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All rings are commutative with 1

1 Introduction and Review

1.1 Introduction

These are the lecture notes for MA4J8 �Commutative Algebra II� taught at the University of Warwick in Spring
2013. I based the lectures for Section 1 on the lecture notes of MA3G6. Sections 2.1 - 2.5 are based on Atiyah-
Macdonald �Commutative Algebra�. Sections 2.6, 2.7 are based on Eisenbud �Commutative Algebra with a view
toward Algebraic Geometry�. Sections 3.1 - 3.4 are based on Atiyah-Macdonald's book. Sections 3.5, 3.6 are based
on Matsumura �Commutative ring theory�. Section 3.7 is based on Hasset �Introduction to Algebraic Geometry�
except for the last theorem of that section which is based on the corresponding theorem in Eisenbud's book.
Section 4 is based on my recollection of Grothendieck's EGA IV part of which you may also �nd in Eisenbud's or
Matsumura's book. Please send comments, corrections etc to m.schlichting at warwick.ac.uk.

Marco Schlichting

1.2 Outline

1. Review of Commutative Algebra I

2. Completions

3. Dimension Theory

4. Smooth and Etale Extension

1.3 Review of Commutative Algebra I

1.3.1 Basic De�nitions

De�nition 1.1. A ring is a tuple (R, ·,+, 0, 1) where R is a set, 0, 1 ∈ R and ·,+ : R×R→ R such that:

• (R,+, 0) is an abelian group

• (R, ·, 1) is a unital monoid

• (·,+) are distributive

Remark. In this module, all rings will be commutative containing 1, i.e., ab = ba∀a, b ∈ R.

Example. Z,C,Q,Z/nZ, k[T1, . . . , Tn] where k is a �eld, R/I, S−1R

De�nition 1.2. An ideal in a ring R is a subset I ⊂ R such that a− b ∈ I ∀a, b ∈ I and ax ∈ I ∀a ∈ I, x ∈ R.

If f : R → S is a ring map then ker(f) ⊂ R is an ideal, and every ideal I ⊂ R is ker(f) where f : R → R/I
de�ned by r 7→ r + I. (Recall R/I = {R/ ∼: a ∼ b ⇐⇒ a− b ∈ I})

Isomorphism Theorem. If f : R→ S is a surjective ring map then R/ ker(f)→ S de�ned by x+ ker(f) 7→ f(x)
is a ring isomorphism

De�nition 1.3. An ideal I ⊂ R is called

• proper if I 6= R

• principal if I = (f) = fR for some f ∈ R

• prime if it is proper and ∀a, b ∈ R with ab ∈ I ⇒ a ∈ I or b ∈ I

• maximal if I is maximal among proper ideal
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Fact. Every proper ideal is contained in a maximal ideal. (Proved using Zorn's lemma)
Maximal ideals are prime ideals
I ⊂ R is prime if and only if R/I is a domain (see de�nition 1.9).
I ⊂ R is maximal if and only if R/I is a �eld

De�nition 1.4. An R-module is an abelian group (M,+, 0) together with a map · : R ×M → M , called scalar
product, such that:

• 1 · x = x ∀x ∈M

• (a+ b) · x = a · x+ b · x ∀a, b ∈ R, x ∈M

• a · (x+ y) = a · x+ a · y ∀a ∈ R, x, y ∈M

Example. • R is an R-module via R×R→ R

• An ideal in R is the same as a submodule of R

1.3.2 Localization, Exact Sequences and Tensor Products

De�nition 1.5. Let S ⊂ R be a multiplicative subset (i.e., 1 ∈ S, a, b ∈ S ⇒ ab ∈ S ∀a, b ∈ R), let M be an
R-module. Then S−1M is an R-module together with a module map L : M → S−1M such that:

• ∀a ∈ S : S−1M
·a→ S−1M (de�ned by x 7→ ax) is an isomorphism

• For all maps f : M → N of R-modules such that ∀a ∈ S the mapN
·a→ N is an isomorphism, ∃! f : S−1M → N

such that
S−1M

f

��
M

f
//

L

;;

N

commutes

S−1M is called the localization of M with respect to S.

The construction of this is: S−1M =
{
x
b |x ∈M,a ∈ S

}
/ ∼ where x

a ∼
y
b ⇐⇒ ∃c ∈ S such that cbx = cay.

S−1M is an R-module via:

• x
a + y

b = bc+ay
ab ∀a, b ∈ S, x, y ∈M

• r xa = rx
a ∀a ∈ S, r ∈ R, x ∈M

Remark. S−1R is a ring via x
a ·

y
b = xy

ab . R→ S−1R de�ned by x 7→ x
1 is a ring map.

Example. Q = S−1Z where S = Z \ {0}.

Notation. If f ∈ R, Rf = S−1R where S = {1, f, f2, . . . } (similarly for Mf )
If P ⊂ R is a prime ideal, RP = S−1R where S = R \ P (similarly for MP )

De�nition 1.6. A sequence M
f→ N

g→ P of R-module maps is called exact if im f = ker g. (Equivalently: gf = 0
and ∀y ∈ N, g(y) = 0 there exists x ∈M : f(x) = y)

Fact. The functor: R-modules → S−1R-module, M 7→ S−1M is exact, i.e., if M → N → P is exact then
S−1M → S−1N → S−1P is also exact.

De�nition 1.7. Let M,N be R-modules. The tensor product M ⊗R N is an R-module together with a bilinear
map b : M ×N →M ⊗R N such that for all R-bilinear maps f : M ×N → P (where P is a R-module) ∃! R-linear
map f : M ⊗R N → P such that

M ⊗R N

f

��
M ×N

f
//

b

88

P

commutes
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The construction of this is: M ⊗R N = {x1 ⊗ y1 + · · ·+ xn ⊗ yn| n ∈ N, xi ∈M,yi ∈ N} / ∼ where ∼ is generated
by:

• (x1 + x2)⊗ y ∼ x1 ⊗ y + x2 ⊗ y

• x⊗ (y1 + y2) ∼ x⊗ y1 + x⊗ y2

• a(x⊗ y) ∼ (ax)⊗ y ∼ x⊗ (ay)∀a ∈ R, x1, x2 ∈M,y1, y2 ∈ N

The map b : M ×N →M ⊗R N is de�ned by (x, y) 7→ x⊗ y

Fact. Tensor product is right exact, i.e., ifM1 →M2 →M3 → 0 is exact thenM1⊗RN →M2⊗RN →M3⊗RN →
0 is also exact.

R⊗RM ∼= M where the isomorphism is de�ned by a⊗m 7→ am
S−1M ∼= S−1R⊗RM , where the isomorphism is de�ned by x

a 7→
1
a ⊗ x

M ⊗N ∼= N ⊗M where the isomorphism is de�ned by x⊗ y 7→ y ⊗ x
(M1 ⊕M2)⊗N ∼= M1 ⊗N ⊕M2 ⊗N
If R→ A and R→ B are ring maps then A⊗R B is a ring via (a1 ⊗ b1)(a2 ⊗ b2) = a1a2 ⊗ b1b2 and

A // A⊗R B Boo

a � // a⊗ 1; 1⊗ b b�oo

are ring maps

Example. • How to compute M ⊗R N?
Z/12Z⊗Z Z/9Z =?. We have Z/12Z ∼= Z/4Z⊕ Z/3Z so

Z/12Z⊗ Z/9Z ∼= (Z/4Z⊕ Z/3Z)⊗ Z/9Z
∼= Z/4Z⊗ Z/9Z⊕ Z/3Z⊗ Z/9Z

Now Z 4→ Z→ Z/4Z→ 0 is exact⇒ Z⊗ Z/9Z︸ ︷︷ ︸
Z/9Z

4→∼= Z⊗ Z/9Z︸ ︷︷ ︸
Z/9Z

→ Z/4Z⊗Z/9Z→ 0 is exact⇒ Z/4Z⊗Z/9Z = 0

Also Z 9→ Z → Z/9Z → 0 is exact ⇒ Z⊗ Z/3Z︸ ︷︷ ︸
Z/3Z

4→
=0
Z⊗ Z/3Z︸ ︷︷ ︸

Z/3Z

→ Z/9Z ⊗ Z/3Z → 0 is exact ⇒ Z/3Z ∼=

Z/3Z⊗ Z/9Z.
Alternatively, one can show (exercise) that R/I⊗RR/J = R/(I+J) and apply this to see that Z/n⊗ZZ/m ∼=
Z/ gcd(m,n).

• How to compute A⊗R B?
use:

� A⊗R R[T ] ∼= A[T ], where the isomorphism is de�ned by a⊗
∑n
i=1 xiT

i 7→
∑n
i=1 axiT

i

� A/f ⊗R B ∼= (A ⊗R B)/(f ⊗ 1), because of the exact sequence A
f→ A → A/f → 0 and tensor product

is right exact, i.e., A⊗R B
f⊗1→ A⊗R B → A/f ⊗R B → 0 is exact.

Example.

C⊗R C = C⊗R
R[T ]

T 2 + 1

=
C⊗R R[T ]

1⊗ (T 2 + 1)

= C[T ]/(T 2 + 1)

= C[T ]/(T + i)(T − i)
∼= C× C By the Chineses Remainder Theorem : f 7→ (f(i), f(−i))
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1.3.3 Noetherian and Artinian Modules

De�nition 1.8. An R-module M is called Noetherian (respectively Artinian) if the submodules satis�es the ACC
(respectively DCC), i.e., every ascending (respectively descending) chain of submodules eventually stops.

A ring R is Noetherian (respectively Artinian) if the R-module R is Noetherian (respectively Artinian)

Fact. • If R is Noetherian then an R-module M is Noetherian if and only if M is �nitely generated

• If R is Artinian then an R-module M is Artinian if and only if M is �nitely generated.

• If R is Noetherian then R[T ] is Noetherian (Hilbert's basis Theorem)

• If R is Noetherian (respectively Artinian) then R/I and S−1R are Noetherian (respectively Artinian)

1.3.4 Special Rings

De�nition 1.9. A ring R is a domain if R 6= 0 and ∀a, b ∈ R such that ab = 0, then either a = 0 or b = 0
A PID (principal ideal domain) is a ring R which is domain in which every ideal is principal.
A ring R is a UFD (unique factorization domain) if R is a domain and every x ∈ R is a product of prime

elements. (p ∈ R is prime if (p) = pR is a prime ideal)

Fact. • PID are UFD

• If R is a UFD then R[T ] is a UFD

Example. Z, k[T ] where k is a �eld are PID
Z, k[T ],Z[T1, . . . , Tn], k[T1, . . . , Tn] are UFD

De�nition 1.10. R is called local if R has a unique maximal ideal m. In this case, k = R/m is a �eld called the
residue �eld (at m). When R is a local ring we will often write (R,m, k) to mean that m ⊂ R is the unique maximal
ideal and k = R/m its residue �eld.

Example. R any ring and P ⊂ R a prime ideal. Then RP is a local ring with maximal ideal PRP

Fact. • Let (R,m, k) be a local ring then x ∈ R is a unit if and only if x /∈ m

• Let (R,m, k) be a local ring, M a �nitely generated R-module such thatM/mM = 0, thenM = 0 (Nakayama's
lemma)

De�nition 1.11. R is a DVR (discrete valuation ring) if R is a local PID which is not a �eld.

Example. Z(p) =
{
a
b ∈ Q|a, b ∈ Z, p - b

}
is local with maximal ideal (p) = pZ(p)

De�nition 1.12. R is a Dedekind domain if R is a Noetherian domain which is not a �eld and ∀P 6= 0 ⊂ R prime
ideal, RP is a DVR

Example. Any PID, DVR and ring of integers in a number �eld is a Dedekind domain.

1.3.5 Krull Dimension

De�nition 1.13. Let R be a ring. The Krull dimension of R is dimR = max{n ∈ Z|∃P0 ( P1 ( · · · ( Pn ⊂
R,Pi prime ideals}

Example. In this module we set dim 0 = −1, though some authors may set dim 0 = −∞

Fact. • dim 0:

� Let R 6= 0 be a Noetherian ring then dimR = 0 if and only if R is Artinian

� If R 6= 0 is Artinian then R = A1 × · · · ×An where Ai are local Artinian rings

� (R,m, k) is a local Artinian ring then m is nilpotent (i.e., mn = 0 for some n)

Example. k a �eld, Z/nZ have dimension 0.

• dim 1:

� If R a PID which is not a �eld, then dimR = 1 (e.g., Z,K[T ])

� Any DVR or Dedekind domain has dimension 1.
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2 Completion

First a few examples before the de�nition.

Example. Let R be a ring. The (T )-adic completion of R[T ] is the formal power series ring

R [[T ]] =

{
a0 + a1T + a2T

2 + · · · =
∞∑
i=0

aiT
i

}

Formally, elements of R[[T ]] are sequences (ai)i∈N = (a0, a1, a2, . . . ) ai ∈ R, with addition:∑
i≥0

aiT
i

+

∑
i≥0

biT
i

 =
∑
i≥0

(ai + bi)T
i

and multiplication: ∑
i≥0

aiT
i

 ·
∑
i≥0

biT
i

 =
∑
i≥0

ciT
i where ck =

∑
i+j=k

aibj

The element 0 is (0, 0, 0, . . . ) and the element 1 is (1, 0, 0, 0, . . . ). This is a ring and R[T ] ⊂ R[[T ]] is a ring map.

It is easier to solve equations in R[[T ]] than in R[T ]. For example:

Lemma 2.1. 1. The element x =
∑∞
i=0 aiT

i is a unit in R[[T ]] (i.e., xy = 1 has a solution y) if and only if a0

is a unit in R

2. The element x =
∑n
i=0 aiT

i is a unit in R[T ] if and only if a0 ∈ R is a unit and a1, a2, . . . , an are nilpotent.

Proof. 1. �⇒�: f : R[[T ]]→ R de�ned by x =
∑
aiT

i 7→ a0 is a ring map. Hence x is a unit ⇒ f(x) = a0 is a unit.
�⇐�: 1 − fT is a unit for all f ∈ R[[T ]] with inverse

∑∞
i=0 f

iT i (Exercise!). For x =
∑∞
i=0 aiT

i, a0 a unit, the
element x = a0(1− T

∑
− ai
a0
T i−1) is the product of two units, hence a unit.

2. is left as an exercise.

Remark 2.2. R[T ]→ R[[T ]] induces an isomorphism R[T ]/Tn ∼= R[[T ]]/Tn (Exercise!)

Example. Let p ∈ Z be a prime. The p-adic completion of Z (or of Z(p)) is Ẑp = Zp = Z[[T ]]/(p − T ). This is
the ring of p-adic integers. An element x =

∑
i≥0 aiT

i ∈ Zp is in canonical form if 0 ≤ ai < p ∀i ∈ N. We have a
natural map Z→ Zp de�ned by n 7→ n. This is called the completion map.

Lemma 2.3. 1. Every x ∈ Zp has a unique representative in canonical form.

2. The map Z→ Zp induces an isomorphism Z/pnZ ∼= Zp/pnZp ∀n ≥ 1

3. The map Zp → {(x1, x2, . . . )|xn ∈ Z/pn, xn+1 ≡ xn mod pn} de�ned by x 7→ (x mod p, x mod p2, . . . ) is
an isomorphism of rings.

Proof. 1. Given any element x =
∑
aiT

i ∈ Z[[T ]], we need to solve
∑
i≥0 aiT

i =
∑
i≥0 biT

i + (p− T )
∑
i≥0 ciT

i

where 0 ≤ bi < p ∀i as the canonical representatives of x is the solutions
∑
i≥0 biT

i of this equation. The
equation has a unique solution (hence a unique representative in canonical form) de�ned recursively by ci +
ai+1 = bi+1 + pci+1 for i ≥ −1 where 0 ≤ bi+1 < p, ai, bi, ci ∈ Z, and c−1 = 0.
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2.

Zp/pnZp =
Z[[T ]]

(pn, p− T )

=
Z[[T ]]

(Tn, p− T )
(as T = p)

=

(
Z[[T ]]

Tn

)
/p− T

=

(
Z[T ]

Tn

)
/p− T (Remark 2.2)

=
Z[T ]

(Tn, p− T )

=
Z[T ]

(pn, p− T )
(T = p)

=

(
Z[T ]

pn

)
/p− T

= (Z/pnZ) [T ]/(p− T )
∼= Z/pnZ

where the last isomorphism is de�ned by the map T 7→ p

3. The map is well de�ned by 2. It is bijective by 1.

Remark. 1. It is easier to solve equations in Zp than in Z.

2. Sometimes knowing solutions in Zp (Qp = FracZp), tells us something about solutions in Z (or Q) (The Hasse
principle)

3. Lemma 2.3 part 3 says Zp ∼= lim←−Z/p
nZ (inverse limit to be de�ned below).

2.1 Inverse limits

De�nition 2.4. An inverse system of sets (groups, modules, rings) is a sequence {A•θ} : · · · → A3
θ3→ A2

θ2→ A1

of sets (groups, modules, rings) where the transition (or structure) maps θi are homomorphisms of sets (groups,
modules, rings).

Example. Z/pnZ → Z/pn−1Z → · · · → Z/p2Z → Z/pZ where all the maps are de�ned by 1 7→ 1. This is an
inverse systems of rings.

De�nition 2.5. Let→ An
θn→ An−1

θn−1→ . . .
θ2→ A1 be an inverse system of sets (groups, modules, rings). Its inverse

(or projective) limit is the subset of
∏
i≥1Ai

lim←−
n∈N
{An} = {(a1, a2, a3, . . . )|θn+1an+1 = an ∀n ≥ 1} ⊂

∏
i≥1

Ai

If {An} is an inverse system of groups (modules, rings), then lim←{An} is a group (module,ring). In fact a subgroup
(submodule, subring) of

∏
i≥aAi because θn is a homomorphism for all n.

Example. From Lemma 2.3 we have Zp = lim←−n Z/p
nZ for the inverse system · · · → Z/pnZ→ · · · → Z/pZ

De�nition 2.6. A map of inverse systems f : {A•, θA} → {B•, θB} of groups (rings, modules) is a sequence of
homomorphism fi : Ai → Bi of groups (rings, modules) commuting with the transition maps: θBi ◦ fi = fi−1 ◦ θAi ∀i

Remark. A map f : {A•} → {B•} of inverse systems induces a map of inverse limits

f = lim←− f : lim←−{A•} → lim←−{B•}

(a1, a2, a3, . . . ) 7→ (f(a1), f(a2), f(a3), . . . )
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Lemma 2.7. Let {A•, θA} → {B•, θB} → {C•, θC} be a sequence of inverse systems of abelian groups.

1. If ∀n 0→ An → Bn → Cn is exact then 0→ lim←−{A•} → lim←−{B•} → lim←−{C•} is exact.

2. If ∀n 0→ An → Bn → Cn → 0 exact and {A•} is a surjective system, i.e., θn : An → An−1 is surjective for
all n, then 0→ lim←−{A•} → lim←−{B•} → lim←−{C•} → 0 is exact.

Proof. If {A•, θ•} is an inverse system of abelian groups, then

lim←−A• = ker

∏
i≥1

Ai
1−θ→

∏
i≥1

Ai de�ned by (a1, a2, . . . ) 7→ (a1 − θa2, a2 − θa3, . . . )

 (∗)

1.
∏
i≥1 preserves exact sequence, so we get maps of exact sequence:

0 // ∏Ai //

1−θA

��

∏
Bi

1−θB

��

// ∏Ci

1−θC

��
0 // ∏Ai // ∏Bi // ∏Ci

Taking the kernels of vertical maps we get 0 → ker(1 − θA) → ker(1 − θB) → ker(1 − θC) is exact. So then
(∗) implies the result.

2. By assumption we get a map of exact sequence:

0 // ∏Ai //

1−θA

��

∏
Bi

1−θB

��

// ∏Ci

1−θC

��

// 0

0 // ∏Ai // ∏Bi // ∏Ci // 0

By the Snake Lemma we have

0 // ker(1− θA) // ker(1− θB) // ker(1− θC) // coker(1− θA) // coker(1− θB) // coker(1− θC) // 0 (∗∗)

is exact. Since {A•} is a surjective inverse system we have 1 − θ :
∏
Ai →

∏
Ai de�ned by (a1, a2, . . . ) 7→

(a1 − θa2, a2 − θa3, . . . ) is surjective. This is because one can solve the equation a − θ(a) = b for any
b = (b1, b2, b3, . . . ) recursively by solving θan+1 = an−bn, a1 = 0 (which has a solution because θ is surjective).
Since 1− θA is surjective we have coker(1− θA) = 0. Together with (∗) and (∗∗) we have the result.

2.2 Cauchy sequences and completions

De�nition 2.8. LetM ⊃M1 ⊃M2 ⊃ . . . be a descending chain of submodules. A sequence {xi} = (x1, x2, x3, . . . )
of elements xi ∈M is said to converge to x ∈M (in the {M•} topology) if ∀n∃N such that ∀i ≥ N, xi − x ∈Mn.
In this case we write {xi} → x.

A sequence {xi} is called a Cauchy sequence (for the {M•} topology) if ∀n∃N such that ∀i, j ≥ N, xi−xj ∈Mn

Example. Not every Cauchy sequence needs to converge: {xn} de�ned by xn = 1 +T +T 2 + · · ·+Tn ∈ k[T ] does
not converge in the {(Tn)} topology on k[T ], (i.e., the descending chain is k[T ] ⊃ (T ) ⊃ (T 2) ⊃ (T 3) ⊃ . . . ). For if
xn → f ∈ k[T ] then ∀m ∃N , xn − f ∈ (Tm)∀n ≥ N . This means f = 1 + T + · · ·+ Tm−1+higher order terms ∀m.
But no such polynomial exists in k[T ]. However the sequence is Cauchy (exercise).

De�nition 2.9. A module M is complete (in the M• topology) if every Cauchy sequence in M converges (in the
M• topology).

De�nition 2.10. Let M be a module with a �ltration M•: M ⊃ M1 ⊃ M2 ⊃ . . . . Let {xi}, {yi} be two Cauchy
sequence (for M• topology). We say {xi} ∼ {yi} is {xi − yi} → 0.

(Exercise: check that this is indeed an equivalence relation on the set of Cauchy sequences (with respect to M•
))

We de�ne the completion on M (with respect to M•) to be M̂ = {equivalence classes of Cauchy Sequence}.
This comes equipped with the map M → M̂ de�ned by x 7→ x = constant sequence {xi = x}
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Remark. M is complete if and only if M → M̂ : x 7→ x is bijective.

Exercise. Check that {xi} ∼ {xi}, {yi} ∼ {yi} implies {xi + yi} ∼ {xi + yi} and {rxi} ∼ {rxi}. Hence M̂ is an

R-module and M → M̂ is R-linear.

Given a �ltration M ⊃ M1 ⊃ M2 ⊃ . . . we get an inverse system: · · · � M/M3 � M/M2 � M/M1. We want

to construct a map M̂ → lim←−M/Mn as follows: Let {xi} be a Cauchy sequence, �x n ∈ N. Look at the sequence
{xi +Mn} in M/Mn. This sequence is eventually constant because there ∃N ∀i, j ≥ N we have xi − xj ∈Mn (i.e.,
xi = xj ∈ M/Mn). So let ξn := lim−→{xi + Mn} be the common eventually constant value. If {xi} ∼ {yi} then
∃N ∀i ≥ N, xi = yi ∈ M/Mn ⇒ lim{xi + Mn} = lim{yi + Mn} ∈ M/Mn. So this de�nes a map M̂ → M/Mn

by {xi} 7→ ξn = lim{xi + Mn}, which is R-linear. Note that ξn+1 = ξn ∈ M/Mn. So we obtain a module map

M̂ → lim←−M/Mn

Lemma 2.11. Let M be an R-module with �ltration M• : M ⊃M1 ⊃M2 ⊃ . . . by submodules then:

1. The map M̂ → lim←−M/Mn de�ned by {xi} 7→ (lim{xi +M1), lim(xi +M2), . . . ) is an isomorphism.

2. The map M → M̂ induces isomorphism M/Mn → M̂/M̂n where M̂n is the completion of Mn with respect to
the �ltration Mn ⊃Mn+1 ⊃Mn+2 ⊃ ....

3. M̂ is complete with respect to the �ltration {M̂n}.

Proof. 1. Let f : M̂ → lim←−M/Mn ⊂
∏
n≥1M/Mn.

We show that this is injective. Let {xi} be a Cauchy sequence. Fix n ∈ N, if lim(xi + Mn) = 0 ∈ M/Mn.
Then ∃N ∀i ≥ N , xi ∈ Mn. So if f({xi}) = 0 then ∀n∃N ∀i ≥ N such that xi ∈ Mn ⇒ {xi} ∼ 0, hence

0 = {xi} ∈ M̂ . So f is injective.

Next we show that f is surjective. Let (ξ1, ξ2, ξ3, . . . ) ∈ lim←−M/Mn. Choose xn ∈M such that xn+Mn = ξn ∈
M/Mn, then {xi} is a Cauchy sequence because ∀n∃N = n such that ∀i, j ≥ N = n: xi−xj = ξi−ξj ∈M/Mn,

i.e., xi − xj ∈Mn. This de�nes {xi} ∈ M̂ and by de�nition f({xi}) = (ξ1, ξ2, . . . ) ∈ lim←−M/Mn

2. For all k ≥ n we have an exact sequence

0 // Mn/Mk
// M/Mk

// M/Mn
// 0

and · · ·�Mn/Mk+1 �Mn/Mk is a surjective system. Hence

0 // lim←−
k

Mn/Mk︸ ︷︷ ︸
=M̂n

// lim←−
k

M/Mk︸ ︷︷ ︸
=M̂

// lim←−
k

M/Mn︸ ︷︷ ︸
=M/Mn

// 0

where the equality follows from 1. So we get the exact sequence

0 // M̂n
// M̂ // M/Mn

// 0

hence M̂/M̂n
∼= M/Mn

3. M̂ → ̂̂
M is an isomorphism because

̂̂
M ∼= lim←− M̂/M̂n by 1

∼= lim←−M/Mn by 2

∼= M̂ by 1

Remark. If R is a ring and R ⊃ I1 ⊃ I2 ⊃ I3 ⊃ . . . is a �ltration by ideals, then R̂ is a ring with multiplication
{xi} · {yi} := {xiyi}. (Check that this is independent of choice of representative). The map R → R̂ de�ned by
x 7→ x =constant sequence, is a ring homomorphism.

9



De�nition 2.12. Let I ⊂ R be an ideal. Then the completion of R with respect to the I-adic �ltration R ⊃ I ⊃
I2 ⊃ I3 ⊃ . . . is called the I-adic completion of R. It is denoted by R̂ = R̂I .

Example. Zp is the p-adic completion of Z.

Remark. R̂I ∼= lim←−nR/I
n

2.3 Filtrations

De�nition 2.13. Let I ⊂ R be an ideal, M an R-module with �ltration M• : M = M0 ⊃ M1 ⊃ M2 ⊃ . . . . The
�ltration is called I-�ltration if IMn ⊂Mn+1 ∀n.

Remark. (Exercise) IfM• is an I-�ltration then M̂ is an R̂I -module via the multiplication map R̂I×M̂ → M̂de�ned
by ({ai}, {xi}) 7→ {aixi}.

Example. IfM is anyR-module, then {InM}n≥0 is an I-�ltration. The completion ofM with respect to {InM}n≥0

is called the I-adic completion of M . This is denoted M̂I .

De�nition 2.14. An I-�ltration M• on an R-module M is called stable if ∃N such that ∀n ≥ N , IMn = Mn+1

Example. {InM} is a stable I-�ltration.

Lemma 2.15. Let M be an R-module, and M•,M
′
• be two stable I-�ltration of M . Then

1. A sequence {xi} in M is Cauchy with respect to M• if and only if {xi} is Cauchy with respect to M ′•

2. A sequence {xi} in M converges to 0 with respect to M• if and only if {xi} converges to 0 with respect to M ′•

3. The completion of M with respect to M• is the same as the completion of M with respect to M ′•.

Proof. {InM} is a stable I-�ltration (and assume M ′• = {InM}). M• is stable means ∃n∀k ≥ 0 such that
IkMn = Mn+k. Since M• is an I-�ltration, we have I

kM ⊂Mk = Ik−nMn ⊂ Ik−nM ∀k ≥ n. This implies 1. and
2. as {xi} Cauchy for {InM} then {xi} is Cauchy for {M•} since InM ⊂ Mn, while if {xi} is Cauchy for {M•}
then {xi} is Cauchy for {InM} since Mk ⊂ In−kM ∀k ≥ n

Then clearly 1. and 2. implies 3.

2.4 Graded rings and the Artin-Rees Lemma

De�nition 2.16. A graded ring is a ring A together with abelian subgroups An ⊂ A,n ∈ Z≥0 such that A =
⊕n≥0An, 1 ∈ A0, and AnAm ⊂ An+m. The elements of An in a graded ring A are called homogeneous elements of
degree n.

Example. The polynomial ring A = k[T1, . . . Tk] is a graded ring with An = {homogeneous polynomials of total
degree n}.

If I ⊂ R ideal, then A = ⊕n≥0I
n is a graded ring where I0 = R.

De�nition 2.17. If I ⊂ R ideal, then we set grIR = ⊕n≥0I
n/In+1. This is a graded ring with multiplication

In/In+1× Im/Im+1 → In+m/In+m+1 de�ned by (a+ In+1, b+ Im+1) 7→ ab+ In+m+1. The ring grIR is called the
associated graded ring of R ⊃ I ⊃ I2 ⊃ . . .

Lemma 2.18. If R is a Noetherian ring, I ⊂ R an ideal, then the graded ring A = ⊕n≥0I
n is also Noetherian.

Proof. R being Noetherian implies I is a �nitely generated R-module, say by x1, . . . , xn ∈ I. Then the R-algebra
map R[T1, . . . , Tn] → A = ⊕n≥0I

n de�ned by Ti 7→ xi is surjective. (It is surjective because x1, . . . , xn generates
I). Since R is Noetherian, Hilbert's Basis Theorem implies R[T1, . . . , Tn] Noetherian and hence any quotient of
R[T1, . . . , Tn] is Noetherian. Hence we have A = ⊕n≥0I

n is Noetherian.

De�nition 2.19. Let A be a graded ring, A = ⊕n≥0An. Then a graded A-module is an A-module M together
with subgroups Mn ⊂M such that M = ⊕n≥0Mn and AmMn ⊂Mm+n.

Example. If M is an R-module with an I-�ltration M• then ⊕n≥0Mn is a graded A = ⊕n≥0I
n-module.
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Lemma 2.20. Let R be a Noetherian ring, I ⊂ R an ideal, M a �nitely generated R-module together with an
I-�ltration M = M0 ⊃ M1 ⊃ M2 ⊃ . . . . Then the �ltration M• is stable if and only if ⊕n≥0Mn is a �nitely
generated A = ⊕n≥0I

n-module.

Proof. �⇒� Assume M• is a stable I-�ltration . Then ∃n∀k ≥ 0 such that IkMn = Mn+k. This implies
⊕n≥0Mn = M0 ⊕M1 ⊕ · · · ⊕Mn−1 ⊕Mn ⊕ IMn ⊕ I2Mn ⊕ I3Mn ⊕ . . . ⇒ ⊕n≥0Mn is generated by
M0 ⊕ · · · ⊕Mn as A-module. Since R is Noetherian and M is �nitely generated implies Mi ⊂ M are
all �nitely generated. Hence M0 ⊕ · · · ⊕Mn generated by �nitely many elements and so ⊕n≥0Mn is
generated by these �nitely many elements as A-modules

�⇐� Assume ⊕n≥0Mn is a �nitely generated A = ⊕n≥0I
n-module. Let PK = M0 ⊕ M1 ⊕ · · · ⊕ MK ⊕

IMK ⊕ I2MK ⊕ I3MK ⊕ . . . . Now PK is a graded A-submodule of ⊕n≥0Mn, we have P0 ⊂ P1 ⊂ P2 ⊂
· · · ⊂ ⊕n≥0Mn an ascending chain of A-submodules. Now R is Noetherian implies A is Noetherian by
lemma 2.18. By assumption ⊕n≥0Mn is a �nitely generated A-module, hence a Noetherian A-module,
so the chain P• has to stop, i.e., ∃N such that PN = PN+1 = PN+2 = . . . . But ∪kPk = ⊕n≥0Mn implies
⊕n≥0Mn = PN ⇒Mn = In−NMN ∀n ≥ N , i.e., the �ltration is stable.

Artin-Rees Lemma. Let R be a Noetherian ring, I ⊂ R an ideal and M a �nitely generated R-module with stable
I-�ltration M•. Let N ⊂M be a submodule. Then the �ltration {N ∩Mn} on N is a stable I-�ltration of N .

Proof. R Noetherian, I ⊂ R an ideal, then A = ⊕i≥0I
n is Noetherian. Recall (Lemma 2.20): P• is a stable

I-�ltration on a �nitely generated R-module P if and only if ⊕n≥0Pn is a �nitely generated A-module
So {Mn} is a stable I-�ltration on M implies ⊕n≥0Mn is a �nitely generated A-module. Now ⊕n≥0Mn ∩N ⊂

⊕n≥0Mn is a A-submodule. Since A is Noetherian and ⊕n≥0Mn is a �nitely generated A-module, the submodule
⊕n≥0Mn ∩N is also a �nitely generated A-module. Hence {Mn ∩N} is a stable I-�ltration

Theorem 2.21 (Usual formulation of Artin-Rees Lemma). Let R be a Noetherian ring, I ⊂ R an ideal, M a
�nitely generated R-module and N ⊂M a submodule. Then ∃K such that ∀n ≥ K, N ∩ In = In−K(N ∩ IKM)

Proof. {InM} is a stable I-�ltration implies by Artin-Rees Lemma that {N ∩ InM} stable I-�ltration. This means
∃K such that ∀n ≥ K, N ∩ InM = In−K(N ∩ IKM)

Theorem 2.22. Let R be a Noetherian ring, I ⊂ R an ideal. Let

0 // M // N // P // 0

be an exact sequence of �nitely generated R-module. Then the sequence of I-adic completions

0 // M̂ // N̂ // P̂ // 0

is exact

Proof. M̂, N̂ , P̂ are the completion of M,N,P with respect to the �ltration {InM}, {InN}, {InP}. So we have the
exact sequence ∀n

0 // M/M ∩ InN // N/InN // P/InP // 0 (∗)

Now {M ∩ InN} is a stable I-�ltration (Artin-Rees lemma). Hence by Lemma 2.15 the completion of M with

respect to {M ∩ InN} is the completion M̂ of M with respect to InM . Now {M/M ∩ InN} is a surjective inverse
system, so by (∗)

0 // lim←−M/M ∩ InN // lim←−N/I
nN // lim←−P/I

nP // 0

M̂ N̂ P̂

is exact

Lemma 2.23. Let R be a Noetherian ring, I ⊂ R an ideal, M a �nitely generated R-module, M̂ = M̂I . Then
R̂⊗RM → M̂ de�ned by {ai} ⊗ x 7→ {aix} is an isomorphism.
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Proof. Lemma is true forM = R. LetM be a �nitely generated R-module. Then there exists a surjective R-module
homomorphism g : Rn � M . Now ker(g) is �nitely generated because Rn is a Noetherian R-module. Hence there
exists surjective f : Rm � ker(g). Hence we have the exact sequence

Rm
f // Rn

g // M // 0 (∗)

Now tensor product is a right exact functor (i.e., it sends (∗) to an exact sequence). Apply R̂⊗R to (∗) to obtain
an exact sequence

R̂⊗R Rm
1⊗f //

(1)��
R̂⊗R Rn

g //

(2)��
R̂⊗RM //

��
0

R̂m
f̂ // R̂n // M̂ // 0

where the second sequence is exact, by Theorem 2.22. Now R̂ ⊗R Rm ∼= R̂m and R̂m = R̂m implies that (1) and

(2) are isomorphism. Hence coker(1⊗ f) ∼= coker(f̂)⇒ R̂⊗RM ∼= M̂

2.5 Flat modules and Krull's Intersection Theorem

De�nition 2.24. A map of rings R → S is called �at if the functor R-modules → S-modules de�ned by M 7→
S ⊗RM preserves exact sequence, i.e., if

0 // M // N // P // 0

is an exact sequence of R-modules then

0 // S ⊗RM // S ⊗R N // S ⊗R P // 0

is an exact sequence of S-modules.

Remark. Since tensor product is right exact, so

S ⊗RM // S ⊗R N // S ⊗R P // 0

is exact for any ring map R → S. Hence R → S is �at if and only if S ⊗R M → S ⊗R N is injective ∀M → N
injective.

Theorem 2.25. Let R be a Noetherian ring, I ⊂ R an ideal, and R̂ = R̂I . Then R → R̂ de�ned by x 7→ {x} is
�at.

Proof. Let f : M ⊂ N be an inclusion of R-modules. We need to show that 1⊗ f : R̂⊗RM → R̂⊗RN is injective.
We already proved this when M,N are �nitely generated R-modules (Theorem 2.22, Lemma 2.23).

Let x ∈ R̂ ⊗R M such that (1 ⊗ f)(x) = 0. Now x =
∑n
i=1 ai ⊗ xi for some ai ∈ R̂ and xi ∈ M . Hence

0 = (1 ⊗ f)(x) =
∑n
i=1 ai ⊗ f(xi) ∈ R̂ ⊗R N . Recall that by construction R̂ ⊗R N = ⊕R̂×NR/ 〈relations〉. This

means
∑n
i=1 ai⊗f(xi) ∈ 〈relations〉. Hence

∑n
i=0 ai⊗f(xi) is a �nite sum of �nitely many generators of 〈relations〉

involving �nitely many elements in N . Let N0 ⊂ N be the R-submodule generated by those �nitely many elements
and f(x1), . . . , f(xn). Then

∑n
i=0 ai⊗f(xi) = 0 ∈ R̂⊗RN0, butM ∩N0 ⊂ N0 is injective map of �nitely generated

R-modules (R is Noetherian). Hence R̂ ⊗R (M ∩ N0) → R̂ ⊗R N0 is injective, and x =
∑
ai ⊗ xi 7→ 0, hence

0 = x ∈ R̂⊗R (M ∩N0)⇒ 0 = x ∈ R̂⊗RM . Hence we have showed 1⊗ f is injective.

Lemma 2.26. Let R be a ring, M a �nitely generated R-module and I ⊂ R an ideal. If IM = M then there exists
a ∈ I such that (I + a)M = 0

Proof. If B ∈Mn(R), let B# be the adjugate matrix. Then B#B = BB# = detB · In

Let x1, . . . , xn ∈ M generate M . IM = M ⇒ ∀i∃aij ∈ I such that xi =
∑n
j=1 aijxj . Set x =

x1

...
xn


then x = Ax for A = (aij) ∈ Mn(I). Hence (1 − A)x = 0, so let (1 − A)# be the adjugate of (1 − A) then
0 = (1 − A)#(1 − A)x = det(1 − A) · x. But det(1 − A) = 1 + a for some a ∈ I since A ∈ Mn(I). Hence
(1 + a)xi = 0∀i⇒ (1 + a)M = 0
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Krull Intersection Theorem. Let R be a Noetherian ring and I ⊂ R a proper ideal. If either R is a domain or
I ⊂ J(R) =

⋂
M⊂R max ideal

M (the Jacobson radical). Then
⋂
n≥1 I

n = 0.

Proof. Let N =
⋂
n≥1 I

n ⊂ R. Then {N ∩ Ik} is a stable I-�ltration on N by Artin-Rees lemma. Now N ∩ Ik = N
implies by stable I-�ltration that IN = N . Then by the previous lemma ∃a ∈ I such that (1 + a)N = 0 (N is
�nitely generated because R is Noetherian and N ⊂ R).

If R is a domain, then 1 + a is a non-zero divisor because 1 + a 6= 0 (since I 6= R) hence (1 + a)N = 0⇒ N = 0
If I ⊂ J(R) then 1 + a is a unit, hence (1 + a)N = 0⇒ N = 0

Lemma 2.27. Let A = A0 ⊃ A1 ⊃ . . . and B = B0 ⊃ B1 ⊃ . . . be �ltered modules and f : A→ B a map of �ltered
modules (that is f(Ai) ⊂ Bi).

1. If gr(f) : gr(A)→ gr(B) is surjective, then f̂ : Â→ B̂ is surjective. (Recall gr(A) = ⊕i≥0Ai/Ai+1)

2. If gr(f) : gr(A)→ gr(B) is injective, then f̂ : Â→ B̂ is injective.

Proof. Consider the commutative diagram with exact rows:

0 // Ai/Ai+1

gri(f)
����

// A/Ai+1
//

αi+1

��

A/Ai //

αi

��

0

0 // Bi/Bi+1
// B/Bi+1

// B/Bi // 0

(∗)

Therefore, gri(f) and αi surjective (injective) imply αi+1 surjective (injective). Since gr0(f) = α0 : A/A1 =
A0/A1 → B0/B1 = B/B1 is surjective (injective) by assumption of 1. (respectively of 2.), we have: αi is surjective
(injective) for all i ≥ 0.

1. We have an inverse system of exact sequence

0 // ker(αi) // A/Ai
αi // B/Bi // 0 (∗∗)

Now we have ker(αi+1) → ker(αi) is surjective by the Snake Lemma applied to (∗) and coker(gri(f)) = 0.
This means that {ker(αi)} is a surjective inverse system. So by taking lim←− of (∗∗) yields an exact sequence:

0 // lim←− ker(αi) // Â
f̂ // B̂ // 0

Hence f̂ : Â→ B̂ is surjective.

2. Since αi is injective ∀i, the map
∏
αi :

∏
A/Ai →

∏
B/Bi is injective. As Â and B̂ are submodules of source

and target of that map, the map Â→ B̂ is injective.

Lemma 2.28. Let I ⊂ R be an ideal of a ring R which is I-adically complete. Let M be an R-module with an
I-�ltration M = M0 ⊃ M1 ⊃ M2 ⊃ . . . such that

⋂
i≥0Mi = 0. Then if gr(M) = ⊕i≥0Mi/Mi+1 is a �nitely

generated grI(R) = ⊕i≥0I
i/Ii+1-module, then M itself is a �nitely generated R-module.

Proof. Let x1, . . . , xn ∈ gr(M) generate gr(M) as grI(R) -module. Without loss of generality, we can assume xi
homogeneous of degree ni. So xi ∈ grni(M) = Mni/Mni+1. Lift these xi to yi ∈Mni .

Claim: y1, . . . , yn ∈M generates M as R-modules
Write Ri for the R-module R equipped with the I-�ltration R ⊃ R ⊃ R ⊃ · · · ⊃ R︸ ︷︷ ︸

ni

⊃ I ⊃ I2 ⊃ . . . . Then

consider fi : Ri → M de�ned by 1 7→ yi, this is a map of �ltered R-modules. Hence f = ⊕fi : ⊕ni=1Ri → M . is a
map of �ltered R-modules such that gr(f) = ⊕ni=1gr(Ri) → gr(M) is surjective. (Note that gr(Ri) = gr(R)(−ni)
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where S(r) graded ring with S(r)i = S(r + i)) Because gr(Ri) = gr(R)(−ni) → gr(M) is de�ned by 1 (in degree

ni) maps to xi. Then the previous lemma implies f̂ : ⊕̂ni=1Ri → M̂ is surjective.

⊕ni=1Ri
f //

(1)

��

M

(2)

��
⊕̂ni=1Ri
=⊕ni=1R̂i

f̂

// M̂

The map (1) is an isomorphism, because R̂i = R̂I since the I-�ltration on Ri is stable and R ∼= R̂I as R is complete.

Also the map (2) is injective because ker = ∩i≥0Mi = 0. Since f̂ is surjective, we have (2) is surjective, hence (2)
is an isomorphism. So f is surjective.

Theorem 2.29. Let R be a Noetherian ring and I ⊂ R an ideal. Then R̂ = R̂I is Noetherian.

Proof. Let M ⊂ R̂ be an R̂-ideal. We need to show that M is �nitely generated R̂-module. Equip M with the
�ltration {M ∩ În}. Then grM = ⊕n≥0(M ∩ În)/(M ∩ În+1) → grÎR̂ = ⊕n≥0Î

n/În+1 is a submodule. R is

Noetherian means În = În (= In ⊗R R̂), hence grÎR̂
∼= grIR = ⊕n≥0I

n/In+1. Also R being Noetherian implies

grIR is Noetherian, hence the submodule grM is also �nitely generated as grR̂-module.

We want to use the previous lemma, so consider ∩n≥0M ∩ În ⊂ ∩n≥0Î
n = ker(R̂

∼=→ ̂̂
R) = 0. So grM is a �nitely

generated grR̂-module and thus M is a �nitely generated R̂-module, by Lemma 2.28. Hence R̂ is Noetherian.

2.6 Hensel's Lemma

Let R be any ring, recall that R[[T1, . . . , Tn]] is the I-adic completion of R[T1, . . . , Tm] where I = (T1, . . . , Tn) ⊂
R[T1, . . . , Tn].

Lemma 2.30. Let f : R → S be a ring homomorphism. Let I ⊂ S be an ideal such that S is I-adically complete.
For any a1, . . . , an ∈ I there exists a unique ring homomorphism F : R[[T1, . . . , Tn]] → S such that Ti 7→ ai and
extending f , i.e. F (Ti) = ai and the following diagram commutes:

R[[T1, . . . Tn]]

F

$$
R

OO

f
// S

Proof. Existence of F : There exists ring homomorphism F0 : R[T1, . . . , Tn] → S such that Ti → ai extending f .
F0 sends J = (T1, . . . , Tn) ⊂ R[T1, . . . , Tn] into I ⊂ R. So F0(Jn) ⊂ In means we get a commutative
diagram:

R[T1, . . . , Tn]
F0 //

��

S

φ

��
̂R[T1, . . . , Tn]

=R[[T1,...,Tn] F̂0

// Ŝ

Note that the completion map φ : S → Ŝ is an isomorphism because S is I-adically complete. Set
F = φ−1 ◦ F̂0. Then F extends f

F is unique: Assume F ′ is another extension of f as in the lemma, and let L : R[T1, ..., Tn] → R[[T1, ..., Tn]] be

the usual embedding. The map j : S
∼=→
φ
Ŝ ⊂

∏
n≥1 S/I

n is injective. So (∗) F = F ′ ⇐⇒ j ◦ F =

j ◦ F ′ ⇐⇒ R[[T1, . . . , Tn]]
ρn◦F ′→
ρn◦F ′

S/In agree for all n (where ρn : S → S/In).
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Now, if F ′, F extend f such that F (Ti) = ai = F ′(Ti) then F ◦ L = F ′ ◦ L and the following diagram
commutes:

R[T1, . . . Tn]
L //

����

R[[T1, . . . , Tn]]
F ′

F //

��

S

ρn

��
R[T1, . . . , Tn]/Jn R[[T1, . . . , Tn]]/Ĵn

F ′mod Ĵn

F mod Ĵn // S/In

Hence F mod Ĵn = F ′ mod Ĵn ∀n⇒ ρn ◦ F = ρn ◦ F ′ ⇒
(∗)

F = F ′

De�nition 2.31. Let f ∈ R[[T ]], f = a0 + a1T + a2T
2 + · · · =

∑∞
n=0 anT

n. De�ne its derivative f ′ ∈ R[[T ]] as
f ′ =

∑∞
n=1 an · nTn−1. So f(T ) = f(0) + f ′(0)T + hT 2 for some h ∈ R[[T ]].

Remark. gr(T )R[[T ]] = gr(T )R[T ] = ⊕n≥0(Tn)/(Tn+1) ← R[X] de�ned by X 7→ T mod T 2 ∈ gr1(T )R[[T ]] =

(T )/(T 2). This is an isomorphism because in degree n this map is Xn · R → (Tn)/(Tn+1) de�ned by Xn 7→ Tn

mod Tn+1, is a map of free R-modules of rank 1 sending generator to generator.

Lemma 2.32. Let f ∈ TR[[T ]]. If f ′(0) ∈ R is a unit then the map φ : R[[T ]] → R[[T ]] de�ned by T 7→ f is an
isomorphism which sends the ideal (T ) isomorphically onto itself.

Proof. Look at gr(φ) : grR[[T ]]→ grR[[T ]]. By the above remark we get the following

T
� // f = f ′(0)T mod T 2

T mod T 2 grR[[T ]]
gr(φ) // grR[[T ]]

X
_

OO

R[X] //

∼=

OO

R[X]

∼=

OO

X � // f ′(0) ·X

where f = f(0)︸︷︷︸
=0

+ f ′(0)T +T 2h. Since f ′(0) is a unit⇒ gr(φ) is an isomorphism of rings. Hence φ̂ : R̂[[T ]]→ R̂[[T ]]

is an isomorphism (Lemma 2.27), but R̂[[T ]] = R[[T ]], hence φ is an isomorphism. For the last claim note that
f = T (f ′(0)+Th) for some h ∈ R[[T ]]. Therefore, φ((T )) = (f) = (T (f ′(0)+Th)) = (T ) since (f ′(0)+Th) ∈ R[[T ]]
is a unit, by Lemma 2.1.

Hensel's Lemma. Let R be a ring which is I-adically complete for some I ⊂ R. Let f ∈ R[T ] be a polynomial.

1. If f(a) = 0 mod f ′(a)2I (f has an approximate solution) then ∃b ∈ R with f(b) = 0 ∈ R such that b = a
mod f ′(a)I (f has a solution near a)

2. If in 1. f ′(a) ∈ R is a non-zero divisor, then b ∈ R in 1. is unique.

Proof. 1. f is a polynomial in R[T ] and set e = f ′(a). We can write f(a+ eT ) = f(a) + f ′(a)eT + h(T )e2T 2 for
some h ∈ R[T ]. So f(a + eT ) = f(a) + e2(T + h(T )T 2). Let g(T ) = T + h(T )T 2 ∈ TR[T ] ⊂ TR[[T ]]. Then
g′(T ) = 1 + T ·polynomial, g′(0) = 1 ∈ R∗.
By the previous lemma, the map φ : R[[T ]]→ R[[T ]] de�ned by T 7→ g is an isomorphism such that φ(J) = J
where J = (T )

f(a+ eT ) = f(a) + e2g(T ) ∈ R[[T ]] (∗)
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Note that φ−1 is R-algebra homomorphism, f ∈ R[T ], so they commute. Apply φ−1 to (∗) and we get

f(a+ e · φ−1(T )) = f(a) + e2φ−1(g(T ))︸ ︷︷ ︸
T

(∗∗)

Recall that by assumption f(a) = 0 mod e2I, so there exists c ∈ I such that f(a) = −e2c. Since R is
complete with respect to I, we get the R-algebra homomorphism ψ : R[[T ]] → R de�ned by T 7→ c. Now
apply ψ to (∗∗)

f(a+ e · ψ(φ−1T )) = f(a) + e2ψ(T ) = −e2c+ e2c = 0

Hence b = a + e · ψ(φ−1(T )) ∈ R such that f(b) = 0 ∈ R. Now φ−1(T ) ∈ (T ), hence ψ(φ−1(T )) ∈ ψ(T )R =
cR ⊂ I, hence b = a mod eI.

2. Let bi = a+ edi for i = 1, 2 be two solutions of f and di ∈ I, so f(bi) = 0 ∈ R.

f(a+ eT ) = f(a) + e2φ(T ) ∈ R[[T ]] (∗)

Since di ∈ I and R is I-adically complete, there exists a uniqueR-algebra homomorphism βi : R[[T ]] → R
de�ned by T 7→ di. Now apply βi to (∗), yields

f(a+ eβi(T ))︸ ︷︷ ︸
f(bi)

= f(a) + e2βiφ(T ) ∈ R

so we get 0 = f(bi) = f(a) + e2βiφ(T ). Hence e2β1φ(T ) = e2β2φ(T ) ∈ R, and since e = f ′(a) is a non-zero
divisor, we have β1(φT ) = β2(φT ). So the two R-algebra homomorphisms β1 ◦ φ, β2 ◦ φ : R[[T ]] → R agree
on T . But there exists a unique such morphism, hence β1 ◦ φ = β2 ◦ φ as maps R[[T ]] → R. Recall that
φ : R[[T ]]→ R[[T ]] was an isomorphism, so β1 = β2 : R[[T ]]→ R. Hence

b1 = a+ ed1

= a+ eβ1(T )

= a+ eβ2(T )

= a+ ed2

= b2

Example. Which units in Zp (p ∈ Z prime) are squares? I.e. For which u ∈ Z∗p does f(T ) = T 2 − u has a root in
Zp?

Hensel's lemma: If f(T ) = T 2 − u has a root a in Zp/f ′(a)2pZp = Zp/4a2pZp then f has a root in Zp. Now
f(a) = 0 mod 4a2p means a2 = u mod 4a2p. Since u ∈ Z∗p we have a ∈ Zp/(2a)2pZp is a unit which implies
a ∈ Z∗p (as both rings are local with same residue �eld). So we have Zp/(2a)2pZp = Zp/4pZp. Hence we have that

u ∈ Z∗p is a square if and only if u is a square in Zp/4pZp =

{
Zp/pZp = Z/pZ p odd

Z2/8Z2 = Z/8Z p = 2
.

2.7 Cohen's Structure Theorem

Next we want to prove (part of) Cohen's structure theorem.

Lemma 2.33. Let R be a ring which is complete with respect to an ideal I ⊂ R. Then

1. 1− ε ∈ R∗ ∀ε ∈ I

2. a ∈ R is a unit in R if and only if a ∈ (R/I)∗

Proof. 1. We claim the inverse of 1− ε is
∑∞
i=0 ε

i which is Cauchy in I-adic topology because ε ∈ I. Since R is
complete

∑∞
i=0 ε

i ∈ R . Then by computation we see (1− ε)
∑∞
i=0 ε

i = 1

2. �⇒� if a ∈ R is a unit, then a ∈ (R/I)∗ because R→ R/I is a ring homomorphism.

�⇐� if a ∈ R is a unit mod I, then ∃b ∈ R with ab = 1 mod I. So ab = 1− ε for some ε ∈ I. Hence by part
1, ab ∈ R∗, hence a is a unit.
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We summarize what we have proved about the completion of local Noetherian rings.

Theorem 2.34. Let (R,m, k) be a Noetherian local ring. Then R̂ = R̂m is a local Noetherian ring with maximal

ideal m̂ = R̂⊗R m = mR̂ and residue �eld R̂/m̂ = k.

Proof. • R Noetherian means R̂ is Noetherian (Theorem 2.29)

• R̂ is complete with respect to m̂n = m⊗R R̂ = mR̂ (Lemma 2.11, Lemma 2.23).

• R̂/m̂ = R/m = k (Lemma 2.11 part 2) is a �eld, hence m̂ ⊂ R̂ is a maximal ideal.

So it remains to show R̂ is a local ring, that is, m̂ = mR is the unique maximal ideal. This is because a ∈ R̂ is
a unit in R̂ if and only if (by the previous lemma) a ∈ (R̂/m̂)∗, if and only if a /∈ m̂. Hence R̂∗ = R̂ − m̂, so m̂ is

the unique maximal ideal of R̂.

Cohen Structure Theorem. Let (R,m, k) be a local Noetherian ring which is m-adically complete. If R contains
a �eld then R ∼= k[[T1, . . . , Tn]]/I for some n ∈ N and Ian ideal.

Proof. We will only cover the case when chark = 0. (The other case requires a bit more work and some Galois
Theory)

Let Σ = {L ⊂ R,L �eld}, and order it by inclusion. By assumption Σ 6= ∅. If C ⊂ Σ is a chain, then ∪L⊂CL ⊂ R
is a �eld. Hence by Zorn's Lemma, Σ has a maximal element, so R contains a maximal �eld, say L ⊂ R.

Claim: The composition L ⊂ R
g
� k = R/m is an isomorphism (so L ∼= K)

Assume L ∼= g(L) ( k (g|L is injective because ker(g) = 0 since L is a �eld). Choose x ∈ k \ g(L). Since g is
surjective, there exists y ∈ R such that g(y) = x.

Case 1. Assume x is not a root of a monic polynomial f ∈ g(L)[T ]. Then y ∈ R is not a root of a monic polynomial
f ∈ L[T ] (∗).
So we can construct h : L[T ] → R by T 7→ y. This map is injective because ker(h) = f0L[T ] where f0 ∈ L[T ] is
zero or monic. Hence by (∗), f0 = 0 so h is injective.

L[T ]

g

&&

� � h // R

��
T 7→ x k

g|L[T ] is injective, since x is not a root of monic polynomial. If 0 6= f1 ∈ L[T ] ⇒ 0 6= g(f1) ≡ f1 mod m. Hence
f1 /∈ m, and since R is local, f1 ∈ R∗. Hence Frac(L[T ]) = L(T ) ⊂ R. This is a contradiction of L being the
maximal �eld in R.

Case 2. Assume x is a root of a monic polynomial f ∈ g(L)[T ], and let f be the minimal polynomial of x ∈ k. So,
f is irreducible over g(L) and F = g−1(f) ∈ L[T ] ⊂ R[T ] is irreducible over L. Since chark = 0, f is separable, so
f ′(x) 6= 0 since F ′(y) = f ′(x) mod m 6= 0. Hence F ′(y) /∈ m, so as R is local, F ′(y) ∈ R∗.
So we use Hensel's Lemma (R is complete): F has a root mod m = F ′(y)2︸ ︷︷ ︸

unit

m, namely x, hence F has a root in R,

say F (z) = 0 for some z ∈ R.
Then we can construct L[T ]/F → R by T 7→ z, this is injective because

L[T ]/F
h //

&&

R

g

��
k

gh is injective as g(F ) = f is minimal polynomial of x. Also note L[T ]/F is a �eld since F is irreducible over L,
hence we have a contradiction to L being the maximal sub�eld of R.
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Hence the two cases above show that L ∼= k.
R is Noetherian, means m ⊂ R is �nitely generated, say by x1, . . . , xn ∈ m. Since R is complete with re-

spect to m, we construct a unique L-algebra map h : L[[T1, . . . , Tn]] → R by Ti 7→ xi. Now the map gr(h) :
gr(L[[T1, . . . , Tn]])→ grmR is surjective because

gr0(h) : L ∼= k

gr1(h) :
(T1, . . . , Tn)

(T1, . . . , Tn)2
→ m

m2
de�ned byTi 7→ xi

where the second map is surjective because m is generated by x1, . . . , xn. In general grI(A) = ⊕n≥0I
n/In+1 is

generated as gr0(A) = A/I-algebra by gr1(A) = I/I2. Hence gr(h) is surjective.
Since L[[T1, . . . , Tn]] and R are complete, then h : L[[T1, . . . , Tn]] → R is surjective, so R = L[[T1, . . . , Tn]]/I

where I = ker(h) and L ∼= k.

Remark. If R does not contain a �eld, we have (without proof):

Cohen Structure Theorem. Let (R,m, k) be a complete Noetherian local ring. If R does not contain a �eld, then
there exist a DVR V such that R = V [[T1, . . . , Tn]]/I
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3 Dimension Theory

In this section we will study dimension theory of local Noetherian rings and work toward proving:

Dimension Theorem. Let (R,m, k) be a local Noetherian ring. Then the following three numbers are equal:

• dimR = max{n ∈ N|∃P0 ( P1 ( · · · ( Pn ⊂ R, Pi prime ideal}

• 1 + deg of the Hilbert polynomial of grmR = ⊕n≥0m
n/mn+1

• min{n ∈ N|∃x1, . . . , xn ∈ m : R/(x1, . . . , xn) is Artinian}

3.1 Length

Recall from Commutative Algebra the following:

Fact. Let R 6= 0 be a Noetherian ring, then the following are equivalent:

1. R is Artinian

2. dimR = 0

3. The Jacobson Radical is nilpotent

De�nition 3.1. A simple R-module is a module M such that M 6= 0 and 0,M ⊂M are the only submodules.

Remark. M is simple if and only if M ∼= R/m for some m ⊂ R a maximal ideal.

De�nition 3.2. A composition series ofM is a �nite �ltration 0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M such thatMi/Mi−1

is simple ∀i = 1, . . . n. We say that a module has �nite length if it has a composition series.

Lemma 3.3 (Rings and Modules). M has �nite length if and only if M is Artinian and Noetherian.

De�nition 3.4. The length l(M) of a �nite length module M is l(M) = n if there exists a composition series
0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M . (This does not depend on the choice of composition series, proof of this can be
found in Rings and Modules)

Lemma 3.5. Let 0 → M1 → M2
g→ M3 → 0 be an exact sequence of �nite length modules. Then l(M2) =

l(M1) + l(M3)

Proof. Let 0 = M0
1 ⊂M1

1 ⊂ · · · ⊂Mr
1 = M1 and 0 = M0

3 ⊂M1
3 ⊂ · · · ⊂Ms

3 = M3 be composition series of M1 and
M3. Then 0 = M0

1 ⊂M1
1 ⊂ · · · ⊂Mr

1 = M1 = g−1(M3
0 ) ⊂ g−1(M3

1 ) ⊂ . . . g−1(M2
3 ) = M is a composition series of

M of length r + s.

Example. Let (A,m, k) be an Artinian local ring, M a �nitely generated A-module. Then M is Artinian (�nitely
generated over A) and Noetherian (�nitely generated over A which is Noetherian), hence it has �nite length.

Now A being Artinian (local) implies there exists n such that mn = 0 and 0 = mnM ⊂ mn−1M ⊂ · · · ⊂
mM ⊂ M . Now miM/mi+1M is a �nite dimensional A/m = k vector space. Hence l(miM/mi+1M) =
dimk(miM/mi+1M), which means

l(M) =
∑
i≥0

dimk

(
miM

mi+1M

)

3.2 Hilbert Polynomial

Consider graded rings A = ⊕n≥0An such that:
(†) A0 is Artinian, A1 is a �nitely generated A0-module and A is generated as an A0-algebra by A1

Remark 3.6. Let A be a graded ring as in (†). If x1, ..., xk ∈ A1 generate A1 as A0-module then the map of
graded A0-algebras A0[T1, ..., Tk] → A : Ti 7→ xi is surjective. In particular, An is a �nitely generated A0-module,
generated by the monomials in x1, ..., xk of total degree n.

Example. Let R be a Noetherian ring, I ⊂ R an ideal such that R/I is Artinian. Then grI(R) = ⊕n≥0I
n/In+1

satis�es (†)
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Notation. Let M = ⊕n≥0Mn be a graded A = ⊕k≥0Ak-module. Then M(i) is a graded A-module with (M(i))n =
M(i+ n).

Example. A graded A-module M is �nitely generated A-module if and only there exists ⊕ki=1A(ni) � M a
surjective map of graded A-modules.

Proof. �⇐�: A(mi) is generated by 1 ∈ (A(ni))−ni
�⇒�: M is �nitely generated say by x1, . . . , xn. Then M is generated by the �nitely many homogeneous

components of x1, . . . , xn. Hence, without loss of generality, we can assume xi is homogeneous of degree di. Then
⊕ni=1A(−di)→M de�ned by A(−di)di 3 1 7→ xi is a surjective map of graded A-modules.

Remark. If A satis�es (†) and M = ⊕n≥0Mn is a �nitely generated A-module, then Mn is an A0-module of �nite
length l because there is a surjection ⊕li=1A(ni) � M of graded A-modules, and each A(ni)j = A(ni + j) is a
�nitely generated A0-module, hence of �nite length as A0 is Artinian.

De�nition 3.7. Let A = ⊕n≥0An be a graded ring satisfying (†) and M = ⊕n≥0Mn a �nitely generated graded
A-module. The Poincare series of M is the formal power series

P (M, t) =
∑
n≥0

l(Mn)tn ∈ Z[[t]]

Theorem 3.8. Let M be a �nitely generated graded A-module where A satis�es (†). If x1, . . . , xs generate A1 as
A0-module then there exists f(t) ∈ Z[t] polynomial such that P (M, t) = f(t)/(1− t)s.

Proof. We prove this by induction on s (the number of generators of A1 as A0-module)
s = 0: This means A = A0. Now M is a �nitely generated A-module, means there exists a surjective of graded

A-modules: ⊕li=1A(di) �M . Hence Mn = 0 for n� 0 (n ≥ max1≤i≤l{−di}). Hence P (M, t) is a polynomial and
we can take f(t) = P (M, t).

s > 0: Let N,Q be the kernel and cokernel of the map M(−1)
·xs→ M of graded A-modules. So we have an

exact sequence of graded A-modules: 0 → N → M(−1)
·xs→ M → Q → 0. But xsN = 0 and xsQ = 0, so N,Q are

A/xs-modules. N (and Q) are �nitely generated A (hence A/xs) modules because A is a Noetherian ring. Length
is additive with respect to short exact sequence, hence P (N, t)− P (M(−1), t) + P (M, t)− P (Q, t) = 0. So

P (M, t)− P (M(−1), t) = P (Q, t)− P (N, t)

P (M, t)− P (M(−1), t) =
f(t)

(1− t)s−1
by induction hypothesis

P (M, t)− tP (M, t) =
f(t)

(1− t)s−1
l(M(−1)n)tn = l(M(n− 1))tn

hence P (M, t) = f(t)/(1− t)s.

Notation. Let M be a �nitely generated graded A-module where A satis�es (†). Write d(M) =order of pole of
P (M, t) at t = 1.

Theorem 3.9. Let A satisfy (†), let M = ⊕n≥0Mn be a �nitely generated graded A-module. Then there exists a
polynomial g(t) ∈ Q[t] of degree d(M)− 1 such that there exists n0 with g(n) = l(Mn) for all n ≥ n0.

Proof. By Theorem 3.8, we have P (M, t) = f(t)/(1 − t)s, f(t) ∈ Z[t]. Cancelling common factors of f(t) and
(1− t)s, we can assume that P (M, t) = f(t)/(1− t)d for a polynomial f(t) =

∑n
i=0 ait

i ∈ Z[t] with f(1) 6= 0. Then
d is the order of the pole of P (M, t) at t = 1. Now(

−d
j

)
(−1)j =

(−d)(−d− 1) . . . (−d− j + 1)

j!
(−1)j

=
(j + d− 1)(j + d− 2) . . . d

j!

=

(
j + d− 1

j

)
=

(
j + d− 1

d− 1

)
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Hence

(1− t)−d =

∞∑
j=0

(
−d
j

)
(−t)j

=

∞∑
j=0

(
j + d− 1

d− 1

)
tj

So

P (M, t) =
∑

j≥0,0≤i≤n

(
j + d− 1

d− 1

)
ait

i+j

=
∑
n≥0

l(Mn)tn

Hence we have l(Mk) =
∑n
i=0 ai

(
k−i−d−1
d−1

)
for k ≥ n. This is a polynomial in k with leading term

∑n
i=0 ai

kd−1

(d−1)! =

f(1) kd−1

(d−1)! 6= 0, since f(1) 6= 0 . It clearly has degree d− 1.

Remark. If g1, g2 ∈ Q[t] such that ∃n0 with g1(n) = g2(n)∀n ≥ n0, then g1 = g2 ∈ Q[t]. Hence there exists a unique
H(M) ∈ Q[t] such that ∃n0 with H(M)(n) = l(Mn) for all n ≥ n0

De�nition 3.10. The unique polynomial H(M) with H(M)(n) = l(Mn) for n� 0 is called the Hilbert polynomial
of M = ⊕n≥0Mn. If I ⊂ R is an ideal such that R/I is artinian and M is a �nitely generated R-module, we write
HI(M) for the Hilbert polynomial of grIM =

⊕
n≥0

InM
In+1M as a graded grI(R)-module. If (R,m, k) is a local ring,

we may write H(R) for Hm(R) = H(grmR).

Remark 3.11. We've showed that 1 + degH(M) = d(M) (Theorem 3.9)

3.3 Characteristic Polynomial

De�nition 3.12. Let (R,m, k) be a local Noetherian ring. An ideal I ⊂ m is called m-primary if m =
√
I = {x ∈

R|xn ∈ I for somen}

Remark. I ⊂ m is m-primary, if and only if, mn ⊂ I for some n ∈ N, if and only if, R/I is Artinian.

Proposition 3.13. Let (R,m, k) be a local Noetherian ring, I ⊂ m a m-primary ideal, M a �nitely generated
R-module and M = M0 ⊃M1 ⊃M2 ⊃ . . . be a stable I-�ltration. Then:

1. M/Mn has �nite length for all n ≥ 0

2. There exists g ∈ Q[t] of degree d(⊕n≥0Mn/Mn+1) such that ∃n0 with g(n) = l(M/Mn)∀n ≥ n0

3. The degree and leading coe�cient of g ∈ Q[t] (from 2.) does not depend on the stable I-�ltration. (Only on
M and I)

Proof. 1. M• is a stable I-�ltration implies gr(M•) = ⊕n≥0Mn/Mn+1 is a �nitely generated grI(R) = ⊕n≥0I
n/In+1-

module (Using Lemma 2.20). Hence Mn/Mn+1 is a �nitely generated R/I-module. By the above remark, I
is m-primary, means R/I is Artinian, hence Mn/Mn+1 has �nite length. From the exact sequence

0 // Mn/Mn+1
// M/Mn+1

// M/Mn
// 0 (∗)

and induction on n (since M/M0 = 0 has �nite length), we conclude that M/Mn has �nite length for all
n ≥ 0.

2. Set g(n) = l(M/Mn). From (∗) we see that g(n + 1) − g(n) = H(grM)(n)∀n ≥ n0 (where n0 depends on

H(M)). Hence there exists some c ∈ Q such that g(n) = c+
∑n−1
i=1 H(grM)(i) ∀n ≥ n0. This is a polynomial

of degree 1 + deg(H(grM)) = d(grM) because1 hd(n) =
∑n−1
k=1 k

d is a polynomial in n of degree d+ 1.

1To see this we use induction on d . For d = 0 , then hd(n) =
∑n−1

k=1 1 = n− 1 , a polynomial of degree d+ 1 .

Assume d ≥ 1. Then (k + 1)d+1 =
∑d+1

i=0

(d+1
i

)
ki, so

∑n
k=2 k

d+1 =
∑n−1

k=1 (k + 1)d+1 =
∑d+1

i=0

(d+1
i

)∑n−1
k=1 ki =

∑n−1
k=1 kd+1 +∑d

i=0

(d+1
i

)
hi(n). Hence nd+1 − 1 =

∑d
i=0

(d+1
i

)
hi(n), so hd(n) = 1

d
(nd+1 − 1 −

∑d−1
i=0

(d+1
i

)
hi(n)). Hence by induction hypothesis,

this is a polynomial of degree d+ 1.
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3. Let g be as in 2. and let g be the polynomial obtained in 2. for the stable I-�ltration {InM}. {M•} is a stable
I-�ltration, hence there exists k such that ∀n ≥ k InM ⊂ Mn = In−kMk ⊂ In−kM (by De�nition 2.14) So
there exist surjections

M/InM // // M/Mn
// // M/In−kM

So l(M/InM) ≥ l(M/Mn) ≥ l(M/In−kM). So g(n) ≥ g(n) ≥ g(n− k) for n� 0.

Note that g = 0, if and only if, ḡ = 0 in view of the above surjections. Therefore, g, g have the same degree
and leading coe�cients in this case.

So we assume g 6= 0. Then limn→∞ g(n)/g(n) ≥ 1 ≥ limn→∞ g(n−k)/g(n) = limn→∞ g(n)/g(n), hence limn→∞ g(n)/g(n) =
1, hence g and g have the same degree and leading coe�cients.

De�nition 3.14. Let (R,m, k) be a Noetherian local ring,M a �nitely generated R-module with stable I-�ltration
where I ⊂ m is a m-primary ideal. Then the polynomial g of Proposition 3.13 part 2. is called the characteristic
polynomial of {M•}. For {InM} we write χI(M) for its characteristic polynomial.

Remark. We proved that degχI(M) = 1 + degHI(M); see proof of Proposition 3.13 part 2.

Lemma 3.15. Let (R,m, k) be a Noetherian local ring, I ⊂ R a m-primary ideal. Then for any �nitely generated
R-module M we have degχI(M) = degχm(M).

Proof. I is m-primary, so mn ⊂ I ⊂ m by de�nition. Hence mnk ⊂ Ik ⊂ mk and mnkM ⊂ IkM ⊂ mkM . Hence
there exist surjections

M/mnkM // // M/IkM // // M/mkM

so l(M/mnkM) ≥ l(M/IkM) ≥ l(M/mkM), which means that

χm(M,nk) ≥ χI(M,k) ≥ χm(M,k)∀k � 0 (∗)

Since χm(M,k), χI(M,k) ≥ 0 for k � 0, we have the leading coe�cients of χm, χI ≥ 0. So by (∗) we have
degχm ≥ degχI ≥ degχm

3.4 Dimension Theorem

Notation. Let (R,m, k) be a Noetherian local ring. Write

δ(R) = min{n ∈ N|∃x1, . . . xn ∈ m : R/(x1, . . . , xn) is Artinian}

Convention for this course: The degree of the zero polynomial is −1.

Dimension Theorem. Let (R,m, k) be a Noetherian local ring. Then the following three numbers are equal:

dimR = 1 + degH(grmR) = δ(R)

Proof. The strategy of the proof is to show:

δ(R)
(3)

≤ dimR
(2)

≤ 1 + degH(grmR)
(1)

≤ δ(R)

1.

Lemma 3.16. Let (R,m, k) be a Noetherian local ring. Then 1 + deg(H(grmR)) ≤ δ(R)

Proof. Recall (Theorem 3.13) that we have already shown that for an m-primary ideal I ⊂ R: degχIR =
1 + degH(grIR) = order of pole at t = 1 of P (grIR, t). We also have proven (Theorem 3.8) that P (grIR, t) =
f(t)/(1 − t)s where s is the number of generators of grI(R) = I/I2 as R/I-module. Nakayama's lemma
shows: I is generated by s-elements as R-module. Note that order of pole at t = 1 is ≤ s (Since f(t) is a
polynomial). Hence degχI(R) ≤ s = #generator of I. Recall (Theorem 3.13) that degχI(R) = degχm(R),
so 1 + degH(grmR) = degχm(R) = degχI(R) ≤ #generator of I for all m-primary ideals I ⊂ R. Hence
1 + degH(grmR) ≤ δ(R).
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2.

Lemma 3.17. Let (R,m, k) be a Noetherian local ring. Let x ∈ m be a non-zero-divisor. Then degHm(R/x) ≤
degHm(R)− 1.

Proof. Since degHm = degχm − 1, we will show that degχm(R/x) ≤ degχ(R) − 1. Since x ∈ m is a
non-zero-divisor, we have an exact sequence

0 // M �
� // R // R/x // 0

where M = xR ∼= R (with the isomorphismR → xR is given by r 7→ xr). Set S = R/x. So we have exact
sequences

0 // M/M ∩mnR // R/mnR // S/mnS // 0

This means
χm(R)− χ(M•) = χm(S) (∗)

where M• is the m-�ltration {M ∩mnR}, which is stable by the Artin-Rees lemma. By Proposition 3.13 part
3, the degree and leading coe�cients of χ(M•) equals to the ones for χm(M) = χm(R) (since M = xR ∼= R).
So using (∗) we have degχm(S) ≤ degχm(R)− 1.

Lemma 3.18. Let (R,m, k) be a Noetherian local ring. Then dimR ≤ 1 + degH(R)

Proof. We do a proof by induction on degH(R) ≥ −1

Consider degH(R) = −1, this happens if and only if H(R) = 0. So mn/m(mn) = mn/mn+1 = 0 for n � 0.
By Nakayama's lemma this implies mn = 0 for n � 0. Hence R is Artinian, so dimR = 0. (In fact if
dimR = 0, then by de�nition R is Artinian, so mn = 0 for n � 0, which trivially shows that mn/mn+1 = 0
for n� 0. So in fact we have H(R) = 0 if and only if dimR = 0). Hence dimR ≤ 1 + degH(R).

Assume degH(R) ≥ 0, then dimR ≥ 1, so there exists prime ideals q ( p ( R, and

dimR = max
q(p
{dimR/p}+ 1.

For q ( p ⊆ R prime ideals, there exists x ∈ p \ q. Then we have surjective maps, R/q � R/(q, x) � R/p.
Now R/q is a domain (since q is prime), and since 0 6= x ∈ R/q we have x is a non-zero divisor in R/q
(also x ∈ p ⊂ m). Hence by Lemma 3.17 and the fact R � R/q, means grmR � grmR/q hence H(R, t) ≥
H(R/q, t) ≥ 0, t� 0, we get

degH(R/(q, x)) ≤ degH(R/q)− 1 ≤ degH(R)− 1

So by induction hypothesis (and the fact R/(q, x) � R/p),

dimR/p ≤ dimR/(q, x) ≤ 1 + degH(R/(q, x)) ≤ degH(R)

Hence
dimR = 1 + max

q(p
{dimR/p} ≤ 1 + degH(R)

Corollary 3.19. Let (R,m, k) be a local Noetherian ring. Then dimR <∞

Proof. dimR ≤ 1 + degH(R) <∞

Remark. There are Noetherian rings of in�nite dimension (Assignment III)

Corollary 3.20. Let (R,m, k) be a Noetherian local ring. Then prime ideals in R satisfy the descending
chain condition.

Proof. If p0 ) p1 ) · · · ) pn is a chain of prime ideals, then n ≤ dimR <∞.

Remark. Any (Noetherian) ring has minimal primes (either by Corollary 3.20 or by Zorn's lemma)
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3.

Lemma 3.21. Let R be a Noetherian ring. Then the set of minimal primes in R is �nite.

Proof.

Claim. Let M be a �nitely generated R-module. Then there exists a �ltration 0 = M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂
Mn = M such that Mi/Mi−1

∼= R/pi for some prime ideals pi ⊂ R.

Proof. Let N be any �nitely generated R-module. For x ∈ N , set Ann(x) = {a ∈ R|ax = 0} = ker(R
·x→ N :

a 7→ ax} ⊂ R is an ideal. Since R is Noetherian, we have that the set of ideals {Ann(x)|x ∈ N, x 6= 0} has a
maximal element, say Ann(x) ( R (proper ideal since x 6= 0).

We claim that Ann(x) is a prime ideal. To see this let ab ∈ Ann(x), a /∈ Ann(x). Then ax 6= 0 and
b ∈ Ann(ax) ⊃ Ann(x) and since Ann(x) is maximal, Ann(x) = Ann(ax) 3 b. Hence Ann(x) is prime. Then

R/Ann(x)
·x→ N is injective, Ann(x) is prime. Hence (∗) for any �nitely generated R-module N there exists

a prime ideal p ⊂ R with R/p ⊂ N .

Among all submodules P of M which have �ltration 0 = P0 ⊂ P1 ⊂ · · · ⊂ Pn = P with Pi/Pi−1
∼= R/p,

choose a maximal P ⊂ M (Note that P exists because M is Noetherian and the set of such P is non empty
by (∗) . ) If P 6= M then apply (∗) to N = M/P to �nd an injection R/q ⊂ N := M/P with q ⊂ R a prime
ideal. If g : M → M/P is the quotient map then P ( g−1(N) and 0 = P0 ⊂ P1 ⊂ · · · ⊂ Pn ( g−1(N) has
successive quotients isomorphic to R/qi with qi ⊂ R prime ideals. This is a contradiction to the maximality
of P . Hence P = M and we have proven the claim.

Claim. Let R = M and 0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M is a �ltration with Mi/Mi−1
∼= R/pi with pi ⊂ R are

prime ideals. If q ⊂ R is a minimal prime, then there exists i ∈ {1, . . . n} such that q = pi

Proof. 0 6= Rq = Mq means there exists i with (Mi/Mi−1)q 6= 0, hence (R/pi)q 6= 0. If (R \ q) ∩ pi 6= ∅ then
(R/pi)q = 0. Hence (R/pi)q 6= 0 means (R \ q) ∩ pi = ∅, so pi ⊂ q. Since q is a minimal prime, we have
pi = q.

This second claim proves the lemma.

Prime Avoidance Lemma. Let I ⊂ R be an ideal, P1, . . . , Pn ⊂ R prime ideals. If I ⊂ ∪ni=1Pi then there
exists i ∈ {1, . . . , n} such that I ⊆ Pi.

Proof. See Commutative Algebra.

De�nition 3.22. Let P ⊆ R be a prime ideal, with R a Noetherian ring. The height of P is ht(P ) = dimRP .
Let I ( R be an ideal. The height of I is ht(I) = minR⊃P⊃I ht(P ) (with P prime ideal)

Lemma 3.23. Let (R,m, k) be a local Noetherian ring. Then δ(R) ≤ dimR

Proof. Let dimR = 0, then R is Artinian and local so mn = 0 for some n. Hence 0 is m-primary, and ∅
generates the m-primary ideal 0. Hence δ(R) = 0

Assume now dimR ≥ 1, we will show:

(∗) For every i = 0, . . . , d = dimR there are x1, . . . , xi ∈ m such that ht(x1, . . . , xi) ≥ i.
We will prove (∗) by induction on i. For i = 0, ht(0) = 0.

Assume x1, . . . , xi constructed as in (∗) with i < dimR. Let Σ be the set of primes p ⊂ R containing
(x1, . . . , xi) which are minimal primes of R/(x1, ..., xi) and have htR(p) = i. Now R is Noetherian, hence
Σ is �nite (as a subset of the �nite set of minimal primes of R/(x1, . . . , xi)). If ∪p∈Σp = m ⇒ ∃p∈Σm ⊂ p
(by the avoidance lemma). But this implies m = p, since m is maximal, which leads to the contraction that
ht(m) = dimR > i = ht(p). Hence there exists xi+1 ∈ m \ ∪p∈Σp.

If q ⊂ R is a prime ideal such that q ⊃ (x1, . . . , xi+1) then ht(q) ≥ i (since ht(x1, . . . , xi) ≥ i), but ht(q) 6= i,
otherwise q ∈ Σ but xi+1 ∈ q \ ∪p, p ∈ Σ. Hence ht(q) ≥ i+ 1 implying ht(x1, . . . , xi+1) ≥ i+ 1, thus proving
(∗)
So there exists x1, . . . , xd ∈ m such that ht(x1, . . . , xd) ≥ d where d = dimR. Hence m is the only prime ideal
containing x1, . . . , xd because m is the only prime ideal p with ht(p) = d. Hence R/(x1, . . . , xd) has exactly

24



one prime ideal, namely m. Hence dimR/(x1, . . . , xd) = 0, that is R/(x1, . . . , xd) is Artinian, so (x1, . . . , xd)
is m-primary and δ(R) ≤ d = dimR.

This �nishes the proof of the Dimension Theorem.

Corollary 3.24. Let (R,m, k) be a Noetherian local ring, let R̂ be its m-adic completion. Then dimR = dim R̂

Proof. We have grmR = grmR̂R̂. Then H(grmR) = H(grmR̂R̂), so by the Dimension Theorem dimR = dim R̂

Corollary 3.25. Let (R,m, k) be a local Noetherian ring, and x ∈ m be a non-zero divisor. Then dimR/x =
dimR− 1 .

Proof. By Lemma 3.17, we have degH(R/x) ≤ degH(R) − 1 (and hence by the Dimension Theorem dimR/x ≤
dimR− 1)

Let n = dimR/x, then there exists y1, . . . , yn ∈ m such that R/(x, y1, . . . , yn) is Artinian (by the Dimension
Theorem for R/x). So x, y1, . . . , yn generates a m-primary ideal in R. Hence we have dimR = δ(R) ≤ n + 1 =
dimR/x+ 1

Krull's Principal Ideal Theorem. Let R be a Noetherian ring. Let x1, . . . , xn ∈ R such that (x1, . . . , xn) 6= R.
Then ht(x1, . . . , xn) ≤ n.

Proof. Let p ⊂ R be a prime ideal minimal over (x1, . . . , xn). Then x1, . . . , xn generates a p-primary ideal in Rp
because dimRp/(x1, . . . , xn) = 0 as p is minimal over x1, . . . , xn. Hence ht(x1, . . . , xn) ≤ dimRp = δ(Rp) ≤ n.

3.5 Faithfully Flat and Going Down.

Recall: A map of rings A → B is called �at if the functor (A-modules → B-modules de�ned by M 7→ B ⊗A M)
preserves exact sequences.

De�nition 3.26. A map of rings A → B is called faithfully �at if A → B is �at and for all M ∈ A-modules,
B ⊗AM = 0 if and only if M = 0.

Remark. If f : A→ B is faithfully �at then f is injective because B ⊗A ker(f) = 0, and hence ker(f) = 0.

Example. Of �atness

1. S ⊂ A is a multiplicatively closed subset then A→ S−1A is �at (but rarely faithfully �at)

2. If f : A→ B is �at, and A→ C any ring homomorphism then the map C → C ⊗A B de�ned by c 7→ c⊗ 1 is
also �at

A
f

flat //

��

B

��
C

flat// C ⊗A B

To see this: The functor C-modules → C ⊗A B-modules de�ned by MC 7→MC ⊗C (C ⊗A B) ∼= MA ⊗A B is
exact where MC and MA denote M considered as a C, respectively A-module.

3. A → A[T ] is faithfully �at because for M ∈ A-modules, we have M ⊗A A[T ] ∼= ⊕i∈NM , and direct sums
preserves exact sequences.

De�nition 3.27. A local map of (local) rings f : (A,m,K) → (B,n, L) is a ring homomorphism f : A → B such
that f(m) ⊂ n.

Example. If f : A→ B is any ring homomorphism, q ⊆ B is prime and set p = f−1(q). Then Ap → Bq is a local
map of rings.

Lemma 3.28. Let f : (A,m,K)→ (B,n, L) be a local map of rings. If f : A→ B is �at, then f is faithfully �at.
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Proof. Let M be an A-module such that B ⊗AM = 0
First assume M is �nitely generated. Consider the commutative diagram of rings

A
f //

��

B

��
K = A/m

f // L = B/n

Since f : K → L is a map of �elds, f is injective and L is a non-zero vector space over K, we have K → L is
faithfully �at. 0 = L⊗B (B ⊗AM) = L⊗AM = L⊗K (K ⊗AM), so M/mM = A/m⊗AM = K ⊗AM = 0 (since
K → L is faithfully �at). Hence by Nakayama's Lemma (using the fact M is �nitely generated) we have M = 0.

For general M , let x ∈ M , then Rx ↪→ M is a submodule. A ↪→ B is �at, hence B ⊗A Rx ↪→ B ⊗A M = 0 is
injective, i.e., B ⊗A Rx = 0. Since Rx is �nitely generated Rx = 0, so 0 = x ∈M ∀x ∈M . Hence M = 0

Remark. If f : A → B is �at, q ⊂ B is prime and de�ne p = f−1(q) ⊂ A. Then Ap → Bq is also �at, hence
faithfully �at.

De�nition 3.29. Let f : A→ B be a ring homomorphism. Then f : A→ B has the going down property if for all
q1 ⊂ B prime ideals, p1 = f−1(q1) ⊂ A and p0 ⊂ p1 prime in A, there exists q0 ⊂ B primes, such that q0 ⊂ q1 and
p0 = f−1(q0)

Notation. If R is a ring, de�ne SpecR = {p ⊂ R|p prime ideal}

Proposition 3.30. Let f : A→ B be a �at map of rings.

1. If f is faithfully �at, then Spec(B)→ Spec(A) de�ned by q 7→ f−1(q) is surjective.

2. f : A→ B has the going down property

Proof. 1. Let p ⊂ A be a prime ideal. The primes in B contracting to p are (in bijection with) the primes in
B ⊗A k(p) where k(p) = Frac(A/p) = Ap/pAp (See Commutative Algebra or the argument below)

Consider

A
f //

g

��

B

g

��
k(p)

f // B ⊗A k(p)

Since f is faithfully �at and k(p) 6= 0 , we have B⊗A k(p) is a non-zero ring. Take a prime q ( B⊗A k(p) then

g−1(q) ⊂ B is a prime ideal. So f−1(g−1(q)) = g−1(f
−1

(q)︸ ︷︷ ︸)
=0

= p, hence Spec(B)→ Spec(A) is surjective.

2. Let q1 ⊂ B be a prime ideal, and p0 ⊂ p1 = f−1(q1) ⊂ A be prime ideals. Now Ap1 → Bq1 is a �at local
map of rings, hence Ap1 → Bq1 is faithfully �at. By part 1. Spec(Bq1) = {q ⊂ B|q ⊂ q1} → Spec(Ap1) = {p ⊂
A|p ⊂ p1} is surjective. Now p0 ∈ Spec(Ap1), so there exists q0 ⊂ q1 such that f−1(q0) = p0.

De�nition 3.31. Let (R,m, k) be a local Noetherian ring of dimension d = dimR. A system of parameters for R
is a set x1, . . . , xd ∈ m such that R/(x1, . . . , xd) is Artinian.

Remark. System of parameters exists by the Dimension Theorem.

Theorem 3.32. Let f : (A,m,K)→ (B,n, L) be a local map of local Noetherian rings. Then

1. dimA+ dim(B/mB) ≥ dimB

2. Furthermore if f has going down property (for instance f is �at) then we actually have equality.

Proof. 1. Let x1, . . . , xr ∈ m be a system of parameters for A (so r = dimA), and let y1, . . . , ys ∈ n/mB be a
system of parameters for B/mB. Let y1, . . . , ys ∈ n be such that yi = yi ∈ B/mB.
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Claim. x1, . . . , xr, y1, . . . , ys ∈ n generates an n-primary ideal.

By de�nition of system of parameters there exists c ∈ N such thatmc ⊂ (x1, . . . , xr) and n
d ⊂ (y1, . . . , ys)+mB

for some d ∈ N. Hence ncd ⊂ (y1, . . . ys) +mcB ⊂ (y1, . . . , ys, x1, . . . , xr).

Then the claim proves dimB ≤ r + s = dimA+ dimB/mB, by the Dimension Theorem.

2. A and B/mB are local Noetherian rings, let r = dimA and s = dimB/mB. There exists chains of prime
ideals p0 ( · · · ( pr ⊂ A, q0 ( · · · ( qs ⊂ B such that mB ⊂ q0 and q0/mB ( · · · ( qs/mB ⊂ B/mB
is a chain of prime ideals. Now A is local Noetherian of dimension r, so pr = m = f−1(q0) because m =
f−1(mB) ⊂ f−1(q0)︸ ︷︷ ︸

prime ideal

⊂ m. By going down for f : A → B there is a chain of prime ideals q0 ) pr−1 )

pr−2 ) · · · ) po in B such that f−1(pi) = pi. Hence we have a chain of prime ideals of length r + s, namely
p0 ( · · · ( pr−1 ( q0 ( · · · ( qs ⊂ B. Hence dimB ≥ r + s = dimA+ dimB/mB

Remark. SpecB/mB ⊂

��
{m} ⊂

SpecB

��
SpecA

SpecB/mB is the �bre of the map SpecB → SpecA : q 7→ f−1(q) over m ∈ SpecA. In this sense, Theorem
3.32 says that the dimension of base plus dimension of �bre is greater or equal the dimension of the total space.

Theorem 3.33. Let A be a Noetherian ring. Then dimA[T ] = 1 + dimA.

Proof. �≥� Let p0 ( · · · ( pn ⊂ A be a chain of prime ideals. Then p0[T ] ( p1[T ] ( · · · ( pn[T ] (
(T, pn[T ]) ⊂ A[T ] is a chain of prime ideals in A[T ]. (Since p ⊂ A is prime then p[T ] ⊂ A[T ] is
prime since A[T ]/p[T ] ∼= (A/p)[T ] and A/p is a domain. Similarly (T, p[T ]) ⊂ A[T ] is prime because
A[T ]/(T, p[T ]) ∼= A/p). Hence we have found a chain of length n+ 1. Hence dimA[T ] ≥ 1 + dimA

�≤� The map A ↪→ A[T ] is faithfully �at. Let q ⊂ A[T ] be a prime ideal and p = A ∩ q. Then Ap → A[T ]q
is a local �at (and hence faithful �at) map of Noetherian rings, hence Ap → A[T ]q has the going down
property. By Theorem 3.32 we have dimA[T ]q = dimAp + dimA[T ]q/pA[T ]q (∗).
Since A \ p ⊂ A[T ] \ q we have

A[T ]q
pA[T ]q

=

(
Ap[T ]

pAp[T ]

)
q

= (k(p)[T ])q

where k(p) = (A/pA)p =Fraction �eld of A/pA. Hence k(p)[T ] is a PID, so every non-zero prime ideal
is maximal, so 1 = dim k(p)[T ] = maxq k(p)[T ]q. So dim k(p)[T ]q ≤ 1. So by (∗) dimA[T ]q ≤ dimAp+1
for all prime ideals q ⊂ A[T ]. Hence dimA[T ] ≤ 1 + dimA.

3.6 Dimension and Integral Extensions

Recall (from Commutative Algebra): Let A ⊂ B be an extension of rings, and let I ⊂ A be an ideal. Then x ∈ B
is called integral over I if xn +a1x

n−1 + · · ·+an−1x+an = 0 for some a1, . . . , an ∈ I, n ∈ N. The extension A ⊂ B
is called integral if every x ∈ B is integral over A.

Lemma 3.34 (/De�nition). Let A ⊂ B be an extension of rings. Then x ∈ B is integral over A if and only
if A[x] ⊂ B (sub A-algebra of B generated by x ∈ B) is a �nitely generated A-module. In particular, the set of
elements in B that are integral over A is a sub A-algebra over A, called the integral closure of A in B

Proof. See Commutative Algebra (Theorem 4.2)

De�nition 3.35. A domain A is called normal (or integrally closed) if A is integrally closed in its �eld of fractions.

Example. A is a UFD implies A is normal

Proposition 3.36. Let A ⊂ B be an integral extension of rings. Then:
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1. The map SpecB → SpecA de�ned by p 7→ p ∩A is surjective.

2. q ⊂ B is a maximal ideal if and only if A ∩ q ⊂ A is a maximal ideal

3. If A is Artinian and B Noetherian then B is Artinian

4. �Going up� holds (we won't need this so not stated)

Proof. See Commutative Algebra:

1. Theorem 4.12 (part 1.)

2. Lemma 4.11

3. Uses part 1.

4. The �Going up� Theorem

Goal: If A ↪→ B is an integral extension of domains with A normal. Then �going down� holds.

Lemma 3.37. Let A ⊂ B be an extension of rings. Let C be the integral closure of A in B. Let I ⊂ A be an ideal.
Then the closure of I in B (i.e., the set of b ∈ B that are integral over I) is

√
IC (the radical of IC). In particular,

the integral closure of I in B is closed under taking sums and products.

Proof. Let J ⊂ B be the integral closure of I in B. We want to show that J =
√
IC.

�⊂� Let x ∈ J , then there exists xn + a1x
n−1 + · · ·+ an = 0 with a1, . . . , an ∈ I. Hence x is integral over A

and x ∈ C. Since xn = −(a1x
n−1 + · · ·+ an) ∈ IC, we have x ∈

√
IC.

�⊃� Let x ∈
√
IC, then xn ∈ IC for some n ∈ N. Hence xn = a1y1 + · · ·+anyn with ai ∈ I and yi ∈ C. Now

y1, . . . , yn are integral over A, then by Lemma 3.34, M = A[y1, . . . , yn] is a �nitely generated A-module.
Now xnM ⊂ IM . If M is generated by b1, . . . , bm as an A-module then xnbi is an I-linear combination

of b1, . . . , bn. So there exists a matrix Φ ∈ Mm(I) such that xnb = Φb (where b =

 b1
...
bm

). Hence

(idm x
n−Φ)b = 0, so det(idm x

n−Φ)b = 0 (by multiplying with adjugate matrix of (idm x
n−Φ). Since

1 ∈M = A[y1, ..., yn] is a linear combination of the bi's, we have det(idm x
n −Φ) = 0, hence expanding

the determinant, we get x is integral over I.

Lemma 3.38. Let A ⊂ B be an extension of domains, assume A is normal. Let I ⊂ A be an ideal. If x ∈ B is
integral over I then the minimal polynomial of x ∈ F (B) =Fraction �eld of B over F (A) has all coe�cients in

√
I.

Proof. Let f(T ) = Tn + a1T
n−1 + · · · + an be the minimal polynomial of x ∈ F (B) over F (A). We need to show

that a1, . . . , an ∈
√
I. We know x ∈ B is integral over I, so by de�nition there exists g(T ) = Tm+b1T

m−1 + · · ·+bm
with bi ∈ I and g(x) = 0. Since f is the minimal polynomial and f(x) = g(x) = 0, we have f |g. Let L ⊃ F (B) be
a �eld extension containing all roots x1, . . . , xn of f (and say x = x1). Since f |g, we have g(xi) = 0 for all xi, so xi
is integral over I. Since a1, . . . , an are sums of the products of x1, . . . , xn, they are integral over I (Lemma 3.37).
Now apply Lemma 3.37 to the extension A ⊂ F (A). Then C = A since A is normal, so a1, . . . , an ∈

√
I.

The �going down� theorem for integral extensions. Let A ⊂ B be an integral extension of domains and
assume A is normal. Then A ⊂ B has the going down property, i.e., ∀q0 ⊂ B prime, p1 ⊂ p0 = A ∩ q0 there exists
q1 ⊂ q0 ⊂ B prime such that p1 = A ∩ q1.

Proof. Consider the following commutative diagram of rings

Ap0

λ

��

� � // Bq0

λ

��

k(p1)
(

Ap0
p1Ap0

)
p1

j //
(

Bq0
p1Bq0

)
p1

Bq0 ⊗A k(p1)
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If Bq0 ⊗A k(p1) 6= 0 then it has a prime ideal, and any of its prime ideals q1 corresponds to a prime ideal q1 =

λ
−1

(q1) ⊂ Bq0, hence a prime ideal q1 of B with q1 ⊂ q0. Now q1 ∩Ap0 = λ−1( j−1q1︸ ︷︷ ︸
=0 k field

) = p1, hence we have going

down property.
So we need to show that Bq0 ⊗A k(p1) 6= 0. We show this using the following claim.

Claim. p1 = p1Bq0 ∩A
This claim will prove Bq0 ⊗A k(p1) 6= 0, since the claim implies p1Ap0 = p1Bq0 ∩ Ap0 , so considering the

commutative diagram
Ap0
� � //

��

Bq0

��
Ap0
p1Ap0

� �

injective by claim
// Bq0
p1Bq0

localizing at A \ p1 the map k(p1) =
(

Ap0
p1Ap0

)
p1
↪→
(

Bq0
p1Bq0

)
p1

= Bq0 ⊗A k(p1) is still injective. Since k(p1) 6= 0, we

have Bq0 ⊗A k(p1) 6= 0

Proof of claim. We have p1 ⊂ p1Bq0 ∩A. To prove the other inclusion, let x ∈ p1Bq0 ∩A, then x = y
s with y ∈ p1B,

s ∈ B \ q0. Since B is integral over A, we have B is the integral closure of A in B, so by Lemma 3.37, the integral
closure of p1 in B is

√
p1B. Now y ∈ p1B ⊂

√
p1B means y is integral over p1. Hence by Lemma 3.38, the minimal

polynomial of y ∈ F (B) =�eld of fraction of B over F (A), f(T ) = Tn + a1T
n−1 + · · · + an has all coe�cients

a1, . . . , an ∈ p1.
Now s = y

x ∈ F (B), 0 = f(y) = yn + a1y
n−1 + · · ·+ ak = 0 hence 0 = snxn + a1s

n−1xn−1 + · · ·+ an = 0, hence
sn + a1

x s
n−1 + · · ·+ an

xn = 0. So g(T ) = Tn + a1
x T

n−1 + · · ·+ an
xn is the minimal polynomial of s over F (A) because

any factorisation of g yields a factorisation of f as 0 6= x ∈ A ⊂ F (A). Since s ∈ B integral over A, by Lemma 3.38,
we have all coe�cients ai

xi ∈ A. If x /∈ p1, since

ai
xi︸︷︷︸
∈A

· xi︸︷︷︸
∈A\p1

= ai ∈ p1,

we have ai
xi ∈ p1 for all i. Hence s is integral over p1, so (by Lemma 3.37) s ∈

√
p1B ⊂

√
q0 = q0. This is a

contradiction to s ∈ B \ q0. Hence x ∈ p1.

Theorem 3.39. Let A ⊂ B be an integral extension of Noetherian domains with A normal. Then ∀n ⊂ B maximal
ideal, m = A ∩ n, we have dimBn = dimAm and dimB = dimA.

Proof. By assumption and the previous theorem, the map A→ B has the �going down� property. Hence Am → Bn
has the going down property. So by the Theorem 3.32, we have dimAm + dimBn/mBn = dimBn. Since A ⊂ B is
an integral extension, we have p ⊂ B is maximal, if and only if, A∩ p ⊂ A is a maximal ideal. Hence Bn/mBn has
a unique maximal ideal nBn/mBn. Hence dimBn/mBn = 0 , so dimBn = dimAm.

Since for all m ⊂ A maximal, there exists n ⊂ B such that m = A ∩ n, we have dimA = supm⊂Amax dimAm =
supn⊂Bmax dimBn = dimB.

De�nition 3.40. Let k be a �eld. An a�ne k-algebra is a k-algebra A which is isomorphic to A ∼= k[X1, . . . , Xn]/I
as k-algebras. An a�ne ring is an a�ne k-algebra for some �eld k.

Noether Normalisation. Let A be an a�ne k-algebra. Then there exists an integral extension k[X1, . . . , Xn] ⊂ A
where k[X1, . . . , Xn] is the polynomial ring in n-variables with coe�cients in k.

Proof. We will only give a proof in the case k is in�nite. We will use the following lemma:

Lemma 3.41. Let k be an in�nite �eld. Let f ∈ k[X1, . . . , Xn], f 6= 0. Then there exists c1, . . . , cn ∈ k such that f(c1, . . . , cn) 6=
0.
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Proof. Induction on n. For n = 0, we are done.
For n = 1, if 0 6= f ∈ k[X] has degree d, then f has at most d roots. Since #k =∞, there exists c ∈ k such that

f(c) 6= 0.
Assume n ≥ 2. Write f ∈ k[X1, . . . , Xn] as f = gdX

d
n + gd−1X

d−1
n + · · · + g0 where gi ∈ k[X1, . . . , Xn−1],

with gd 6= 0. By our induction hypothesis, there exists c1, . . . , cn−1 such that gd(c1, . . . , cn−1) 6= 0. Then 0 6=
f(c1, . . . , cn−1, Xn) ∈ k[Xn]. By the case n = 1, there exists cn ∈ k such that f(c1, . . . , cn) 6= 0.

To �nish the proof of Noether Normalization, let A be an a�ne k-algebra. Then A is generated by x1, . . . , xn ∈ A
as a k-algebra. We will prove the theorem by induction on n. If n = 0, then A = k so we are done.

Assume n ≥ 1. By assumption the map p : k[T1, . . . , Tn] � A de�ned by Ti 7→ xi is surjective. If p is injective
then p is an isomorphism and we are done. Assume p is not injective, let 0 6= f ∈ ker p ⊂ k[T1, . . . , Tn]. Let d =total
degree of f . Write f = fd + fd−1 + · · · + f0 with fi homogeneous of degree i. Now 0 6= fd ∈ k[T1, . . . , Tn] and
#k =∞ implies by the lemma that there exists c1, . . . , cn ∈ k such that fd(c1, . . . , cn) 6= 0. Since fd is homogeneous
0 6= fd(c1, . . . , cn) = cdnf( c1cn , . . . ,

cn−1

cn
, 1), by replacing ci with

ci
cn

we can assume cn = 1.
Set yi = xi − cixn, hence xi = yi + cixn (cn = 1, yn = 0). Since f ∈ ker(p), we have 0 = f(x1, . . . , xn) =

f(y1 + c1xn, . . . , yn + cnxn) = fd(c1, . . . , cn)xdn + gd−1x
d−1
n + · · · + g0 (∗), where gi ∈ k[y1, . . . , yn−1] (Since

yn = 0). By choice of c1, . . . , cn we have 0 6= f(c1, . . . , cn) ∈ k. Hence by (∗) xn is integral over k[y1, . . . , yn−1]
and k[y1, . . . , yn−1] ⊂ k[y1, . . . , yn−1, xn] = k[x1, . . . , xn] = A is an integral extension. By induction hypothesis
there exists an integral extension k[T1, . . . , Tm] ⊂ k[y1, . . . , yn−1] with k[T1, . . . , Tm] polynomial ring. Hence
k[T1, . . . , Tm] ⊂ A is integral.

Theorem 3.42. Let k be a �eld and A an a�ne k-algebra which is a domain. Then for all maximal ideals m ⊂ A
we have dimA = dimAm = Tr degk F (A) where F (A) =�eld of fraction of A.

Proof. We split the proof in several cases:

Case 1. A = k[T1, . . . , Tn] andm = (T1, . . . , Tn). So dimA = n, dimAm = 1+degHgrmA︸ ︷︷ ︸
n−1

= n and Tr degk k(T1, . . . , Tn) =

n.

Case 2. k = k is algebraically closed, m ⊂ k[T1, . . . , Tn] any maximal ideal. By the Nullstellensatz Theorem
(k = k), we have m = (T1 − a1, . . . , Tn − an) for some a1, . . . , an ∈ k. So k[X1, . . . , Xn] → k[T1, . . . , Tn] de�ned
by Xi 7→ Ti − ai is an isomorphism sending (X1, ..., Xn) to m. Then by 1, we have dim(A) = n, dimAm =
dim k[X1, . . . , Xn](X1,...,Xn) = n and Tr degk k(T1, . . . , Tn) = n.

Case 3. Let A = k[T1, . . . , Tn] and m ⊂ A any maximal ideal. Then A = k[T1, . . . , Tn] → k[T1, . . . , Tn] = B is an
integral extension of domains with A normal (k[T1, . . . , Tn] being a UFD implies A normal). Hence for all m ⊂ A
there exists a maximal ideal p ⊂ B such that m = p∩A and dimAm = dimBp, by Theorem 3.39. So by 2. we have
dimAm = n, dimA = n and Tr degk k(T1, . . . , Tn) = n

Case 4. A is any a�ne k-algebra which is a domain. By Noether normalisation there exists an integral extension
B = k[T1, . . . , Tn] ⊂ A. Since k[T1, . . . , Tn] is normal domain, for all maximal ideals m ⊂ A, p = B ∩m we have
dimAm = dimBp = n (by part 3. and Theorem 3.39). Hence dimA = supm⊂AmaxAm = n. Since B ⊂ A is an
integral extension, we have F (B) ⊂ F (A) are algebraic extension of �elds, so n = Tr degk F (B) = Tr degk F (A).

3.7 Groebner basis and an algorithmic computation of the Hilbert Polynomial

Let k be a �eld and S = k[x1, . . . , xn] the polynomial ring in n variables with coe�cients in k.

De�nition 3.43. A polynomial f ∈ S is called monomial if f = xα1
1 . . . xαnn for some αi ∈ N.

Notation. If α = (α1, . . . , αn) we may write xα for xα1
1 . . . xαnn .

De�nition 3.44. A monomial ideal in S, is an ideal I ⊂ S that is generated by monomials.

Lemma 3.45. Any monomial ideal in S = k[x1, . . . , xn] is generated by a �nite number of monomials.

Proof. Let I ⊂ S be a monomial ideal, let Σ ⊂ I be the set of monomials in I. So I = 〈Σ〉 (i.e., it is generated by
Σ). Assume I cannot be generated by a �nite number of monomials. Construct Jn = (xα1 , . . . , xαn) ⊂ I such that
Ji ( Ji+1 as follows:
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• J0 = 0.

• Assume Jn is constructed. Since Jn 6= I (as I is not generated by a �nite number of monomials). There exists
xαn+1 ∈ Σ such that xαn+1 /∈ Jn. Then Jn ( Jn+1(xα1 , . . . , xαn)

So we can construct J0 ( J1 ( · · · ( I which contradicts the ACC as S is Noetherian. Hence I is generated by a
�nite number of monomials.

Remark. If I = (xα1 , . . . , xαn) ⊂ S is an ideal generated by monomials xαi , then a monomial xβ ∈ I if and only if,
there exists i = 1, . . . , n such that xαi |xβ .

The monomials in I form a k-basis of I.

De�nition 3.46. Let xα, xβ be monomials. Then the least common multiple of xα, xβ is lcm(xα, xβ) = x
max(α1,β1)
1 . . . x

max(αn,βn)
n

Lemma 3.47. The intersection of two monomial ideals is a monomial ideal. More precisely, if f1, . . . , fn, g1, . . . , gm
are monomials then (f1, . . . , fn) ∩ (g1, . . . , gm) = (lcm(fi, gj)|i = 1, . . . , n, j = 1, . . .m)

Proof. Let I = (f1, . . . , fn) and J = (g1, . . . , gm). Let ΣI =monomials in I, this is a k-basis of I. Similarly let
ΣJ =monomials in J , this is a k-basis of J . S has a k-basis of all monomials ideals. Hence I ∩ J has a k-basis
ΣI ∩ ΣJ . Hence I ∩ J = (ΣI ∩ ΣJ) is a monomial ideal.

Let h be a monomial then:

• h ∈ ΣI if and only if there exists fi|h

• h ∈ ΣJ if and only if there exists gj |h

Hence h ∈ ΣI ∩ ΣJ if and only if there exists i and j such that fi|h and gj |h, if and only if, there exists i, j with
lcm(fi, gj)|h. Hence I ∩ J = (lcm(fi, gj)).

3.7.1 Algorithm for computing H(S/I) where I ⊂ S is a monomial ideal.

Recall: H(k[x1, . . . , xs], t) =
(
t+s−1
s−1

)
(exercise sheet).

Algorithm 1. Let I = (f1, . . . , fn) be generated by monomials f1, . . . , fn. We have an exact sequence of graded
modules

S(−i)
fn // S/(f1, . . . , fn−1) // S/I // 0

where i = deg(fn). Now S(−i) ∼= fnS by multiplication by fn. Now the kernel of the map fnS → S/(f1, . . . , fn) is

(fn) ∩ (f1, . . . , fn) = (lcm(f1, fn), . . . , lcm(fn−1, fn)). So using the isomorphism S(−i) ·fn→ fnS we have

J = ker

(
S(−i) ·fn→ S

f1, . . . , fn−1

)
=

(
1

fn
lcm(f1, fn), . . . ,

1

fn
lcm(fn−1, fn)

)
Hence we have a short exact sequence of graded S-modules:

0 // S/J(−i) // S/I ′ // S/I // 0

where I ′ = (f1, . . . , fn−1). Hence
H(S/I, t) = H(S/I ′, t)−H(S/J, t− i)

Since J and I ′ have fewer monomial generators than I, this process will eventually stop. The computation of
H(S/I, t) is recursively reduced to the computation of Hilbert polynomials of polynomial rings.

Remark. • We can assume fi - fj for i 6= j by removing redundant generators.

• If fn contains the highest degree of variable among f1, . . . , fn, then the generators of the ideal J = ( 1
fn

lcm(fi, fn))
do not contain that variable.

Our next goal is to compute H(S/I) when I is homogeneous but not necessarily monomial

De�nition 3.48. A monomial order on S = k[x1, . . . , xn] is a total order � on the set of monomials in S such that

1. xα � xβ implies xαxγ � xβxγ for all xγ

2. Any non-empty set of monomials has a minimal element
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Recall: A total order on Σ is a partial order � such that for all x, y ∈ Σ we have x � y or y � x
Remark. If xα|xβ then xα � xβ for any monomial oder �. This is because the smallest monomial is 1 = x0 and thus
1 � xβ−α ⇒ xα � xβ−αxα = xβ . To see that 1 is indeed the smallest monomial, let xα be the smallest monomial.
Then xα � 1⇒ xα · xα � xα ⇒ xα · xα = xα by minimality of xα, hence xα = 1.

Example. Lexicographic order: �lex, is de�ned as xα ≺lex x
β if and only if the �rst non-zero component from the

left of β − α is positive.
For example: x2

1x3x
2
4 ≺lex x

2
1x2x

5
3 since (2, 1, 5, 0)− (2, 0, 1, 2) = (0, 1, 4,−2).

De�nition 3.49. Fix a monomial order ≺ on S. For 0 6= f ∈ S = K[x1, . . . , xn], f =
∑
α cαx

α. The leading
monomial of f is LM(f) = xβ were xβ = max{xα|cα 6= 0}.

The leading term of f =
∑
α cαx

α is LT(f) = cβx
β where xβ = LM(f). By convention LT(0) = 0

For example, let f = 4x2
1x3x5 + 3x2

1x
2
3 and ≺=≺lex. Then LM(f) = x2

1x
2
3 and LT(f) = 3x2

1x
2
3.

De�nition 3.50. Let I ⊂ S be an ideal. The ideal of leading terms of I is the ideal LT(I) = (LT(g)|g ∈ I), the
ideal generated by LT(g) with g ∈ I. Note that LT(I) is a monomial ideal.

De�nition 3.51. Fix a monomial order ≺ on S = k[x1, . . . , xn]. Let I ⊂ S be an ideal, and f ∈ S. A normal form
of f (with respect to I and ≺) is a polynomial NF(f) =

∑
xα /∈LT(I) cαx

α such that NF(f) ≡ f mod I. Note that

0 =
∑
∅ is in normal form.

Theorem 3.52. Fix a monomial order ≺ on S = k[x1, . . . , xn] and an ideal I ⊂ S. Then every f ∈ S has a unique
normal form (with respect to ≺ and I)

Proof. Existence of NF: Let Σ = {f ∈ S|f has no normal form}. Want to show that Σ = ∅.
Assume Σ 6= ∅, we know from de�nition that 0 /∈ Σ. Choose f ∈ Σ with LM(f) = ming∈Σ LM(g).
If LM(f) ∈ LT(I), then there exists g ∈ I such that LT(f) = LT(g). If f − g = 0 then NF(f) = 0 because

f = g ≡ 0 mod I. If f − g 6= 0, then LM(f − g) < LM(f), hence f − g has a normal form by minimality of LM(f).
So NF(f) = NF(f − g) ≡ f − g ≡ f mod I. Both being contradiction to f ∈ Σ.

On the other hand if LM(f) /∈ LT(I) then f = LT(f) + h where h = f − LT(f). We have LM(h) � LM(f) or
h = 0, hence by minimality of f , h has a normal form NF(h). Then NF(f) = LT(f) + NF(h) is a normal form of
f , contradicting f ∈ Σ, hence Σ = ∅, and every f ∈ S has a normal form.

Uniqueness of NF: Assume NF(f) 6= NF′(f) are two normal forms of f , that is NF(f) =
∑
xα /∈LT(I) cαx

α,

NF(f) =
∑
xα /∈LT(1) c

′
αx

α and f ≡ NF(f) ≡ NF'(f) mod I. Consider 0 6= g = NF(f) − NF′(f) =
∑
α/∈LT(I)(cα −

c′α)xα ≡ 0 mod I, hence g ∈ I. So LM(g) ∈ LT(I) but all monomials xα with non-zero coe�cient cα−c′α occurring
in g are not in LT(I). Hence we have a contradiction, and so NF(f) = NF′(f).

Corollary 3.53. The monomials xα /∈ LT(I) forms a k-basis of S/I

Proof. Direct consequence of the theorem

Theorem 3.54. Let I ⊂ S = k[x1, . . . , xn] be a homogeneous ideal. Fix a monomial order ≺ on S. Then S/I and
S/LT(I) have the same Hilbert polynomial and the same Poincaré series.

Note. LT(I) is a monomial ideal, so there exists an algorithm (Algorithm 1) for computing H(S/LT(I), t) (provided
we know a set of monomial generators of LT(I))

Proof. For f ∈ S, let f =
∑
cαx

α then fi =
∑
|α|=i cαx

α is the homogeneous degree i part of f where |α| =

α1 + · · · + αn. So f =
∑
i≥0 fi . I ⊂ S is homogeneous if and only if for all f ∈ I we have fi ∈ I ∀i ≥ 0. If

f is homogeneous of degree i, then NF(f)i is a normal form of f , and hence NF(f) is homogeneous of degree i
(by uniqueness of normal form). Hence for all f ∈ Si= degree i homogeneous polynomial, there exists a unique
expression NF(f) =

∑
xα /∈LT(I),|α|=i cαx

α ≡ f mod Ii. So Si/Ii has k-basis {xα /∈ LT(I)||α| = i} but this is also
a k-basis for Si/LT(I)i. Hence dimk Si/Ii = dimk Si/LT(I)i = ∀i. In particular, S/I and S/LT(I) have the same
Hilbert polynomial and Poincaré series.

We have the natural questions,

1. Given generators f1, . . . fn of I ⊂ S and g ∈ S, how can we decide if g ∈ I?

2. Recall H(S/I) = H(S/LT(I)) for I homogeneous ideals of S. How do we �nd a �nite list of monomial
generators for LT(I) given a list of generators for I?
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3.7.2 Division Algorithm

Algorithm 2 (Division Algorithm). Let I = (f1, . . . , fn) ⊂ S = k[x1, . . . , xs] be an ideal. Fix a monomial order ≺
on S. Let g ∈ S. Set r0 = g and assume rl ∈ S is de�ned.

If rl = 0 or LM(fi) - LM(rl) ∀i = 1, ..., n then STOP. Otherwise choose fi such that LM(fi)|LM(rl). Set

rl+1 = rl − fi ·
LM(rl)

LT(fi)
(∗l)

Repeat.

Note rl+1 = 0 or LM(rl+1) � LM(rl) because LT(rl) = LT(fi · rl
LT(fi)

). Since ≺ is a monomial order, the division

algorithm eventually stops, say at step l, with either

• rl = 0 then by (∗1), . . . , (∗l) we have g = r0 =
∑h
i=1 hifi for some hi ∈ S with LM(hifi) ≤ LM(g).

• rl 6= 0 then LM(fi) - LM(rl) for all i, that is LM(rl) /∈ (LM(f1), . . . ,LM(fn)).

rl is called remainder of g on division by f1, ..., fn.

De�nition 3.55. Let S = k[x1, . . . , xn] and ≺ a monomial order on S. Let I ⊂ S be an ideal, then a Groebner
basis for I (with respect to ≺) is a �nite set, f1, . . . , fn ∈ I such that LT(I) = (LM(f1), . . . ,LM(fn)).

Theorem 3.56. Fix a monomial order ≺ on S = k[x1, ..., xs] and let f1, . . . , fn ∈ I be a Groebner basis for the
ideal I ⊂ S. Let g ∈ S, then g ∈ I if and only if the division algorithm yields remainder 0 on division by f1, . . . , fn

Proof. �⇐�: If rl = 0, then f =
∑
hifi.

�⇒�: Recall that the division algorithm stops with rl = 0 or LM(rl) /∈ (LM(f1), . . . ,LM(fn)) = LT(I) since
f1, . . . , fn are a Groebner basis. If g ∈ I, then ri ∈ I for all i, in particular, LM(rl) ∈ LT(I). Hence rl = 0.

Corollary 3.57. If f1, . . . , fn ∈ I is a Groebner basis for I then I = (f1, . . . , fn).

Proof. Every g ∈ I gives remainder 0, on application of the division algorithm. Hence g =
∑
hifi ∈ (f1 . . . , fn).

Theorem 3.58 (Buchberger's Criterion). Fix a monomial order ≺ on S = k[x1, . . . , xn]. Let I = (f1, . . . , fs) ⊂ S
be an ideal. Set

Sij = S(fi, fj) = fi
lcm(LM(fi),LM(fj))

LT(fi)
− fj

lcm(LM(fi),LM(fj))

LT(fj)

for i < j, i, j = 1, . . . , s. Then the following are equivalent:

1. f1, . . . , fs are a Groebner basis for I = (f1, . . . , fs)

2. For all i < j, i, j ∈ 1, . . . , s we have Sij yields remainder 0 on application of the division algorithm by
f1, . . . , fs.

Proof. 1. ⇒2. is clear since Si,j ∈ I = (f1, . . . , fs). Hence since f1, . . . , fs is a Groebner basis, we have Sij yields
remainder 0 on application of division algorithm (Thoerem 3.56).

2.⇒1, : I = (f1, . . . , fs). We have to show (LM(f1), . . . ,LM(fs)) = LT(I). Assume J = (LM(f1), . . . ,LM(fs)) (
LT(I). Let

xδ = min
≺

{
max
i=1,...,s

LM(hifi)|∃g ∈ I,LT(g) /∈ J, g =

s∑
i=1

hifi

}
Let

l = min

{
#{i = 1, . . . , s|LM(hifi) = xδ}|g ∈ I,LT(g) /∈ J, g =

s∑
i=1

hifi, max
i=1,...,s

LM(hifi) = xδ

}
Choose g ∈ I reaizing xδ and l. That is, LT(g) /∈ J such that g =

∑s
i=1 hifi, x

δ = maxi=1,...,s LM(hifi) and #{i =
1, . . . , s|LM(hifi) = xδ} = l. By renumbering, we can assume LM(h1f1), . . . ,LM(hlfl) = xδ and LM(hifi) < xδ for
i = l + 1, . . . , s. Now LM(g) ≤ LM(hifi) ≤ xδ ∀i = 1, . . . , s. If LM(g) = xδ = LM(h1f1) = LM(h1)LM(f1) , then
LM(f1)|LM(g), hence LT(g) ∈ J which is a contradiction to our g.

Since LT(g) /∈ J , we have LM(g) � xδ and l ≥ 2. Consider

S12 = f1
lcm(LM(f1),LM(f2))

LT(f1)
− f2

lcm(LM(f1),LM(f2))

LT(f2)
(a)
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By assumption, S12 has remainder 0 on division by f1, . . . , fs. Hence, the division algorithm yields

S12 =

s∑
i=1

tifi (b)

with LM(tifi) ≤ LM(S12) < lcm(LM(fi),LM(fj)). So by (a), (b) we get

−f1
lcm(LM(f1),LM(f2))

LT(f1)
+ f2

lcm(LM(f1),LM(f2))

LT(f2)
+

s∑
i=1

tifi = 0 (c)

Recall (d) g =
∑s
i=1 hifi,LM(hifi) ≤ xδ, LM(h1f1) = LM(h2f2) = xδ︸ ︷︷ ︸

⇒LM(fi)|xδ⇒lcm≤xδ⇒xδ=lcm ·xα, i=1,2

.

Multiply (c) with xα · LC(h1) · LC(f1) (where LC stands for leading coe�cient) and add (d) to obtain

g = h1f1 − f1
lcm(LM(f1),LM(f2))

LT(f1)
xα · LC(h1) · LC(f1) + xα · LC(h1) · LC(f1)t1f1 ← LM < xδ

+ h2f2 + f2
lcm(LM(f1),LM(f2))

LT(f2)
xα · LC(h1) · LC(f1) + xα · LC(h1) · LC(f1)t2f2 ← LM ≤ xδ

+ h3f3 + xα · LC(h1) · LC(f1)t3f3 ← LM ≤ xδ

+
...

...

+ hlfl + xα · LC(h1) · LC(f1)tlfl ← LM ≤ xδ

+ hl+1fl+1 + xα · LC(h1) · LC(f1)tl+1fl+1 ← LM < xδ

+
...

...

+ hsfs + xα · LC(h1) · LC(f1)tsfs ← LM < xδ

This is an expression of g =
∑
h̃ifi with LM(h̃1f1) < xδ, LM(h̃ifi) = xδ for i = 2, . . . l, and LM(h̃1f1) < xδ for

i = l + 1, . . . , s. This contradicts the choice of g (the minimality of l).
Hence J = (LM(f1), . . . ,LM(fs)) = LT(I).

3.7.3 Buchberger's Algorithm for �nding a Groebner basis

Let I = (f1, . . . , fn) ⊂ k[x1, . . . , xs], and let Sij = fi
lcm(LM(fi),LM(fj))

LT(fi)
− fj lcm(LM(fi),LM(fj))

LT(fj)
as before.

Algorithm 3 (Buchberger's Algorithm). If all remainders rij obtained by applying the division algorithm to Sij
are 0 then STOP (then f1, . . . , fn is a Groebner basis for I)

Otherwise, add rij to the list of generators of I and repeat.

The algorithm stops eventually because if rij 6= 0 then rij ∈ I (Since Sij ∈ I) but LT(rij) /∈ (LT(f1), . . . ,LT(fn)) ⊂
LT(I). Since LT(I) ⊂ S is a Noetherian Ideal, the algorithm has to stop. By Theorem 3.58, the resulting list of
generators for I is a Groebner basis for I.

Example. Let us �nd a Groebner basis for I = (x2 + yz, xy+ z2) ⊂ k[x, y, z] = S with respect to ≺lex (x � y � z).
Compute H(S/I), P (S/I, t).

i 1 2 3 4

fi x2 + yz xy + z2 −y2z + xz2 y3z + z4

LM(fi) x2 xy xz2 y3z

• S12 = (x2 + yz)y − (xy + z2)x = y2z − xz2 has LM = xz2 which is not divisible by LM(fi), i = 1, 2. So we
add S12 to the list of generators.

• S13 = (x2 + yz)z2 − (xz2 − y2z)x = yz3 + xy2z = (xy + z2)yz, so it has remainder 0.

• S23 = (xy + z2)z2 − (xz2 − y2z)y = z4 + y3z has LM = y3z which is not divisible by LM(fi), i = 1, 2, 3. So
we add S23 to the list of generators.

• S14, S24 and S34 all lead to remainder 0.

34



Hence {x2 + yx, xy + z2, xz2 − y2z, y3z + z4} is a Groebner basis for I. We know that H(S/I) = H(S/LT(I)) and
P (S/I, t) = P (S/LT(I), t) and we have LT(I) = (x2, xy, xz2, y3z).

To compute H(S/LT(I)), P (S/LT(I), t) we recall from the beginning of section 3.7.1 the exact sequence of
graded S-modules

0 // S/J(−i)
fn // S/(f1, . . . , fn−1) // S/I // 0

and so we start with the exact sequence

0 // S
(y,z2,y3z) (−2)

x2
// S
(xy,xz2,y3z)

// S
LT(I)

// 0

and note that the �rst two graded S-modules have fewer relations. If we keep repeating we end up withH(S/LT(I)) =
2.

Our next goal is: Let I ⊂ m = (x1, . . . , xs) ⊂ k[x1, . . . , xs] = S and let R = S/I. Recall that dimRm =
1 + degH(grmR). We want to �nd a homogeneous ideal J ⊂ S such that grmR = S/J and generators for J . This
will allow us to compute H(grmR) in view of Algorithms 1 and 3 and Theorem 3.54.

Notation. • Let f = xα1
1 . . . xαss , then the total degree of f is denoted |f | = α1 + · · ·+ αs

• g ∈ S = k[x1, . . . , xs] is homogeneous of degree i if g =
∑
|xα|=i cαx

α.

• Si = { homogeneous of polynomial of degree i} then S = ⊕∞i=1Si

• Every g ∈ S has a unique expression as g =
∑n
i=1 gi with gi ∈ Si .

• For 0 6= g ∈ S write g = g0 + g1 + . . . with gi ∈ Si, let gbot = gbottom = gl where l = min{i|gi 6= 0}. If g = 0
set gbot = 0. e.g., (x2y3z + x2y + z3)bot = x2y + z3

If m = (x1, . . . , xs) ⊂ S = k[x1, . . . , xs], then mi = {g ∈ S|g = 0, or deg(gbot) ≥ i}. Hence mi/(mi+1) has
k-basis the monomials of degree i.

The map k[x1, . . . , xs] = S → grmS = ⊕mi/mi+1 de�ned by xj 7→ xj mod m in degree 1, is a ring isomorphism
with inverse in degree i: mi/mi+1 → Si de�ned by g 7→ gi.

Let I ⊂ m ⊂ S be any ideal, R = S/I. Let J = ker(S ∼= grm(S) � grm(R)). Then grm(R) = S/J where
J = ⊕∞i=0Ji and Ji = ker(Si ∼= grm(S)i︸ ︷︷ ︸

mi/mi+1

� grm(R)i︸ ︷︷ ︸)
miR/m

i+1
R

. Here mR = m/I ⊂ S/I is the maximal ideal of R. This has

i-th power mi
R = (mi + I)/I. So mi

R/m
i+1
R = (mi + I)/(mi+1 + I) = mi/((mi+1 + I) ∩mi). Hence

Ji = ker(Si ∼= mi/mi+1 � mi/((mi+1 + I) ∩mi)

= ((mi+1 + I) ∩mi)/mi+1

= {g + f |deg(gbot) ≥ i+ 1, f ∈ I, deg(fbot) ≥ i}/mi+1

= {f ∈ I|deg(fbot) = i}

So J = ⊕∞i=0Ji and hence J = {fbot|f ∈ I}

De�nition 3.59. The homogenisation of f =
∑
α cαx

α ∈ S = k[x1, ..., xs] is the polynomial F ∈ S[x0] =

k[x0, x1, . . . , xs] de�ned by F =
∑
α cαx

|f |−|α|
0 xα =

∑
α cαx

|f |
(
x
x0

)α
= x

|f |
0 f(x1

x0
, . . . , xss0 ).

A monomial order on S[x0] re�nes the order by degree in x0 if x
α ≺ xβ (where α = (α0, . . . , αs), β = (β0, . . . , βs))

implies α0 ≤ β0.

Example. The homogenisation of f = x2
1x2 + x5

2x3 is F = x3
0x

2
1x2 + x5

2x3.
The lexicographic order on S[x0] with x0 � x1 � · · · � xn re�nes the order by degree in x0.

Theorem 3.60. Let k be a �eld, S = k[x1, . . . , xs], I = (f1, . . . , fn) ⊂ S an ideal such that I ⊂ m = (x1, . . . , xs),
and R = S/I. Let F1, . . . , Fn ∈ S[x0] be the homogenisation of f1, . . . , fn. Let G1, . . . , Gr be a Groebner basis for
the ideal (F1, . . . , Fn) ⊂ S[x0] with respect to a monomial order on S[x0] that re�nes the order by degree in x0.
Then

grmR
∼=

S

((g1)bot, . . . , (gr)bot)

where gi = Gi(1, x1, . . . , xs).
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Proof. Recall that we showed above grmR
∼= S/J where J = (fbot|f ∈ I). Hence we need to show that for 0 6= g ∈ I

we have gbot ∈ ((g1)bot, . . . , (gr)bot).
Note if P ∈ S[x0] is homogeneous then P = xb0p(1, x1, . . . , xs)bot + lower degree x0 terms (∗). Let 0 6= g ∈ I,

then g =
∑n
i=1 hifi for some hi ∈ S. Let G and Hi be the homogenisation of g and hi.

G = x
|g|
0 g

(
x1

x0
, . . . ,

xs
x0

)
= x

|g|
0

n∑
i=1

hi

(
x1

x0
, . . .

xs
x0

)
fi

(
x1

x0
, . . .

xs
x0

)

= x
|g|
0

n∑
i=1

1

x
|hi+fi|
0

HiFi

Hence there exists a, ai ∈ N such that Gxα0 =
∑
xαi0 HiFi ∈ (F1, . . . , Fn). But if G1, . . . , Gr is a Groebner basis

for (F1, . . . , Fn), we have Gxa0 =
∑
PiGi (†) for some Pi ∈ S[x0] such that LM(PiGi) ≤ LM(Gxa0) (∗∗) by the

division algorithm. So by (∗) we have Gxa0 = xb0G(1, x1, . . . , xs)bot︸ ︷︷ ︸
gbot

+ lower degree terms in x0. Since the monomial

order ≺ re�nes the order by degree in x0, we have (∗∗) implies b ≥ degx0
(PiGi). Then from (†), we have xb0gbot =∑

b=degx0 (PiGi)
xb0P1(1, x1, . . . xs)bot︸ ︷︷ ︸

pi

Gi(1, x1, . . . , xs)bot︸ ︷︷ ︸
(gi)bot

. This means gbot =
∑
pi · (gi)bot ∈ ((g1)bot, . . . , (gr)bot)
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4 Smooth and Etale Extensions

4.1 Derivations and the Module of Kähler Di�erentials

De�nition 4.1. Let A be an R-algebra, andM an A-module. An R-derivation of M is an R-linear map δ : A→M
satisfying the Leibniz rule: δ(ab) = aδ(b) + bδ(a)∀a, b ∈ A.

Example. Let A = R[x1, . . . , xs] be the polynomial ring in s variables. Then for i = 1, . . . , s de�ne ∂
∂xi

: A → A

on the monomials (which form an R-basis) as ∂
∂xi

(xα1
1 . . . xαss ) = αix

α1
1 . . . x

αi−1

i−1 x
αi−1
i x

αi+1

i+1 . . . xαss and extended it

R-linearly to a map A→ A. Then ∂
∂xi

is an R-derivation. (Check ∂
∂xi

(xαxβ) = xα ∂
∂xi

xβ + xβ ∂
∂xi

xα) .

Remark. If f : M → N is an A-module, g : B → A is an R-algebra homomorphism and δ : A→M an R-derivation
then fδ : A→ N and δg : B →M are R-derivations.

Notation. Write DerR(A,M) for the set of R-derivations A→M .

Remark. DerR(A,M) is an A-module as follows: If δ, δ′ ∈ DerR(A,M) then ∀a, b ∈ A we have aδ + bδ′ : A→M is
an R-derivation. This makes DerR(A,M) into an A-module.

Lemma 4.2. Assume δ : A→M which is Z-linear and satis�es the Leibniz rule. Then δ is R-linear if and only if
δ(r · 1) = 0∀r ∈ R.

Proof. We have δ(1) = δ(1 · 1) = 1 · δ(1) + 1 · δ(1) by Leibniz rule, hence δ(1) = 0.
�⇒�: δ(r · 1) = rδ(1) = 0
�⇐�: δ(r · a) = aδ(r · 1) + rδ(a) = 0 + rδ(a)

De�nition 4.3. Let A be an R-algebra. The universal R-derivation, the module of Kaehler di�erentials, is an
A-module ΩA/R together with an R-derivation d : A→ ΩA/R such that for every R-derivation δ : A→ M there is
a (∗) unique A-module map f : ΩA/R →M such that δ = f ◦ d.

Note. (∗) is equivalent to HomR(ΩA/R,M) ∼= DerR(A,M) de�ned by f 7→ f ◦ d.

Lemma 4.4. The universal R-derivation (ΩA/R, d) is unique in the sense that if (Ω′, d′) also satis�es (∗) then there
is a unique A-module isomorphism f : ΩA/R → Ω′ such that f ◦ d = d′.

Proof. Exercise

Lemma 4.5 (Construction of ΩA/R). Let A be an R-algebra, then the universal R-derivation (ΩA/R, d) exists.

Proof. Construction of (ΩA/R, d): Let F = ⊕a∈AAda be the free A-module with basis the symbols da for a ∈ A.
We have a map of sets d : A→ F de�ned by a 7→ da. We want to impose the relations that ensure R-linearity and
the Leibniz rule. We therefore de�ne the following sets:

dR = {dr · 1|r ∈ R}

Linearity:= {d(a+ b)− da− db|a, b ∈ A}

Leibniz:= {d(ab)− adb− bda|a, b ∈ A}

Set

ΩA/R =
F

A · dR,A · (Linearity), A · (Leibniz)

where for a subet S of a module M , we denote by A · S the A-submodule generated by S. The quotient ΩA/R is
an A-module equipped with a map d : A → ΩA/R de�ned by a 7→ da, which is an R-derivation and satis�es the
condition (∗) to be the universal R−derivation (exercise)

Remark. (Functoriality): If f : A→ B is an R-algebra map, we have a well-de�ned A-module map ΩA/R → ΩB/R
de�ned by da 7→ df(a), and hence and induced B-module map B ⊗A ΩA/R → ΩB/R de�ned by b⊗ da 7→ dbf(a).

Example. Let A = R[T1, . . . , Tn]. Then ΩA/R = ⊕ni=1AdTi, free A-module with basis dT1, . . . , dTn equipped with

the R-derivation d : A→ ΩA/R de�ned by f 7→
∑n
i=1

∂f
∂Ti

dTi
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Proof of Example. We already saw that ∂
∂Ti

: A→ A is an R-derivation, hence d : A→ ΩA/R is an R-derivation.

Let δ : A → M be an R-derivation. Then δ(f) =
∑n
i=1

∂f
∂Ti

δ(Ti) because both sides are R-derivations, which
agree on the set Ti, . . . , Tn generating A as R-algebra. Hence there exists a unique A-module map φ : ΩA/R =
⊕ni=1AdTi →M sending dTi 7→ δ(Ti), such that φ ◦ d = δ.

Yoneda Lemma. Let f : M → N be an A-module homomorphism. Then f is an isomorphism, if and only if for
all A-module P , homR(N,P )→ homR(M,P ) de�ned by g 7→ g ◦ f is an isomorphism.

Proof. �⇒� is clear.
�⇐�. Choose P = M , then there exists g ∈ homR(N,M) such that gf = 1. Since fgf = f = idN f , choosing

P = N yields fg = 1. Hence f is an isomorphism with inverse g.

Lemma 4.6. Let A be an R-algebra, S ⊂ A a multiplicative subset. Then S−1ΩA/R → ΩS−1A/R de�ned by da
s 7→

da
s

is an isomorphism of S−1A-modules.

Proof. Let M be an S−1A-module. Then DerR(S−1A,M) → DerR(A,M) de�ned by δ 7→ (A → S−1A
δ→ M)

is an isomorphism with inverse DerR(A,M) → DerR(S−1A,M) de�ned by (δ : A → M) 7→ δ′ where δ′
(
a
s

)
=

1
sδ(a)− 1

s2 aδ(s). One checks that δ
′ is a well-de�ned R-derivation de�ning the inverse. Then:

HomS−1A(ΩS−1A/R,M) = DerR(S−1A,M)
∼= DerR(A,M)

= HomA(ΩA/R,M)

= HomS−1A(S−1ΩA/R,M),

the isomorphism of hom-sets being induced by the map S−1ΩA/R → ΩS−1A/R in the Lemma. By the Yoneda
Lemma, this implies ΩS−1A/R

∼= S−1ΩA/R

Lemma 4.7. Let A,B be R-algebras. Then A⊗R ΩB/R → ΩA⊗RB/A de�ned by da 7→ d(a⊗ 1) is an isomorphism
of A⊗R B-modules.

Proof. Consider the following commutative diagram of rings

R
f //

g
��

A

g
��

B
f

// A⊗R B

LetM be an A⊗RB-module. Then the map DerA(A⊗RB,M)→ DerR(B,M) de�ned by δ 7→ δ◦f is an isomorphism

with inverse, DerR(B,M) → DerA(A ⊗R B,M) de�ned by (δ : B → M) 7→ (A ⊗R B
1⊗δ→ A ⊗RM

multi→ M). As in
the previous lemma, Yoneda implies ΩA⊗RB/A

∼= A⊗R ΩB/R, because for all A⊗R B-modules M

HomA⊗RB(ΩA⊗B/A,M) = DerA(A⊗R B,M)

= DerR(B,M)

= HomA(ΩB/R,M)

= HomA⊗RB(A⊗R ΩB/R,M)

1st Fundamental Exact Sequence. Let R→ A→ B be maps of rings. Then the following is an exact sequence
of B-modules:

B ⊗A ΩA/R
g // ΩB/R // ΩB/A // 0

b⊗ da � // b · df(a) ; db � // db
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Proof. im(g) = BdA,

coker(g) =
ΩB/R

im(g)

=
ΩB/R

BdA

=
⊕b∈Bdb

B · dR,B · (linearity), B · (Leibniz), B · dA
= ΩB/A

2nd Fundamental Exact Sequence. Consider R → A → B = A/I maps of rings, where I ⊂ A is an ideal.
Then the following is an exact sequence of B-modules:

I/I2 d // B ⊗A ΩA/R // ΩB/R // 0

a � // 1⊗ da ; b⊗ da � // bda

Remark. 1 ⊗ d(I2) = 0 ⊂ B ⊗A ΩA/R. This is because for x, y ∈ I ⊂ A, 1 ⊗ d(xy) = 1 ⊗ xdy + 1 ⊗ ydx =
x⊗ dy+ y⊗ dx = 0 ∈ A/I ⊗ΩA/R as x, y = 0 ∈ A/I. Therefore, the �rst map of the exact sequence is well-de�ned.
Furtheremore, since I(I/I2) = 0, the A-module I/I2 is in fact an A/I-module and the sequence is a sequence of
A/I-modules.

Proof. The image of the �rst map in the sequence is the B-submodule generated by dI, that is, im(d) = B · dI.

coker(d) =
B ⊗A ΩA/R

im(d)

=
B ⊗A ΩA/R

BdI

=
B ⊗A

(
⊕a∈AAda

AdR,A linearity,ALeibniz

)
BdI

=
⊗a∈ABda

BdR,B linearity, B Leibniz, BdI
B linearity and BdI ⇒ dx = dy if x = y mod I

=
⊕b∈BBdb

BdR,B linearity, B Leibniz

= ΩB/R

Remark. Assume B = R[x1, . . . , xs]/(f1, . . . , fr), with I = (f1, . . . , fr) ⊂ A := R[x1, . . . , xs]. Then by the 2nd
fundamental exact sequence we have an exact sequence of B-modules

I/I2 // B ⊗A ΩA/R // ΩB/R // 0

where ΩA/R = ⊕si=1Adxi, so B ⊗A ΩA/R = ⊕si=1Bdxi. Now I is generated by f1, . . . , fr as A-module. Since
I/I2 generated by f1, . . . , fr as A-module and I/I2 is generated by f1, . . . , fr as B = A/I-module, the map
Br = ⊕rj=1Bej � I/I2 de�ned by ej 7→ fj is surjective. So

I/I2
1⊗d
&&

Br
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J(f)
// Bs // ΩB/R // 0

is an exact sequence, where J(f) =
(
∂fi
∂xj

)
∈Msr(B). This is called the Jacobi matrix of f = (f1, . . . , fr)

Example. Let B = k[x, y, z]/(x2y, x3 + z2), then ΩB/k = coker(J : B2 → B3) where J = J(x2y, x3 + z2) =2xy 3x2

x2 0
0 2z

.
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4.2 Formally smooth and étale Extensions

De�nition 4.8. A ring homomorphism f : R→ A is called

• formally smooth if

(∗) for all rings C, ideals J ⊂ C with J2 = 0, ring maps g : R → C, g : A → C/J such that gf = fg where
f : C → C/J the quotient map,

there exists a ring map G : A→ C such that Gf = g, fG = g. (That is the diagram below commutes in each
triangle)

R
g //

f

��

C

f
��

A
g
//

∃G
==

C/J

• formally étale if (∗), there exists a unique ring map G : A→ C such that Gf = g, fG = g

• It has �nite presentation if it is f : R→ R[x1, . . . , xs]/(f1, . . . , fr)

• smooth (respectively étale) if it is formally smooth (respectively formally étale) and of �nite presentation

Example 4.9. Let R → A,R → B be ring homomorphism. If R → A is formally smooth/formally étale/�nite
presentation/smooth/étale, then so is B → A⊗R B de�ned by b 7→ 1⊗ b

R //

��

B

��
A // A⊗R B

We show this in the case of formally étale (The other follows the same logic). Assume h0 : R→ A is formally étale.
Let h : C → C/J be the quotient map where J ⊂ C an ideal with J2 = 0. Given a commutative diagram of rings

R
f //

h0

��

B
g //

h1

��

C

h

��
A

f

// A⊗R B
g
// C/J

We know h0 is formally étale, so there exists a unique F : A→ C such that hgf = Fh0, hF = gf . By the universal
property of tensor product, there exists a unique G : A⊗R B → C such that h1G = g and fG = F . This G is the
unique G : A⊗R B → C such that h1G = g, hG = g

R
f //

h0

��

B
g //

h1

��

C

h

��
A

f

//
∃!F
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A⊗R B
g
//

∃!G

::

C/J

Lemma 4.10. Given R
f→ A

g→ B be maps of rings. If fand g are formally smooth/formally étale/�nite present-
ation/smooth/étale, then so is g ◦ f

Proof. Exercise, follows the same work as in the example

Example. R → A = R[x1, . . . , xs] is smooth. It clearly is of �nite presentation. Let h : C → C/J with J ⊂ C an
ideal such that J2 = 0. Given the commutative diagram of rings

R
f //

g

��

C

h
����

A = R[x1, . . . , xs]
f

// C/J
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choose ci ∈ C such that h(ci) = f(xi) (h is surjective). De�ne F : A = R[x1, . . . , xs] → C as the R-algebra map
xi 7→ ci. Then Fg = f and hF = f̄ .

Example 4.11. Let S ⊂ R be a multiplicative subset, then R → S−1R is formally étale. To see this, consider a
commutative diagram of rings

R
f //

g

��

C

h

��
S−1R

f

// C/J

where J2 = 0. Since J2 = 0, an element x ∈ C is a unit if and only if x is a unit in C/J . For all s ∈ S, hf(s) = fg(s)︸︷︷︸
unit

units in C/J implies f(s) ∈ C is a unit. Hence there exists unique F : S−1R → C de�ned by r
s 7→ f(s)−1f(r),

making the diagram commute.

Remark 4.12. In general, the map R → S−1R is not of �nite presentation and hence is not étale. For instance,
Q is not a �nitely generated Z-algebra as any �nite set of elements in Q only involves a �nite number of primes in
the denominators and the same is true for the algebra generated by these �nitely many elements.

However, R→ Rf = R[T ]/(fT − 1) is of �nite presentation and formally étale, hence étale for any f ∈ R.

Example 4.13. A× B → A de�ned by (a, b) 7→ a is étale. Note that A = (A× B)(1,0) =localisation of A× B at
(1, 0) ∈ A×B.

Lemma 4.14. A map of rings f : R→ A is formally étale if and only if f is formally smooth and ΩA/R = 0

Proof. If f is étale then f is smooth. Assume f is formally smooth, we will show that f is formally étale if and
only if ΩA/R = 0.

Consider a commutative diagram of rings

R
g //

f

��

C

f
��

A
g
//

G0

==

C/J

(∗)

where J ⊂ C is an ideal such that J2 = 0. Then f is formally smooth means there exists G0 : A → C making (∗)
commute. There exists a bijection of sets between

DerR(A, J)↔ {G : A→ C ring map making (∗) commute}

de�ned by (δ : A → J) 7→ (G0 − δ) one way and G 7→ (G − G0 : A → J) the other way. (Check that they are
inverses of each other)

f is étale means the right hand side of the bijection is a singleton set, and hence DerR(A, J) = 0 for all J ⊂ C
ideal and J2 = 0. But DerR(A, J) is the set HomA(ΩA/R, J) (†). For any A-module M de�ne an A-algebra
C = A⊕M with multiplication C ×C → C de�ned by ((a, x), (b, y)) 7→ (a, x)(b, y) = (ab, bx+ ay), with M ⊂ C an
ideal such that M2 = 0. So by (†) we have HomA(ΩA/R,M) = 0, so choose M = ΩA/R, showing ΩA/R = 0.

Assume ΩA/R = 0, then the left hand side of the bijection is a singleton set, because DerR(A, J) = HomA(ΩA/R︸ ︷︷ ︸
0

, J).

Hence by the bijection, there exists a unique G : A→ C making (∗) commute, so f : R→ A is formally étale.

Lemma 4.15. Let B be an R-algebra, J ⊂ B an ideal such that J2 = 0. Then p : B → B/J has a section as
R-algebras (i.e., there exists an R-algebra map s : B/J → B such that ps = 1) if and only if δ : J → B/J ⊗B ΩB/R,
de�ned by b 7→ 1⊗db, has a retraction as B/J-modules (that is, there exists a B/J-module map π : B/J⊗BΩB/R →
J , such that πδ = 1)

Proof. �⇒�: Assume p : B → B/J has an R-algebra section s : B/J → B. Consider the map (1 − sp) : B → B,
this has image in J since p(1− sp) = p− ps︸︷︷︸

1

p = 0. Hence we have a map ∂ = (1− sp) : B → J . Check that this

is an R-derivation. Hence there exists a unique B-module map ΩB/R → J de�ned by db 7→ ∂b = (b− sp(b)), since
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J(J) = 0 we obtain a B/J-module map π : B/J ⊗B ΩB/R → J de�ned by c ⊗ db 7→ c∂b = c · (b − sp(b)). Check
that π is a retract of δ : J → B/J ⊗R ΩB/R as in the lemma.

�⇐�: Let π : B/J ⊗B ΩB/R → J be a B/J-module map such that πδ = 1. We have the universal derivation
d : B → ΩB/R giving us the composition:

B // B/J ⊗B ΩB/R
π // J

b
� // 1⊗ db

Call this composition g : B → J . As π is a retract of δ, we have g(b) = b for all b ∈ J . Hence consider the map
(1 − g) : B → B, this is zero on J . One checks that (1 − g) : B → B is an R-algebra map. Hence we obtain an
R-algebra map B/J → B de�ned by b 7→ b− g(b). This is an R-algebra section of p : B → B/J .

Proposition 4.16. Let R→ A be a ring map, I ⊂ A an ideal. Let B = A/I. Assume R→ A is formally smooth.
Then the following are equivalent:

1. R→ B = A/I is formally smooth

2. A/I2 → A/I has an R-algebra section

3. I/I2 → B ⊗A ΩA/R de�ned by a 7→ 1⊗ da, has a retraction as B-modules.

Proof. 1⇒ 2 This is by de�nition of formal smoothness:

R //

��

A/I2

��
A/I

id
//

∃
::

A/I

2⇒ 1 Consider a commutative diagram of rings

R
h //

f
��

C

g

��

A

g1
��

H
99

A/I2

g2
��

H

BB

A/I
h

// C/J

where J ⊂ C is an ideal with J2 = 0. Now R → A is formally smooth, so there exists H : A → C
making the diagram commutes. Now H(I) ⊂ J (since gH = hg2g1). Since J

2 = 0, we have H(I2) = 0,
hence there exists a unique H : A/I2 → C such that Hg1 = H and hg2 = gH. By assumption g2 has an
R-algebra section s : A/I → A/I2, hence Hs : A/I → C is an R-algebra map making the lower triangle
commute. Hence we have R→ A/I is formally smooth.

2 ⇐⇒ 3 Consider the second fundamental exact sequence for R → A → A/I2. Then we get an exact sequence
of A/I2-modules:

I2/I4 // A/I2 ⊗A ΩA/R // Ω(A/I2)/R
// 0

tensor this sequence with A/I ⊗A to obtain the exact sequence, with the �rst map being 0:

A/I ⊗A I2/I4 0 // A/I ⊗A ΩA/R
∼= // A/I ⊗A Ω(A/I2)/R

// 0

hence we obtain an isomorphism

A/I ⊗A ΩA/R
∼= // A/I ⊗A Ω(A/I2)/R

I/I2

α=1⊗d
OO

β=1⊗d
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Then by Lemma 4.15, 2 is true if and only if β has a retraction, which happens if and only if α has a
retraction.

Remark 4.17. In view of the second fundamental exact sequence, the equivalence 1 ⇔ 3 in Proposition 4.16 can
be reformulated as follows. Assume R → A formally smooth. Then R → B = A/I is formally smooth if and only
if the sequence

0→ I/I2 → B ⊗A ΩA/R → ΩB/R → 0

is split exact.

De�nition 4.18. An R-module P is called projective if there exists an R-module Q and an isomorphism of R-
modules P ⊕Q ∼= ⊕IR. (That is P is a direct summand of a free module)

Proposition 4.19. Let R→ A be a smooth map of rings. Then ΩA/R is a �nitely generated projective A-module.

Proof. Case 1. A = R[T1, . . . , Tn]. Then ΩA/R = ⊕ni=1AdTi
∼= An.

Case 2. R → A smooth, means R → A has a �nite presentation, so A = R[T1, . . . , Tn]/I = S/I where I =
(f1, . . . , fs). By the second fundamental exact sequence we have that

0 // I/I2

σ
// A⊗S ΩS/R

π //
∃ρoo

ΩA/R // 0

is exact and by smoothness, there exists ρ such that ρσ = 1. Hence using Case 1 we have An = A ⊗S ΩS/R
(π,ρ)→

ΩA/R ⊕ I/I2 is an isomorphism of A-modules.

De�nition 4.20. Let K ⊂ L be a �nite �eld extension. An element x ∈ L is called separable over K if the minimal
polynomial of x over K has no multiple roots (in an algebraic closure K of K). The �eld L is called separable over
K if every x ∈ L is separable.

A �eld K is called perfect if all its �nite �eld extensions are separable.

Example. All �nite �elds, algebraically closed �elds and all �elds of characteristic 0 are perfect.

Criterion. Let K ⊂ L be a �nite �eld extension, this is separable if and only if L ∼= K[T ]/f with f and f ′ (the
derivative of f) coprime in K[T ] (this is covered in Galois Theory)

Proposition 4.21. Let K ⊂ L be a �nite �eld extension. Then K ⊂ L étale if and only K ⊂ L is separable.

Proof. �⇐�: K ⊂ L is separable implies, using the criterion, L ∼= K[T ]/f with (f, f ′) = K[T ]. By the second
fundamental exact sequence for K → K[T ]→ L ∼= K[T ]/f we have an exact sequence of L-vector spaces

(f)/(f2)
f 7→f ′dT // L⊗K[T ] ΩK[T ]/K︸ ︷︷ ︸

=LdT

// ΩL/K // 0 (∗)

Now (f)/(f2) is generated by f as L-module. So

L // // (f)/(f2) // LdT

1 � // f � // f ′dT

is a composition which is an isomorphism because (f ′, f) = K[T ] implies (f ′)L = L, hence f ′ ∈ L is a unit. So
L → (f)/(f2) is also injective and hence an isomorphism. Hence, (f)/(f2) → L⊗K[T ] ΩK[T ]/K is an isomorphism
and thus has a retraction, and ΩL/K = 0. So K ⊂ L is smooth and ΩL/K = 0, meaning K ⊂ L is étale.

�⇒� Assume K ⊂ L is étale, and L is not separable over K. Then there exists a ∈ L such that the minimal
polynomial f ∈ K[T ] of a over K has multiple roots, i.e., f = (T − a)ng ∈ K[T ], where K is the algebraic closure
of K, n ≥ 2 and f ∈ K[T ] is irreducible. Then K ⊂ K[T ]/f = E ⊂ L is an extension of �elds. Tensoring this by
1 ⊗K K to get K ⊂ E ⊗K K ⊂ L ⊗K K. But we have E ⊗K K = K[T ]/f = K[T ]/(T − a)ng contains a non-zero
nilpotent element, namely T − a ∈ K[T ]/(T − a)ng since n ≥ 2. Hence L⊗K K has a non-zero nilpotent elements.
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Since K ⊂ L is étale, we have K ⊂ L ⊗K K = A is étale (Example 4.9), and A is a �nite dimensional K-vector

space. Hence A is Artinian, so A =
∏l
i=1Ai where Ai are local �nite dimensional K-algebra. Since A has a non-zero

nilpotent element, not all of Ai are �elds, so say A1 has maximal ideal 0 6= m ⊂ A. Recall that
∏l
i=1Ai → A1 is

étale (Example 4.13), so K → A1 is étale as a composition of étale maps. We have

K
étale //

id=étale

88
A1

// A1/m = K

(we have A1/m = K since A1/m is a �nite �eld extension of K which is algebraically closed), so by the second
fundamental exact sequence we have

0 // m/m2 //
K ⊗A1 ΩA1/R︸ ︷︷ ︸

0 (K→A1 étale)

//oo ΩK/K︸ ︷︷ ︸
0 (K⊂K étale)

// 0

is split exact. So m/m2 = 0 and by Nakayama, this means m = 0, which is a contradiction. So A1 has no non-zero
nilpotent element.

4.3 Smoothness and Regularity

De�nition 4.22. A Noetherian local ring (R,m, k) is called regular if dimkm/m
2 = dimR

Lemma 4.23. Let k be a �eld. Then for all m ⊂ S = k[T1, . . . , Tn] maximal ideals, Sm is a regular local ring.

Proof. Case 1. k ⊂ S/m = Sm/m is separable (it is a �nite �eld extension by Hilbert's Nullstellensatz). In particular
k ⊂ S/m = L is étale. So

K
smooth //

étale

88
S // S/m = L

so by the second fundamental sequence, we have the split exact sequence

0 // m/m2 // L⊗S ΩS/K︸ ︷︷ ︸
⊕ni=1LdTi=L

n

// ΩL/K︸ ︷︷ ︸
0 (K⊂L étale)

// 0

Hence m/m2 ∼= Ln as L-modules, so dimLm/m
2 = n = dimSm, hence Sm is regular.

Case 2. k ⊂ S/m = L is arbitrary. We use the

Black box Theorem 1. Let A→ B be a faithful �at map of local rings. If B is regular then so is A.

Remark 4.24. The theorem follows from Serre's theorem (proved in MA 4H8 �Ring Theory�) that a local noetherian
ring is regular if and only if it has �nite projective dimension; see Assignment sheet IV.

To �nish the proof of Lemma 4.23, let S = k[T1, . . . , Tn], then S ⊂ S is an integral extension. Choose m ⊂ S a
maximal ideal such that m = S ∩m. Then S → S is faithfully �at (K → K is), so Sm → Sm is (faithfully) �at.
By case 1 we have Sm is regular and hence Sm is regular.

Lemma 4.25. Let (R,m, k) be a Noetherian local ring, and x1, ..., xs ∈ m. Then dimR ≤ s+ dimR/(x1, ..., xs).

Proof. Let y1, ..., yd ∈ R be a system of parameters forR/(x1, ..., xs). So, d = dimR/(x1, ..., xs) andR/(x1, ..., xs, y1, ..., yd)
is Artinian. Then (x1, ..., xs, y1, ..., yd) ⊂ R is an m-primary ideal. By the Dimension Theorem, we have dimR ≤
s+ d.

Lemma 4.26. Let (R,m, k) be a regular local ring of dimension dimR = n. If x1, . . . , xs ∈ m are linearly
independent in the k-vector space m/m2 (so s ≤ n), then S = R/(x1, . . . , xs) is regular of dimension n− s
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Proof. Let ms⊂ S be the maximal ideal, ms = m/(x1, . . . , xs). We have an exact sequence of k-vector space:

(x1, . . . , xs)m/m
2 // m/m2 // ms/m

2
s

// 0

Now the �rst map is injective since x1, . . . , xs are linearly independent inm/m
2. Hence dimkms/m

2
s = dimkm/m

2−
dimk(x1, . . . , xs)m/m

2 = n−s. From the Dimension Theorem, we have dimS ≤ dimkms/m
2
s = n−s. From Lemma

4.25 we have dimS ≥ dimR−s = n−s, hence dimS = n−s = dimkms/m
2
s and S is regular of dimension n−s.

De�nition 4.27. Let f : R→ A be a ring map such that A is �nitely presented over R. Let m ⊂ A be a maximal
ideal. Then we call f smooth at m if R→ Am is formally smooth.

Remark. Write A = R[T1, . . . , Ts]/I with I = (f1, . . . , fn), m ⊂ A maximal ideal. Write S = R[T1, . . . , Ts], so
A = S/I. Let ms = maximal ideal ⊂ S such that ms/I = m. Now R → S is smooth, S → Sms is formally étale,
hence R → S is smooth at ms. Then R → A is smooth at m if and only if the second fundamental sequence for
R→ Sms → Am:

0 // (I/I2)m // Am ⊗S ΩS/R // (ΩA/R)m // 0

is split exact. (Note ΩA/R = (ΩAm/R)m, by Lemma 4.6)

Remark. If R → A has �nite presentation, then R → A is smooth if and only if R → A is smooth at all m ⊂ A
maximal ideal.

Proof. �⇒� A→ Am is formally étale (Example 4.11).
�⇐� Write A = S/I, S = R[T1, . . . , Ts], I = (f1, . . . , fn). Then for all maximal ideals m ⊂ A, the second

fundamental sequence

0 // (I/I2)m // (A⊗R ΩS/R)m // (ΩA/R)m // 0

is split exact. Hence, the sequence

0 // I/I2 // A⊗R ΩS/R // ΩA/R // 0 (∗)

is exact. Moreover, from the split exact sequence above, (ΩA/R)m is projective as it is a direct summand of
(A⊗R ΩS/R)m = Asm which is free. Since ΩA/R = coker(J(f) : An → As) is a �nitely presented A-module (as A is
a �nitely presented R-algebra) and projective (actually free as Am local) at m for all m ⊂ A maximal ideals, the
A-module ΩA/R is projective. In particular, the exact sequence (∗) is split exact as any surjection onto a projective
module splits. So R→ A is smooth.

Proposition 4.28. Let (R,m, k) be a regular local ring. Then R is a domain.

Sketch of proof. If (R,m, k) is Noetherian local, then R is regular if and only if grmR
∼= k[x1, . . . , xs].

Let (R,m, k) be Noetherian local. If grmR is a domain, then R is a domain.

Theorem 4.29. Let k be a �eld, A a �nitely generated k-algebra. Let m ⊂ A be a maximal ideal. Let L = A/m.
Assume that k → L is separable. Then k → A is smooth at m, if and only if, Am is regular. In this case, (ΩA/k)m
is a free Am-module of rank equal to dimAm .

Proof. Write A = S/I where S = k[T1, . . . , Ts] and let ms ⊂ S be the maximal ideal such that m = ms/I.

�⇒� k → A smooth at m implies

0 // (I/I2)m // Am ⊗S ΩS/k // (ΩA/k)m // 0

is split exact. So applying −⊗A L to this exact sequence we get

0 // I/I2 ⊗A L // L⊗S ΩS/k︸ ︷︷ ︸
=Ls

// ΩA/k ⊗A L // 0 (∗)

is split exact. Now k → L is separable and hence étale, so by the second fundamental sequence applied
to

k
smooth//

étale

==Am // L
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we get a split exact sequence

0 // m/m2
∼= // L⊗A ΩA/k // ΩL/k︸ ︷︷ ︸

0 (k→L étale)

////// 0 (†)

Hence m/m2 ∼= L ⊗A ΩA/k as L-vector spaces. Let n = dimLm/m
2. By the Dimension Theorem

dimAm ≤ n. Now (∗) and (†) imply dimL I/I
2 ⊗A L︸ ︷︷ ︸

Im/I2m⊗AmL

= s − n. So by Nakayama, Im is generated as

Am-module by s − n elements. Lemma 4.25 implies dimAm = dimSmS/Im ≥ dimSm − (s − n) = n.
With the inequality dimAm ≤ n above, this implies dimAm = n = dimLm/m

2, and Am is regular.

�⇐� Assume Am is regular. Let n = dimAm, then dimLm/m
2 = n. We have

0 // I/(I ∩m2
s) // ms/m

2
s

// m/m2 // 0

is an exact sequence of L-vector spaces. Hence there exists f1, . . . , fs−n ∈ I which form basis for the L-
vector space I/(I∩m2

S). So f1, . . . , fs−n are linearly independent inms/m
2
s. Let J = (f1, . . . , fs−n) then

Sms/J is a regular ring of dimension s− (s−n) = n (since Sms is regular of dimension s). Furthermore
φ : Sms/J � Am is a surjection of regular rings (hence of domains). Since the two domains have the
same dimension, namely n, and φ is surjective, we have φ is an isomorphism (Otherwise kerφ 6= 0 and
Sm/J has a prime ideal, namely 0 which doesn't correspond to a prime ideal in Am. In particular any
chain of primes in Am gives - by taking preimages- a chain of primes in Sm/J of the same length that
can be made longer by adding the 0 prime ideal). Hence Im = J = (f1, . . . , fs−n). By the second
fundamental exact sequence for K → Sms → Am we have the exact sequence.

(I/I2)m // (A⊗S ΩS/k)m︸ ︷︷ ︸
Asm

// (ΩA/k)m // 0

As−nm

ei 7→fi
OOOO

J(f)
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where J(f) is the Jacobian matrix of (f1, . . . , fs−n). Applying −⊗Am L gives the exact sequence

Ls−n
J(f)⊗L// Ls // L⊗A ΩA/k // 0 (∗∗)

Using the second fundamental sequence for

k //

étale

==Am // L

gives the exact sequence

m/m2 // (ΩA/k)⊗A L // ΩL/k︸ ︷︷ ︸
0 (k→L étale)

////// 0

We have n = dimLm/m
2 ≥ dimL ΩA/k ⊗ L ≥by (∗∗) s − (s − n) ≥ n, hence dimL ΩA/k ⊗ L = n. So

the �rst map in (**) is injective, and thus, the map J(f)⊗ L has a s− n× s− n invertible submatrix.
It follows that J(f) : As−nm → Asm has a s − n × s − n invertible submatrix (For a local ring (R,m, k),
a matrix M ∈ Mn(R) is invertible if and only if M mod m ∈ Mn(k) is invertible. This is because
invertibility is equivalent to detM being a unit, and r ∈ R is a unit i� r mod m is a unit in k). So J(f)

is injective and has a retraction. Hence As−nm

∼=
� (I/I2)m is an isomorphism and the second fundamental

exact sequence for K → Sms → Am is split exact. Hence k → A is smooth at m.

Corollary 4.30. Let k be a perfect �eld and A a �nitely generated k-algebra. Let m ⊂ A be a maximal ideal. Then
k → A is smooth at m if and only if Am is regular. In particular, k → A is smooth if and only if Am is regular for
every maximal ideal m ⊂ A.
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Theorem 4.31. Let k be a �eld, A a �nitely generated k algebra, m ⊂ A a maximal ideal and L = A/m. Then
k → A is smooth at m, if and only if, Am is regular and dimL ΩA/k ⊗A L = dimAm

Proof. The proof was not given in the lectures. But since it is short, it is included here for completeness' sake.

⇒ Let k̄ be an algebraic closure of k. By Example 4.9, since k → A is smooth atm ⊂ A, the map k̄ → A = A⊗k k̄
is smooth at every maximal ideal m ⊂ A of A with m = A ∩m (such maximal ideals m exist since A ⊂ A
is an integral extension). By Theorem 4.29, Am is regular, and ΩAm/k̄ is a free Am-module of rank equal

dimAm. Since A → A is �at (as k → k̄ is), the local map of rings Am → Am is faithfully �at. Black Box
Theorem 1 therefore implies that Am is also regular, and Theorem 3.32 implies that dimAm = dimAm. Let
L = A/m. This is a �eld extension of L = A/m. From Lemmas 4.6 and 4.7 we have ΩA/k̄

∼= ΩA/k ⊗A A and

thus, ΩAm/k̄ ⊗A L ∼= ΩA/k̄ ⊗A L ∼= ΩA/k ⊗A L ∼= (ΩAm/k ⊗A L)⊗L L. Therefore, using Theorem 4.29 again,

we have dimAm = dimAm = dimL ΩAm/k̄ ⊗A L = dimL ΩAm/k ⊗A L.

⇐ The proof of this implication is the same as the implication �⇐� of Theorem 4.29 using the additional
hypothesis dimAm = dimL ΩAm/k ⊗A L.

Theorem 4.32 (MA4H8). If (A,m, k) is regular, then for all prime ideal p ⊂ A we have Ap is regular.

47


