I)=$ $x y+I$

Associated surjective homomorphism: $\pi: R \rightarrow R / I$ defined by $x \mapsto x+I$
1 to 1 correspondence: \{ideals J of R with $J \geq I\} \leftrightarrow\{$ ideals \tilde{J} of $R / I\}$ defined by $J \mapsto \tilde{J}=\pi(J)=$ $\{x+I: x \in J\}$ and $\tilde{J} \mapsto J=\pi^{-1}(\tilde{J})$

More generally if $f: R \rightarrow S$ is a ring homomorphism then $\operatorname{ker}(f)=f^{-1}(0) \triangleleft R$ and $\operatorname{im}(f)=f(R) \leq$ S and $R / \operatorname{ker}(f) \cong \operatorname{im}(f)$ defined by $x+\operatorname{ker}(f) \mapsto f(x)$ and we have a bijection \{ideals J of $R, J \geq$ $\operatorname{ker}(f)\} \leftrightarrow$ ideals \widetilde{J} of $\operatorname{im}(f)\}$.

Example. $f: \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$. $\operatorname{ker}(f)=n \mathbb{Z}, \operatorname{im}(f)=\mathbb{Z} / n \mathbb{Z}$. Ideal of $\mathbb{Z} / n \mathbb{Z} \leftrightarrow$ ideals of $\mathbb{Z}, \geq n \mathbb{Z}$ i.e. $m \mathbb{Z} / n \mathbb{Z}, m \mid n$

1.1 Special elements, special rings

Definition 1.1. $x \in R$ is a zero-divisor if $x y=0$ for some $y \neq 0$
$x \in R$ is nilpotent if $x^{n}=0$ for some $n \geq 1$ ($\Rightarrow x$ is a zero divisor except in 0 ring)
$x \in R$ is a unit if $x y=1$ for some $y \in R$ (then y is uniquely determined by x and hence is denoted x^{-1})

The set of all units in R forms a group under multiplication and is called the Unit Group. Denoted R^{\times}(or $\left.R^{*}\right)$
R is an integral domain (or domain) if $R \neq 0$ and R has no zero divisors.
Principal ideals: Every element $x \in R$ generates an ideal $x R=(x)=\{x r: r \in R\} .(x)=R=$ $(1) \Longleftrightarrow x \in R^{\times} .(x)=\{0\}=(0) \Longleftrightarrow x=0$

A field is a ring in which every non-zero element is a unit. In a field k the only ideals are $(0)=\{0\}$ and $(1)=k$.

Example. $\mathbb{Z}, k\left[x_{1}, \ldots, x_{n}\right]$ are domains but not fields $(n \geq 1)$.
$\mathbb{Q}, k\left(x_{1}, \ldots, x_{n}\right)$ are fields.
$\mathbb{Z} / n \mathbb{Z}= \begin{cases}0 & \text { if } n=1 \\ \text { a field } & \text { if } n \text { is prime } \\ \text { not a domain } & \text { if } n \text { is not prime }\end{cases}$
Definition 1.2. Prime ideal: $P \triangleleft R$ is prime if R / P is an integral domain. i.e. $P \neq R$ and $x y \in P \Longleftrightarrow x \in P$ or $y \in P$

Maximal ideal: $M \triangleleft R$ is maximal if R / M is a field. i.e. $R \geq I \geq M \Rightarrow I=R$ or $I=M$
An ideal $I \triangleleft R$ is proper if $I \neq R(\Longleftrightarrow I$ does not contain $1 \Longleftrightarrow I$ does not contain any units)
Every maximal ideal is prime, but not conversely in general.
Note. 0 (the 0 ideal) is prime $\Longleftrightarrow R$ is a domain. 0 is maximal $\Longleftrightarrow R$ is a field.
Example. $R=\mathbb{Z}$. 0 ideal is prime but not maximal. $p \mathbb{Z}$ (p is prime) is maximal.
If R is a PID (Principal Ideal Domain) then every non-zero prime is maximal:

Proof. $R \supseteq(y) \supseteq(x)=P \neq 0 \Rightarrow x=y z$ for some $z \in R$. P prime $\Rightarrow y \in P$ or $z \in P$. If $y \in P$ then $(y)=(x)=P$. On the other hand if $z \in P$ then $z=x t=y t z \Rightarrow z(1-y t)=0$, but $z \neq 0$ since $x \neq 0$ but R is a domain $\Rightarrow y t=1 \Rightarrow(y)=R$

Definition 1.3. The set of all prime ideals of R is called the spectrum of R, written $\operatorname{Spec}(R)$
The set of all maximal ideals is $\operatorname{Max}(R)$ and is less important.
Let $f: R \rightarrow S$ be a ring homomorphism, and let P be a prime ideal of S then $f^{-1}(P)$ is a prime ideal of $R . R \xrightarrow{f} S \xrightarrow{\pi} S / P$ has kernel $f^{-1}(P)$ and S / P is a domain so $f^{-1}(P)$ is prime.
Alternatively: If $x, y \notin f^{-1}(P) \Rightarrow f(x), f(y) \notin P \Rightarrow f(x y)=f(x) f(y) \notin P \Rightarrow x y \notin f^{-1}(P)$.
Hence $f: R \rightarrow S$ induces a map $f^{*}: \operatorname{Spec}(S) \rightarrow \operatorname{Spec}(R)$ by $P \mapsto f^{-1}(P)$
e.g. If f is surjective we have a bijection between \{ideals of $R \geq \operatorname{ker}(f)\} \leftrightarrow\{$ ideals of $S\}$ which restricts to $\operatorname{Spec}(R) \supseteq\{$ primes ideals of $R \geq \operatorname{ker}(f)\} \leftrightarrow\{$ prime ideals $S\}=\operatorname{Spec}(S)$ with $P \mapsto f^{*}(P)$. So f^{*} is injective

Example. If $f: \mathbb{Z} \hookrightarrow \mathbb{Q}$ is the inclusion. $0 \in \operatorname{Max}(\mathbb{Q})$ but $f^{-1}(0)=0 \notin \operatorname{Max}(Z)$
$\operatorname{Spec}(\mathbb{Z})=\{0\} \cup\{p \mathbb{Z}: p$ prime $\}$,
$\operatorname{Spec}(\mathbb{Q})=\{0\}=\operatorname{Spec}(k)$ for any field k
$\operatorname{Spec} \mathbb{C}[x]^{\prime}==^{\{\infty\}} \cup \underset{a \in \mathbb{C} \rightarrow(X-a)}{\mathbb{C}}=\mathbb{P}^{1}(\mathbb{C})$
Spec $\left.\mathbb{C}[x, y]^{\prime}={ }^{\prime} \underset{\substack{\infty \\ 0}}{\{ } \cup \underset{\text { e.g. lines } X+Y=0}{\text { irreducible curves in }} \mathbb{C}^{2}\right\} \cup \underset{(a, b) \leftrightarrow(X-a, X-b)=\{f: f(a, b)=0\}}{ } \underset{\mathbb{C}^{2}}{\stackrel{\mathbb{C}^{2}}{ }}$
Theorem 1.4. Every non-zero ring has a maximal ideal
Proof. Uses Zorn's Lemma:
Lemma. Let S, \leq be a partially ordered set (so \leq is transitive and antisymmetric $x \leq y$ and $y \leq$ $x \Longleftrightarrow x=y$)

If S has the property that every totally ordered subset $T \subseteq S$ has an upper bound in S, then S has a maximal element.

We apply this to the set of all proper ideals in R. Let T be a totally ordered set of proper ideals of R. Set $I=\bigcup_{J \in T} J$. Claim: $I \triangleleft R, I \neq R$ then I is an upper bound for the set T so Zorn $\Rightarrow \exists$ maximal proper ideal.

1. Let $x \in I, r \in R \Rightarrow x \in J$ for some $J \in T \Rightarrow r x \in J \subseteq I \Rightarrow r x \in I$
2. Let $x, y \in I$ then $x \in J_{1}$ and $y \in J_{2}$. Either $J_{1} \subseteq J_{2} \Rightarrow x, y \in J_{2} \Rightarrow x+y \in J_{2} \subseteq I$ or similarly $J_{2} \subseteq J_{1}$.

Notice that $1 \notin J \forall J$ hence $1 \notin \cup J$ so I is a proper ideal of R
The same proof can be used to show
Corollary 1.5. Every proper ideal I is contained in a maximal ideal (Apply theorem to R / I)
Corollary 1.6. Every non-unit of R is contained in a maximal ideal (can use corollary 1.5)
Definition 1.7. A local ring is one with exactly one maximal ideal (it may have other prime ideals!)
Example. p prime number $\mathbb{Z}_{(p)}=\left\{\frac{a}{b} \in \mathbb{Q}: p \nmid b\right\} \underset{\geq \mathbb{Z}}{\leq \mathbb{Q}}$ has unique maximal ideal $p \mathbb{Z}_{(p)}$ with $\mathbb{Z}_{(p)} / p \mathbb{Z}_{(p)} \equiv \mathbb{Z} / p \mathbb{Z}=\left\{\frac{a}{b}: p \mid a, p \nmid b\right\} . \mathbb{Z}_{(p)} \backslash p \mathbb{Z}_{(p)}=\left\{\frac{a}{b}: p \nmid a, p \nmid b\right\}=$ set of units in $\mathbb{Z}_{(p)}$ In general in a local ring R with maximal ideal M the set of units $R^{\times}=R \backslash M$. Note that (0) is a prime ideal of $\mathbb{Z}_{(p)}$
k field, $R=k[[x]]=\{$ power series in X with coefficients in $k\}=\left\{f=\sum_{i=1}^{\infty} a_{i} x^{i}: a_{i} \in k\right\}$. Can check f is a unit $\Longleftrightarrow a_{0} \neq 0 . f$ is not a unit $\Longleftrightarrow a_{0}=0 \Longleftrightarrow f \in(x) \Rightarrow(x)=M$ is the unique maximal ideal.

1.2 Two radicals: The nilradical $N(R)$ and the Jacobson radical $J(R)$

Definition 1.8. $N(R)=\{x \in R: x$ is nilpotent $\}$

Proposition 1.9.

1. $N(R) \triangleleft R$
2. $N(R / N(R))=0$

Proof.

1. (a) Let $x \in N(R), r \in R$. So $x^{n}=0$ for some $n \geq 1 \Rightarrow(r x)^{n}=r^{n} x^{n}=0 \Rightarrow r x \in N(R)$.
(b) $x^{n}=0, y^{m}=0(m, n \geq 1) \Rightarrow(x+y)^{m+n+1}=0, c x^{i} y^{j}=0$ since $i+j=m+n+1 \Rightarrow$ either $i \geq n$ or $j \geq m$
2. Need to show that $R / N(R)$ has no non-zero nilpotents.

$$
\begin{aligned}
x^{n}+N(R)= & (x+N(R))^{n}=0=0+N(R)(\text { in } R / N(R)) \\
& \Rightarrow x^{n} \in N(R) \\
& \Rightarrow\left(x^{n}\right)^{m}=0 \\
& \Rightarrow x^{m n}=0 \\
& \Rightarrow x \in N(R) \\
& \Rightarrow x+N(R)=0 \text { in } R / N(R)
\end{aligned}
$$

Proposition 1.10. $N(R)$ is the intersection of all the prime ideals of R
Proof. Let $x \in N(R)$ so $x^{n}=0$ but since $0 \in P \forall P \in \operatorname{Spec} R$ hence $x^{n} \in P \forall P \in \operatorname{Spec} R \Rightarrow x \in P$ since P is prime $\Rightarrow x \in \bigcap_{P \in \operatorname{Spec} R} P$

For the other way we use the contrapositive. Let $x \notin N(R)$. So x, x^{2}, x^{3}, \ldots are all non-zero. Consider all ideals I which contain no power of x e.g. 0 . In this collection there is a maximal element say P. Then $P \triangleleft R$ and $x \notin P$. We need to show that P is prime. Let $y, z \notin P$, then $P+(y) \supsetneq P$ and $P+(z) \supsetneq P$. By maximality of P each of $P+(y), P+(z)$ contains a power of x. Say $\left(p_{1}, P_{2} \in\right.$ $\left.P, y^{\prime}, z^{\prime} \in R\right)$

$$
\begin{aligned}
x^{n} & =p_{1}+y y^{\prime} \\
x^{m} & =p_{2}+z z^{\prime} \\
& \Rightarrow x^{m+n}=\underbrace{p_{1} p_{2}+p_{1} z z^{\prime}+p_{2} y y^{\prime}}_{\in P}+y z\left(y^{\prime} z^{\prime}\right) \\
& \Rightarrow x^{m+n} \in P+(y z) \\
& \Rightarrow P+(y z) \neq P \\
& \Rightarrow y z \notin P
\end{aligned}
$$

Definition 1.11. $J(R)=$ intersection of all maximal ideals of $R . N(R) \subseteq J(R)$ (since maximals are primes)

Proposition 1.12. $x \in J(R) \Longleftrightarrow 1-x y \in R^{\times} \forall y \in R$.
Proof. " \Rightarrow ": If $1-x y \notin R^{\times}$then $1-x y \in M$ for some ideal maximal ideal $M \Rightarrow x \notin M$ (else $1 \in M$ contradicting maximality of $M) \Rightarrow x \notin J(R)$
$" \Leftarrow ":$

$$
\begin{aligned}
x \notin J(R) & \Rightarrow x \notin M \text { for some } M \\
& \Rightarrow M+(x)=R \\
& \Rightarrow 1=m+x y(m \in M, y \in R) \\
& \Rightarrow 1-x y=m \notin R^{\times}
\end{aligned}
$$

Example. $R=A[[x]]$ (A is a ring). $R^{\times}=\left\{\sum_{i=0}^{\infty} a_{i} x^{i}: a_{0} \in A^{\times}\right\}$(Exercise).
$\Rightarrow x \in J(R)$ since $1-x f \in R^{\times} \forall x \in R$.

1.3 New ideals from old

Sum If $I, J \triangleleft R$ then $I+J=\{x+y: x \in I, y \in J\} \triangleleft R$. (The smallest ideal \supseteq both I and J)
Intersection $I \cap J \triangleleft R$ (The largest ideal \subseteq both I and J)
Product $I J=$ ideal generated by all $x y$ with $x \in I, y \in J=\left\{\sum_{i=1}^{n} x_{i} y_{i}: x_{i} \in I, y_{i} \in J\right\} . I J \subseteq I \cap J$, equality does not hold in general.

Powers: $I^{n}=$ ideal generated by all product $x_{1} x_{2} \ldots x_{n}\left(x_{i} \in I\right)$
Example. $R=\mathbb{Z}$.

- $(m)+(n)=(d)$ where $d=\operatorname{gcd}(m, n)$
- $(m) \cap(n)=(l)$ where $l=\operatorname{lcm}(m, n)$
- $(m)(n)=(m n)$
- $(m)^{k}=\left(m^{k}\right)$
$R=k\left[x_{1}, \ldots, x_{n}\right]$. Let $M=\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}\right)+\left(x_{2}\right)+\cdots+\left(x_{n}\right) .(M=\operatorname{ker}(\phi: R \rightarrow k)$ where $\phi(f)=f(0,0, \ldots, 0)) R / M \cong k$
$M^{2}=\left(\ldots, x_{i} x_{j}, \ldots\right)=\{$ polynomials with 0 constant terms and 0 linear terms $\}$
These operation are commutative and associative, not all distributive.
- $I(J+K)=I J+I K$

Proof. Each side is generated by $x y, x z$ for $x \in I, y \in J, z \in K$

- If $I+J=(1)$ then $I \cap J=I J$

Proof. Take $(I+J)(I \cap J)=I(I \cap J)+J(I \cap J) \subseteq I J+J I=I J$ so $I+J=(1)$ then $I \cap J \subseteq I J$
Definition 1.13. I and J are coprime/comaximal/relatively prime if and only if $I+J=(1) \Longleftrightarrow$ $x+y=1$ for some $x \in I, y \in J$.

Example. For $R=\mathbb{Q}[x, y]$ we have $(x)+(y)=(x, y)=\{$ elements $f \in R$ such that $f(0,0)=0\} \neq(1)$. So (x) and (y) are distinct prime ideals but they are not coprime.

Lemma 1.14. If I and J are coprime then I^{m} and J^{n} are coprime for any $n, m \geq 1$.
Proof. $x+y=1$ for certain $x \in I, y \in J$. Consider $1=(x+y)^{m+n-1} \in I^{m}+J^{n}$ hence I^{m} and J^{n} are coprime.

Chinese Remainder Theorem. If I_{1}, \ldots, I_{n} are pairwise coprime ideals of R then

$$
\begin{aligned}
\prod_{i=1}^{n} I_{i} & =\bigcap_{i=1}^{n} I_{i} \\
R / \prod_{i=1}^{n} I_{i} & =\prod_{i=1}^{n}\left(R / I_{i}\right)
\end{aligned}
$$

Proof. The first equation is true for $n=2$. We are going to use induction so assume $n>2$ and the statement is true for $n-1$. Let $J=\prod_{i=1}^{n-1} I_{i}=\bigcap_{i=1}^{n-1} I_{i}$ by the induction hypothesis. We have $I_{i}+I_{n}=(1)$ for all $i=1, \ldots, n-1$. So take $x_{i}+y_{i}=1$ for some $x_{i} \in I_{i}$ and $y_{i} \in I_{n}$ then $\underbrace{\prod_{i=1}^{n-1} x_{i}}_{\in J}=\prod_{i=1}^{n-1}\left(1-y_{i}\right) \equiv 1 \bmod I_{n}$ so $J+I_{n}=(1)$. Hence $\prod_{i=1}^{n} I_{i}=J I_{n}=J \cap I_{n}=\bigcap_{i=1}^{n} I_{i}$

Define $\varphi: R \rightarrow \prod_{i=1}^{n} R / I_{i}$ by $x \mapsto\left(x+I_{1}, x+I_{2}, \ldots, x+I_{n}\right)$. Kernel is $\bigcap_{i=1}^{n} I_{i}=\prod_{i=1}^{n} I_{i}$, now we just need to show surjectivity. The element $\prod_{i=1}^{n-1} x_{i}$ maps to $(0, \ldots, 0,1)$ (the x_{i} are taken from the first paragraph). By symmetry all "unit vectors" of $\Pi\left(R / I_{i}\right)$ are in the image hence φ is surjective. Then we use the first isomorphism theorem to get $R / \prod I_{i} \rightarrow \prod\left(R / I_{i}\right)$

If ideals are not coprime, still get a ring homomorphism $R /\left(\bigcap_{i=1}^{n} I_{i}\right) \hookrightarrow \prod\left(R / I_{i}\right)$ but not surjective.
Proposition 1.15. 1. If $I \subseteq \bigcup_{i=1}^{n} P_{i}$ with P_{i} prime, then $I \subseteq P_{i}$ for some i
2. If $P \supseteq \bigcap_{i=1}^{n} I_{i}$ and P is prime, then $P \supseteq I_{i}$ for some i
3. 2. is also true with $"="$

Proof. 1. We prove by induction if $I \nsubseteq P_{i}$ for all i then $I \nsubseteq \bigcup_{i=1}^{n} P_{i}$. In the case $n=1$ it is obvious. So suppose $n>1$ and the statement is true for $n-1$. Suppose $I \nsubseteq P_{i} \forall i$. Then by induction $I \nsubseteq \bigcup_{j \neq i} P_{j}$ hence $\exists x_{i} \in I$ such that $x_{i} \notin \bigcup_{j \neq i} P_{j}$ so for all $j \neq i$ we have $x_{i} \notin P_{j}$. If for some i we have $x_{i} \notin P_{i}$ then $x_{i} \in I \backslash \bigcup_{j=1}^{n} P_{j}$ and we are done. So assume $x_{i} \in P_{i}$ for all i. Let $y=\sum_{i=1}^{n} x_{1} x_{2} \ldots x_{i-1} x_{i+1} \ldots x_{n} \in I$. The i th term is in P_{j} for all $j \neq i$ but not in P_{i}. Given j we see that all but the j th term are in P_{j} so $y \notin P_{j}$, hence $y \notin \bigcup_{j=1}^{n} P_{j}$
2. Suppose $P \nsupseteq I_{i} \forall i$, then $\exists x_{i} \in I_{i} \backslash P$ for every i. Then $\prod x_{i} \in\left(\bigcap I_{i}\right) \backslash P$
3. If $P=\bigcap I_{i}$ then $P \supseteq I_{i}$ for some i by part 2 and $P=\bigcap I_{i} \subseteq I_{i}$ hence $P=I_{i}$

1.4 Quotients and radicals

Definition 1.16. Let I, J be ideals, define the quotient $(I: J)=\{x \in R \mid x J \subseteq I\}$ (This is an ideal, but not exactly the same as in algebraic number theory)

Special case: $(0: J)=$ annihilator of $J=\operatorname{Ann}(J)$
Example. IF $R=\mathbb{Z},((15):(6))=(5)$. More generally if $m=\prod p_{i}^{e i}$ and $n=\prod p_{i}^{f_{i}}$ then $((m)$: $(n))=(a)$ where $a=\prod p_{i}^{\max \left\{e_{i}-f_{i}, 0\right\}}$.

Fact. 1. $I \subseteq(I: J) \quad($ since $I J \subseteq I)$
2. $(I: J) J \subseteq I$
3. $((I: J): K)=(I: J K)=((I: K): J)$
4. $\left(\bigcap I_{i}: J\right)=\bigcap\left(I_{i}: J\right)$
5. $\left(I: \sum J_{i}\right)=\bigcap\left(I: J_{i}\right)$

Definition 1.17. Let I be an ideal, define the radical of I to be $r(I):=\left\{x \in R \mid x^{n} \in I\right.$ for some $\left.n \geq 1\right\}$ Special case: $r(0)=N(R)$

Given I, let $\varphi: R \rightarrow R / I$. Then $\varphi^{-1}(N(R / I))=\left\{x \in R: \varphi(x)^{n}=0\right.$ for some $\left.n\right\}=r(I)$. Hence $r(I)$ is an ideal.

Example. $R=\mathbb{Z}$. If $m=\prod p_{i}^{k_{i}}, k_{i} \geq 1$ then $r((m))=\left(\prod p_{i}\right)$
Fact. 1. If $I \subseteq J$ then $r(I) \subseteq r(J)$.
2. $r(I) \supseteq I$ (take $n=1$ in the definition)
3. $r(r(I))=r(I)\left(\left(x^{m}\right)^{n}=x^{m n}\right)$
4. $r(I J)=r(I \cap J)=r(I) \cap r(J)$
5. $r(I)=(1) \Longleftrightarrow I=(1)$ (use $1 \in r(I)$)
6. $r(I+J)=r(r(I)+r(J))$
7. $r\left(P^{n}\right)=P$ where P is a prime ideal and $n \geq 1$
8. $r(I)=\bigcap_{P \text { prime }}^{P \supseteq I} P$

Proposition 1.18. I, J are coprime if and only if $r(I), r(J)$ are coprime if and only if I^{m}, J^{n} are coprime for every/any $m, n \geq 1$

Proof. I and J coprime then I^{m}, J^{n} coprime for all m, n was lemma 1.14 . If $\forall m, n I^{m}, J^{n}$ are coprime $\Rightarrow \exists m, n I^{m}, J^{n}$ are coprime is trivial.If $\exists m, n \geq 1$ such that I^{m}, J^{n} are coprime then $I+J \supseteq I^{m}+J^{n}=$
(1) hence $I+J=(1)$ (i.e they are coprime)

We now just need to prove I, J coprime $\Longleftrightarrow r(I), r(J)$ are coprime
" \Rightarrow " obvious because $r(I)+r(J) \supseteq I+J=(1)$, so $r(I)+r(J)=(1)$
" $\Leftarrow " r(I+J)=r(r(I)+r(J))=r((1))=(1)$ hence by fact 5 . we have $I+J=(1)$

1.5 Extension and Contractions

Definition 1.19. Let $f: R \rightarrow S$ be a ring homomorphism. For $I \triangleleft R$, let the extension of I, I^{e} be the ideal generated by $\{f(x) \in S \mid x \in I\}$. So $I^{e}=\left\{\sum_{\text {finite }} s_{i} f\left(x_{i}\right) \mid s_{i} \in S, x_{i} \in I\right\}$

For $J \triangleleft S$, let the contraction of $J, J^{c}=f^{-1}(J) \subseteq R$ (this is an ideal)
Example. If $R \hookrightarrow S$ then $J^{c}=J \cap R, I^{e}=\left\{\sum s_{i} x_{i} \mid s_{i} \in S, x_{i} \in I\right\}=$ the S-ideal generated by I
Fact. If P is a prime ideal of S then P^{c} is a prime ideal of R (seen). This is not true for extensions:
Example. $\mathbb{Z} \hookrightarrow \mathbb{Z}[i]$. If we take $(5)^{e}=5 \mathbb{Z}[i]=(2+i)(2-i) \mathbb{Z}[i]$ is not a prime ideal.
Proposition 1.20. Let $I \triangleleft R$ and $J \triangleleft S$

1. $I \subseteq I^{e c}\left(\right.$ since $\left.x \in f^{-1}(f(x))\right)$
2. $J \supseteq J^{c e}$ (easy)
3. $I^{e}=I^{\text {ece }}$ and $J^{c}=J^{c e c}$
4. Let $C=$ set of contracted ideals in R and $E=$ set of extended ideals in S. Then $C=\{I \triangleleft R \mid I=$ $\left.I^{e c}\right\}, E=\left\{J \triangleleft S \mid J=J^{c e}\right\}$ and there is a bijection $C \rightarrow E$ given by e whose inverse is c.

Proof. 1 and 2 are easy. For 3 we have $I^{e} \supseteq I^{e c e}$ by 2 applied to $J=I^{e}$ but by 1 we have $I \subseteq I^{e c}$ and apply extension hence $I^{e} \subseteq I^{e c e} .4$ is easy to prove using 3

Example. Counter example to reverse inclusion of $1 . \mathbb{Z} \hookrightarrow \mathbb{Q},(2)^{e c}=\mathbb{Q}^{c}=\mathbb{Z}=(1) \neq(2)$
Theorem 1.21. Let $f: R \rightarrow S$ be a ring homomorphism and $I \rightarrow I^{e}$ and $J \rightarrow J^{c}$ be the extension and contraction maps. Then

- Extension:

1. $\left(I_{1}+I_{2}\right)^{e}=I_{1}^{e}+I_{2}^{e}$
2. $\left(I_{1} \cap I_{2}\right)^{e} \subseteq I_{1}^{e} \cap I_{2}^{e}$
3. $\left(I_{1} I_{2}\right)^{e}=I_{1}^{e} I_{2}^{e}$
4. $\left(I_{1}: I_{2}\right)^{e} \subseteq I_{1}^{e}: I_{2}^{e}$
5. $r(I)^{e} \subseteq r\left(I^{e}\right)$

- Contraction:

1. $\left(J_{1}+J_{2}\right)^{c} \supseteq J_{1}^{c}+J_{2}^{c}$
2. $\left(J_{1} \cap J_{2}\right)^{c}=J_{1}^{c} \cap J_{2}^{c}$
3. $\left(J_{1} J_{2}\right)^{c} \supseteq J_{1}^{c} J_{2}^{c}$
4. $\left(J_{1}: J_{2}\right)^{c} \subseteq J_{1}^{c}: J_{2}^{c}$
5. $r(J)^{c}=r\left(J^{c}\right)$

Proof. None of these is too hard to show
Example. Counter example to show cases where equality does not hold

- Contraction 1: Take $f: k \hookrightarrow k[x]$ (with k any field), $J_{1}=(x)$ and $J_{2}=(x+1)$. Then $J_{1}^{c}=J_{2}^{c}=(0)$ but $J_{1}+J_{2}=(1)$ which contracts to (1).
- Extension 2: Take $f: \mathbb{Z}[x] \rightarrow \mathbb{Z}$ to be the "evaluation homomorphism" which maps $x \mapsto 2$. Let $I_{1}=(x)$ and $I_{2}=(2)$ then $I_{1} \cap I_{2}=(2 x)$ so $\left(I_{1} \cap I_{2}\right)^{e}=(2 x)^{e}=4 \mathbb{Z}$ while $I_{1}^{e}=I_{2}^{e}=2 \mathbb{Z}$ so $I_{1}^{e} \cap I_{2}^{e}=2 \mathbb{Z}$
- Contraction 3: Take $f: \mathbb{Z} \hookrightarrow \mathbb{Z}[i], J_{1}=(2+i), J_{2}=(2-i)$. Then $J_{1}^{c}=J_{2}^{c}=\left(J_{1} J_{2}\right)^{c}=(5)$
- Extension 4: Take $f: \mathbb{Z}[x] \rightarrow \mathbb{Z}$ to be the "evaluation homomorphism" which maps $x \mapsto 2$. Let $I_{1}=(x)$ and $I_{2}=(2)$ then $\left(I_{1}: I_{2}\right)=I_{1}($ since $x|2 f \Longleftrightarrow x| f)$ so $\left(I_{1}: I_{2}\right)^{e}=(x)^{e}=2 \mathbb{Z}$ while $I_{1}^{e}=I_{2}^{e}=2 \mathbb{Z}$ with quotient \mathbb{Z}
- Contraction 4: Take $f: \mathbb{Z} \hookrightarrow \mathbb{Z}[i], J_{1}=(2+i), J_{2}=(2-i)$. Then $J_{1}^{c}=J_{2}^{c}=(5)$ so $\left(J_{1}^{c}: J_{2}^{c}\right)=\mathbb{Z}$ but $\left(J_{1}: J_{2}\right)=J_{1}$ which contracts to (5).
- Extension 5: Take $f: \mathbb{Z} \hookrightarrow \mathbb{Z}[i], I=2 \mathbb{Z}$. Then $r(I)^{e}=(2 \mathbb{Z})^{e}=2 \mathbb{Z}[i]$ while $r\left((2)^{e}\right)=r(2 \mathbb{Z}[i])=$ $(1+i) \mathbb{Z}[i]$

From the theorem we can see that the set of extended ideals of S is closed under the sum and product, while the set of contracted ideals of R is closed under intersection and radical.

2 Modules

Definition 2.1. An R-module is an abelian group M with a scalar multiplication $R \times M \rightarrow M$ satisfying

1. $\left(r_{1}+r_{2}\right) m=r_{1} m+r_{2} m$
2. $r\left(m_{1}+m_{2}\right)=r m_{1}+r m_{2}$
3. $r_{1}\left(r_{2} m\right)=\left(r_{1} r_{2}\right) m$
4. $1_{R} m=m$

For each $r \in R$ the map $M \rightarrow M, m \mapsto r m$ is an endomorphism of M (by 2.) $1,3,4$ says $R \rightarrow$ $\operatorname{End}(M)$ is a ring homomorphism

Example. 1. R itself is an R-module. So are all ideals of R
2. If R is a field k then an R-module is a k-vector space
3. Every abelian group A is a \mathbb{Z}-module
4. A $k[x]$-module is k vector space V together with a k-linear map $V \rightarrow V$ given the scalar multiplication by x
5. Let G be a finite group (abelian). Let $R=k[G]$ the group algebra. Then a $k[G]$ module is a representation of G.

Definition 2.2. An R-module homomorphism $f: M \rightarrow N$ is a map $M \rightarrow N$ which satisfies

1. $f\left(m_{1}+m_{2}\right)=f\left(m_{1}\right)+f\left(m_{2}\right)$
2. $f(r m)=r f(m)$

Where M, N are both R-module. f is called R-linear
$\operatorname{Hom}_{R}(M, N)=\{$ all R-linear map $f: M \rightarrow N\}$ is another R-module with point-wise operations
Example. $\operatorname{Hom}_{R}(R, M) \cong M$ by $f \leftrightarrow f\left(1_{R}\right)$ since $f(r)=f(r \cdot 1)=r f(1)$
Definition 2.3. $N \subseteq M$ is a submodule if it is closed under addition and scalar multiplication, (in particular $0 \in N$). We will use $N \leq M$ as notation.

Example. R-submodules of R are the ideals of R.
Definition 2.4. Quotient Modules: If $N \leq M$ then M / N is again an R-module via $r(x+N)=r x+N$ (well-defined since $r N \subseteq N$)

Kernels and Cokernels: If $f \in \operatorname{Hom}_{R}(M, N)$ then $\operatorname{ker}(f) \leq M, \operatorname{im}(f) \leq N$ and $\operatorname{coker}(f)=$ $N / \operatorname{im}(f)$

So f is injective $\Longleftrightarrow \operatorname{ker}(f)=0 . f$ is surjective $\Longleftrightarrow \operatorname{coker}(f)=0 \Longleftrightarrow \operatorname{im}(f)=N$
First Isomorphism Theorem. If $f \in \operatorname{Hom}_{R}(M, N)$ then $M / \operatorname{ker}(f) \cong \operatorname{im}(f)$ via $m+\operatorname{ker}(f) \mapsto f(m)$
Definition 2.5. Sums of Submodules: Let $M_{i} \leq M$ for $i \in I$. Then $\sum_{i \in I} M_{i}=\{$ all finite sums $\sum_{i \in I} m_{i}$ with $\left.m_{i} \in M_{i}\right\} \leq M$

Intersection of Submodules: Let $M_{i} \leq M$ for $i \in I$. Then $\bigcap_{i \in I} M_{i} \leq M$
Second Isomorphism Theorem. Let $N \leq M \leq L$ be submodules of R. Then

$$
\frac{L / N}{M / N} \cong \frac{L}{M}
$$

Proof. The map $L / N \rightarrow L / M$ defined by $x+N \mapsto x+M(x \in L)$ is surjective with kernel M / N, then use the first isomorphism theorem.

Third Isomorphism Theorem. Let $M_{1}, M_{2} \leq M$ be R-modules. Then

$$
\frac{M_{1}+M_{2}}{M_{1}} \cong \frac{M_{2}}{M_{1} \bigcap M_{2}}
$$

Proof. The map $M \rightarrow M_{1}+M_{2} \rightarrow\left(M_{1}+M_{2}\right) / M_{1}$ defined by $y \mapsto 0+y \mapsto y+M_{1}$ is surjective with kernel $M_{1} \bigcap M_{2}$. Then use the first isomorphism theorem.

Definition 2.6. Product of Ideal and Modules: Let $I \triangleleft R$ and M a R-module. Define the product of I and M to be $I M=\left\{\sum_{i=1}^{n} a_{i} m_{i} \mid a_{i} \in I, m_{i} \in M\right\} \leq M$.

A special case $I=(r)$ we write $r M=\{r m \mid m \in M\} \leq M$
Quotient: Let M, N be R-module such that they both are submodules of L, we define the quotient to be $(M: N)=\{r \in R: r N \subseteq M\} \triangleleft R$

Special case: $M=0,(0: N)=\{r \in R: r N=0\}=\operatorname{Ann}_{R}(N) \triangleleft R$
M is a faithful R-module if $\mathrm{Ann}_{R} M=0$
If $I \subseteq \operatorname{Ann}_{R} M$ then M may be regarded as an R / I-module via $(r+I) m=r m$. In particular taking $I=\operatorname{Ann}_{R} M$ we may view M as a faithful $R / \operatorname{Ann}_{R} M$-module.

Example. If A is an abelian group (hence a \mathbb{Z}-module) which is p-torsion (meaning $p A=0$ for some prime p) then A is $\mathbb{Z} / p \mathbb{Z}$-module, i.e., a vector space over \mathbb{F}_{p}.

Definition 2.7. Cyclic Submodules: $x \in M$ an R-module generates $(x)=R x=\{r x \mid r \in R\} \leq M$ is the cyclic submodule generated by x. In particular if $M=R x$ for some x then M is cyclic and $M \cong R / \operatorname{Ann}_{R} x$ (as R-modules)

Finitely Generated Module: We say M is finitely generated (f.g.) if $M=\sum_{i=1}^{n} R x_{i}$ for some finite collection $x_{1}, \ldots, x_{n} \in M$. More generally $\left\{x_{i}\right\}_{i \in I}$ generates M if every $x \in M$ is a finite R-linear collection of the $x_{i} \in M$.

Example. $M=R[x]$ is generated by $1, x, x^{2}, x^{3}, \ldots$ but M is not finitely generated.
Definition 2.8. Let M, N be R-modules. We define:
Direct Sum: $M \oplus N=\{(m, n): m \in M, n \in N\}$ is an R-module with coordinate operations.
Direct Product: $M \times N=\{(m, n): m \in M, n \in N\}$ is an R-module with coordinate operations.
Similarly if $M_{i}(i=1, \ldots, n)$ are R-modules we can form $\oplus_{i=1}^{n} M_{i}=\left\{\left(m_{1}, \ldots, m_{n}\right) \mid m_{i} \in M_{i} \forall i \leq\right.$ $n\}=\prod_{i=1}^{n} M_{i}$

Infinite Direct Sum: If we start with $\left\{M_{i}\right\}_{i \in I}$ we define $\oplus_{i \in I} M_{i}=\left\{\left(m_{i}\right)_{i \in I}: m_{i} \in M_{i} \forall i\right.$,all but finitely many $\left.m_{i}=0\right\}$

Infinite Direct Product: If we start with $\left\{M_{i}\right\}_{i \in I}$ we define $\prod_{i=I} M_{i}=\left\{\left(m_{i}\right)_{i \in I}: m_{i} \in M_{i} \forall i\right\}$
Example. As an R-module $R[x] \cong \oplus_{i=0}^{\infty} R$ where the isomorphism is defined by $\sum_{i=0}^{d} r_{i} x^{i} \mapsto\left(r_{0}, r_{1}, r_{2}, \ldots, r_{d}, 0,0, \ldots\right)$ $R[[x]] \cong \prod_{i=0}^{\infty} R$ (as R-modules)

Definition 2.9. Free Modules: M is free if $M \cong \oplus_{i \in I} M_{i}$ where each $M_{i} \cong R$.
A finitely generated free module $M \cong \underbrace{R \oplus \cdots \oplus R}_{n}=R^{n}$
Lemma 2.10. M is finitely generated if and only if $M \cong$ a quotient of R^{n} for some n
Proof. " \Rightarrow ": If x_{1}, \ldots, x_{n} generates M then map $R^{n} \rightarrow M$ by $\left(r_{1}, \ldots, r_{n}\right) \mapsto \sum_{i=1}^{n} r_{i} x_{i}$ is surjective (since M is finitely generated) so $R^{n} / \mathrm{ker} \cong M$
" $\Leftarrow ": R^{n}$ is finitely generated by $(1,0, \ldots 0),(0,1,0, \ldots, 0), \ldots$ So R^{n} / K is finitely generated by images of these in R^{n} / K

Proposition 2.11. Let M be a finitely generated R-module, $J \triangleleft R$ and $\varphi \in \operatorname{End}_{R}(M)=\operatorname{Hom}_{R}(M, M)$. Suppose that $\varphi(M) \subseteq J M$. Then $\exists a_{1}, a_{2}, \ldots, a_{n} \in J$ such that

$$
\varphi^{n}+a_{1} \varphi^{n-1}+a_{2} \varphi^{n-2}+\cdots+a_{n} I_{M}=0
$$

in $\operatorname{End}_{R}(M)$ and I_{M} is the identity map $M \rightarrow M$

Proof. Let x_{1}, \ldots, x_{n} generate $M . \forall i \leq n, \varphi\left(x_{i}\right)=\sum_{j=1}^{n} a_{j} x_{j}$ where $a_{j} \in J$.

$$
\sum_{j=1}^{n}\left(\delta_{i j} \varphi-a_{i j} I\right) x_{i}=0
$$

for $i=1, \ldots, n$ where $\delta_{i j}=\left\{\begin{array}{ll}0 & i \neq j \\ 1 & i=j\end{array}\right.$. We can rewrite this as $(I \varphi-A) X=0$ where $A=\left(a_{i j}\right), I=$ $\left(\delta_{i j}\right), X=\left(x_{1}, \ldots, x_{n}\right)^{T}$. Multiply by $\operatorname{adj}(I \varphi-A)$ whose entries are all in $\operatorname{End}_{R}(M) \Rightarrow \operatorname{det}(I \varphi-A) x_{i}=$ $0 \forall i \Rightarrow \operatorname{det}(I \varphi-A)=0 \in \operatorname{End}_{R}(M)$. If we multiply out $\operatorname{det}(I \varphi-A)$ to get the equation above.

Applications:

1. $x \in \mathbb{C}$. If M is a non-zero finitely generated \mathbb{Q}-submodule of \mathbb{C} such that $x M \subseteq M$ then x is algebraic.

Corollary 2.12. The set of all algebraic numbers in \mathbb{C} forms a field.
2. $x \in \mathbb{C}, M \subseteq \mathbb{C}$ a non-zero finitely generated \mathbb{Z}-submodule such that $x M \subseteq M \Rightarrow x$ is an algebraic integer

Corollary 2.13. The set of algebraic integers in \mathbb{C} is a ring.
Proof Of Applications and Corollary. $\alpha \in \mathbb{C}$ is algebraic $\Longleftrightarrow \exists$ monic $f \in \mathbb{Q}[x]$ such that $\operatorname{deg} f=$ $n \geq 1$ and $f(\alpha)=0 \Longleftrightarrow \exists M \subseteq \mathbb{C}$ a finitely generated \mathbb{Q}-submodule of \mathbb{C} with $\alpha M \subseteq M$. (For \Rightarrow : $\left.M=\mathbb{Q}[\alpha]=\mathbb{Q}+\mathbb{Q} \alpha+\mathbb{Q} \alpha^{2}+\cdots+\mathbb{Q} \alpha^{n-1}\right)$
$\alpha \in \mathbb{C}$ is an algebraic integer $\Longleftrightarrow \exists$ monic $f \in \mathbb{Z}[x]$, such that $\operatorname{deg} f=n \geq 1$ and $f(\alpha)=0 \Longleftrightarrow$ $M \subset \mathbb{C}$ a finitely generated \mathbb{Z}-module with $\alpha M \subseteq M$ (Again for $\Rightarrow: M=\mathbb{Z}[\alpha]=\mathbb{Z}+\mathbb{Z} \alpha+\cdots+\mathbb{Z} \alpha^{n-1}$)

Let $R=\mathbb{Q}$ or \mathbb{Z} and let α, β be \{algebraic numbers or algebraic integers respectively $\}$, then $\alpha \pm \beta, \alpha \beta$ are also \{algebraic numbers, algebraic integers $\}$. Let the polynomial of α be $f(x), \operatorname{deg} f=n$ and of β be $g(x), \operatorname{deg} g=m$ with $f, g \in R[x]$ monic. Let M be the R-submodule of \mathbb{C} generated by $\alpha^{i} \beta^{j}, 0 \leq i \leq n-1,0 \leq j \leq m-1$, i.e., $M=\sum_{i, j} R \alpha^{i} \beta^{j}$. Clearly $\alpha M \subseteq M$ and $\beta M \subseteq M$. Then $(\alpha \pm \beta) M \subseteq M$ and $\alpha \beta M \subseteq M$ quite clearly hence $\alpha \pm \beta$ are \{algebraic numbers, algebraic integers\}. Hence both sets are subrings of \mathbb{C}. If α is an algebraic number $\alpha \neq 0$ then α^{-1} is also algebraic (easy) so \{algebraic numbers $\}$ is a subfield of \mathbb{C}.

Corollary 2.14. If M is an finitely generated R-module and $J \triangleleft R$ such that $J M=M$ then $\exists r \in R$ such that $r M=0$ and $r \equiv 1 \bmod J$ (i.e., $r-1 \in J$)

Proof. Apply the proposition with $\varphi=$ identity map. So the proposition tells us $\left(1+a_{1}+\cdots+a_{n-1}\right) M=$ 0 with $a_{i} \in J$. So let $r=1+a_{1}+\cdots+a_{n-1}$.

Corollary 2.15 (Nakayama's Lemma). If M is a finitely generated R-module and $I \triangleleft R$ such that $I \subseteq J(R)$. If $I M=M$ then $M=0$

Proof. By Corollary $2.14 \exists r \in R$ such that $r M=0$ and $r-1 \in I \Rightarrow r-1 \in J(R)$ but this implies (by Proposition 1.12$) r \in R^{*}$ so $M=r^{-1} r M=0$

Corollary 2.16. Let M be finitely generated and $I \triangleleft R$ such that $I \subseteq J(R)$. Let $N \leq M$. If $M=I M+N$ then $M=N$.

Proof. Apply Corollary 2.15 to M / N (which is still finitely generated), using $I(M / N)=(I M+$ $N) / N(*)$, since $M=I M+N \Rightarrow I(M / N)=M / N \Rightarrow M / N=0 \Rightarrow M=N$. To check $(*)$ holds we use the map $\phi: I M+N \rightarrow I(M / N)$ defined by $a m+n \mapsto a(m+N) . \phi$ is clearly surjective and has kernel $=N$ (hence use the first isomorphism theorem)

Corollary 2.17. Let M be a finitely generated R-module, where R is a local ring with (unique) maximal ideal P and residue field $k=R / P$. Then

1. $M / P M$ is a finite dimensional vector space over k
2. x_{1}, \ldots, x_{n} generates M as an R-module $\Longleftrightarrow \overline{x_{1}}, \ldots, \overline{x_{n}}$ generates $M / P M$ as a k-vector space. $($ Here $\bar{x}=x+P M \in M / P M)$

Proof. 1. $M / P M$ is an R-module which is annihilated by P hence is a module over $R / P=k$.
2. " \Rightarrow ": Clear. $\bar{x} \in M / P M \Rightarrow \exists x_{i} \in R$ such that $x=\sum_{i=1}^{n} r_{i} x_{i} \Rightarrow \bar{x}=\sum_{i=1}^{n} r_{i} \overline{x_{i}}$. (Note that this also proves the finite dimensional claim of part 1)
" $\Leftarrow "$ Let $x_{1}, \ldots, x_{n} \in M$ be such that $\overline{x_{1}}, \ldots, \overline{x_{n}}$ generates $M / P M$. Set $M=\sum_{i=1}^{n} R x_{i} \leq M$. We want to show $M=N$. We are going to use Corollary 2.16, noting that $J(R)=P$, with $I=P$. Then we can apply the Corollary if $M=P M+N$. Let $x \in M$, then $\bar{x} \in M / P M$ so $\exists r_{i}$ such that $\bar{x}=\sum r_{i} \overline{x_{i}}$ in $M / P M \Rightarrow x-\sum r_{i} x_{i} \in P M \Rightarrow x \in N+P M$

Example. $R=\mathbb{Z}_{(5)}=\left\{\left.\frac{a}{b} \in \mathbb{Q} \right\rvert\, 5 \nmid b\right\}$. This is a local ring with maximal ideal $P=5 R$. We can check that $R / P \cong \mathbb{Z} / 5 \mathbb{Z}$. Let $M=\mathbb{Q}$, but $P \mathbb{Q}=\mathbb{Q} \Rightarrow \mathbb{Q} / P \mathbb{Q}$ is 0 but \mathbb{Q} is not finitely generated as an R-module. (see exercise)

2.1 Exact Sequences

Definition 2.18. Let L, M, N be R-module. A sequence $L \xrightarrow{\alpha} M \xrightarrow{\beta} N$ of R-module homomorphism is exact if $\operatorname{im}(\alpha)=\operatorname{ker}(\beta)$.

Note: This implies $\beta \cdot \alpha=0(\Longleftrightarrow \operatorname{im}(\alpha) \subseteq \operatorname{ker}(\beta))$
Example. Key Examples:

- $L \xrightarrow{\alpha} M \longrightarrow 0$ is exact $\Longleftrightarrow \alpha$ is surjective
- $0 \longrightarrow M \xrightarrow{\alpha} N$ is exact $\Longleftrightarrow \alpha$ is injective
- A longer sequence $\ldots \longrightarrow M_{i-1} \xrightarrow{\alpha_{i-1}} M_{i} \xrightarrow{\alpha_{i}} M_{i+1} \xrightarrow{\alpha_{i+1}} \ldots$ is exact $\Longleftrightarrow \operatorname{ker}\left(\alpha_{i}\right)=$ $\operatorname{im}\left(\alpha_{i-1}\right) \forall i$
- Short Exact Sequence $0 \longrightarrow L \xrightarrow{\alpha} M \xrightarrow{\beta} N \longrightarrow 0$ is exact \Longleftrightarrow
$-\alpha$ is injective $(L \hookrightarrow M)$
$-\beta$ is surjective $($ so $N \cong M / \operatorname{ker} \beta)$
$-\operatorname{im}(\alpha)=\operatorname{ker}(\beta)$
- That is $L \cong \alpha(L) \leq M$ and $M / \alpha(L) \cong N$

2.2 Tensor products of modules

Let R be a ring. Given two R-modules, A, B we will define/construct an R-module $C=A \otimes_{R} B$ with the following properties

1. C is an R-module and there is an R-bilinear map $g: A \times B \rightarrow C$
2. (Universal property) For any R-bilinear map $f: A \times B \rightarrow D$ (with D any R-module) there is a unique R-linear map $h: C \rightarrow D$ such that $f=h \circ g$

These properties uniquely determine $A \otimes_{R} B$ up to unique isomorphism. This is because:

- Taking $D=C$ shows that $\operatorname{id}_{C}: C \rightarrow C$ is the only map such that $g=\mathrm{id}_{C} \circ g$
- If D also satisfies $1 ., 2$. then $\exists h_{1}: C \rightarrow D$ such that $f=h_{1} \circ g$ and $\exists h_{2}: D \rightarrow C$ such that $g=h_{2} \circ f$. Then we see that $f=h_{1} \circ h_{2} \circ f \Rightarrow h_{1} \circ h_{2}=\operatorname{id}_{D}$ and $g=h_{2} \circ h_{1} \circ g \Rightarrow h_{2} \circ h_{1}=\mathrm{id}_{C}$

Existence:

We construct C as follows

- Take the free R-module F with $A \times B$ as generating set i.e. generators $(a, b) \forall a \in A, b \in B$. $F=\left\{\sum_{i=1}^{n} r_{i}\left(a_{i}, b_{i}\right) \mid r_{i} \in R, a_{i} \in A, b_{i} \in B\right\}$
- Factor out the submodule L consisting of all elements of the form $\left(r_{1} a_{1}+r_{2} a_{2}, b\right)-r_{1}\left(a_{1}, b\right)-$ $r_{2}\left(a_{2}, b\right)$ and $\left(a, r_{1} b_{1}-r_{2} b_{2}\right)-r_{1}\left(a, b_{1}\right)-r_{2}\left(a, b_{2}\right) \forall r_{1}, r_{2} \in R, a, a_{1}, a_{2} \in A, b, b_{1}, b_{2} \in B$
- Set $C=F / L$. Denote the image in F / L of (a, b) by $a \otimes b$. Then F / L is generated by $\{a \otimes b \mid a \in$ $A, b \in B\}$ with "relations" $\left(r_{1} a_{1}+r_{2} a_{2}\right) \otimes b=r_{1}\left(a_{1} \otimes b\right)+r_{2}\left(a_{2} \otimes b\right)$ and $a \otimes\left(r_{1} b_{1}+r_{2} b_{2}\right)=$ $r_{1}\left(a \otimes b_{1}\right)+r_{2}\left(a \otimes b_{2}\right)(*)$
So each elements of $A \otimes_{R} B$ has the form $\sum_{i=1}^{n} r_{i}\left(a_{i} \otimes b_{i}\right)$. But (by (*)) we have $r(a \otimes b)=(r a) \otimes b=$ $a \otimes(r b)$. Using this, every element of $A \otimes_{R} B$ is a finite sum of "atomic tensors" $a \otimes b$. Can we simplify these sums further? Not in general! e.g. $a_{1} \otimes b_{1}+a_{2} \otimes b_{2}$ can not, in general, be rewritten as a single "atom" $a \otimes b$.

Example. If A, B are both cyclic R-modules, say $A=R x, B=R y$ then every $a \in A$ has the form $a=r x$ for some $r \in R$ and similarly every $b \in B$ has the form $b=s y$ for some $s \in R$. Then $a \otimes b=r x \otimes s y=r s(x \otimes y)$. A general element of $A \otimes_{R} B$ is thus a finite sum of $\sum_{i=1}^{n} t_{i}(x \otimes y)=t(x \otimes y)$ where $t=\sum_{i=1}^{n} t_{i} \in R$. Hence $A \otimes_{R} B$ is cyclic, generated by $x \otimes y$
Fact. More generally if A, B are finitely generated by x_{1}, \ldots, x_{n} for A and y_{1}, \ldots, y_{m} for B. Then $\left(\sum r_{i} x_{i}\right) \otimes\left(\sum s_{j} y_{j}\right)=\sum_{i, j}\left(r_{i} s_{j}\right)\left(x_{i} \otimes y_{j}\right)$. Hence $A \otimes_{R} B$ is also finitely generated by $x_{i} \otimes y_{j}$

Exercise. $R=k$ a field. x_{1}, \ldots, x_{n} a basis for A and y_{1}, \ldots, y_{n} a basis for B then the $x_{i} \otimes y_{j}$ are a basis for $A \otimes_{k} B$ and hence $\operatorname{dim}_{k} A \otimes_{k} B=m n=\left(\operatorname{dim}_{k} A\right)\left(\operatorname{dim}_{k} B\right)$

Similarly we can define $A \otimes_{R} B \otimes_{R} C$ for any three R-modules A, B, C and $A_{1} \otimes_{R} A_{2} \otimes_{R} \cdots \otimes_{R} A_{n}$ for any $n R$-modules A_{1}, \ldots, A_{n}. We get nothing essentially new since $A \otimes_{R} B \otimes_{R} C$ turns out to be isomorphic to $\left(A \otimes_{R} B\right) \otimes_{R} C$ and to $A \otimes_{R}\left(B \otimes_{R} C\right)$

Lemma 2.19. 1. $A \otimes_{R} B \cong B \otimes_{R} A$
2. $A \otimes_{R} R \cong A$
3. $(A \oplus B) \otimes_{R} C \cong\left(A \otimes_{R} C\right) \oplus\left(B \otimes_{R} C\right)$

Proof. 1. We have an R-bilinear map $A \times B \rightarrow B \otimes_{R} A$ via $(a, b) \mapsto b \otimes a$. (Since $\left(r_{1} a_{1}+r_{2} a_{2}, b\right) \mapsto$ $\left.b \otimes\left(r_{1} a_{1}+r_{2} a_{2}\right)=r_{1}\left(b \otimes a_{1}\right)+r_{2}\left(b \otimes a_{2}\right) \leftarrow r_{1}\left(a_{1}, b\right)+r_{2}\left(a_{2}, b\right)\right)$. Hence there is a unique R-linear $\operatorname{map} h_{1}: A \otimes_{R} B \rightarrow B \otimes_{R} A$ with $a \otimes b \mapsto b \otimes a$. Similarly we get $h_{2}: B \otimes_{R} A \rightarrow A \otimes_{R} B$ with $b \otimes a \mapsto a \otimes b$, hence $h_{1} \circ h_{2}=\mathrm{id}$ and $h_{2} \circ h_{1}=\mathrm{id}$
2. Define a map $A \times R \rightarrow A$ by $(a, r) \mapsto r a$. It is surjective (take $r=1$) and R-bilinear, hence induces a map $f: A \otimes_{R} R \rightarrow A$ with $a \otimes r \mapsto r a$ surjective. Define $g: A \rightarrow A \otimes_{R} R$ by $g(a)=a \otimes 1 \in A \otimes_{R} R$. We can easily check that $f \circ g=\operatorname{id}_{A}$ and $g \circ f=\operatorname{id}_{A \otimes_{R} R}$.

3. Exercise

Definition 2.20. Tensoring maps (i.e., R-module homomorphism): Let $f: A_{1} \rightarrow A_{2}, g: B_{1} \rightarrow B_{2}$ be R-linear maps where $A_{1}, A_{2}, B_{1}, B_{2}$ are R-modules. Then there is an R-linear map $f \otimes g: A_{1} \otimes_{R} B_{1} \rightarrow$ $A_{2} \otimes_{R} B_{2}$ which sends $a \otimes b \mapsto f(a) \otimes g(b)$. This is induced by the R-bilinear map $A_{1} \times B_{1} \rightarrow A_{2} \otimes_{R} B_{2}$ which sends $\left(a_{1}, b_{1}\right) \mapsto f\left(a_{1}\right) \otimes g\left(b_{1}\right)$

2.3 Restriction and Extension of Scalars

Or: How we usually think about tensor products Let $f: R \rightarrow S$ be a ring homomorphism. Then every S-module becomes an R-module via $r x=f(r) x$.

Example. Special Cases:

1. S is an R-module $(r s=f(r) s)$
2. R a subring of S and f the inclusion map $R \hookrightarrow S$. Then every S-module is an R-module too.

Example. If K, L are fields with $K \subset L$ (i.e., L is an extension of K) then L-vector space is a K-vector space. (Restriction of scalars). In particular L is a vector space over $K . \operatorname{dim}_{K} L$ is the degree of the extension $(\leq \infty)$.
Standard Fact: If $L \supset K \supset F$ (fields) and L is a finite extension of K and K is finite over F then L is finite over F.

Proposition 2.21. Let $f: R \rightarrow S$ be as above. If M is a finitely generated S-module and S is a finitely generated R-module then M is a finitely generated R-module.

Proof. Straightforward
We are now going to try to go the other way. Let $f: R \rightarrow S$ and M be an R-module. Let $M_{S}=S \otimes_{R} M$, this is an R-module. It can be made into an S-module via $s^{\prime}(s \otimes m)=\left(s^{\prime} s\right) \otimes m$. (The R-module structure of M_{S} can be done in two ways $\left.r(s \otimes m)=(f(r) s) \otimes m=s \otimes r m\right)$. If $R=S$ and $f=$ id we just get $R \otimes_{R} M \cong M\left(=M_{R}\right)$

Definition 2.22. We say that M_{S} is obtained from M by extension of scalars
Remark. If $\left\{x_{i}\right\}_{i \in I}$ generates M as an R-module then $\left\{1 \otimes x_{i}\right\}_{i \in I}$ generates M_{S} as an S-module. i.e., $M=\sum_{i \in I} R x_{i} \Rightarrow M_{S}=\sum_{i \in I} S\left(1 \otimes x_{i}\right)$. By abuse of notation we often just write $M_{S}=\sum_{i \in I} S x_{i}$ where $\sum s_{i} x_{i}$ is shorthand for $\sum s_{i} \otimes x_{i}$.
Example. 1. $\mathbb{Q}(i) \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{C} . \mathbb{Q}(i)$ is generated as \mathbb{Q}-module by $1, i$ hence $\mathbb{Q}(i) \otimes_{\mathbb{Q}} \mathbb{R}$ is generated as an \mathbb{R}-module by $1 \otimes 1, i \otimes 1$. And we abbreviate $x(1 \otimes 1)+y(1 \otimes i)$ as $x+y i$ where $x, y \in \mathbb{R}$.
2. Let R and S be two ring with $f: R \rightarrow S$ is the "structure map" giving S the structure of an R-module. Then $R[x] \otimes_{R} S \cong S[x]$. Strictly: elements of the left side are polynomials in $x \otimes 1$
3. $R^{n} \otimes_{R} S \cong S^{n}$. If e_{1}, \ldots, e_{n} are the "standard" generators $(1,0, \ldots, 0), \ldots,(0, \ldots 0,1)$ for R^{n} then $R^{n} \otimes_{R} S$ is freely generated by $e_{i} \otimes 1$.

2.4 Algebras

Definition 2.23. 1. Let R be a ring. An R-algebra is a ring A with a ring homomorphism f : $R \rightarrow A$, which turns A into an R-module. (via $r a=f(r) a)$
2. Conversely if A is both a ring and an R-module $((r, a) \mapsto r \cdot a)$ then it is an R-algebra if the two structures of A are compatible, i.e.:

- $\left(r_{1}+r_{2}\right) \cdot a=r_{1} \cdot a+r_{2} \cdot a$
- $r_{1}\left(r_{2} \cdot a\right)=\left(r_{1} r_{2}\right) \cdot a$
- $1 \cdot a=a$
- $r \cdot\left(a_{1} a_{2}\right)=\left(r \cdot a_{1}\right) a_{2}=a_{1} \cdot\left(r a_{2}\right)$

We recover the structure map $f: R \rightarrow A$ by setting $f(r)=r \cdot 1_{A} \in A$.
To go from one definition to the other: $1 \Rightarrow 2$: Define $r \cdot a=f(r) a$ (show that this satisfy the axiom given).
$2 \Rightarrow 1$: Define $f(r)=r \cdot 1_{a} \in A$ (Show that this does give a ring homomorphism)

Definition 2.24. Let A, B be R-algebra with structure maps $f: R \rightarrow A, g: R \rightarrow B$. Then an R-algebra homomorphism from $A \rightarrow B$ is a map $h: A \rightarrow B$ which is both a ring homomorphism and R-linear such that $g=h \circ f$

$$
\begin{aligned}
& \\
h\left(a_{1}+a \cdots\right) & =h\left(a_{1}\right)+h\left(a_{2}\right) \\
h(r a) & =r h(a) \forall a \in A, r \in R \\
& \Longleftrightarrow h(f(r) a)=g(r) h(a) \\
& \Longleftrightarrow h(f(r)) h(a)=g(r) h(a) \\
& \Longleftrightarrow h(f(r))=g(r) \\
& \Longleftrightarrow h \circ f=g
\end{aligned}
$$

What we have proved: A ring homomorphism $h: A \rightarrow B$ is an R-module homomorphism $\Longleftrightarrow h \circ f=g$
Special Cases:

1. $R=k$ a field, $A \neq 0$ then the structure map $f: k \rightarrow A$ must be injective $\left(f\left(1_{k}\right)=1_{A}\right.$ so $\left.f \neq 0\right)$. So A is a ring with k as a subring.

Example. $A=k[X]$ is a k-algebra, \mathbb{C} is an \mathbb{R}-algebra (and a \mathbb{Q}-algebra)
2. $R=\mathbb{Z}$. Any ring A is a \mathbb{Z}-algebra whose structure map is the unique ring homomorphism $\mathbb{Z} \rightarrow A$, $n \mapsto n \cdot 1_{A}=\underbrace{1+1+\cdots+1}_{n>0}$
3. k a field. Extension fields of k are k-algebra. If $k \subset L_{1}, k \subset L_{2}$ (L_{1}, L_{2} are fields). Then a map $h: L_{1} \rightarrow L_{2}$ is a k-algebra homomorphism if it is a ring homomorphism (necessarily injective) such that $h(x)=x \forall x \in k$.

2.5 Finite conditions

Let A be an R-algebra.
Definition 2.25. A is a finite R-algebra if it is finitely generated as an R-module, i.e., $\exists a_{1}, \ldots, a_{2} \in A$ such that $A=R a_{1}+\cdots+R a_{n}$
A is a finitely generated R-algebra if there is a surjective ring homomorphism $R\left[x_{1}, \ldots x_{n}\right] \rightarrow A$ for some n defined by $x_{i} \mapsto a_{i}$. Denote this by $A=R\left[a_{1}, \ldots, a_{n}\right]$. Hence every element of A is a $\underline{\text { polynomial }}$ in the finite set a_{1}, \ldots, a_{n}

Example. $A=R[x]$ is a finitely generated R-algebra (generator $=x$), but it is not a finite R-algebra since it is not finitely generated as an R-module. (it is generated by $1, x, x^{2}, \ldots$ but not by any finite set of polynomials)

If $\alpha \in \mathbb{C}$ then $\mathbb{Q}[\alpha]$ is a finitely generated \mathbb{Q}-algebra, and is a finite \mathbb{Q}-algebra $\Longleftrightarrow \alpha$ is an algebraic number.
$A=\mathbb{Z}[\alpha]$ is finitely generated \mathbb{Z}-algebra, and is a finite \mathbb{Z}-algebra $\Longleftrightarrow \alpha$ is an algebraic integer.

2.6 Tensoring Algebras

Let A, B be R-algebras with structure maps $f: R \rightarrow A, g: R \rightarrow B$. The R-module $C=A \otimes_{R} B$ may be turned into a ring and hence an R-algebra by setting $\left(a_{1} \otimes b_{1}\right)\left(a_{2} \otimes b_{2}\right)=a_{1} a_{2} \otimes b_{1} b_{2}$. (extended by linearity)

Proof that this is well defined and turns $A \otimes_{R} B$ into a ring. Map $A \times B \times A \times B \rightarrow C$ by $\left(a_{1}, b_{1}, a_{2}, b_{2}\right) \mapsto$ $a_{1} a_{2} \otimes b_{1} b_{2}$. This is clearly R-multilinear and hence induces an R-linear map from $\left(A \otimes_{R} B\right) \otimes_{R}$ $\left(A \otimes_{R} B\right) \rightarrow C$, i.e, $C \otimes_{R} C \rightarrow C$ is a well defined map, which in turns gives our multiplication. $1_{C}=1_{A} \otimes 1_{B}$ and $0_{C}=0_{A} \otimes 0_{B}$. Checking C is a ring is straightforward. The structure map $R \rightarrow C$ is $r \mapsto r \cdot(1 \otimes 1)=1 \otimes g(r)=f(r) \otimes 1$

3 Localization

Rings and Modules of Quotients Recall: If R is an integral domain then we construct its field of fractions as follows: take the set of ordered pairs $(r, s), \overline{r \in R, s \in R \backslash\{0\}}$ with equivalence relation $\left(r_{1}, s_{1}\right) \sim\left(r_{2}, s_{2}\right) \Longleftrightarrow r_{1} s_{2}=r_{2} s_{1}$. Denote the class of (r, s) by $\frac{r}{s}$. Define ring operations by via the usual formulas $\frac{r_{1}}{s_{1}}+\frac{r_{2}}{s_{2}}=\frac{r_{1} s_{2}+r_{2} s_{1}}{s_{1} s_{2}}$. Lots of checking of well-defined-ness and axioms shows that this is a field $K .0=\frac{0}{1}, 1=\frac{1}{1}, \frac{r}{s}=0 \Longleftrightarrow r=0$ so we get $R \hookrightarrow K$ by $r \mapsto \frac{r}{1}$, so if $\frac{r}{s} \neq 0 \Rightarrow \frac{s}{r} \in K$ and $\frac{r}{s} \frac{s}{r}=\frac{1}{1}$

Definition 3.1. A multiplicatively closed set (MCS) in a ring R is a subset S of R such that:

1. $1 \in S$
2. $s_{1}, s_{2} \in S \Rightarrow s_{1} s_{2} \in S$

We'll often assume $0 \notin S$
Example. If R is an integral domain, $S=R \backslash\{0\}$.
R any ring, P prime ideal of $R, S=R \backslash P$
Given a MCS S take the set of pairs $R \times S$ with the relation: $\left(r_{1}, s_{1}\right) \sim\left(r_{2}, s_{2}\right) \Longleftrightarrow \exists s \in S$ such that $s\left(r_{1} s_{2}-r_{2} s_{1}\right)=0$. This is an equivalence relation: Reflexivity and Symmetry are trivial. For Transitivity: $\left(r_{1}, s_{2}\right) \sim\left(r_{2}, s_{2}\right)$ and $\left(r_{2}, s_{2}\right) \sim\left(r_{3}, s_{3}\right) \Rightarrow \exists s, t \in S$ such that $s\left(r_{1} s_{2}-r_{2} s_{1}\right)=$ $0, t\left(r_{2} s_{3}-r_{3} s_{2}\right)=0 \Rightarrow s_{2} s t\left(r_{1} s_{3}-r_{3} s_{1}\right)=s t s_{1} r_{2} s_{3}-s t s_{3} r_{2} s_{1}=0$.

Let $S^{-1} R=\left\{\frac{r}{s}: r \in R, s \in S\right\}$ where $\frac{r}{s}$ is the equivalence class of (r, s). So $\frac{r_{1}}{s_{1}}=\frac{r_{2}}{s_{2}} \Longleftrightarrow$ $s\left(r_{1} s_{2}-r_{2} s_{1}\right)=0$ for some $s \in S$. This forms a ring under the usual addition and multiplication of fractions. (Check ring axioms + well-defined-ness). $0_{S^{-1} R}=\frac{0}{1}, 1_{S^{-1} R}=\frac{1}{1}$ and we have a ring homomorphism $f: R \rightarrow S^{-1} R$ defined by $r \mapsto \frac{r}{1}$ which is not injective in general. $\frac{r_{1}}{1}=\frac{r_{2}}{1} \Longleftrightarrow \exists s \in S$ such that $s\left(r_{1}-r_{2}\right)=0$, i.e., $r_{1}-r_{2} \in\{r \in R: r s=0$ for some $s \in S\}=\operatorname{ker}(f) \triangleleft R$.
Note. $f(s)$ is a unit in $S^{-1} R$: since $f(s)=\frac{s}{1}$ and $\frac{s}{1} \frac{1}{s}=\frac{1}{1}=1$.
Proposition 3.2. Let S be a $M C S$ in R and $f: R \rightarrow S^{-1} R$ as above. If $g: R \rightarrow R^{\prime}$ is a ring homomorphism such that $g(s)$ is a unit in R^{\prime} for all $s \in S$ then there is a unique map $h: S^{-1} R \rightarrow R^{\prime}$ such that $g=h \circ f$

" g factors through h "
Proof. Uniqueness: Suppose such an h exists. Let $\frac{r}{s} \in S^{-1} R, \frac{s}{1} \frac{r}{s}=\frac{r}{1} \Rightarrow h\left(\frac{s}{1}\right) h\left(\frac{r}{s}\right)=h\left(\frac{r}{1}\right)$ but $h\left(\frac{r}{1}\right)=h(f(r))=g(r) \Rightarrow g(s) h\left(\frac{r}{s}\right)=g(r) \Rightarrow h\left(\frac{r}{s}\right)=g(r) g(s)^{-1}$

Existence: Define $h: S^{-1} R \rightarrow R^{\prime}$ by $h\left(\frac{r}{s}\right)=g(r) g(s)^{-1}$. It it well-defined? $\frac{r_{1}}{s_{1}}=\frac{r_{2}}{s_{2}} \Rightarrow s\left(r_{1} s_{2}-\right.$ $\left.r_{2} s_{1}\right)=0$ for some $s \in S \Rightarrow g(s)\left(g\left(r_{1}\right) g\left(s_{2}\right)-g\left(r_{2}\right) g\left(s_{1}\right)\right)=0 \Rightarrow g\left(r_{1}\right) g\left(s_{2}\right)=g\left(r_{2}\right) g\left(s_{1}\right)^{2}$ (Since $g(s)$ is a unit) $\Rightarrow g\left(r_{1}\right) g\left(s_{1}\right)^{-1}=g\left(r_{2}\right) g\left(s_{2}\right)^{-1}$ (again because $g\left(s_{1}\right)$ and $g\left(s_{2}\right)$ are units). It is easy to check that h is a ring homomorphism. $h(f(r))=h\left(\frac{r}{1}\right)=g(r) g(1)^{-1}=g(r) \forall r \in R \Rightarrow h \circ f=g$

So the pair ($\left.S^{-1} R, f\right)$ with $f: R \rightarrow S^{-1} R$ is determined up to isomorphism by:

1. $s \in S \Rightarrow f(s)$ is a unit
2. $f(r)=0 \Longleftrightarrow r s=0$ for some $s \in S$
3. $S^{-1} R=\left\{f(r) f(s)^{-1} \mid r \in R, s \in S\right\}$

Example. 1. $P \triangleleft R$ prime ideal and $S=R \backslash P$. Set $R_{P}=S^{-1} R$ in this case. "the localization of R at $P^{\prime \prime} . f: R \rightarrow R_{P}, r \mapsto \frac{r}{1}$, the extension of P to R_{P} is $P R_{P}=\left\{\frac{r}{s}: r \in P, s \notin P\right\}$ which is the set of non-units in R_{P}. So this is the unique maximal ideal in R_{P}, so R_{P} is a local ring. Special Case:
(a) R an integral domain, $P=0$ then R_{P} is the field of fractions of R. (e.g., $R=\mathbb{Z}$ then $\left.R_{P}=\mathbb{Q}\right)$
(b) $R=\mathbb{Z}, P=p \mathbb{Z}(p$ a prime number $) \Rightarrow R_{P}=\mathbb{Z}_{(p)}=\left\{\frac{r}{s} \in \mathbb{Q}: r \in \mathbb{Z}, s \in \mathbb{Z} \backslash p \mathbb{Z}\right\} \subseteq \mathbb{Q}$ Let $f \in \mathbb{Z}$. Write $f(p)$ to be the image of f in $\mathbb{Z} / p \mathbb{Z}=\mathbb{F}_{p}$. Then p is a zero of $f \Longleftrightarrow f(p)=0 \Longleftrightarrow f \in p \mathbb{Z}$. What about $f \in \mathbb{Q}$? Write $f=\frac{r}{s}, f(p)=$ $\left\{\begin{array}{ll}r(p) s(p)^{-1} & \text { if } p \nmid s(\Longleftrightarrow s(p) \neq 0) \\ \infty & \text { otherwise }\end{array}\right.$. So f gives a function on $\operatorname{Spec} \mathbb{Z}$ with $f(p) \in\left\{\begin{array}{l}\mathbb{F}_{p} \cup\{\infty\} \\ \mathbb{Q}\end{array}\right.$ if p is a prime
if $p=0$
(c) $R=k\left[x_{1}, \ldots, x_{n}\right]$ where k is an algebraically closed field (e.g., $k=\mathbb{C}$). $M \triangleleft R, M=$ $\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$ where $\left(a_{1}, a_{2}, \ldots, a_{n}\right):=\underline{a} \in k^{n}$.
Note. i. M is $\operatorname{ker}\left(\operatorname{eval}_{\underline{a}}: R \rightarrow k\right.$ defined by $\left.f \mapsto f(\underline{a})\right) \Rightarrow M$ is maximal since $R / M \cong k$ ii. Every maximal ideal of R has this form (by the Hilbert's Nullstellensatz)
$R \subset R_{M} \subset k\left(x_{1}, \ldots, x_{n}\right)$ and $R_{M}=\left\{\frac{f}{g}: f, g \in R, g(\underline{a}) \neq 0\right\}=$ subring of $k\left(x_{1}, \ldots, x_{n}\right)$ consisting of rational functions which are "defined at \underline{a} ". The unique maximal ideal in R_{m} is $M R_{M}=\left\{\frac{f}{g}: f(\underline{a})=0, g(\underline{a}) \neq 0\right\}$. Finally $R_{M} / M R_{M} \cong k=R / M$
2. $0 \in S \Rightarrow S^{-1} R=0$ (The zero ring)
3. If $S \subset R^{\times}$then $f: R \rightarrow S^{-1} R$ is an isomorphism (and conversely)
4. $f \in R, S=\left\{1, f, f^{2}, \ldots\right\}$ then $S^{-1} R$ is denoted $R_{f}=\left\{\left.\frac{r}{f^{n}} \right\rvert\, r \in R, n \geq 0\right\}$

Example. $R=\mathbb{Z}, f=2, R_{f}=\mathbb{Z}\left[\frac{1}{2}\right]$

3.1 Localization of Modules

Given an R-module M and a multiplicatively closed set $S \subset R$, let $S^{-1} M=\left\{\right.$ equivalence classes: $\frac{m}{s}$ of pairs (m, s) with $m \in M, s \in S$ modulo the relation $(m, s) \sim\left(m^{\prime}, s^{\prime}\right) \Longleftrightarrow r\left(s m^{\prime}-s^{\prime} m\right)=0$ for some $t \in S\}$. Define $\frac{m_{1}}{s_{1}}+\frac{m_{2}}{s_{2}}=\frac{s_{2} m_{1}+s_{1} m_{2}}{s_{1} s_{2}}$ and $\frac{r}{s_{1}} \frac{m}{s_{2}}=\frac{r m}{s_{1} s_{2}}$. This turns $S^{-1} M$ into an $S^{-1} R$-module.

Also if $\phi: M \rightarrow N$ is an R-linear map then we define $S^{-1} \phi: S^{-1} M \rightarrow S^{-1} N$ by $\left(S^{-1} \phi\right)\left(\frac{m}{s}\right)=\frac{\phi(m)}{s}$. This is an $S^{-1} R$-linear map.

If we have $M_{1} \xrightarrow{\psi} M_{2} \xrightarrow{\phi} M_{3}$ is a sequence of R-linear map then $S^{-1}(\phi \psi)=\left(S^{-1} \phi\right)\left(S^{-1} \psi\right)$: $S^{-1} M_{1} \rightarrow S^{-1} M_{3}$ since they both map $\frac{m}{s} \rightarrow \frac{\phi(\psi(m))}{s} \forall \frac{m}{s} \in S^{-1} M_{1}$

Proposition 3.3. If $M_{1} \xrightarrow{\psi} M_{2} \xrightarrow{\phi} M_{3}$ is an exact sequence of R-modules then $S^{-1} M_{1} \xrightarrow{S^{-1} \psi} S^{-1} M_{2} \xrightarrow{S^{-1} \phi}$ $S^{-1} M_{3}$ is an exact sequence of $S^{-1} R$-modules.

Proof. We need to prove that: $\operatorname{im} \psi=\operatorname{ker} \phi \Rightarrow \operatorname{im}\left(S^{-1} \psi\right)=\operatorname{ker}\left(S^{-1} \phi\right)$
$\operatorname{im} \psi \subseteq \operatorname{ker} \phi \Rightarrow \phi \psi=0 \Rightarrow\left(S^{-1} \phi\right)\left(S^{-1} \psi\right)=S^{-1}(\phi \psi)=S^{-1} 0=0 \Rightarrow \operatorname{im}\left(S^{-1} \psi\right) \subseteq \operatorname{ker}\left(S^{-1} \phi\right)$
Conversely: Let $\frac{m_{2}}{s} \in \operatorname{ker}\left(S^{-1} \phi\right)$. Then $0=\frac{\phi\left(m_{2}\right)}{s}$ so $\exists t \in S$ such that $t \phi\left(m_{2}\right)=0 \Rightarrow \phi\left(t m_{2}\right)=0$.
So $\exists m_{1} \in M_{1}$ such that $t m_{2}=\psi\left(m_{1}\right)$. Now $\frac{m_{1}}{t s} \stackrel{S^{-1}}{\mapsto} \frac{\psi\left(t m_{1}\right)}{t s}=\frac{t m_{2}}{t s}=\frac{m_{2}}{s}$. So $\frac{m_{2}}{s} \in \operatorname{im}\left(S^{-1} \psi\right)$ as required.

Special Case: $M_{1}=0$, i.e., ϕ injective: If $M \leq N$ then $S^{-1} M \leq S^{-1} N$
Corollary 3.4. Let N, N_{1}, N_{2} be R-modules of M. Then:

1. $S^{-1}\left(N_{1}+N_{2}\right)=S^{-1} N_{1}+S^{-1} N_{2}$ (as submodules of $S^{-1} M$)
2. $S^{-1}\left(N_{1} \cap N_{2}\right)=S^{-1} N_{1} \cap S^{-1} N_{2}$ (as submodules of $S^{-1} M$)
3. $S^{-1}(M / N) \cong S^{-1} M / S^{-1} N$

Proof. 1. Trivial: Both sides consist of elements of $\frac{x_{1}+x_{2}}{s}=\frac{x_{1}}{s}+\frac{x_{2}}{s}\left(x_{i} \in N_{i}, s \in S\right)$, and $\frac{x_{1}}{s_{1}}+\frac{x_{2}}{s_{2}}=$ $\frac{s_{2} x_{1}+s_{1} x_{2}}{s_{1} s_{2}}$, the numerator is in $N_{1}+N_{2}$ and denominator in S, hence the whole fraction is in $S^{-1}\left(N_{1}+N_{2}\right)$
2. Exercise
3. Apply the proposition to the short exact sequence $0 \rightarrow N \rightarrow M \rightarrow M / N \rightarrow 0$ to get that $0 \rightarrow$ $S^{-1} N \rightarrow S^{-1} M \rightarrow S^{-1}(M / N) \rightarrow 0$ is exact then by first isomorphism theorem $S^{-1}(M / N) \cong$ $S^{-1} M / S^{-1} N$

Proposition 3.5. $S^{-1} M \cong S^{-1} R \otimes_{R} M$ via the map $\frac{r}{s} \otimes m \mapsto \frac{r m}{s}$. That is $S^{-1} M$ is obtain via "extension of scalars" using the standard map $f: R \rightarrow S^{-1} R$ as the structure map

Proof. Map $S^{-1} R \times M \rightarrow S^{-1} M$ by $\left(\frac{r}{s}, m\right) \mapsto \frac{r m}{s}$. This is bilinear so it induces a well defined map $g: S^{-1} R \otimes_{R} M \rightarrow S^{-1} M$ as in the theorem. We check g is an isomorphism.
g is surjective: $g\left(\frac{1}{s} \otimes m\right)=\frac{m}{s}$
Observe that every element of $S^{-1} R \otimes_{R} M$ has the form $\frac{1}{s} \otimes m$ since $\sum_{i=1}^{n} \frac{r_{i}}{s_{i}} \otimes m_{i}=\sum_{i=1}^{n} \frac{r_{i}^{\prime}}{s} \otimes m_{i}$ where $s=s_{1} s_{2} \ldots s_{n}$. But $\sum_{i=1}^{n} \frac{r_{i}^{\prime}}{s} \otimes m_{i}=\sum_{i=1}^{n} \frac{1}{s} \otimes r_{i}^{\prime} m_{i}=\frac{1}{s} \otimes\left(\sum_{i=1}^{n} r_{i}^{\prime} m_{i}\right)$. Now we show g is injective. Suppose $g\left(\frac{1}{s} \otimes m\right)=0 \Rightarrow \frac{m}{s}=0 \Rightarrow \exists t \in S$ such that $t m=0$. Now $\frac{1}{s} \otimes m=\frac{t}{t s} \otimes m=$ $\frac{1}{t s} \otimes t m=\frac{1}{t s} \otimes 0=0$. Hence g is injective.

Proposition 3.6. Let M, N be R-modules and S a $M C S$. Then $S^{-1} M \otimes_{s^{-1} R} S^{-1} N \cong S^{-1}\left(M \otimes_{R} N\right)$ (as $S^{-1} R$-modules)

Proof.

$$
\begin{aligned}
S^{-1} M \otimes_{S^{-1} R} S^{-1} N & \cong\left(M \otimes_{R} S^{-1} R\right) \otimes_{S^{-1} R} S^{-1} N \text { by the preceding proposition } \\
& \cong M \otimes_{R}\left(S^{-1} R \otimes_{S^{-1} R} S^{-1} N\right) \text { by associativity } \\
& \cong M \otimes_{R} S^{-1} N \text { by Lemma } 2.19 \\
& \cong M \otimes_{R}\left(S^{-1} R \otimes_{R} N\right) \text { by preceding proposition } \\
& \cong S^{-1} R \otimes_{R}\left(M \otimes_{R} N\right) \text { rearranging terms } \\
& \cong S^{-1}\left(M \otimes_{R} N\right) \text { by preceding proposition }
\end{aligned}
$$

Special Case: Let $P \triangleleft R$ be a prime ideal. Let $S=R \backslash P$ and denote $S^{-1} M$ by M_{P}. (which is a module over the local ring $\left.R_{P}=S^{-1} R\right)$. Then $M_{P} \otimes_{R_{P}} N_{P} \cong\left(M \otimes_{R} N\right)_{P}$

3.2 Local Properties

Definition 3.7. A property of R-modules is called local if: M has the property if and only if M_{P} has the property $\forall P \in \operatorname{Spec} R$

Proposition 3.8 (Being zero is a local property). Let M be an R-module. Then the following are equivalent:

1. $M=0$
2. $M_{P}=0$ for all prime $P \triangleleft R$
3. $M_{P}=0$ for all maximals $P \triangleleft R$

Proof. $1 \Rightarrow 2 \Rightarrow 3$ is trivial. To show $3 \Rightarrow 1$, suppose $M \neq 0$. Let $x \in M, x \neq 0$, set $I=\operatorname{Ann}_{R} x=\{r \in$ $R: r x=0\} \triangleleft R, \neq R$ (as $1 \notin I$), so there exists a maximal ideal $P \supseteq I$. Then $\frac{x}{1} \in M_{P}$ is non-zero: for $\frac{x}{1}=0 \Longleftrightarrow s x=0$ for some $s \in R \backslash P$, which is a contradiction.
Proposition 3.9. Let $\phi: M \rightarrow N$ be a homomorphism of R-modules. The following are equivalent:

1. ϕ is injective
2. $\phi_{P}: M_{P} \rightarrow N_{P}$ is injective for all primes P
3. $\phi_{P}: M_{P} \rightarrow N_{P}$ is injective for all maximals P

Moreover the same holds with"injective" replaced by "surjective" throughout.
Proof. Surjective case: $1 \Rightarrow M \xrightarrow{\phi} N \rightarrow 0$ is exact $\Rightarrow M_{P} \xrightarrow{\phi_{P}} N_{P} \rightarrow 0$ is exact for all primes $P \Rightarrow \phi_{P}$ is surjective for all $P \Rightarrow 2$.
$2 \Rightarrow 3$ is trivial
$3 \Rightarrow 1$: Let $N^{\prime}=\phi(M) \leq N$. Then $M \rightarrow N \rightarrow N / N^{\prime} \rightarrow 0$ is exact. $\Rightarrow M_{P} \xrightarrow{\phi_{P}} N_{P} \rightarrow\left(N / N^{\prime}\right)_{P} \rightarrow 0$ is exact \forall maximal $P \Rightarrow\left(N / N^{\prime}\right)_{P}=0$ for all maximal $P \Rightarrow N / N^{\prime}=0$ (by previous proposition) $\Rightarrow N=N^{\prime}$ hence ϕ is surjective.
(Injective case uses the same argument with the exact sequence $0 \rightarrow M \rightarrow N$)

3.3 Localization of Ideals

R is a ring, S a multiplicatively closed set $\subset R, f: R \rightarrow S^{-1} R$ defined by $r \mapsto \frac{r}{1}$. Recall that for $I \triangleleft R$ we have $I^{e}=S^{-1} I=\left\{\frac{r}{s}: r \in I, s \in S\right\} \triangleleft S^{-1} R$. (We will use $I \triangleleft R$ and $J \triangleleft S^{-1} R$)
Note. Any finite sum $\sum \frac{r_{i}}{s_{i}}$ can be put over a common denominator
Proposition 3.10. 1. Every ideal $J \triangleleft S^{-1} R$ is the extension of an ideal $I \triangleleft R . \quad\left(N a m e l y ~ J=J^{c e}\right)$
2. If $I \triangleleft R$ then $I^{e c}=\cup_{s \in S}(I: s)$; hence $I^{e}=(1)$ if and only if $I \cap S \neq \emptyset$.
3. If $I \triangleleft R$ then I is the contraction of some ideal $J \triangleleft S^{-1} R$ if and only if no element of S is a zero divisor in R / I.
4. The correspondence $P \leftrightarrow S^{-1} P$ gives an order-preserving bijection between the prime ideals P of R which do not meet S and the prime ideals $S^{-1} P$ of $S^{-1} R$.
5. S^{-1} commutes with sums, products, intersections and radicals:
(a) $S^{-1}\left(I_{1}+I_{2}\right)=S^{-1} I_{1}+S^{-1} I_{2}$
(b) $S^{-1}\left(I_{1} I_{2}\right)=\left(S^{-1} I_{1}\right)\left(S^{-1} I_{2}\right)$
(c) $S^{-1}\left(I_{1} \cap I_{2}\right)=S^{-1} I_{1} \cap S^{-1} I_{2}$
(d) $S^{-1}(r(I))=r\left(S^{-1} I\right)$

Proof. 1. We always have $J \supseteq J^{c e}$. We prove the containment the other way, let $\frac{r}{s} \in J \triangleleft S^{-1} R \Rightarrow$ $\frac{r}{1} \in J \Rightarrow r \in J^{c} \Rightarrow \frac{r}{s}=\frac{1}{s} \frac{r}{1} \in\left(J^{c}\right)^{e}$. Hence $J=J^{e c}$.
2.

$$
\begin{aligned}
r \in I^{e c}=\left(S^{-1} I\right)^{c} & \Longleftrightarrow \frac{r}{1}=\frac{a}{s} \text { for some } a \in I, s \in S \\
& \Longleftrightarrow t(s r-a)=0 \text { for some } a \in I, s, t \in S \\
& \Longleftrightarrow r s_{1} \in I \text { for some } s_{1} \in S \\
& \Longleftrightarrow r \in\left(I: s_{1}\right) \text { for some } s_{1} \in S \\
& \Longleftrightarrow r \in \cup_{s \in S}(I: S)
\end{aligned}
$$

So $\underbrace{I^{e}=(1) \Longleftrightarrow I^{e c}=(1)}_{I^{e}=I^{\text {ece }}} \Longleftrightarrow 1 \in \cup_{s \in S}(I: s) \Longleftrightarrow I \cap S \neq \emptyset$
3. I is a contraction $\Longleftrightarrow I^{e c} \subseteq I \Longleftrightarrow(s r \in I$ for some $s \in S \Rightarrow r \in I) \Longleftrightarrow(\bar{s} \bar{r}=0$ in R / I for some $s \in S \Rightarrow \bar{r}=0) \Longleftrightarrow \forall s \in S, \bar{s}$ is not a zero divisor in R / I
4. One way is clear: If Q is a prime of $S^{-1} R$ then Q^{c} is a prime of R. Conversely: let P be a prime of $R \Rightarrow R / P$ is a domain. Now $\bar{S}^{-1}(R / P) \cong S^{-1} R / S^{-1} P$ (where \bar{S} is the image of S in R / P). But $\bar{S}^{-1}(R / P)$ is a subring of the field of fractions of R / P, so is either 0 or an integral domain. If 0 then $S^{-1} P=S^{-1} R=(1)$. If $\neq 0$ then $S^{-} P$ is a prime ideal of $S^{-1} R$. The first case occurs $\Longleftrightarrow 0 \in \bar{S} \Longleftrightarrow S \cap P \neq \emptyset$.

5. Easy Exercise

Remark. Here's a quick proof that $f \in R$ not nilpotent $\Rightarrow \exists P$ with $f \notin P$ and P prime.
Take $S=\left\{1, f, f^{2}, \ldots\right\} \not \supset 0 \Rightarrow S^{-1} R$ is a non-zero ring, so it has a maximal ideal $Q \Rightarrow Q^{c}=P$ is a prime of $R, P \cap S=\emptyset \Rightarrow f \notin P$.

Corollary 3.11. $N\left(S^{-1} R\right)=S^{-1}(N(R))$
Corollary 3.12 (Special case when $S=R \backslash P, P$ prime). $I \cap S=\emptyset \Longleftrightarrow I \subseteq P$. Hence the proper ideals of R_{P} are in bijection with the ideals of R which are contained in P.

Corollary 3.13. The field of fractions of the domain R / P (P is prime) is isomorphic to the residue field of R_{P}

Proof. $S=R \backslash P$. The residue field of R_{P} is $R_{P} / S^{-1} P=S^{-1} R / S^{-1} P=\bar{S}^{-1}(R / P)=$ field of fraction of R / P since $\bar{S}=(R / P) \backslash\{0\}$.

Corollary 3.14. If $P_{1} \subset P_{2}$ are primes of R then $\left(R / P_{1}\right)_{P_{2}}=R_{P_{2}} / P_{1_{P_{2}}}$ - a ring whose prime correspond to primes of R between P_{1} and P_{2}

Geometrical Interlude I

Let k be an algebraically closed field (e.g. $k=\mathbb{C}$). Let k^{n} be affine n-space over $k:\left\{\underline{a}=\left(a_{1}, \ldots, a_{n}\right)\right.$: $\left.a_{j} \in k\right\}$. Algebraic geometry studies solutions to polynomial equations $S=\left\{f_{j}\left(x_{1}, \ldots, n_{n}\right)\right\} \subseteq$ $k\left[x_{1}, \ldots, x_{n}\right] . V(S)=\left\{\underline{a} \in k^{n}: f_{j}(\underline{a})=0 \forall f_{j} \in S\right\}$.

Definition. The set $V(S)$ is an affine algebraic set
Clearly $V(S)=V(I)$ where I is the ideal of $k\left[x_{1}, \ldots, x_{n}\right]$ generated by S and $V(I)=V(r(I))$, since $f \in r(I) \Longleftrightarrow f^{n} \in I(n \geq 1)$

Hilbert Basis Theorem. Every ideal $I \triangleleft k\left[x_{1}, \ldots, x_{n}\right]$ is finitely generated
Proof. Later
If $I=\left(f_{1}, \ldots, f_{k}\right)$ then $V(I)=V\left(\left\{f_{1}, \ldots, f_{k}\right\}\right)$. It is not hard to check that:

- $V(0)=k^{n}$
- $V(1)=\emptyset$
- $V\left(\cup_{j} S_{j}\right)=\cap_{j} V\left(S_{j}\right)$
- $V(I J)=V(I) \cup V(J)$

Hence the collection of all algebraic subsets of k^{n} is closed under intersections and finite unions, so they form the closed sets of a topology on k^{n} called the Zariski topology on k^{n}.

In the other direction: let $S \subset k^{n}$ and define $I(S)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f(\underline{a})=0 \forall \underline{a} \in S\right\}$, which is an ideal of $k\left[x_{1}, \ldots, x_{n}\right]$, and in fact $r(I(S))=I(S)$.

Fact. $V(I(S))=\bar{S}$ (for $S \subset k^{n}, \bar{S}$ is the closure of S in k^{n})
Fact. $I(V(J))=r(J)$ for $J \triangleleft k\left[x_{1}, \ldots, x_{n}\right]$. This is called "Hilbert's Nullstellensatz", we will prove this later.

The conclusion is that V and I gives (inclusion order-reversing) bijections between radical ideals of $k\left[x_{1}, \ldots, x_{n}\right]$ and closed subsets of k^{n}.

Definition 3.15. An algebraic set is irreducible if it is not the union of two proper closed subsets. (\Longleftrightarrow any two non-empty open subsets intersects non-trivially). These are $V(P)$ for P a prime ideal of $k\left[x_{1}, \ldots, x_{n}\right]$. Irreducible algebraic sets are often called algebraic varieties

Example. $n=1$: $k^{n}=k^{1}=k$. Now $k[x]$ is a UFD so the primes are (0) and ($x-a$) with $a \in k$ (since k is algebraically closed). Note $(x-a)$ are maximals and correspond to points of k while (0) is not maximal and correspond to the whole of k. The closed sets are k itself and all the finite subsets of k. (So every infinite subset of k is dense)
$n=2: k\left[x_{1}, x_{2}\right]=k[x, y]$. Primes have 3 types:

- $(0) \leftrightarrow V(0)=k^{2}$
- $P=(f(x, y)) \leftrightarrow V(f)=$ irreducible curves in $k^{2}\left(f\right.$ irreducible). e.g., $V\left(x^{2}+y^{2}-1\right)=$ circle in k^{2}
- $M=(x-a, y-b) \leftrightarrow V(M)=\{(a, b)\}$ singleton in $k^{2}(a, b \in k)$

Coordinate rings (of algebraic sets)

Every element $f \in k\left[x_{1}, \ldots, x_{n}\right]$ defines a polynomial function $k^{n} \rightarrow k$ (defined by $\underline{a} \mapsto f(\underline{a})$). f, g agree on $V(I) \Longleftrightarrow f-g \in I(V(I))$. Without loss of generality we can assume $I=r(I)$ so f, g agree on $V(I) \Longleftrightarrow f-g \in I$.

Definition. Define $k[V]=k\left[x_{1}, \ldots, x_{n}\right] / I$. Then $k[V]$ is the ring of polynomial function on V. This is called the coordinate ring of V.

Ideals of $k[V] \leftrightarrow$ ideals J with $I \subseteq J \triangleleft k\left[x_{1}, \ldots, x_{n}\right] . M_{\underline{a}}=$ Maximal ideals of $k[V] \leftrightarrow$ maximal ideals $M \supseteq I$, i.e., $M=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$ with $\underline{a}=\left(a_{1}, \ldots, a_{n}\right) \in V . M_{\underline{a}}=\{\bar{f} \in k[V]: f(\underline{a})=0\}=$ kernel of map $k[V] \rightarrow k$ defined by $\bar{f} \mapsto f(\underline{a})$.

If V is a variety then $k[V]$ is an integral domain, (since $V=V(P)$ so $K[V]=k\left[x_{1}, \ldots, k_{n}\right] / P$ where P is prime)

We have a correspondence between

- Algebraic sets (or varieties) in k^{n}
- finitely generated k-algberas (or domains)

This correspondence extends to one which takes polynomial maps between algebraic sets to morphism of k-algebras.

4 Integral Dependence

Definition 4.1. Let A be a subring of the ring B. An element $b \in B$ is integral over A if it satisfies an equation

$$
\begin{equation*}
b^{n}+a_{n-1} b^{n-1}+\cdots+a_{0}=0, a_{i} \in A \tag{4.1}
\end{equation*}
$$

Let $f(x)=x^{2}+a_{n-1} x^{n-1}+\cdots+a_{0} \in A[x]$. If $a \in A$ then a is a root of $x-a$, so a is integral over A

Example. $A=\mathbb{Z}, B=\mathbb{C}, z \in \mathbb{C}$ is integral over $\mathbb{Z} \Longleftrightarrow z$ is an algebraic integer
$A=\mathbb{Q}, B=\mathbb{C}$ gives algebraic numbers
$A=\mathbb{Z}, B=\mathbb{Q}, z \in \mathbb{Q}$ integral over $\mathbb{Z} \Longleftrightarrow z \in \mathbb{Z}$, i.e., let $x=\frac{r}{s}, r, s \in \mathbb{Z}$ coprime. If $\left(\frac{r}{s}\right)^{n}+\cdots+a_{0}=$
0 then $r^{n}+a_{n-1} r^{n} s+\cdots+a_{0} s^{n}=0 \Rightarrow s \mid r^{n} \Rightarrow s= \pm 1, x \in \mathbb{Z}$.
A is a UFD, B its field of fraction gives similar result as the previous example.
Theorem 4.2. Let A be a subring of $B, b \in B$. Then the following are equivalent:

1. b is integral over A
2. $A[b]$ is a finitely generated A-module
3. B contains a subring $C \supseteq A[b]$ which is finitely generated as an A-module
4. There exists a faithful $A[b]$-module M which is finitely generated as an A-module

Proof. $1 \Rightarrow 2$: If b satisfies equation (4.1) then $A[b]$ is generated by $1, b, \ldots, b^{n-1}$ since equation (4.1) $\Rightarrow b^{n}=-\left(a_{n-1} b^{n-1}+\cdots+a_{0}\right)$
$2 \Rightarrow 3$: Take $C=A[b]$
$3 \Rightarrow 4: M=C$. This is a faithful $A[b]$-module as $A[b]$ is a subring C and $1 \in C$. So if $r x=0 \forall r \in$ $A[b], x \in M=C$ then $r 1=0$, hence $r=0$.
$4 \Rightarrow 1$: Given M as in 4 . let m_{1}, \ldots, m_{n} be generators of M as an A-module. Let $\phi: M \rightarrow M$ be the map defined by $x \mapsto b x$. This is A-linear so $\phi \in \operatorname{End}_{A}(M)$. Hence there exists $a_{0}, \ldots, a_{n-1} \in A$ such that $\phi^{n}+a_{n-1} \phi^{n-1}+\cdots+a_{0}=0\left(\operatorname{in~}_{\operatorname{End}_{A}(M)}\left(M\right.\right.$, i.e., $\left(\phi^{n}+\cdots+a_{0}\right) y=0 \forall y \in M \Rightarrow$ $\left(b^{n}+a_{n-1} b^{n-1}+\cdots+a_{0}\right) y=0 \forall y \in M \underset{M \text { faithful }}{\Rightarrow} b^{n}+a_{n-1} b^{n-2}+\cdots+a_{0}=0$

Corollary 4.3. For all $n \geq 1$, if $b_{1}, \ldots, b_{n} \in B$ are all integral over A then $A\left[b_{1}, \ldots, b_{n}\right]$ is finitely generated as an A-module.

Proof. We prove this using induction on n.
$n=1$: Use the previous theorem.
In general: Let $A_{1}=A\left[b_{1}, \ldots, b_{n-1}\right]$. Then A_{1} is finitely generated as an A module. $A\left[b_{1}, \ldots, b_{n}\right]=$ $A_{1}\left[b_{n}\right]$, but b_{n} is integral over A_{1}, hence $A_{1}\left[b_{n}\right]$ is finitely generated as an A_{1}-module, so $A_{1}\left[b_{n}\right]$ is finitely generated as an A-module

Corollary 4.4. Let $C=\{b \in B \mid b$ integral over $A\} \subseteq B$. Then C is a subring of B containing A.
Proof. We need to show that for all $x, y \in C$ then $x \pm y, x y \in C$. Since $x, y \in C$ by the previous corollary we know $A[x, y]$ is finitely generate as an A-module and it contains $x \pm y, x y$. By the previous theorem $(3 . \Rightarrow 1$.) all elements of $A[x, y]$ are integral over A

Definition 4.5. Using the notation of Corollary 4.4. C is the integral closure of A in B.
If $C=B$ we say B is integral over A
If $C=A$ we say A is integrally closed in B
Example. \mathbb{Z} is integrally closed over \mathbb{Q}
The integral closure of \mathbb{Z} in \mathbb{C} is the ring of algebraic integers.
Definition 4.6. If A is an integral domain, we say that A is integrally closed if A is integrally closed in its field of fractions.

Example. \mathbb{Z} is integrally closed Any UFD is integrally closed

Corollary 4.7. If $A \subseteq B \subseteq C$ then C is integral over $A \Longleftrightarrow B$ is integral over A and C is integral over B

Proof. " \Rightarrow ": Obvious
$" \Leftarrow "$ Let $c \in C$. Then $c^{n}+b_{n-1} c^{n-1}+\cdots+b_{0}=0, b_{i} \in B$. Define $B_{0}:=A\left[b_{0}, \ldots, b_{n-1}\right]$. Then c is integral over B_{0} and B_{0} is finitely generated as an A-module. By the theorem c is integral over A

Corollary 4.8. The integral closure of A in B is integrally closed in B
Proof. Trivially follows from previous corollary
Example. Let K be a number field (that is a field containing \mathbb{Q} with finite degree). Then the integral closure of \mathbb{Z} in K is the ring of algebraic integers of K, called the ring of integers. That is, the ring of integers is $K \cap\{$ ring of all algebraic integers $\}$. We will denote this \mathcal{O}_{K} (or \mathbb{Z}_{K}). e.g.:

- $K=\mathbb{Q}(i), \mathcal{O}_{K}=\mathbb{Z}[i]$ (the Gaussian integers)
- $K=\mathbb{Q}(\sqrt{-3}), \mathcal{O}_{K}$ contains $\mathbb{Z}[\sqrt{-3}]$. In fact $\mathcal{O}_{K}=\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$
- $K=\mathbb{Q}(\sqrt[3]{10})$. The integral closure of \mathbb{Z} in K is $\mathcal{O}_{K}=\mathbb{Z}\left[\frac{1+\sqrt[3]{10}+\sqrt[3]{100}}{3}\right]$

Proposition 4.9. Let B be an integral extension of A. Then:

1. For all $J \triangleleft B, I=J^{c}=J \cap A$ we have B / J is integral over A / I
2. If S is a multiplicatively closed set in A then $S^{-1} B$ is integral over $S^{-1} A$. Special Case: P a prime of $A, S=A \backslash P \Rightarrow B_{P}$ is integral over A_{P}
Proof. Let $b \in B$ satisfy $b^{n}+a_{1} b^{n-1}+\cdots+a_{n}=0($ in $B) \Rightarrow \bar{b}^{n}+\overline{a_{1}} \bar{b}^{n-1}+\cdots+\overline{a_{n}}=0($ in $B / J) \Rightarrow \bar{b}$ is integral over A / I
$\frac{b}{s} \in S^{-1} B \Rightarrow\left(\frac{b}{s}\right)^{n}+\frac{a_{1}}{s}\left(\frac{b}{s}\right)^{n-1}+\cdots+\frac{a_{n-1}}{s^{n-1}}\left(\frac{b}{s}\right)+\frac{a_{n}}{s^{n}}=0 \Rightarrow \frac{b}{s}$ is integral over $S^{-1} A$
Lemma 4.10. Let B be an integral extension of A, with A and B both domains. Then B is a field if and only if A is a field

Proof. Assume A is a field. Let $b \in B, b \neq 0$. Let $b^{n}+a_{1} b^{n-1}+\cdots+a_{n-1} b+a_{n}=0$ be an integral equation of minimal degree n. Then $a_{n} \neq 0$ so a_{n}^{-1} exists in A. Hence the equation can be rewritten as $b\left(b^{n-1}+\overline{\cdots+a_{n-1}}\right)=-a_{n} \Rightarrow b^{-1}=-a_{n}^{-1}\left(b^{n-1}+\cdots+a_{n-1}\right) \in B$. Hence b as an inverse, so B is a field.

Conversely suppose B is a field. Let $a \in A, a \neq 0$. Then a^{-1} exists in B. So there is an equation: $\left(a^{-1}\right)^{n}+a_{1}\left(a^{-1}\right)^{n-1}+\cdots+a_{n}=0\left(a_{i} \in A\right)$, which can be rearranged to give $a^{-1}=$ $-\left(a_{1}+a_{2} a+\cdots+a_{n} a^{n-1}\right) \in A$.

Lemma 4.11. Let B be an integral extension of A. Let $Q \triangleleft B$ be prime and $P=Q \cap A$, a prime of A. Then P is maximal if and only if Q is maximal

Proof. By Proposition $4.9 B / Q$ is integral over A / P so by Lemma $4.10 Q$ is maximal $\Longleftrightarrow B / Q$ is a field $\Longleftrightarrow A / P$ is a field $\Longleftrightarrow P$ is maximal

Theorem 4.12. Let B be an integral extension of A and P a prime of A. Then:

1. There exists a prime Q of B with $P=Q \cap A$
2. If Q_{1}, Q_{2} are primes of B with $Q_{1} \cap A=P=Q_{2} \cap A$ and $Q_{1} \supseteq Q_{2}$ then $Q_{1}=Q_{2}$.

Proof. Consider the following commutative diagram:

Let M be a maximal ideal in B_{P}. Let $Q=\beta^{-1}(M)$, a prime in B. Now $Q \cap A=P$ since $M \cap A_{P}$ is maximal in A_{P} (Lemma 4.11) but A_{P} has only one maximal ideal namely $P A_{P}$, which contracts to $P: \alpha^{-1}\left(M \cap A_{P}\right)=P=A \cap \beta^{-1}(M)=A \cap Q$.

Let Q_{1} and Q_{2} be as in the statement. Then let $N_{1}=Q_{1} B_{P}$ and $N_{2}=Q_{2} B_{P}$ their extension in B_{P}. These are primes of B_{P} (by Proposition 3.10, and the fact that $Q_{j} \cap S=\emptyset$ where $S=A \backslash P$).

Claim: N_{1}, N_{2} are maximal.
This follow from $N_{j} \cap A_{P}$ are maximal (using Lemma 4.11), but $N_{1} \cap A_{P}=N_{2} \cap A_{P}=P A_{P}$ since both contract to P. Hence each N_{j} is maximal. But if $Q_{1} \supseteq Q_{2} \Rightarrow N_{1} \supseteq N_{2} \Rightarrow N_{1}=N_{2} \Rightarrow Q_{1}=$ $\beta^{-1}\left(N_{1}\right)=\beta^{-1}\left(N_{2}\right)=Q_{2}$

Example (Counter-Example showing the requirement of part 2). $A=\mathbb{Z}, B=\mathbb{Z}[i], P=5 \mathbb{Z}$, then if we let $Q_{1}=(2+i), Q_{2}=(2-i)$ we find $Q_{1} \cap \mathbb{Z}=5 \mathbb{Z}$ and $Q_{2} \cap \mathbb{Z}=5 \mathbb{Z}$

The "Going Up" Theorem. Consider the following set-up.

$$
\begin{array}{cc}
Q_{1} \subseteq \cdots \subseteq Q_{m}(\text { primes of } B) \\
\operatorname{int}_{\uparrow} & P_{1} \subseteq P_{2} \subseteq \cdots \subseteq P_{m} \subseteq \cdots \subseteq P_{n}(\text { primes of } A)
\end{array}
$$

with $Q_{i} \cap A=P_{i}$ (for all $1 \leq i \leq m$). With that set-up there exists Q_{m+1}, \ldots, Q_{n} primes of B with $Q_{m} \subseteq Q_{m+1} \subseteq \cdots \subseteq Q_{n}$ and $Q_{i} \cap A=P_{i} \quad($ for $m+1 \leq i \leq n)$

Proof. By induction we reduce to the case $m=1, n=2$. That is we must find Q_{2} such that $Q_{1} \subseteq Q_{2}$ and $Q_{2} \cap A=P_{2}$. (where $P_{1} \subseteq P_{2}$ and $Q_{1} \cap A=P_{1}$)

Let $\bar{A}=A / P_{1}, \bar{B}=B / Q_{1}$. Then \bar{B} is integral over \bar{A} (by Proposition 4.9) and P_{2} / P_{1} is a prime of \bar{A} so there exists a prime of \bar{B} above it. This prime has the form Q_{2} / Q_{1} with $Q_{2} \supseteq Q_{1}$ and Q_{2} a prime of B. Then $\left(Q_{2} / Q_{1}\right) \cap \bar{A}=P_{2} / P_{1} \Rightarrow Q_{2} \cap A=P_{2}$

4.1 Valuation Rings

Definition 4.13. A valuation ring is an integral domain R such that for every $x \in K$ (the field of fractions of R) either $x \in R$ or $x^{-1} \in R$

Example. \mathbb{Z} is not a valuation ring $\left(\frac{2}{3} \notin \mathbb{Z}, \frac{3}{2} \notin \mathbb{Z}\right)$
$\mathbb{Z}_{(p)}$ is a valuation ring
$R=K$: any field is a valuation ring.
Proposition 4.14. Let R be a valuation ring with field K. Then:

1. R is a local ring
2. $R \subseteq R^{\prime} \subseteq K \Rightarrow R^{\prime}$ is a valuation ring
3. R is integrally closed

Proof. 2. trivial

1. The units of R are the (non-zero) $x \in K$ with both $x, x^{-1} \in R$. Let $M=\{$ non-units in $R\}=\left\{x \in R: x^{-1} \notin R\right\} \cup\{0\}$. We'll show that $M \triangleleft R$, then it's the unique maximal ideal of R. Let $x \in M, r \in R$. Then $r x$ is not a unit since otherwise $x^{-1}=r(r x)^{-1} \in R$, contradiction, i.e., $r x \in M$. Let $x, y \in M$ be non-zero. Then either $\frac{x}{y} \in R$ or $\frac{y}{x} \in R$. If $\frac{x}{y} \in R$ then $x+y=y\left(\frac{x}{y}+1\right) \in M$. Otherwise if $\frac{y}{x} \in R$ then $x+y=x\left(1+\frac{y}{x}\right) \in M$
2. Let $x \in K$ be integral over R. Then $x^{n}+r_{1} x^{n-1}+\cdots+r_{n}=0\left(r_{i} \in R\right)$. If $x \in R$ there is nothing to prove. If $x^{-1} \in R$ then $x+\left(r_{1}+r_{2} x^{-1}+\cdots+r_{n}\left(x^{-1}\right)^{n-1}\right)=0 \Rightarrow x \in R$

Definition 4.15. Let K be a field. A discrete valuation on K is a function $v: K^{*} \rightarrow \mathbb{Z}$ such that:

1. $v(x y)=v(x)+v(y) \forall x, y \in K^{*}$
2. $v(x+y) \geq \min \{v(x), v(y)\} \forall x, y \in K^{*}$ with $x+y \neq 0$

We extend v to a function $K \rightarrow \mathbb{Z} \cup\{\infty\}$ by setting $v(0)=\infty$. Now 1., 2. holds for all $x, y \in K$ with the obvious conventions.

Example 4.16. $K=\mathbb{Q}, p$ a prime number, $v=\operatorname{ord}_{p}$ defined as follows: for $x \in \mathbb{Q}^{*}$ write $x=p^{n} \frac{a}{b}$ where $a, b \in \mathbb{Z}$ and $p \nmid a, b$ and $n \in \mathbb{Z}$. Set $\operatorname{ord}_{p}(x)=n$.

Associated to every discrete valuation of K there is a valuation ring $R_{v} . R_{v}=\{x \in K: v(x) \geq 0\}$. Clearly R_{v} is a ring (by 1. and 2.). Also R_{v} is a valuation ring since $v\left(x^{-1}\right)=-v(x)$ for all $x \in K^{*}$.

Definition 4.17. These R_{v} are called discrete valuation ring (DVR)
Example. $K=\mathbb{Q}$ has a DVR for each prime p, namely $v=\operatorname{ord}_{p}$ then $R_{v}=\mathbb{Z}_{(p)}$.
Note. $\cap_{p} \mathbb{Z}_{(p)}=\mathbb{Z}$
Exercise. Every valuation ring of \mathbb{Q} is \mathbb{Q} itself or $\mathbb{Z}_{(p)}$ for some prime p.
Example. Let $K=k(x)$ where k is a field. K is the field of fractions of $k[x]$. Let $p(x)$ be a monic irreducible polynomial in $k[x]$. Every element of K^{*} can be written as $p^{n} \frac{a}{b}$ where $a, b \in k[x]$ and $p \nmid a, b$ with $n \in \mathbb{Z}$. In this case n is uniquely determined. Define $\operatorname{ord}_{p}\left(p^{n} \frac{a}{b}\right)=n$, just as for $K=\mathbb{Q}$ this is a discrete valuation. The associated valuation ring is $\left\{\frac{f(x)}{g(x)} \in k[x]: p(x) \nmid g(x)\right\}$
e.g. $K=\mathbb{C}(x)$. The monic irreducible monic polynomial are $p(x)=x-a(x \in \mathbb{C})$. Then $\operatorname{ord}_{p}(h)= \begin{cases}n>0 & \text { if } h \text { has a zero of order } n \text { at } a \\ n<0 & \text { if } h \text { has a pole of order } n \text { at } a . \\ 0 & \text { if neither }\end{cases}$
e.g. $K=k(x)$. Define $v\left(\frac{f}{g}\right)=\operatorname{deg}(g)-\operatorname{deg}(f)$ then v is a discrete valuation. Note $k(x)=k\left(\frac{1}{x}\right)$. This v is just ord ${ }_{1 / x}$

Let v be a discrete valuation on K such that $v: K^{*} \rightarrow \mathbb{Z}$ is surjective. (This only involves rescaling v, unless v is identically 0). Let $\pi \in K$ be such that $v(\pi)=1$.
$R_{v}=\{x \in K: v(x) \geq 0\}-M_{v} \cup U_{v}$
$M_{v}=\{x \in K: v(x)>0\}$ - maximal ideal of R_{v}
$U_{v}=\{x \in K: v(x)=0\}$ - set of units in R_{v}
If $x, y \in R_{v}$ then $x \left\lvert\, y \Longleftrightarrow \frac{y}{x} \in R_{v} \Longleftrightarrow v\left(\frac{y}{x}\right) \geq 0 \Longleftrightarrow v(y) \geq v(x)\right.$. So if x_{n} is an element with $v\left(x_{n}\right)=n$ (for all $n \in \mathbb{Z}$) then $x_{n} \mid x_{n+1} \forall n$ hence $R_{v} \supset\left(x_{1}\right) \supset\left(x_{2}\right) \supset \ldots$

Every $x \in R \backslash\{0\}$ can be written uniquely as $x=\pi^{n} u$ where $n=v(x) \geq 0$ and $u \in U_{v}$. (Since if $n=v(x)$ then $u=\pi^{-n} x \Rightarrow v(u)=-n+v(x)=0 \Rightarrow u \in U_{v}$), i.e., R_{v} is a UFD with only one prime, namely π.

Every ideal in R_{v} is principal: the only non-zero ideals are $\left(\pi^{n}\right), n \geq 0 . M_{v}=(\pi)$ since $x \in M_{v} \Longleftrightarrow$ $v(x) \geq 1=v(\pi) \Longleftrightarrow \pi \mid x$. If $I \triangleleft R_{v}, I \neq 0$ let $n=\min \{v(x): x \in I\}$. Then $I=\left(\pi^{n}\right)$ since $\exists x \in I$ with $v(x)=n \forall y \in I, v(y) \geq n \Rightarrow x \mid y$ so $I=(x)$, and $v(x)=v\left(\pi^{n}\right) \Rightarrow x=\pi^{n} u \Rightarrow(x)=\left(\pi^{n}\right)=(\pi)^{n}$.

Geometrically Interlude II: Hilbert's Nullstellensatz.

Algebraic form of Nullstellensatz. Let k be a field and let F be a field which is a finitely generated k-algebra. Then F is a finite algebraic extension of k. In particular if k is algebraically closed then $F=k$.

Weak form of Nullstellensatz. Let k be an algebraically closed field and $I \triangleleft k\left[x_{1}, \ldots, x_{n}\right]$. If $I \neq(1)$ then $V(I) \neq \emptyset$ (i.e., $\exists \underline{a} \in k^{n}$ such that $f(\underline{a})=0 \forall f \in I$)

Corollary 4.18. The maximal ideals in $k\left[x_{1}, \ldots, x_{n}\right]$ (k algebraically closed) are precisely the ideals $M_{\underline{a}}=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right), \underline{a} \in k^{n}$

Strong form of Nullstellensatz. Let k be an algebraically closed field and $I \triangleleft k\left[x_{1}, \ldots, x_{n}\right]$. Then $I(V(I))=r(I)$ (i.e., if $g(\underline{a})=0$ whenever $f(\underline{a})=0 \forall f \in I$ then $g^{N} \in I$)

Proof that Algebraic form \Rightarrow Weak form. Let k be a algebraically closed field and $I \triangleleft k\left[x_{1}, \ldots, x_{n}\right] \Rightarrow$ $I \subseteq M$ a maximal ideal. Consider $k \rightarrow k\left[x_{1}, \ldots, x_{n}\right] \rightarrow k\left[x_{1}, \ldots, x_{n}\right] / M$. Now $k\left[x_{1}, \ldots, x_{n}\right] / M$ is a field which is a finitely generated k-algebra. By the Algebraic form the composite of the previous map is surjective $\left(k\left[x_{1}, \ldots, x_{n}\right] / M \cong k\right.$ as k is algebraically closed), so for all $i, \exists a_{i} \in k$ such that $x_{i}-a_{i} \in M$. So $M \supseteq\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)=M_{\underline{a}}$. But $M_{\underline{a}}$ is maximal so $M=M_{\underline{a}}$. Now for all $f \in I \Rightarrow f \in M \Rightarrow f(\underline{a})=0$

Proof that Weak form \Rightarrow Strong form. $I \triangleleft k\left[x_{1}, \ldots, x_{n}\right]$. We know that $I(V(I)) \supseteq r(I)$ since $g \in$ $r(I) \Rightarrow g^{N} \in I \Rightarrow g^{N}(\underline{a})=0 \forall \underline{a} \in V(I) \Rightarrow g(\underline{a})=0 \Rightarrow g \in I(V(I))$.

Conversely let $g \in I(V(I))$, then $(*)(f(\underline{a})=0 \forall f \in I) \Rightarrow g(\underline{a})=0$.
Extend the ring $k\left[x_{1}, \ldots, x_{n}\right]$ by adding a new variable y to get $k\left[x_{1}, \ldots, x_{n}, y\right]$. In $k\left[x_{1}, \ldots, x_{n}, y\right]$ form the ideal J generated by all $f \in I$ and $1-g\left(x_{1}, \ldots, x_{n}\right) y$, i.e., $J=(1-g(x) y)+I \cdot k\left[x_{1}, \ldots, x_{n}, y\right]$. Now $V(J)=\emptyset$ (in k^{n+1}) since if $\left(a_{1}, \ldots, a_{n}, b\right) \in V(J)$ then

1. $f\left(a_{1}, \ldots, a_{n}\right)=0 \forall f \in I$
2. $1-g\left(a_{1}, \ldots, a_{n}\right) b=0$

This is clearly a contradiction to $(*)$. So by the Weak form, we have $J=k\left[x_{1}, \ldots, x_{n}, y\right]$, i.e., $1 \in J$. So

$$
1=h\left(x_{1}, \ldots, x_{n}, y\right)\left(1-g\left(x_{1}, \ldots, x_{n}\right) y\right)+\sum_{j} h_{j}\left(x_{1}, \ldots, x_{n}, y\right) f_{j}\left(x_{1}, \ldots, x_{n}\right) f_{j} \in I
$$

Substitute $y=\frac{1}{g\left(x_{1}, \ldots x_{n}\right)}$ to get an equation in $k\left(x_{1}, \ldots, x_{n}\right)$.

$$
1=\sum_{j} h_{j}\left(x_{1}, \ldots, x_{n}, \frac{1}{g\left(x_{1}, \ldots, x_{n}\right.}\right) f_{j}\left(x_{1}, \ldots, x_{n}\right)
$$

The RHS is a rational function whose denominator is a power of g. So for large enough $N \geq 0$:

$$
g^{N}=\sum_{j} \tilde{h}_{j}\left(x_{1}, \ldots, x_{n}\right) f_{j}\left(x_{1}, \ldots, x_{n}\right) \in I
$$

for some $\tilde{h}_{j} \in k\left[x_{1}, \ldots, x_{n}\right]$. Hence $g \in r(I)$
Proof of Algebraic Form of Nullstellensatz. $F=k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ (where $x_{i} \in F$ are the generators of F) is a field. We must show that each x_{i} is algebraic over k. We are going to use induction on n
$n=1: F=k\left[x_{1}\right]$. Write x_{1}^{-1} as a polynomial in x_{1}, then we can get an equation for x_{1} over k. (Alternative: if x_{1} were not algebraic then $k\left[x_{1}\right]$ is a polynomial ring, not a field)

Inductive Step: $F=k\left(x_{1}\right)\left[x_{2}, \ldots, x_{n}\right]$ (since F is a field) is a finitely generated algebra over $k\left(x_{1}\right)$ with only $n-1$ generators. So each x_{j} for $j \geq 2$ is algebraic over $k\left(x_{1}\right)$. If we can show that x_{1} is algebraic over k then we are done. For all $j \geq 2$, we have a polynomial equation for x_{j} over $k\left(x_{1}\right)$. Let $f \in A:=k\left[x_{1}\right]$ be a common denominator for all coefficient for all these polynomials. Consider the ring $A_{f}=S^{-1} A$ where $S=\left\{1, f, f^{2}, f^{3}, \ldots\right\}$. All the $n-1$ polynomials are monic in with coefficients in A_{f}. Hence each $x_{j}(j \geq 2)$ is integral over A_{f}. It follows that F is integral over A_{f}
since $F=A\left[x_{2}, \ldots, x_{n}\right]=A_{f}\left[x_{2}, \ldots, x_{n}\right]$. By Lemma 4.10 since F is a field, so is A_{f}. Let $K=k\left(x_{1}\right)$, a subfield of F, the field of fractions of both A and A_{f}. Now $A=k\left[x_{1}\right] \subseteq A_{f} \subseteq K=k\left(x_{1}\right)$ and A_{f} a field implies that $A_{f}=K$ (since K is the smallest field containing A, being its field of fractions)

If x_{1} were not algebraic over k then $A=k\left[x_{1}\right]$ would be the polynomial ring in one variable over k and $k\left(x_{1}\right)=K$ its field of fractions. Take any irreducible $g \in k\left[x_{1}\right]$ with $g \nmid f$, then $\frac{1}{g} \notin A_{f}$. (NB: $k\left[x_{1}\right]$ would have infinitely many irreducible) This leads to a contradiction hence x_{1} is algebraic

5 Noetherian and Artinian modules and rings

Proposition 5.1 (Definition). An R-module M is Noetherian if it satisfies one of the following equivalent conditions:

1. ACC (Ascending Chain Condition): any ascending chain $M_{1} \subseteq M_{2} \subseteq M_{3} \subseteq \ldots$ of submodules of M terminates, i.e., for some n we have $M_{n}=M_{n+1}=\ldots$
2. Every non-empty collection of submodules of M has a maximal element
3. Every submodule of M is finitely generated

Definition 5.2. A ring R is Noetherian if it is so as an R-module, i.e., the ideals of R satisfies ACC and every ideal if finitely generated.

Proposition 5.3 (Definition). An R-module M is Artinian if it satisfies the following equivalent conditions

1. DCC (Descending Chain Condition): any descending chain $M_{1} \supseteq M_{2} \supseteq M_{3} \supseteq \ldots$ of submodule of M terminates, i.e., for some n we have $M_{n}=M_{n+1}=\ldots$
2. Every non-empty collection of submodules has a minimal element

Proof of Proposition5.1. 1) \Longleftrightarrow 2): If we had an infinite AC $M_{1} \varsubsetneqq M_{2} \varsubsetneqq M_{3} \varsubsetneqq \ldots$ then $\left\{M_{n}: n \geq\right.$ 1\} has no maximal elements. Conversely if S is a non-empty set of submodules of M with no maximal elements, then pick $M_{1} \in S, \exists M_{2} \supsetneqq M_{1}, \exists M_{3} \supsetneqq M_{2}, \ldots$
$2) \Rightarrow 3)$: Let S be the set of finitely generated submodules of N, where $N \leq M .0 \in S$ so S has a maximal elements, say N_{0}. So $N_{0} \leq N$ and N_{0} is finitely generated, if $N_{0} \neq N$ take $x \in N \backslash N_{0}$, then $N_{0}+R x \supsetneqq N_{0}$ and is finitely generated, contradiction.
$3) \Rightarrow 1$): Given $M_{1} \subseteq M_{2} \subseteq M_{3} \subseteq \ldots$, let $N=\cup_{n=1}^{\infty} M_{n}$. Then N is a submodule of M. Let x_{1}, \ldots, x_{n} generate N. For large enough k, M_{k} contains contain all of the x_{i}. Then $M_{k}=N=$ $M_{k+1}=M_{k+1}=\ldots$

Note that the proof of 1$) \Longleftrightarrow 2$) can easily be adapted to prove Proposition 5.3
Example. 1. Every finite \mathbb{Z}-module is both Noetherian and Artinian
2. If R is a field k then R-modules are k-vector spaces and they are Noetherian \Longleftrightarrow they are finite dimensional \Longleftrightarrow they are Artinian.
3. \mathbb{Z} is a Noetherian ring (every ideal is generated by 1 element) but is not Artinian: $\mathbb{Z} \supset(2) \supset$ (4) $\supset(8) \supset \cdots \supset\left(2^{n}\right) \supset \cdots$
4. $R=k\left[x_{1}, x_{2}, \ldots\right]$ polynomials in a countable (non-finite) number of variables. R is neither Noetherian nor Artinian: $\left(x_{1}\right) \subset\left(x_{1}, x_{2}\right) \subset\left(x_{1}, x_{2}, x_{3}\right) \subset \ldots$ and $\left(x_{1}\right) \supset\left(x_{1}^{2}\right) \supset\left(x_{1}^{3}\right) \supset \ldots$

Proposition 5.4. If $0 \rightarrow M_{1} \xrightarrow{\alpha} M_{2} \xrightarrow{\beta} M_{3} \rightarrow 0$ is a short exact sequence of R-modules then M_{2} is Noetherian \Longleftrightarrow both M_{1}, M_{3} are. Similarly M_{2} is Artinian \Longleftrightarrow both M_{1}, M_{3} are.

Proof. The proof for both cases are the similar, so we are just going to prove the Artinian case.
$" \Rightarrow "$: Suppose M_{2} is Artinian. Any Descending Chain in M_{1} maps isomorphically under α to a Descending Chain in M_{2} which terminates. Similarly any Descending Chain in M_{3} lifts to a Descending Chain in M_{2} via β^{-1}, hence terminates
" \Leftarrow ": Suppose M_{1}, M_{3} Artinian. Let $N_{1} \supseteq N_{2} \supseteq N_{3} \supseteq \ldots$ be a Descending Chain in M_{2}. Then $\alpha^{-1}\left(N_{1}\right) \supseteq \alpha^{-1}\left(N_{2}\right) \supseteq \ldots$ is a Descending Chain in M_{1}, hence stops, and $\beta\left(N_{1}\right) \subseteq \beta\left(N_{2}\right) \subseteq \ldots$ is a Descending Chain in M_{3}, hence stops. So there exists n such that $\alpha^{-1}\left(N_{n}\right)=\alpha^{-1}\left(N_{n+1}\right)=\ldots$ and $\beta\left(N_{n}\right)=\beta\left(N_{n+1}\right)=\ldots$ This implies $N_{n}=N_{n+1}$ since let $x \in N_{n}$, then $\beta(x) \in \beta\left(N_{n}\right)=\beta\left(N_{n+1}\right) \Rightarrow$ $\exists y \in N_{n+1}$ with $\beta(x)=\beta(y)$. So $x-y \in \operatorname{ker}(\beta)=\operatorname{im}(\alpha)$, so $x-y=\alpha(z)$ for some $z \in M_{1}$ and since $\alpha(z)=x-y \in N_{n}, z \in \alpha^{-1}\left(N_{n}\right)=\alpha^{-1}\left(N_{n+1}\right) \Rightarrow \alpha(z) \in N_{n+1}$ so $x=y+\alpha(z) \in N_{n+1}$.

Corollary 5.5. Any finite sum of Noetherian (respectively Artinian) modules is again Noetherian (respectively Artinian)

Proof. The sequence $0 \rightarrow M_{1} \rightarrow M_{1} \oplus M_{2} \rightarrow M_{2} \rightarrow 0$ is exact.
Note. A subring of a Noetherian ring is not necessarily Noetherian, e.g. $R=k\left[x_{1}, x_{2}, \ldots\right] \subset k\left(x_{1}, x_{2}, \ldots\right)$.
Corollary 5.6. If R is Noetherian and M is a finitely generated R-module then M is Noetherian. Same for Artinian.

Proof. $R^{n}=R \oplus R \oplus \cdots \oplus R$ is a Noetherian R-module, since R is. Every finitely generated R-module $M=R x_{1}+\cdots+R x_{n}$ is the homomorphic image of some R^{n}, i.e., $0 \rightarrow \operatorname{ker} \rightarrow R^{n} \rightarrow M \rightarrow 0$ is exact.

Later we'll prove that R Noetherian $\Rightarrow R[x]$ is Noetherian (Hilbert Basis Theorem). Hence $R\left[x_{1}, \ldots, x_{n}\right]$ is Noetherian, e.g, $R=k$ a field. Hence any finitely generated R-algebra is Noetherian.

5.1 Noetherian Rings

Lemma 5.7. If R is a Noetherian ring and $f: R \rightarrow S$ a surjective ring homomorphism then S is Noetherian

Proof. $R / \operatorname{ker}(f) \cong S \Rightarrow S$ is Noetherian as an R-module $\Rightarrow S$ is Noetherian.
Lemma 5.8. Let $R \leq S$ with R Noetherian. If S is finitely generated as an R-module then S is Noetherian.

Proof. S is Noetherian as R-module by Corollary 5.6 hence is also Noetherian as S-module.
Example. \mathbb{Z} is Noetherian \Rightarrow any ring which is finitely generated as \mathbb{Z}-module is Noetherian. $\mathbb{Z}[\alpha]$ with α an algebraic integer is Noetherian

Lemma 5.9. If R is a Noetherian ring and S a multiplicatively closed set in R then $S^{-1} R$ is Noetherian.

Proof. By Proposition 3.10 there is a bijection, preserving inclusion, between the set of ideals of $S^{-1} R$ and a subset of the ideals of R. So Ascending Chain Condition for $R \Rightarrow$ Ascending Chain Condition for $S^{-1} R$

Corollary 5.10. If R is Noetherian and $P \triangleleft R$ prime then R_{P} is a Noetherian local ring
Hilbert Basis Theorem. If R is a Noetherian ring then so is $R[x]$
Proof. Let $J \triangleleft R[x]$. For $n \geq 0$ let I_{n} be the ideal of R consisting of all leading coefficients of $f \in J$ with $\operatorname{deg}(f)=n$ and 0 . It is easy to check that I_{n} is an ideal. Then $I_{0} \subseteq I_{1} \subseteq I_{2} \subseteq \ldots$ since $\operatorname{deg}(f)=n \Rightarrow \operatorname{deg}(x f)=n+1$ and they have the same leading coefficients. By Ascending Chain Condition for R there exists n such that $I_{n}=I_{n+1}=\ldots$ Let $f_{1, n}, f_{2, n}, \ldots, f_{k_{n}, n} \in J$ be polynomials of degree n whose leading coefficients generates I_{n}. For each $0 \leq m<n$ let $f_{1, m}, \ldots, f_{k_{m}, m}\left(k_{m} \geq 0\right)$ be polynomials in J of degree m whose leading coefficients generates I_{m}. (Use $k_{m}=0$ if $I_{m}=0$) Claim: J is generated by all $f_{i, m}$, with $m \leq n, i \leq k_{m}$.
Let $g \in J$. Proceed by induction on $\operatorname{deg}(g)$. Our base case is the 0 polynomial, since this is trivial.
Case 1. $\quad \operatorname{deg}(g) \geq n$: Then the leading coefficient of g are in $I_{n} \Rightarrow \exists r_{1}, \ldots r_{k_{n}} \in R$ such that $\operatorname{lc}(g)=\operatorname{lc}\left(\sum_{i=1}^{k_{n}} r_{i} f_{i, n}\right)$ where $\operatorname{lc}(f)=$ leading coefficient of $f . \Rightarrow$ leading term of $g=$ leading term of $\left(g_{1}=\sum r_{i} x^{\operatorname{deg}(g)-n} f_{1, n}\right), g_{1} \in\left(f_{i, j}\right)$. So $g_{2}=g-g_{1} \operatorname{has} \operatorname{deg}\left(g_{2}\right)<\operatorname{deg}\left(g_{1}\right)$. By induction $g_{2} \in\left(f_{i, j}\right)$ so $g \in\left(f_{i, j}\right)$

Case 2. $\quad \operatorname{deg}(g)=m<n$: Now an R-linear combination of $f_{i, m}\left(1 \leq i \leq k_{m}\right)$ has the same leading term as g. The rest is as in Case 1.

Hence J is generated by the finite set $\left\{f_{i, j}: 1 \leq i \leq k_{m}, 0 \leq j \leq n\right\}$. Hence every ideal in $R[x]$ is finitely generated, so $R[x]$ is a Noetherian ring

Corollary 5.11. If R is Noetherian so is $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ for all $n \geq 1$
Proof. Since $R\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right]=R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$
In particular if k is a field then $k\left[x_{1}, \ldots, x_{n}\right]$ is Noetherian. Hence any system of polynomial equation has the same set of zeros as a finite system

Corollary 5.12. If R is Noetherian then so is any finitely generated R-algebra.
Proof. Any finitely generated R-algebra is of the form $R\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ - a quotient of $R\left[x_{1}, \ldots, x_{n}\right]$
Example. Any finitely generated k-algebra (k a field) is Noetherian.
Any finitely generated \mathbb{Z}-algebra is Noetherian. (e.g., the ring of integers in a number field is Noetherian: NB theses do not all have the form $\mathbb{Z}[\alpha]$ with a single generator)

6 Primary Decomposition

In general rings we don't have a factorization theory which expresses elements as products of prime powers. Instead we make do with writing ideals as intersections of primary ideals.

Definition 6.1. A primary ideal $Q \triangleleft R$ is a proper ideal such that $x y \in Q \Rightarrow x \in Q$ or $y^{n} \in Q$ for some $n \geq 1$, i.e., $x y \in Q \Rightarrow$ either $x \in Q$ or $y \in r(Q)$.

Equivalently: $R / Q \neq 0$ and every zero-divisor is nilpotent.
Proposition 6.2. 1. Every prime ideal is primary.
2. The contraction of a primary is primary.
3. If Q is primary then $r(Q)$ is prime. It is the smallest prime containing Q.

Proof. 1. Clear from the definition $(n=1)$
2. Let $f: A \rightarrow B$ be a ring homomorphism, $Q \triangleleft B$ primary $\Rightarrow Q^{c}=f^{-1}(Q) \triangleleft A$ is primary. To see this: $1 \notin Q^{c}$ since $f(1)=1 \notin Q$, hence $A / Q^{c} \neq 0$. Also note that f induces an injective map $A / Q^{c} \hookrightarrow B / Q$ so A / Q^{c} also has the property that zero-divisors are nilpotent.
3. Let $P=r(Q)$. Suppose $x y \in P$. Then $x^{n} y^{n} \in Q$ (for some $n \geq 1$) so either $x^{n} \in Q$ or $\left(y^{n}\right)^{m} \in Q$ (for some $m \geq 1$), so either $x \in P$ or $y \in P$. For the last sentence use the fact that the radical of I is the intersection of prime ideals containing I

Definition 6.3. If Q is primary and $r(Q)=P$ we say that Q is P-primary
Example. 1. In \mathbb{Z} the primary ideals are (0) and $\left(p^{n}\right), p$ prime, $n \geq 1$.
2. $R=k[x, y]$. Let $Q=\left(x, y^{2}\right) \Rightarrow P=r(Q)=(x, y)$. $P^{2}=\left(x^{2}, x y, y^{2}\right) \varsubsetneqq Q \varsubsetneqq P$. Now $R / Q \cong k[y] /\left(y^{2}\right)$ in which we see that $\{$ nilpotent $\}=\{$ zero-divisors $\}=\{$ multiples of $y\}$. This is an example of a primary which is not a prime power.
3. An example of prime power needs not be primary. Let $R=k[X, Y, Z] /\left(X Y-Z^{2}\right)=k[x, y, z]$ where x, y, z satisfies the relation $x y=z^{2}$. Let $P=(x, y)$, then $R / P \cong k[X, Y, Z] /(X, Y) \cong$ $k[Y] \Rightarrow P$ prime. Now $x y=z^{2} \in P^{2}$ which is not primary, since $x \notin P^{2}$ and $y \notin P$.

Proposition 6.4. 1. If $r(I)$ is maximal then I is primary
2. If M is maximal then M^{n} is M-primary for all $n \geq 1$

Proof. 1. Let $M=r(I)$. Then M / I is the nilradical of R / I, and M / I is prime so R / I has a unique prime ideal, namely M / I. So every non-nilpotent element of R / I is a unit, so it is not a zero-divisor.
2. $r\left(M^{n}\right)=M$ (since $r\left(M^{n}\right) \supseteq M$ and M is maximal)

Lemma 6.5. Any finite intersection of P-primary ideals is again P-primary.
Proof. Let Q_{i} be P-primary for $i=1, \ldots, n$. Set $Q=\cap_{i=1}^{n} Q_{i}$. Then $r(Q)=r\left(\cap_{i=1}^{n} Q_{i}\right)=\cap_{i=1}^{n} r\left(Q_{i}\right)=$ $\cap_{i=1}^{n} P=P$. If $x y \in Q$ and $x \notin Q$ then $\exists i$ such that $x y \in Q_{i}$ but $x \notin Q_{i}$. Hence $y \in r\left(Q_{i}\right)=P \Rightarrow y \in$ $r(Q)$

Lemma 6.6. Let Q be P-primary and let $x \in R$. Then:

1. $x \in Q \Rightarrow(Q: x)=R$
2. $x \notin Q \Rightarrow(Q: x)$ is P-primary
3. $x \notin P \Rightarrow(Q: x)=Q$

To make sense of the three cases remember that $Q \subseteq P \subseteq R$.
Recall: $(Q: x)=\{y \in R: x y \in Q\} \supseteq Q$

Proof. 1. If $x \in Q$ then $x y \in Q \forall y \in R$.
2. We have $Q \subseteq(Q: x) \subseteq P$, where the second containment holds because $x y \in Q, x \notin Q \Rightarrow y \in P$. So $r(Q)=P \subseteq r(Q: x) \subseteq r(P)=P \Rightarrow r(Q: x)=P$. Now suppose $y z \in(Q: x)$ with $y \notin P \Rightarrow y x z \in Q \Rightarrow y(x z) \in Q \Rightarrow x z \in Q \Rightarrow z \in(Q: x)$. So $(Q: x)$ is indeed P-primary.
3. If $x y \in Q$ but $x \notin P \Rightarrow y \in Q$.

Definition 6.7. A primary decomposition of an ideal $I \triangleleft R$ is an expression $I=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}$ with each Q_{i} primary.

Remark. Such a decomposition may or may not exist. It does always exists when R is Noetherian.
Let $P_{i}=r\left(Q_{i}\right)$ - the primes associated with the decomposition.
Minimality Condition 1 If some $Q_{j} \supseteq \cap_{i \neq j} Q_{i}$ then Q_{j} may be omitted.
Minimality Condition 2 If more than one Q_{i} has the same radical we may combine them (using Lemma 6.5

We call the decomposition minimal if:

1. No $Q_{j} \supseteq \cap_{j \neq i} Q_{i}$.
2. The P_{i} are distinct.

It will turn out that the primes P_{i} are uniquely determined by I, but the Q_{i} need not be.
Example. Let $I=\left(x^{2}, x y\right) \triangleleft k[x, y]$ where k is any field. Then $I=P_{1} \cap P_{2}^{2}$ where $P_{1}=(x)$ and $P_{2}=(x, y)$ (note P_{1} is prime hence primary, and P_{2} is maximal hence P_{2}^{2} is primary). This is a minimal primary decomposition. Note that $P_{1} \subset P_{2}$ (this means $V\left(P_{2}\right) \subset V\left(P_{1}\right)$, we say P_{2} is an embedded prime). Also $I=P_{1} \cap Q_{2}$ where $Q_{2}=\left(x^{2}, y\right)$ with $r\left(Q_{2}\right)=P_{2}$ again.

Theorem 6.8. Let $I=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}$ be a minimal primary decomposition. Let $P_{i}=r\left(Q_{i}\right)$. Then P_{i}, \ldots, P_{n} are all the prime ideals in the set $\{r(I: x) \mid x \in R\}$. Hence the set of P_{i} is uniquely determined by I, independent of the decomposition.

Proof. Consider $(I: x)=\left(\cap_{i=1}^{n} Q_{i}: x\right)=\cap_{i=1}^{n}\left(Q_{i}: x\right)$ by the Fact on page 6. This means $r(I:$ $x)=r\left(\cap_{i=1}^{n}\left(Q_{i}: x\right)\right)=\cap_{i=1}^{n} r\left(Q_{i}: x\right)$. But $r\left(Q_{i}: x\right)=\left\{\begin{array}{ll}R & x \in Q_{i} \\ P_{i} & x \notin Q_{i}\end{array}\right.$ by Lemma 6.6 Hence $r(I: x)=\cap_{i: x \notin Q_{i}} P_{i}$.

If $r(I: x)$ is prime, P say, then $P=\cap_{x \notin Q_{i}} P_{i} \Rightarrow P=P_{i}$ by Proposition 1.15.
Conversely for each i choose $x \in Q_{j}(\forall j \neq i), x \notin Q_{i}$ (this is possible by minimality condition 1) then $r(I: x)=P_{i}$.

Notation 6.9. To each I with a primary decomposition we have a set of primes P_{i} called the associated primes of I. Any minimal elements of this set is called an isolated or minimal prime of I. Any other primes associated to I are called embedded primes.

We'll prove later that P_{i} isolated $\Rightarrow Q_{i}$ is uniquely determined.
Corollary 6.10. Suppose that 0 is decomposable. Then $D:=\{$ zero-divisors in $R\}=$ union of all primes associated to 0.
$N=\{$ nilpotent in $R\}=N(R)=$ intersection of all minimal primes associated to 0
Proof. Note that D is not an ideal (in general), but we can still define $r(D)=\left\{x \in R: x^{n} \in D\right.$ for some $n \geq 1\}=D$ (exercise: if x^{n} is a zero-divisor, so is x). Note that $D=\cup_{x \neq 0}(0: x)$ so if we take radicals $D=r(D)=\cup_{x \neq 0} r(0: x)$. Let $0=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}$ be minimal primary decomposition. Let $x \neq 0, r(0: x)=\cap_{x \notin Q_{j}} P_{j} \subseteq P_{j_{0}}$ where $x \notin Q_{j_{0}}$. Note that j_{0} exists since $x \neq 0$. Hence $D=\cup_{x \neq 0} r(x: 0) \subseteq \cup_{j=1}^{n} P_{j}$. But each $P_{j}=r(0: x)$ for some $x \neq 0$ so each $P_{j} \subseteq D$
$N(R)=r(0)=\cap r\left(Q_{i}\right)=\cap P_{i}$.

Corollary 6.11. Let $I=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}$ be a minimal primary decomposition and $P_{i}=r\left(Q_{i}\right)$. Then $\cup_{i=1}^{n} P_{i}=\{x \in R:(I: x) \neq I\}(*)$

Proof. Apply the previous corollary to R / I : Note that $I=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n} \Rightarrow 0=\overline{Q_{1}} \cap \overline{Q_{2}} \cap \cdots \cap \overline{Q_{n}}$ where as usual $\overline{Q_{i}} \triangleleft R / I$. Each $\overline{Q_{i}}$ is primary in R / I since $(R / I) / \overline{Q_{i}} \cong R / Q_{i}$. So the zero-divisors in R / I are the union of all $r\left(\overline{\left.Q_{i}\right)}=\overline{r\left(Q_{i}\right)}=\overline{P_{i}}\right.$ and \bar{y} is a zero-divisors in $R / I \Longleftrightarrow \exists x \notin I: y x \in I \Longleftrightarrow$ y in RHS of $(*)$. While $\bar{y} \in \cup \overline{P_{i}} \Longleftrightarrow y \in \cup P_{i}$

6.1 Primary Decomposition and Localization

Proposition 6.12. Let Q be P-primary and S a multiplicatively closed set in R

1. $S \cap P \neq \emptyset \Rightarrow S \cap Q \neq \emptyset$ and $S^{-1} Q=S^{-1} R$
2. $S \cap P=\emptyset \Rightarrow S^{-1} Q$ is $S^{-1} P$-primary and $\left(S^{-1} Q\right)^{c}=Q$

Proof. 1. $S \cap P \neq \emptyset$, then there exists $s \in S \cap P \Rightarrow s^{m} \in S \cap Q$ for some m. We can now use Proposition 3.10 (part 2.) to show $S^{-1} Q=S^{-1} R$.
2. $Q^{e c}=\cup_{s \in S}(Q: s)$ by Proposition 3.10 (part 2.) but $x \in(Q: s) \Rightarrow x \cdot s \in Q, s \neq P \supset$ $Q \Rightarrow S^{n} \notin Q \forall n \Rightarrow x \in Q \Rightarrow Q^{e c}=Q$. To show that $S^{-1} Q$ is $S^{-1} P$-primary, note $r\left(Q^{e}\right)=$ $r\left(S^{-1} Q\right)=S^{-1} r(Q)=S^{-1} P$, also if $\frac{x}{s} \cdot \frac{y}{t} \in S^{-1} Q$ (so there exist $u \in S$ such that $u x y \in Q$) and $\frac{x}{s} \notin S^{-1} Q \Rightarrow x \notin Q$ but Q is still primary, hence $u y \in P, u \in S$ and $S \cap P=\emptyset \Rightarrow y \in P \Rightarrow \frac{y}{t}=$ $\frac{u y}{u t} \in S^{-1} P \Rightarrow S^{-1} Q$ is $S^{-1} P$-primary.

Notation. We denote $S(I)=\left(S^{-1} I\right)^{c}=\cup_{s \in S}(I: s)$
Proposition 6.13. Let S be a multiplicatively closed set in R and $I=Q_{1} \cap \cdots \cap Q_{n}$ be a minimal primary decomposition of I numbered so that $\left\{\begin{array}{ll}S \cap P_{i}=\emptyset & 1 \leq i \leq m \\ S \cap P_{i} \neq \emptyset & m+1 \leq i \leq n\end{array}\right.$. Then $S^{-1} I=\cap_{i=1}^{m} S^{-1} Q_{i}$ and $S(I)=\cap_{i=1}^{m} Q_{i}$. Both of these decomposition are minimal primary decompositions.

Proof. For $i \in\{1, \ldots, m\}$ we have $S^{-1} Q_{i}$ is $S^{-1} P_{i}$-primary by the previous proposition, furthermore $S^{-1} P_{i}$ are distinct primes of $S^{-1} R$ (by Proposition 3.10 part 4.) therefore $S^{-1} I=S^{-1}\left(\cap_{i=1}^{n} Q_{i}\right)=$ $\cap_{i=1}^{n} S^{-1} Q_{i} \underset{i>m \Rightarrow S^{-1} Q_{i}=S^{-1} R}{=} \cap_{i=1}^{m} S^{-1} Q_{i}$ is a minimal primary decomposition. From this it is clear that $S(I)=\cap_{i=1}^{m} Q_{i}$.

Recall: A prime P is minimal (or isolated) for an ideal I if it is minimal under inclusion in the set of associated primes of I. More generally we define:

Definition 6.14. A set \mathscr{P} of primes associated to I to be isolated if $P \in \mathscr{P}, P^{\prime} \subset P$ and P^{\prime} is associated to I then we have $P^{\prime} \in \mathscr{P}$.

Theorem 6.15. Let I be an ideal of the ring R. Let $\mathscr{P}=\left\{P_{1}, \ldots, P_{n}\right\}$ be an isolated set of primes associated to I. Then $Q_{1} \cap \cdots \cap Q_{m}$ is independent of the minimal primary decomposition of I.

Proof. Let $S=R \backslash \cup_{i=1}^{m} P_{i}$ then S is a multiplicatively closed set and $P_{j} \cap S=\emptyset \Longleftrightarrow P_{j} \in \mathscr{P}$. Indeed $P_{j} \in \mathscr{P}$ means $P_{j} \cap S=\emptyset$ and conversely $P_{j} \notin \mathscr{P} \Rightarrow P_{j} \nsubseteq P_{i} \forall P_{i} \in \mathscr{P} \Rightarrow P_{j} \nsubseteq \cup_{i=1}^{m} P_{i} \Rightarrow P_{j} \cap S \neq \emptyset$. Therefore $S(I)=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{m}$. This ideal only depends on the primes in \mathscr{P}.

Corollary 6.16. The isolated primary component of I are uniquely determined.
Proof. Choose $\mathscr{P}=\{P\}$ where P is a minimal prime, let $S=R \backslash P$, then $S(I)=Q$ with Q is the unique P-primary factor of I.

6.2 Primary Decomposition in a Noetherian Ring

The main aim of this sub-section is to prove the existence of primary decomposition in a Noetherian ring.

Definition 6.17. An ideal I is irreducible if $I=J_{1} \cap J_{2}$ then $I=J_{1}$ or $I=J_{2}$.
Lemma 6.18. In a Noetherian ring R, every ideal is a finite intersection of irreducible ideals.
Proof. Let S be the set of ideals which are not finite intersections of irreducible ideals. If $S \neq \emptyset$ then S has a maximal element, I (since R is Noetherian). Then I is not irreducible, therefore $I=J_{1} \cap J_{2}$ with $J_{1}, J_{2} \supsetneqq I$. So $J_{1}, J_{2} \notin S$, hence they are finite intersection of irreducible ideals. Since the intersection of two finite intersection of irreducible ideals, I is the intersection of irreducible ideals, i.e., $I \notin S$. This is a contradiction. Hence $S=\emptyset$

Lemma 6.19. In a Noetherian ring R, all irreducible ideals are primary.
Proof. Let I be irreducible. Let $x, y \in R$ with $x y \in I$. We must show that either $x \in I$ or $y^{n} \in I$ for some $n \geq 1$.

Define $I_{n}=\left(I: y^{m}\right)$ for $m=1,2, \ldots$ Then $I \subseteq I_{1} \subseteq I_{2} \subseteq \ldots$, since R is Noetherian there exists N such that $I_{n}=I_{n+1}$

Claim: $I=(I+(x)) \cap\left(I+\left(y^{n}\right)\right)$
It is clear that $I \subseteq(I+(x)) \cap\left(I+\left(y^{n}\right)\right)$. Let $z \in(I+(x)) \cap\left(I+\left(y^{n}\right)\right)$, so $z=i_{1}+r_{1} x=i_{2}+r_{2} y^{n}$ for some $i_{1}, i_{2} \in I$ and $r_{1}, r_{2} \in R$. Then $y z=i_{1} y+r_{1} x y \in I$ (since $i_{1}, x y \in I$). So $r_{2} y^{n+1}=y z-i_{2} y \in$ $I \Rightarrow r_{2} \in\left(I: y^{n+1}\right)=I_{n+1}=I_{n} \Rightarrow r_{2} y^{n} \in I$, hence $z \in I$. So $(I+(x)) \cap\left(I+\left(y^{n}\right)\right) \subseteq I$

Since I is irreducible, either:

- $I+(x)=I$, in which case $x \in I$
- or $I+\left(y^{n}\right)=I$, in which case $y^{n} \in I$

Theorem 6.20. In a Noetherian ring R, every ideal I has a primary decomposition.
Proof. This follows directly from the previous two lemma.
Proposition 6.21. Let R be a Noetherian ring, every ideal I contains a power of its radical. In particular, the nilradical is nilpotent.

Proof. Let x_{1}, \ldots, x_{k} generate $r(I)$ (R is Noetherian). For large enough n we have $x_{i}^{n} \in I \forall i$. Now $r(I)^{k n} \subseteq I$ since $r(I)^{k n}$ is generated by elements of the form $x_{1}^{m_{1}} x_{2}^{m_{2}} \ldots x_{k}^{m_{k}}$ where $\sum m_{i}=n k$, so at least of one of the $m_{i} \geq n \Rightarrow$ the generators of $r(I)^{k n}$ is in I, hence $r(I)^{k n} \subseteq I$.

For the in particular part, just apply the proposition to $I=0$.
Corollary 6.22. Let R be a Noetherian ring, M a maximal ideal and Q an ideal. Then the following are equivalent:

1. Q is M-primary
2. $r(Q)=M$
3. $M^{n} \subseteq Q \subseteq M$ for some $n \geq 1$.

Proof. 1. \Longleftrightarrow 2. (by Definition 6.3)
2 . $\Rightarrow 3$.: By the previous Proposition
3 . $\Rightarrow 2$ 2: Take the radicals $M=r\left(M^{n}\right) \subseteq r(Q) \subseteq r(M)=M \Rightarrow r(Q)=M$
Krull's Theorem. Let I be an ideal in a Noetherian ring R. Then $\cap_{n=1}^{\infty} I^{n}=0$ if and only if $1+I$ contains no zero-divisors.

Proof. " \Rightarrow ": If $1+I$ contains a zero-divisor $1-x$, with $x \in I$, such that $(1-x) y=0$ for some $y \neq 0$, then $y=x y=x^{2} y=x^{3} y=\cdots=x^{n} y \in I^{n}$. So $y \in \cap_{n=1}^{\infty} I^{n}$, hence $\cap_{n=1}^{\infty} I^{n} \neq 0$
" $\Leftarrow ":$ Let $J=\cap_{n=1}^{\infty} I^{n}$
Claim: $I J=J$.
Certainly $I J \subseteq J$. Let $I J=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}$ be a minimal primary decomposition of $I J$ with $r\left(Q_{i}\right)=P_{i}$, so we must show that $J \subseteq Q_{i} \forall i$. We have $I J \subseteq Q_{i}$.

Case 1. If $I \subseteq P_{i}$ then $Q_{i} \supseteq P_{i}^{m}$ (by Proposition 6.21) $\supseteq I^{m} \supseteq J \Rightarrow J \subseteq Q_{i}$
Case 2. If $I \nsubseteq P_{i}$ then $J \subseteq Q_{i}$ since if $x \in I, x \notin P_{i}$ then $x J \subseteq I J \subseteq Q_{i}$ so for all $y \in J, x y \in Q_{i}$ but $x \notin r\left(Q_{i}\right)=P_{i} \Rightarrow y \in Q_{i}$.

Hence $J \subseteq \cap Q_{i}=I J$ so $J=I J$.
By Nakayama's Lemma since J is finitely generated, $x J=0$ for some $x \in 1+I$. If $1+I$ has no zero-divisors then x is not a zero-divisor, so $x J=0 \Rightarrow J=0$.

Corollary 6.23. In a Noetherian domain R, if $I \neq R$ then $\cap_{n=1}^{\infty} I^{n}=0$
Proof. Obvious
Corollary 6.24. If $I \subset J(R)$ then $\cap_{n=1}^{\infty} I^{n}=0$
Proof. Obvious from Proposition 1.12
Corollary 6.25. In a Noetherian local ring with maximal idea $M, \cap_{n=1}^{\infty} M^{n}=0$
Proof. Obvious since $M=J(R)$.

7 Rings of small dimension

Proposition 7.1. In the ring R, suppose $0=M_{1} M_{2} \ldots M_{n}$ with M_{i} maximal ideals. Then R is Noetherian if and only if R is Artinian.

Proof. $R \supset M_{1} \supseteq M_{1} M_{2} \supseteq M_{1} M_{2} M_{3} \supseteq \ldots \supseteq M_{1} M_{2} \ldots M_{n}=0$. Let $V_{i}:=M_{1} M_{2} \ldots M_{i-1} / M_{1} M_{2} \ldots M_{i}$, notice that each V_{i} is a module over the field R / M_{i}, i.e, is a vector space. So each V_{i} is Noetherian \Longleftrightarrow Artinian \Longleftrightarrow finite dimensional. We then use Proposition 5.4, over and over again on the following set of short exact sequences.

Proposition 7.2. Let R be a Noetherian local ring with maximal ideal M. Then either $M^{n} \neq M^{n+1}$ for all $n \geq 1$. Or $M^{n}=0$ for some n in which case R is Artinian and M is its only prime ideal.

Proof. Suppose $M^{n}=M^{n+1}$ for some n. Then $M^{n}=M^{n+1}=M^{n+1}=\ldots$ So $\cap_{k=1}^{\infty} M^{k}=M^{n}$, but by Corollary 6.25 we have $\cap_{k=1}^{\infty} M^{k}=0$, hence $M^{n}=0$. By previous proposition, R is Artinian.

Let P be a prime of R. Then $P \supseteq 0=M^{n}$, taking radicals $P=r(P) \supseteq r\left(M^{n}\right)=M$, so $P=M$
Definition 7.3. A ring in which every prime is maximal is said to have dimension 0 .
Example. Any field
$\mathbb{Z} / n \mathbb{Z}$ (since primes are $p \mathbb{Z} / n \mathbb{Z}, p \nmid n)$
Any finite ring (since every finite integral domain is a field)
Proposition 7.4. Artinian rings have dimension 0.
Proof. Let $P \triangleleft R$ be a prime. Let $\bar{R}=R / P$, a domain. Let $\bar{x} \in \bar{R}, \bar{x} \neq 0$ (so $x \in R \backslash P$). Now in \bar{R} we have $(\bar{x}) \supseteq\left(\bar{x}^{2}\right) \supseteq\left(\bar{x}^{3}\right) \supseteq \ldots$ By Descending Chain Condition in \bar{R} (which is also Artinian) there exists n such that $\left(\bar{x}^{n}\right)=\left(\bar{x}^{n+1}\right)$, so $\bar{x}^{n}=\bar{x}^{n+1} \bar{y}$ for some $\bar{y} \in \bar{R}$. Since $\bar{x} \neq 0$ and \bar{R} is a domain, cancel \bar{x} from both sides n times to get $1=\overline{x y}$. Hence \bar{R} is a field and P is maximal.

Proposition 7.5. An Artinian ring R has only finitely many maximal ideals.
Proof. Consider the set of all finite intersections of maximal ideals $M_{1} \cap M_{2} \cap \cdots \cap M_{n}, n \geq 1$. Since R Artinian, this set has a minimal element $M_{1} \cap M_{2} \cap \cdots \cap M_{n}=I$. Let M be any maximal ideal in R. Then $M \cap I \subseteq I$, so by minimality of I we have $M \cap I=I \Rightarrow M \supseteq I=M_{1} \cap \cdots \cap M_{n} \Rightarrow M \supseteq M_{i}$ for some i by Proposition 1.15 hence $M=M_{i}$ for some i.

Proposition 7.6. Let R be an Artinian ring, then $N(R)=J(R)$ is nilpotent, i.e., $(N(R))^{k}=0$ for some $k \geq 1$.

Proof. Let $N:=N(R)$, and consider $N \supseteq N^{2} \supseteq N^{3} \supseteq \ldots$ so by the Descending Chain Condition there exists k such that $N^{k}=N^{k+1}=N^{k+2}=\cdots=: I$. We want to show that $I=0$. Suppose $I \neq 0$. Let $S=\{$ ideals $J \triangleleft R$ such that $I J \neq 0\}$. Notice $S \neq \emptyset$ since $R \in S$ as $I \neq 0$. So let $J \in S$ be minimal (which exists since R is Artinian). Then $\exists x \in J$ such that $x I \neq 0$, so $(x) \subseteq(J)$ and $(x) I \neq 0$ so $(x) \in S$ and by minimality $J=(x)$. Now $((x) I) I=(x) I^{2}=(x) I \neq 0$ since $I^{2}=I$, so $(x) I \in S$ and $(x) I \subseteq(x)=J$ so by minimality of J we have $(x) I=(x)$. So there exist $y \in I$ such that $x y=x \Rightarrow x y=x y^{2}=x y^{3}=\cdots=x y^{n}=\ldots$, but $y \in I \subseteq N$ so y is nilpotent, so $y^{n}=0$ for some $n \Rightarrow x=0$. This contradicts the fact $I \neq 0=(x)$

Proposition 7.7. Every Artinian ring R is Noetherian
Proof. Let $M_{1}, M_{2}, \ldots, M_{n}$ be the complete set of all maximal ideals of R (by Proposition 7.5). So $N=$ $N(R)=J(R)=\cap_{i=1}^{n} M_{i}$. Also $N^{k}=0$ for some $k \geq 1$. Consider $M_{1}^{k} M_{2}^{k} \ldots M_{n}^{k}=\left(M_{1} M_{2} \ldots M_{n}\right)^{k} \subseteq$ $\left(M_{1} \cap M_{2} \cap \cdots \cap M_{n}\right)^{k}=N^{k}=0$. So $M_{1}^{k} M_{2}^{k} \ldots M_{n}^{k}=0$ so by Proposition 7.1 we have that R Artinian $\Rightarrow R$ Noetherian.

Remark. Every Noetherian ring of dimension 0 is Artinian. (c.f. Atiyah and Macdonald pg.90)
The Structure Theorem for Artinian Rings. Every Artinian ring is uniquely isomorphic to a finite direct product of Artinian local rings.

Proof. Existence: Let M_{1}, \ldots, M_{n} be the maximal ideals of R. Then $\prod_{i=1}^{n} M_{i}^{k}=0$ for some k. The ideals M_{i}^{k} are pairwise comaximal so by the Chinese Remainder Theorem we have

$$
\begin{aligned}
R & =R / 0 \\
& =R / \prod_{i=1}^{n} M_{i}^{k} \\
& =R / \bigcap_{i=1}^{n} M_{i}^{k} \text { by comaximality } \\
& \cong \bigoplus_{i=1}^{n} R / M_{i}^{k} \text { by Chinese Remainder Theorem }
\end{aligned}
$$

Now each R / M_{i}^{k} has only one maximal ideal, M_{i} / M_{i}^{k} so is an Artinian local ring.
Uniqueness: c.f. Atiyah and Macdonald pg. 90

7.1 Noetherian integral domains of dimension 1

Including Dedekind domain and Discrete Valuation Rings

Definition 7.8. The dimension of a ring R is the maximal length (≥ 0) of a chain of prime ideals $P_{0} \varsubsetneqq P_{1} \varsubsetneqq \cdots \nsubseteq P_{n}$ in R.

Dim0: All primes are maximal
Dim1: e.g., $R=\mathbb{Z}$ and any integral domain, not a field in which all non-zero primes are maximal.
Example. $k\left[x_{1}, \ldots, x_{n}\right]$ has dimension n.
Proposition 7.9. Let R be a Noetherian domain of dimension 1. Then every non-zero ideal I of R has a unique expression as a product of primary ideals with distinct radicals.

Proof. Let $I=Q_{1} \cap \cdots \cap Q_{n}$ with each Q_{i} primary and each $P_{i}=r\left(Q_{i}\right)$ maximal. $\left(P_{i} \supseteq Q_{i} \supseteq I \neq 0\right)$. No $P_{i} \subseteq P_{j}(i \neq j)$ so no embedding primes, hence the Q_{i} are unique. The P_{i} are pairwise comaximal $\left(P_{i}+P_{j}=R\right.$ for all $\left.i \neq j\right)$ hence so are the Q_{i}. To see this $r\left(Q_{i}+Q_{j}\right)=r\left(P_{i}+P_{j}\right)=r(1)=(1) \Rightarrow$ $Q_{i}+Q_{j}=(1)$. Hence $Q_{1} \cap \cdots \cap Q_{n}=Q_{1} \ldots Q_{n}$.

Conversely if $I=Q_{1}^{\prime} Q_{2}^{\prime} \ldots Q_{m}^{\prime}$ where Q_{i}^{\prime} are primary with distinct radicals $r\left(Q_{i}^{\prime}\right)$. As before the Q_{i}^{\prime} are comaximal, so $I=\prod Q_{i}^{\prime}=\cap Q_{i}^{\prime}$. By uniqueness of primary decomposition, $m=n$ and $Q_{i}=Q_{i}^{\prime}$ after permuting.

Recall: A DVR (Discrete Valuation Ring) is the valuation ring R of a (\mathbb{Z}-valued) discrete valuation $\nu: R \rightarrow \mathbb{Z} \cup\{\infty\}$. Such an R has the properties:

- R is local with maximal ideal $M=\{x: \nu(x) \geq 1\}$
- M is principal: $M=(\pi)$ with $\nu(\pi)=1$
- All non-zero ideals of R are $M^{n}=\left(\pi^{n}\right), n \geq 0$.
- Hence R is Noetherian (it's a PID) and a domain
- R has dimension 1 since the only primes are 0 and M

Lemma 7.10. Let R be a Noetherian integral domain of dimension 1 which is local, with maximal ideal M and residue field $k=R / M$. Then

1. Every ideal $I \neq(0),(1)$ is M-primary, so $I \supseteq M^{n}$ for some n.
2. $M^{n} \neq M^{n+1} \forall n \geq 0$

Proof. R has two prime ideal, (0) and M. Let $I \triangleleft R$ with $I \neq(0),(1)$, then $r(I)=$ intersections of the primes containing I. So $r(I)=M$, and M is maximal, hence I is M-primary. Now $I \supseteq M^{n}$ for some $n \geq 1$ since R is Noetherian.

If $M^{n}=M^{n+1}$ then $M^{n}=0$ which implies R has dimension 0 .
Proposition 7.11. Let R be a Noetherian integral domain of dimension 1 which is local, with maximal ideal M and residue field $k=R / M$. Then the following are equivalent:

1. R is a $D V R$,
2. R is integrally closed,
3. M is principal,
4. $\operatorname{dim}_{k}\left(M / M^{2}\right)=1$,
5. every non-zero ideal of R is a power of M,
6. there exists $\pi \in R$ such that every non-zero ideal is principal, of the form $\left(\pi^{n}\right), n \geq 0$.

Proof. $1 \Rightarrow 2$: Every valuation ring is integrally closed (See Proposition 4.14)
$2 \Rightarrow 3$: Let $a \in M, a \neq 0$. If $(a)=M$ we are done. Otherwise $(a) \varsubsetneqq M$. Choose $n \geq 0$ such that $M^{n} \subseteq(a), M^{n-1} \nsubseteq(a)$. Such an n exists since (by the previous lemma) $r((a))$ is a power of M and $(a) \supseteq M^{n}$ for some n. Choose $b \in M^{n-1} \backslash(a)$ so $\frac{b}{a} \notin R$. Let $x=\frac{a}{b} \in K$, the field of fractions of R.
Claim $M=(x)$.
Since $b \notin(a), x^{-1} \notin R$. Since R is integrally closed, x^{-1} is not integral over R. This means that $x^{-1} M \nsubseteq M$. To see this suppose $x^{-1} M \subseteq M$, then M is a module over the ring $R\left[x^{-1}\right]$ which is a finitely generated R-module, since R is Noetherian, and faithful as an $R\left[x^{-1}\right]$-module (since K has no zero-divisors so if $y \in R\left[x^{-1}\right]$ satisfies $y M=0$ then $y=0$); and these would imply that x^{-1} is integral over R. But $x^{-1} M \subseteq R$, since $b M \subseteq M^{n-1} M=M^{n} \subseteq(a)$. So $x^{-1} M$ is an ideal of R not contained in its unique maximal ideal. Hence $x^{-1} M=R$, and hence $M=(x)$ proving the claim.
$3 \Rightarrow 4$: Let $M=(x)$, i.e., x generates M (as R-module), so \bar{x} generates M / M^{2} (as $k=R / M$-module), i.e., $\operatorname{dim}_{k} M / M^{2} \leq 1$. But $M \neq M^{2} \Rightarrow M / M^{2} \neq 0$ hence $\operatorname{dim}_{k} M / M^{2} \geq 1$.
$4 \Rightarrow 5$: For any \bar{x} which generates M / M^{2}, the element $x \in R$ generates M. (By Corollary 2.17). So $M=(x)$, so $M^{n}=\left(x^{n}\right)(\forall n \geq 0)$. Let I be a proper non-zero ideal of R. So $I \subseteq M$, since $\cap_{k=1}^{\infty} M^{k}=0$ there exists $n \geq 1$ such that $I \subseteq M^{n}$ and $I \nsubseteq M^{n+1}$. Let $y \in I \backslash M^{n+1}$, since $y \in I \subseteq M^{n}=\left(x^{n}\right)$, we have $y=c x^{n}$, with $c \notin M=(x)$. So c is a unit of R, so $M^{n}=\left(x^{n}\right)=(y) \subseteq I \subseteq M^{n}$. Therefore $I=M^{n}$
$5 \Rightarrow 6$: Let $\pi \in M \backslash M^{2}$. Then $(\pi)=M$ by 5 . so every non-zero ideal $I=M^{n}=\left(\pi^{n}\right)$.
$6 \Rightarrow 1$: Note that $M=(\pi)$ where π is given as in 6 . So $M^{n}=\left(\pi^{n}\right) \forall n \geq 0$. Let $a \in R, a \neq 0$, then $(a)=M^{n}$ for some $n \geq 0$. Define $\nu(a)=n$. Extend to a function $\nu: K^{*} \rightarrow \mathbb{Z}$ by setting $\nu\left(\frac{a}{b}\right)=\nu(a)-\nu(b) \in \mathbb{Z}$. Easy check that:

1. ν is well define
2. ν is a group homomorphism. $(\nu(x y)=\nu(y)+\nu(x))$
3. $\nu(\pi)=1 \Rightarrow \nu$ is surjective
4. $\nu(x+y) \geq \min \{\nu(x), \nu(y)\}$

So ν is a discrete valuation and $R=\{x \in K: \nu(x) \geq 0\}$

7.2 Dedekind Domains

These are Noetherian integral domains R of dimension 1 such that every localization R_{p} (for all maximal p) is a DVR.
Lemma 7.12 (Definition). A Dedekind Domain R is a Noetherian integral domain of dimension 1 satisfying any of the following equivalent conditions:

1. R is integrally closed.
2. Every primary ideal of R is a prime power.
3. Every localization R_{p} (at non-zero primes P) is a DVR.

Proof. $1 \Longleftrightarrow 3$: Since being integrally closed is a local property, so we use the Proposition 7.11
$2 \Rightarrow 3$: Let P be a non-zero prime and let $M=P_{p}$ be the extension of P to R_{p}, so M is the unique maximal ideal in R_{p}. Every ideal ($\left.\neq(0),(1)\right)$ in R_{p} is M-primary. Every P-primary ideal of R is a power of P (by condition 2.) so its extension to R_{p} is M-primary and is a power of M. So all non-zero ideals of R_{p} are powers of M. So we can use 5. from Proposition 7.11 and hence R_{p} is a DVR.
$3 \Rightarrow 2$: Let Q be P-primary in R (where P is a non-zero prime). Its extension to R_{p} is M-primary so is a power of M, hence Q is a power of P. Since $Q=\left(M^{n}\right)^{c}=\left(M^{c}\right)^{n}=P^{n}$

Corollary 7.13. In a Dedekind domain, every non-zero ideal has a unique factorization as a product of prime ideals.

Let I be an ideal of a Dedekind domain R. Then $I=P_{1}^{n_{1}} P_{2}^{n_{2}} \ldots P_{k}^{n_{k}}$ with each P_{i} distinct maximal and $n_{i} \geq 1$. If P is any non-zero prime the extension of I in R_{P} is the product of the extensions of the $P_{i}^{n_{i}}$ in R_{p}. If $P_{i} \neq P$, the extension is the whole ring R_{p}. If $P_{i}=P$ the extension is the maximal ideal of R_{p}, P_{p}. So $I_{p}=P_{p}^{n}$ where n is the exponent of P in the factorization of $I, n \geq 0$.

Define ν_{p} to be the discrete valuation which has valuation ring R_{p}, so ν_{p} is a discrete valuation of the field of fractions K of R. Hence

$$
I=\prod_{P \text { non-zero prime }} P^{\nu_{P}(I)} .
$$

Consequences:

- $I \subseteq J \Longleftrightarrow J \mid I \quad$ Note $I_{p}=P_{p}^{\nu_{p}(I)}, J_{p}=P_{p}^{\nu_{p}(J)}$. Therefore $I \subseteq J \Longleftrightarrow J \mid I$
$\forall P: I_{P} \subseteq J_{P} \Longleftrightarrow \nu_{p}(J) \leq \nu_{p}(I) \forall P$
"to contain is to divide"
- $\nu_{p}(I+J)=\min \left\{\nu_{p}(I), \nu_{p}(J)\right\}$
- $\nu_{p}(I \cap J)=\max \left\{\nu_{p}(I), \nu_{p}(J)\right\}$
- $\nu_{p}(I J)=\nu_{p}(I)+\nu_{p}(J)$

7.3 Examples of Dedekind Domains

1. Every PID is a Dedekind Domain.

- Noetherian (every ideal has 1 generator)
- Integrally closed (since a UFD)
- Dimension 1 (the non-zero primes are (π) with π irreducible - these are maximal)

2. Let K be a number field, i.e, a finite extension (field) of \mathbb{Q}, of degree $n . n=[K: \mathbb{Q}]=\operatorname{dim}_{\mathbb{Q}} K$. The ring of integers \mathcal{O}_{K} is the integral closure of \mathbb{Z} in K, i.e., \mathcal{O}_{K} is the set of all algebraic integers in K.
Claim: \mathcal{O}_{K} is a Dedekind Domain
Proposition. \mathcal{O}_{K} is a free \mathbb{Z}-module of rank n, i.e., there exists $\alpha_{1}, \ldots, \alpha_{n} \in \mathcal{O}_{K}$ such that $\mathcal{O}_{K}=\mathbb{Z} \alpha_{1}+\mathbb{Z} \alpha_{2}+\cdots+\mathbb{Z} \alpha_{n}$ ("integral basis"). This implies $K=\mathbb{Q} \alpha_{1}+\ldots \mathbb{Q} \alpha_{n}$.

Proof. Omitted (See Algebraic Number Theory Course)
Corollary 7.14. \mathcal{O}_{K} is Noetherian.
\mathcal{O}_{K} is integrally closed, being in the integral closure of \mathbb{Z} in K. We need to check that it has dimension 1. Let P be a non-zero prime of \mathcal{O}_{K}. We want to show that P is maximal.

Method 1: Show \mathcal{O}_{K} / P is finite. (In fact P is also a free \mathbb{Z}-module of rank n). Now every finite integral domain is a field so P is maximal.
Method 2: Consider $P \cap \mathbb{Z}$, this is a prime ideal of \mathbb{Z}. It is non-zero since \mathcal{O}_{K} is an integral extension of \mathbb{Z} so we cannot have both 0 and P (prime of \mathcal{O}_{K}) contracting to 0 , primes of \mathbb{Z}. So $P \cap \mathbb{Z}=p \mathbb{Z}$ for some prime number p. Now $p \mathbb{Z}$ is maximal so P is maximal.

All of this proves that \mathcal{O}_{K} is a Dedekind Domain.
Two special properties of \mathcal{O}_{K}, not shared by Dedekind Domains in general:
(a) (Dirichlet) \mathcal{O}_{K}^{\times}(the group of units) is finitely generated. If $K=\mathbb{Q}(\alpha)$, where α has minimal polynomial $f(x) \mathbb{Q}[x]$, irreducible of degree n (the degree of the number field). Let m be the number of irreducible factors of f in $\mathbb{R}[x]$. Then there exists units $\epsilon_{1}, \ldots, \epsilon_{m-1} \in \mathcal{O}_{K}^{\times}$such that every unit is uniquely $\zeta \epsilon_{1}^{n_{1}} \epsilon_{2}^{n_{2}} \ldots \epsilon_{m-1}^{n_{m-1}}$, where ζ is a root of unity and $n_{j} \in \mathbb{Z}$.
(b) Let $I, J \triangleleft \mathcal{O}_{K}$ be non-zero ideals. Define an equivalence relation: $I \sim J \Longleftrightarrow \alpha I=\beta J$ with $\alpha, \beta \in \mathcal{O}_{K}$ and non-zero. In particular $I \sim \mathcal{O}_{K}$ if and only if I is principal.
Exercise. $I \sim J \Longleftrightarrow I \cong J$ as \mathcal{O}_{K}-module
The equivalence classes form a group (induced by ideal multiplication), i.e., $\forall I$ there exists J such that $I J$ is principal. This is called the ideal class group (attached to any Dedekind Domain). For rings of integers \mathcal{O}_{K} it is a finite group.
3. The coordinate ring of a smooth irreducible plane curve C. Let $f \in \mathbb{C}[X, Y]$ be irreducible then $C=\left\{(a, b) \in \mathbb{C}^{2}: f(a, b)=0\right\}$. The coordinate ring of C is $R=\mathbb{C}[X, Y] /(f)=\mathbb{C}[x, y]$ with $f(x, y)=0$. This is an integral domain (since f is irreducible)
Claim R is a Dedekind Domain:

- R is Noetherian (By the Hilbert Basis Theorem)
- Every non-zero prime of R is maximal.

Proof. Let P be a prime of $\mathbb{C}[X, Y]$ with $P \supsetneqq(f)$. Let $g \in P \backslash(f)$, so $\operatorname{gcd}(f, g)=1$. View $f, g \in \mathbb{C}(X)[Y]$ (as this as Euclidean property), then there exists $a, b \in \mathbb{C}(X)[Y]$ such that $a f+b g=1$. Write $a=\frac{a_{1}}{d}, b=\frac{b_{1}}{d}$ where $a_{1}, b_{1} \in \mathbb{C}[X, Y]$ and $d \in \mathbb{C}[X], d \neq 0$. So $a_{1} f+b_{1} g=d \Rightarrow$ the set of common zero of f, g has only finitely many x-coordinate (roots of d). So f, g have only finitely many common zeroes. In fact there is only one common zero, $\left(x_{0}, y_{0}\right)$, (after some work) this implies $P=\left(X-x_{0}, Y-y_{0}\right)$ which is maximal. (Fill in the gaps yourself)

- We'll show that every localization R_{P} is a DVR, where P a non-zero prime of R. Without loss of generality, $P=(x, y)$, i.e., P is associated to the point of $(0,0) . P$ is smooth: $\frac{\partial f}{\partial X x}, \frac{\partial d f}{\partial Y}$ do not vanish at $(0,0)$. So $f=a X+b Y+$ higher term, a, b not both zero. Without loss of generality, we can assume $a=0$ and $b=1$. So $Y=0$ at the tangent to C at $(0,0)$. Now $f(X, Y)=Y \cdot G(X, Y)+X^{2} H(X)$ with $G(0,0)=1$. Module f we have $0=y \cdot g+x^{2} \cdot h$ where $g=G(x, y), h=h(x) \in R$. The maximal ideal of R_{P} is generated by $x, y . R_{P}=$ $\left\{\left.\frac{r(x, y)}{s(x, y)} \right\rvert\, r, s \in R, s(0,0) \neq 0\right\}$. The maximal ideal $P R_{P}$ is $\left\{\frac{r}{s}: r(0,0)=0, s(0,0) \neq 0\right\}$, i.e., $r \in P$. But $y g=-x^{2} h$ so $y=-x^{2} \frac{h}{g}$ where $g(0,0)=1 \neq 0$, so $-x^{2} \frac{h}{g} \in R_{P}$. So x alone generates $P \cdot R_{P}$, hence R_{P} is a DVR.

