
Euler Systems

1 Heegner points (and BSD)

1.1 Introduction

Let E be an elliptic curve over Q, [F : Q] <∞⇒ E(F ) ∼= E(F )tor ⊗ Zr(E,F ).
Given E, we have an L-function, L(E, s) =

∏
p|N (1 − app−s)−1

∏
p-N (1 − app−s + p1−2s)−1 with Re(s) > 3/2

and ap =


p+ 1−#E(Fp) p - N
0 E additive at p

1 split multi at p

−1 non split multi at p

, N = cond(E).

Note. L(E, 1) ” = ”
∏
p|N ( ) ·

∏
p-N

p
p−ap+1 =

∏
p

p
Np

where Np = #E(Fp)ns.

Conjecture (Birch-Swinnerton-Dyer). Let E/Q be an elliptic curve

1. ords=1L(E, s) = rkZE(Q) = r

2. lims→1
L(E,s)
(s−1)r = #X(E,Q)

det(〈Pi,Pj〉)
#E(Q)2tor

∏
v|N cv, where {Pi} are generators of E(Q).

Suppose that E is modular (now we know this is always true): there exists f ∈ S2(Γ0(N)) a newform f(q) =∑∞
n=1 anq

n such that L(E, s) = L(f, s) =
∑∞
n=1 ann

−s. Or equivalently ap(E) = ap(f). This implies that L(E, s)
has analytic continuation to C. It has a functorial equation ∧(E, s) = (2π)−sΓ(s)Ns/2L(E, s). We have ∧(E, s) =
−ε∧ (E, 2− s) where ε ∈ {±1} and is determined by wN (f) = ε · f where w is the Atkin-Lehner function. We shall
call −ε the sign(E,Q).

f  modular representation. φ : X0(N)/Q //

AJ ((

E/Q

J0(N) = JacX0(N)

Hecke−op

OOOO
non-constant morphism de�ned over Q.

1.2 Class �eld theory

Let K ⊆ C be an imaginary quadratic �eld. Let On ⊆ K be an order, On = Z + nOK , n ≥ 1 an integer.
By class �eld theory: There is a map rec : Pic(On) ∼= Gal(Kn/K) where Kn/K is an abelian extension

unrami�ed away from n. Recall that Pic(On) = I(n)/P (n) where I(n) = {fractional ideals coprime to n}, P (n) =
〈(α) : α ∈ OK , α ≡ a mod nOK , a ∈ Z〉. The map is de�ned by [p] 7→ Frob−1

p

Lemma. Let Gn = Gal(Kn/K1). Then Gn ∼= Pic(On)/Pic(OK) ∼= (OK/nOK)
∗
/ (Z/nZ)

∗
. In particular, if ` is

an odd prime unrami�ed in K, then G` is cyclic and [K` : K1] =

{
`+ 1 ` inert inK

`− 1 ` split inK

If n is square free then Gn ∼=
∏
`|nG`.
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1.3 Complex Multiplication

X0(N) classi�es (up to isomorphism) cyclic N -isogonies, A → A′ where ker(A → A′) is cyclic of order N . Let
K/Q imaginary �eld satisfying Heegner Hypothesis: `|N ⇒ ` splits in K. Can pick an ideal N ⊆ OK such that
OK/N ∼= Z/NZ (cyclic). Consider On = Z + nOK , χn = [C/On → C/N−1

n ] ∈ X0(N)(C) where Nn = N ∩ On
(⇒ On/Nn ∼= Z/NZ) .

Theorem (Main Theorem of Complex Multiplication). Let σ ∈ Aut(C/K)  σ|Kn ∈ Gal(Kn/K) ∼= Pic(On) so
σ|Kn  [aσ].

χσn =
[
C/a−1

σ → C/N−1
n a−1

σ

]
Remark. Suppose σ|Kn = 1. Then χσn = χn. Hence χn ∈ X0(N)(Kn).

Hecke action (On χ0(N)): For each ` - N , T` is a correspondence on X0(N)  T` : (DivX0(N))(F ) →
DivX0(N)(F ) de�ned by [φ : A 7→ A′] 7→

∑
C⊂A[`],cyclic subgp of order `[A/C → A′/φ(C)].

Also have the Trace map: Tr` : DivX0(N)(Kn`)→ DivX0(N)(Kn).

Proposition. Consider {χn}n, (n,ND) = 1 where D = disc(K). Let ` - ND, then

1. As elements in DivX0(N)(Kn), Tr`(χn`) =


T`χn if ` - n is inert inK

(T` − Frobλ − Frob−1
λ )χn if ` = λλ - n split inK

T`χn − χn/` `|n

2. If ` - N is inert in K, λ = `OK , λn is a prime in Kn above λ. Then redλn`(χn`) = redλn(χFrobλn
n ) ∈

X0(N)(Fλn).

1.4 Heegner points on E

Let φ : X0(N)→ E. yn := φ(χn) is the Heegner point of conductor n (in E(Kn)).
yK = TrK1/K(y1) (in E(K)) is �the basis Heegner point�

Proposition. ` - ND :

Tr`(yn`) =


a`yn if ` is inert inK, ` - n
(a` − Frobλ − Frob−1

λ )yn redλn`(yn`) = redλn(yFrobλn
n )

a`yn − yn/` E(Fλn)

Proposition. If τ is a complex conjugation, then there exists σ ∈ Gal(Kn/K) such that yτn = εyσn on E(K)/E(K)tors

.

2 Local Cohomology

2.1 Introduction to cohomology

Let G be a group and M a G-module. Both G and M have topology.
1-cocycles: Are {f : G→M |f continuous and∀g, h ∈ G, f(gh) = f(g) + gf(h)}
1-coboundary: Are {f : G→M |f continuous and f(g) = g ·m−m for somem ∈M}

De�nition 2.1. H1(G,M) ={1-cocylce}/{1-coboundary}, H0(G,M) = MG

Consider the short exact sequence of G-modules, 0 → M ′ → M → M ′′ → 0 and M ′′ → M is a continuous
section of sets. Then we get a long exact sequence

0→M ′G →MG →M ′′G → H1(G,M ′)→ H1(G,M)→ H1(G,M ′′)→ H2 . . .

We have some useful maps between cohomology groups:

2



• Let H ≤ G, we get a map Res : H1(G,M)→ H1(H,M).

• Let H CG be a normal closed subgroup of G, then we have inf : H1(G/H,MH)→ H1(G,M)

We have the following relationship between inf and Res called the Hochschild-Serre spectral sequence

0→ H1(G/H,MH)
inf→ H1(G,M)

Res→ H1(H,M)G/H → H2(G/H,MH)→ . . .

2.2 Galois Cohomology

Fox prime `,p and |K : Q`| <∞ and let Kun be the maximal unrami�ed extension of K and let IK = Gal(K/Kun)
be the Inertia group

Denote by GK = Gal(K/K) and Gun
K = Gal(Kun/K) ∼= GK/IK (∼= Ẑ)

Let T be a �nite dimensional Fp-vector space with discrete GK action. We say that T is unrami�ed if IK acts
trivially on T .

There is a perfect pairing of Fp-vector spaces H1(GK , T )⊗Fp H
1(GK , T

∗)→ Fp where T ∗ = Hom(T,Mp∞).

Fact. If ` 6= p and T is unrami�ed then H1(Gun
K , T ) and H1(Gun

K , T
∗) are exact orthogonal complements with respect

to 〈 , 〉.

De�nition 2.2. A local Selmer structure F for T is a choice of Fp-subspace of H1(GK , T ) denoted H1
f,F (GK , T ).

We call the quotient H1
S,F (GK , T ) := H1(GK , T )/H1

f,F (GK , T ) the singular quotient.

0→ H1
f,F (GK , T )→ H1(GK , T )→ H1

S,F (GK , T )→ 0 (†)

We say F is an unrami�ed structure if H1
f,F (GK , T ) = H1(Gun

K , T
IK ) (via inf). In this case (†) identi�es with inf-res.

Using the Tate pairing we de�ne the Dual Selmer structure F ∗ on T ∗ to be the exact orthogonal complement of
H1
f,F (GK , T ).

In particular H1
S,F (GK , T )⊗Fp Hf,F∗(GK , T

∗)→ Fp we get an induced perfect pairing.

2.3 Local cohomology for elliptic curves

Let E be an elliptic curve over K. We let T = E[p] = E(K)[P ]. We have the Weil pairing E[P ] ⊗ FpE[P ] → µp
(⇒ E[P ]∗ ∼= E[P ]). We have a short exact sequence of GK-module

0→ E[P ]→ E(K)
p→ E(K)→ 0

If we take the associated long exact sequence

0→ E[P ]GK → E(K)GK → E(K)GK → H1(GK , E[P ])→ H1(GK , E(K))→ . . . (††)

From (††) we get:
0→ E(K)/pE(K)

δ→ H1(GK , E[p])→ H1(GK , E(K))[p]→ 0

where δ is de�ned as follows: for Q ∈ E(K) �x L ∈ E(K) such that pL = Q. Then δ(Q) is the 1-cocycle which
sends σ ∈ GK to σ(L)− L ∈ E[P ].

De�nition 2.3. The geometric local Selmer structure F on E[P ] is the image of δ in H1(GK , E[p]).

Fact. The dual geometric local Selmer structure is the geometric local Selmer structure (it make sense since
E[P ]∗ ∼= E[P ])

If E has good reduction over K and ` 6= p. Then E[p] is an unrami�ed GK-module and the geometric structures
agrees with the unrami�ed structure.
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3 Global Section

In this talk K will be a number �eld, v a place of K, Kv the completion of K at v, Gv = Gal(Kv/Kv) and Iv
the inertia subgroup of Gv. As in the last talk we let T to be a �nite dimensional Fp-vector space with a discrete
GK-action. GK × T → T is continuous when T is given the discrete topology. We choose an embedding K ↪→ Kv

which gives us an embedding Gv ↪→ GK .
Since T is �nite dimensional and GK acts discretely, this implies that T is unrami�ed almost everywhere.
For each place v we have a restriction map Resv : H1(K,T )→ H1(Kv, T ).

3.1 Selmer Groups

De�nition 3.1. A global Selmer structure F on T is a choice of a local Selmer structure H1
f,F (Kv, T ) for each

place v such that H1
f,F (Kv, T ) = H1(Kunr

v , T Iv ) almost everywhere.

The Selmer group SelF (K,T ) of F is de�ned to be ker
(
H1(K,T )→ ⊕vH1

s,F (Kv, T )
)
.

If we take E to be an elliptic curve over K and T = E[p].

De�nition 3.2. The geometric global Selmer structure F on E[p] is de�ned to be the global Selmer structure
obtained by setting H1

f,F (Kv, T ) to be the local geometric structure at each v.

In this setting SelF (K,E[p]) = Sel(p)(E).

3.2 Global Duality

De�nition 3.3. Let F be a global Selmer structure on T . The Cartier dual Selmer structure F ∗ on T ∗ =
HomFp(T, µp) is de�ned to be the global Selmer structure obtained by setting H1

f,F∗(Kv, T
∗) to be the local Cartier

dual Selmer structure.

We now �x an F and F ∗ and start omitting it from notation.
Given an ideal aCOK , we de�ne Sela(K,T ) = {c ∈ H1(K,T ) : cv ∈ H1

f,F (Kv, T ) for all v - a}.
Sela(K,T ) = {c ∈ SelF (K,T ) : cv = 0,∀v|a}. This gives us the following exact sequences

0→ Sel(K,T )→ Sela(K,T )→ ⊕v|aH1
S,F (Kv, T )→ 0

0→ Sela(K,T ∗)→ Sel(K,T ∗)→ ⊕v|aH1
f,F (Kv, T

∗)→ 0

We have ⊕v|aH1
s,F (Kv, T ) ∼= ⊕v|aH1

f,F∗(Kv, T
∗)∨. We can put the two sequences above together as follows

0→ Sel(K,T )→ Sela(K,T )→
⊕
v|a

H1
s,F (K,T )→ Sel(K,T ∗)∨ → Sela(K,T ∗)∨ → 0

Proposition 3.4. The above sequence is exact.

The exactness of this sequence yields

0→
(
⊕v|aH1

s,F (Kv, T )
) /

im(Sela(K,T ))→ SelF∗(K,T
∗)∨ → Sela(K,T ∗)∨ → 0

3.3 Bounding Sela

From now on p 6= 2. If τ ∈ GK is an involution, we have a decomposition T = T+⊕T−, where T ε = {t ∈ T : τ(t) =
εt}. We say that τ is non-scalor if T+ 6= 0, T− 6= 0.

From now on, T will be assumed to be irreducible. L/K = �nite Galois extension such that the action of GK
on T factors through Gal(L/K).

If S ⊆ H1(K,T ) �nite dimensional Fp-subspace Sa = {s ∈ S : sv ∈ H1
f,F (Kv, T ) and (sV = 0∀v|a)}. We can

�nd a �nite Galois extension M/L such that S ⊆ inf(H1(M/K,T )). Assume that τ ∈ Gal(L/K) is a non-scalar
involution and that it extends to an involution in Gal(M/K). Let {γ1, . . . , γr} be a set of group generators for
Gal(M/L).
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Proposition 3.5. Let ω1, . . . , ωr be places of M such that FrobM/K(wi) = τγi. Let vi be the restricted places to
K and set a = v1 · · · vr. Then we have Sa ⊆ inf(H1(L/K, T )).

Let E be an elliptic curve over Q without CM, T = E[p]. ρ : GK � GL2(Fp), H1(Q(E[p])/Q, E[p]) = 0.
Let L0/K be an extension such that GK factors through Gal(L0/K), and we assume that K is a quadratic

extension of K0. We also assume that the action Gal(L0/K) is a restriction of a Gal(L0/K0)-action on T . We have

M

L

L0

K

2

K0

S will be a �nite dimensional subspace of H1(M/K,T ) and τ will be a non-scalor involution in Gal(M/K0) which
projects to the non-trivial element of Gal(K/K0). By the action of τ on H1(M/K,T ), we have the decomposition

H1(M/K,T ) = H1(M/K,T )+ ⊕H1(M/K,T )−

We further assume that S ⊆ H1(M/K,T )ε for some ε ∈ {±}. Let σ ∈ Gal(M/L0) be such that τστ−1 = σ−1. We
again let {γ1, . . . , γr} be a set of generators of Gal(M/L).

Proposition 3.6. Let w1, . . . , wr be places of M such that FrobM/K(wi) = τσγi and let vi be the restrictions of wi
to K. Set a = v1 · · · vr, then Sa ⊆ inf(H1(L/K, T )ε).

4 Calculations in Galois Cohomology

Let E be an elliptic curve over Q.
K/Q an imaginary quadratic extension where all primes dividing Cond(E) split.
Fix yk ∈ E(K) a Heegner point

Theorem 4.1. Let p ≥ 3 be such that

1. E has good reduction at p

2. Gal(Q(E[p])/Q) ∼= GL2(Fp)

3. yk /∈ pE(K)

The Sel(K,E[p]) is of Fp dimension 1 and generated by κ(yk).

Condition 2.) implies Gal(K(E[p])/K) ∼= GL2(Fp)
Fact. Under complex conjugation yk 7→ εyk (up to torsion) where ε is the global root number. (⇒ yk ∈ (E(K)/pE(K))

ε
)

Recall: Sela(K,E[p]) restricted.
Sela(K,E[p]) relaxed.
this gives the exact sequence

Sela (K,E[p])→
⊕
v|a

H1
s (Kv, E[p])→ Sel(K,E[p])∨ → Sela(K,E[p])∨ → 0

Complex conjugation commutes with the maps so splits into a + part and the − part.
Let L0 = K(E[p]). For z such that pz = yk let L = L0(z).

Lemma 4.2. There exists an ideal a of K such that Sela(K,E[p])± ⊆ H1(L/K,E[p])±. Moreover if we �x σ ∈
Gal(L/L0) such that τστ−1 = σ−1.

We can choose a such that a is divisible by primes lying above primes of Q with FrobL/Q ∼ τσ.
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4.1 Preliminaries

Lemma 4.3. Let ` be a prime of Q such that

1. E has good reduction at `

2. ` 6= p

3. FrobK(E[p])/Q` ∼ τ

Then H1
S(Kλ, E[p])± is a 1-dimensional Fp-vector-space.

Proof. K(E[p]) is the �xed �eld of the kernel of the mod p representation. Then Neron-Ogg-Shar implies that
E[p] is unrami�ed at ` and so all primes above ` in K are unrami�ed in K(E[p]). FrobK/Q` ∼ τ 6= id, the residue
class of ` in K/Q is 2, and the residue class degree of ` in K(E[p])/K is 1. Hence ` splits completely in K(E[p])/K.
So K(E[p])λ = K`, i.e., E[p] ⊆ E(K`).

H1
S(K`, E[p]) ∼= H1(I`, E[p])G

unr
K`

= HomGunr
K`

(I`, E[p])

= HomGunr
K`

(I`/pI`, E[p])

I`/pI` ∼= Gal(Kunr
` (`1/p)/Kunr

` ) ∼= µp. H1
S(K`, E[p]) ∼= Hom(µp, E[p]). Everything done so far commutes with

complex conjugations. We also get Hom(µp, E[p])± → E[p]∓.

4.2 −ε eigenspace
Lemma 4.4. Hi(L0/K,E[p]) = 0 for all i

Lemma 4.5. H1(L/K,E[p]) is 1-dimensional Fp -vector-space generated by κ(yK).

Lemma 4.6. Gal(L/L0) is isomorphic to E[p] as Gal(L0/K)-modules. And Gal(L/L0)± is 1-dimensional.

Consider Gal(L/L0) ↪→ E[p] de�ned by σ : {z 7→ z + q} 7→ q. This map is actually the image of κ(yK) ∈
H1(K,E[p]) under the restriction to H1(L0, E[p])Gal(L0/K).

Proposition 4.7. Let ` be a prime of Q with FrobL0/Q ∼ τ which does not split completely in L/L0. Then there
exists c(`) ∈ Selλ(Kλ, E[p])± such that c(`)sλ 6= 0 in H1

λ(Kλ, E[p]).

Theorem 4.8. Sel(K,E[p])−ε = 0.

Proof. 1 6= σ ∈ Gal(L/L0) such that τστ = σ−1. There exists a such that Sela(K,E[p])−ε ⊆ H1(L/K,E[p])−ε. But
the second thing is 1-dimensional and is generated by κ(yK). If we pick a such that it is divisible only by primes
lying over `1, . . . , `r ∈ Z with FrobL/QLi ∼ τσ. ⊕li|aH1

i (K`i , E[p])−ε has dimension r, but we use the fact there
exists c(`1) such that c(`i)

s
λ 6= 0 with linear independent images. Hence the cokernel is 0.

5 Finishing the proof

5.1 Notation and Recap

Notation.

• E an elliptic curve of conductor N

• φ : X0(N)→ E a modular parametrization

• K an imaginary quadratic �eld with discriminant D, in which every prime dividing N splits.
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• p a prime at which E has good reduction.

• Assume Gal(Q(E[p])/Q) ∼= GL2(Fp).

• τ complex conjugation

• Kn the ring class �eld of K of conductor n, which (among other properties) is an abelian extension Kn/K
unrami�ed away from n.

• Let ` ∈ Z be a prime such that ` is inert in K/Q and splits in K(E[p])/K. Setting λ = `OK , λ splits
completely in Kn and is totally rami�ed in Kn`. In the case n and ` are coprime we get:

λn` Kn`

λn Kn

tot ramified

K`

K1

λ K

tot splits

` Q
2inert

• Note that Kn,λn = Kλ.

• redλn the reduction map E(Kn,λn)→ E(Fλ).

We have the short exact sequence 0 → H1
f (K,E[p]) → H1(K,E[p]) → H1

s (K,E[p]) → 0, with H1
f (K,E[p]) =

imκ.
We also recall that if E has good reduction at `, then H1

s (Kλ, E[p]) ∼= Hom(Iλ, E[p])G
un
Kλ , with Gun

Kλ
=

Gal(Kun
λ /Kλ).

Theorem 5.1. For any integer n not dividing ND there exists a point yn ∈ E(Kn) such that
` - ND then Tr`yn` = a`yn ∈ E(Kn)
` - ND and is inert in K, redλn`(yn`) = redλn(FrobKn/Kλn · yn)
There exists σ ∈ Gal(Kn/K) such that τyn = εσyn in E(K)/E(K)tors.

• L0 = K(E[p]), For z such that pz = yk let L = L0(z).

This 5 weeks have been building towards proving

Theorem. Let p be an odd prime such that:

• E has good reduction at p

• Gal(Q(E[p])/Q) ∼= GL2(Fp)

• yK /∈ pE(K)

Then Sel(K,E[p]) has order p; it is generated by the image of yK under the Kummer map.

This was done by using the cohomology tools that Chris and Pedro set up, to bound Sel(K,E[p])±ε using the
restricted and relaxed Sela(K,E[p]) and Sela(K,E[p]). Alex proved this last week under the assumption of the
following two proposition, which we will prove this week.

Proposition. Assume that yk /∈ pE(K). Let ` ∈ Q be a prime with FrobL0/Q` ∼ τ and ` not splitting completely
in L/L0. There there exists c(`) ∈ Selλ(K,E[p])−ε with c(`)sλ 6= 0 in H1(Kλ, E[p])

Proposition. Assume that yk /∈ pE(K). Let ` ∈ Q be a prime with FrobL/Q` ∼ τ and ` not splitting completely in
L′/L. There there exists c(q`) ∈ Selλ(K,E[p])ε with c(q`)sλ 6= 0 in H1(Kλ, E[p]).

We will prove this using the Heegner points that Marc introduced in the �rst week to construct a class in
H1(K,E[p]) that satisfy those conditions.
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5.2 The derivative operator

Let R be the set of square free integers, gcd(n, pND) = 1 and if `|n then FrobK(E[p])/Q` ∼ τ . This implies that `
is inert in K/Q and splits in K(E[p])/K, and that E has good reduction at `.

Lemma 5.2. For all primes ` ∈ R, p|`+ 1 and p|a` = `+ 1−#(F`)

Proof. As on E[p], complex conjugation and Frob are conjugate, their characteristic polynomial must be the same
mod p

Recall that, for ` ∈ R, G` = Gal(K`/K1) is cyclic (Marc's talk) of order `+ 1 (as ` is inert in K).
Fix a generator σ` and for a prime ` de�ne

• D` =
∑`
i=1 iσ

i
`,

• T` =
∑l
i=0 σ

i
`.

• For n ∈ R we de�ne Dn =
∏
`|nD` (using the fact that Gn ∼=

∏
`|nG`)

• Let γi be a set of coset representative for Gn in Gal(Kn/K). T =
∑
i γi, T

−1 =
∑
i γ
−1
i .

Lemma 5.3. For any n ∈ R we have Dnγn ∈ (E(Kn)/pE(Kn))Gn .

Proof. As Gn =
∏
`|nG`, we just need to show that (σ`− 1)Dnyn ∈ pE(Kn). This is calculations using the identity

(σ` − 1)D` = `+ 1− T`, Theorem 5.1 and Lemma 5.2.

We de�ne Pn = TDnyn ∈ E(Kn). If we consider Pn in E(Kn)/pE(Kn), then by the above it is Gal(Kn/K)-invariant
and independent of the choice made for T.

Consider the following, we want to get an element in H1(K,E[p]) from Pn ∈ E(Kn)/pE(Kn)

E(Kn)/pE(Kn)

κ ��
H1(Kn, E[p])

H1(K,E[p])
res
// H1(Kn, E[p])Gal(Kn/K)

As the Kummer map is equivariant, κ(Pn) ∈ H1(Kn, E[p])Gal(Kn/K).

Lemma 5.4. The restriction map is an isomorphism

Proof. Using long exact sequence have that the kernel and cokernel of res is Hi(Kn/K,E[p]Gal(Kn/K)) for i = 1, 2
respectively. Using the non-trivial fact that E has no Kn-rational p-torsion for n ∈ R, these two groups are trivial.
Hence the restriction map is an isomorphism

So we let c(n) ∈ H1(K,E[p]) be such that c(n) = κ(Pn).
Recap: At this point we have constructed a class c(n) ∈ H1(K,E[p]) which comes from an Heegner point

yn ∈ E(Kn). We now show it lies in one of the + or − space

Lemma 5.5. Let n ∈ R have k prime factors. Then c(n) ∈ H1(K,E[p])(−1)kε.
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Proof. As τ commutes with κ and res, we show τPn = (−1)kεPn in E(Kn)/pE(Kn).

τPn = τT
∏
`|n

D`yn Definition

= T−1
∏
`|n

τD`yn by τT = T−1τ

= T−1
∏
`|n

(`T` − σ`D`) τyn

= T −1
∏
`|n

(`T` − σ`D`)εσyn Lemma 5.1

= T−1
∏
`|n

(−σ`D`)εσyn since T`yn = a`yn/` = 0 inE(Kn)/pE(Kn)

= (−1)kεσ
∏
`|n

σ`T
−1Dnyn

Then using the fact that Dnyn is Gn-invariant, and Pn is Gal(Kn/K)-invariant, this collapse down to what we
want.

Lemma 5.6. Fix n = `1 . . . `rR, then c(n) ∈ Selλ1...λr (K,E[p])

Proof. Let ν be a place of K distinct from λi such that E has good reduction at ν (The proof of ν has bad
reduction is more involved and uses tools we have not developed). Instead of showing c(n)ν ∈ H1

f (Kν , E[p]), we

show c(n)sν = 0 in H1
s (Kν , E[p]). We have H1

s (Kν , E[p]) = Hom(Iν , E[p])G
unr
Kν . Let w be a place of Kn above ν

and note that Kn,w/Kν is unrami�ed. Hence its inertia group is also Iν , and using the exact sequence we get the
following commuting diagram:

E(Kν)/pE(Kν)
κ // H1(Kν , E[p]) //

res ��

Hom(Iν , E[p])

E(Kn,w)/pE(Kn,w)
κ
// H1(Kn,w, E[p]) // Hom(Iν , E[p])

where we use Hom(Iν , E[p])G
unr
Kν ⊆ Hom(Iν , E[p])

Gunr
Kn,w ⊆ Hom(Iν , E[p]). Then it is jut a matter of diagram chasing.

By de�nition resc(n)ν = κ(Pn), so (resc(n)ν)s = 0. Hence c(n)sν = 0.

As Pn` ∈ E(Kn`) is Gal(Kn`/K)-invariant in E(Kn`)/pE(Kn`), and G` = Gal(K`/K1) ≤ Gal(Kn`/K), we have
(σ` − 1)Pn` ∈ pE(Kn`). Setting

Qn,` =
`+ 1

p
TDnγn` −

a`
p
Pn (†)

(which makes sense by Lemma 5.2) we see pQn,` = (σ` − 1)Pn` (using Lemma 5.3). Note that by the fact that E
has no Kn`-rational p-torsion point, Qn,l is the unique point in Kn` with that property.

Lemma 5.7. redλn`(Qn,`) is trivial in E(Fλ) if and only if Pn ∈ pE(Kλ)

Proof. First we show redλn`(σyn`) = redλn(FrobKn/Kλn ·σyn) for all σ ∈ Gal(Kn/K). This is true by Theorem 5.1
for σ = 1, and we use Theorem 5.1 with the ideal σ−1λn.

redσ−1λn`(yn`) = redσ−1λn(FrobKn/K(σ−1λn) · yn)

redλn`(σyn`) = redλn(σFrobKn/K(σ−1λn) · yn)

but as FrobKn/K(σ−1λn) = σ−1FrobKn/Kλnσ we are done. By the de�nition of Dnand T, we have

redλn`(TDnλn`) = redλn(FrobKn/Kλn · TDnyn)

9



Hence combining this with (†) we get

redλn`(Qn,`) = redλn

((
`+ 1

p
FrobKn/Kλn −

a`
p

)
Pn

)
Claim: (` + 1)FrobKn/Kλn − a` annihilates E(Fλ). Note that E(Fλ) = E(Fλ)+ ⊕ E(Fλ)− as FrobKn/Kλn is an
involution. But E(Fλ)+ = E(F`) which by de�nition has order ` + 1 − a`. Then by the Weil conjectures E(Fλ)−

has order l + 1 + a`.
Now FrobKn/Kλn is the reduction of a complex conjugation, so FrobKn/KλnPn = τPn, which by the proof of

Lemma 2.4 τPn = (−1)kεPn in E(Kn)/pE(Kn), so FrobKn/KλnPn = νPn+pQ for some ν ∈ {±1} and Q ∈ E(Kn).

redλn`(Qn,`) =
(`+ 1)ν − a`

p
redλn(Pn) ∈ E(Fλ)ν/pE(Fλ)ν

We now claim that the p-primary part of E(Fλ)ν is cyclic. First we note that p|(l + 1) ± a`, so we have at least
p p-torsion point in E(Fλ)±. Suppose we had more than p p-torsion point in one of E(Fλ)±, then we would
have p2 of them, but p2 > |E(Fλ)+[p]| + |E(Fλ)−[p]| = |E(Fλ)[p]|which is a contradiction (as ` is a good prime,∣∣E(Fλ)[p]

∣∣ = p2). We can conclude that E(Fλ)ν/pE(Fλ)ν is cyclic of order p.
Hence redλn`(Qn,`) = 0 if and only if redλn(Pn) ∈ pE(Kn,λn) = pE(Kλ). But the kernel of redλn is pro-`, which

is coprime to p, so Pn ∈ pE(Kλ)

Lemma 5.8. Let n` ∈ R with ` prime. Then c(n`)sλ = 0 if and only if Pn ∈ pE(Kλ).

Proof. Since ` ∈ R we haveH1
s (Kλ, E[p]) = Hom(Iλ, E[p])G

un
Kλ so we can view c(n`)sλ as a homomorphism Iλ → E[p].

We shall show this factors as follows:
Iλ //

((

E[p]

Iλ/Iλn`
∼= G`

OO

To see this we consider the diagram

H1(Kλ, E[p])

res ��
E(Kn`)/pE(Kn`) κ

// H1(Kn`,λn` , E[p]) // Hom(Iλnl , E[p])

Then c(n`) lies in the image of the Kummer map, hence c(n`)(Iλn`) = 0.
Looking at the diagram in the introduction (since ` - n), we see that G` is the inertia group of Gal(Kn`/K) at

λ. Hence considering the diagram

Kλ

Kun
n`,λn`

Iλn

Kn`,λn`

Kun
λ

G`

Iλ

Kλ = Kn,λn

G`

we have Iλ/Iλn`
∼= G`. Hence c(n`)

s
λ = 0 if and only if c(n`)(σ`) = 0.

Fix Q ∈ E(K) such that pQ = Pn`, then we claim that the cocycle GK → E[p] given by σ 7→ (σ − 1)Q− 1
p (σ −

1)Pn` represents c(n`) (where
1
p (σ − 1)Pn` is the unique point in E(Kn`) which is a pth root of (σ − 1)Pn`). This
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expression is easy to see is in E[p]. To see it represents c(n`) one checks that resc(n`) = κ(Pn`), but κ(Pn`) is just
the cocycle σ 7→ (σ − 1)Q and for all σ ∈ GKn` (σ − 1)P = 0.

Now c(n`)(σ`) = (σ` − 1)Q−Qn,` (as we had pQn,` = (σ` − 1)P ).
Fix a prime λ of K over λ and consider red : E(K)→ E(kλ). As E has good reduction at p, this map is injective

on p-torsions, so c(n`)(σ`) = 0 if and only if red((σ`− 1)Q−Qn,`) = 1. Note that red((σ`− 1)Q) and red(Qn,`) are
p-torsion (we had red(Qn,`) = 1

p ((l+ 1)ν − a`)red(Pn)), and σ` lies in inertia and hence acts trivially, we have that

red((σ` − 1)Q) = 0. So red((σ` − 1)Q−Qn,`) = −red(Qn,`).
Hence c(n`)(σ`) = 0 if and only if red(Qn,`) = 0 if and only if Pn ∈ pE(Kλ)

Proposition. Assume that yk /∈ pE(K). Let ` ∈ Q be a prime with FrobL0/Q` ∼ τ and ` not splitting completely
in L/L0. There there exists c(`) ∈ Selλ(K,E[p])−ε with c(`)sλ 6= 0 in H1(Kλ, E[p])

Proof. We let c(`) be the class de�ned by the Heegner point yk. Then Lemma 5.5 and 5.6 shows that c(`) ∈
Selλ(K,E[p])−ε. Lemma 5.8 tells us that c(`)sλ 6= 0 if and only if P1 /∈ pE(Kλ).

But P1 ∈ E(K) is the point yk by de�nition. Since by de�nition L is the minimal extension of L0 which yk is
divisible by p, we have that yk is divisible by p in E(Kλ) if and only if λ splits completely in L/L0. By assumption
it does not, hence yk /∈ pE(Kλ).

For the Sel(K,E[p])ε space we need to reintroduce some work done by Alex. Let q be a prime satisfying the
previous proposition, so c(q) ∈ Selq(K,E[p])−ε and c(q)sq 6= 0. We let L′ be the smallest extension of L such that
c(q) ∈ H1(K,E[p]) is de�ned, i.e., c(q) ∈ H1(L′, E[p]).

Lemma 5.9. Let ` be a prime with FrobL/Q` ∼ τ . Then Pq ∈ pE(Kλ) if and only if ` splits completely in L′/L.

Proposition. Assume that yk /∈ pE(K). Let ` ∈ Q be a prime with FrobL/Q` ∼ τ and ` not splitting completely in
L′/L. There there exists c(q`) ∈ Selλ(K,E[p])ε with c(q`)sλ 6= 0 in H1(Kλ, E[p]).

Proof. By the same argument as above we have c(q`) ∈ Selqλ(K,E[p])ε. Then using the previous lemma and Lemma
5.8 we have that c(q`)sλ 6= 0 in H1

s (Kλ, E[p]).
It remains to show that c(q`) ∈ Selλ(K,E[p])ε or equivalently that c(q`)sq = 0. As FrobL/Q` ∼ τ we have that `

splits in L/L0, hence γK ∈ pE(Kλ) using the proof of the above proposition. So considering c(`) ∈ Selλ(K,E[p])−ε,
by Lemma 2.7, we have c(`)sλ = 0 and hence c(`) ∈ Sel(K,E[p])−ε = 0 as Alex proved last week. Hence c(`) = 0
itself, and since by construction resc(`) = κ(P`) = 0, we must have P` to be 0 in E[K`]/pE[K`], i.e., P` ∈ pE(K`).
So P` ∈ pE(K`,q), hence by Lemma 2.7 c(q`)sq = 0.

6 __ (Angelos)

6.1 Notation

• p, ` are primes such that p is �xed p 6= `

• K is a �eld and Kv denotes the completion of K at v

• GK = Gal(K
sep
/K)

• A is a GK-module and A∗ = Hom(A,µ∞). In general, A is a free Zp-module of �nite rank then Am = A/pmA
(A = A1), A∗m = A∗[pm]

• Hi(K,A) = Hi(Gm, A)

Comment: Since, A may not be a discrete GK-module, then it doesn't hold that Hi(GK , A) = lim←−H
i(GK , Am) for

i > 1.For A∗ everything is �ne since it has discrete topology
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6.2 Dualing

Theorem 6.1. Suppose A is �nite GK-module, then the pair

H1(GKv , A)×H1(GKv , A
∗)
∪→ H2(GKv , µ∞)

invKv→ Q/Z

is perfect

Remark. H1
f (Q`, E[pm])⊥ = H1

f (Q`, E[pm])

If F is Selmer structure of A then we get a Selmer structure for Am just using the canonical map H1(Kv, A)→
H1(Kv, Am) . This de�nes a Selmer structure for A∗m and from that we de�ne Selmer structure F∗ for A∗ by
H1
F∗(Kv, A

∗) = lim←−H
1
F∗(Kv, A

∗
m).

Proposition 6.2. It holds that H1
F (K,A) = lim←−H

1
F (K,Am) and H1

F∗(K,A
∗) = lim−→H1

F (K,A∗m).

De�nition 6.3. If F ,G are Selmer structure of A, we say that G ⊂ F if H1
G(Kv, A) ⊂ H1

F (Kv, A) for all v.

Note that if G ⊂ F then

• H1
G(K,A) ⊂ H1

F (K,A)

• F∗ ⊂ G∗

Theorem 6.4. Suppose F1,F2 are Selmer structure for a �nite GK-module A and F1 ⊂ F2. Then

• 0→ H1
F1

(K,A)→ H1
F2

(K,A)
⊕res→

⊕
H1
F2

(Kv, A)/H1
F1

(Kv, A)

• 0→ H1
F∗2

(K,A)→ H1
F∗1

(K,A)
⊕res→

⊕
H1
F∗1

(Kv, A)/H1
F∗2

(Kv, A)

Summing over v such that H1
F1

(Kv, A) 6= H1
F2

(Kv, A). The images of ⊕res are orthogonal complement of each other
with respect to the Tate pairing.

From now on K will be Q.

De�nition 6.5. The canonical Selmer structure Fcon for A is de�ned to be

• If v ∈ {∞, p} then H1
Fcon

(Qv, A) = H1(Qv, A)

• If v /∈ {∞, p} then H1
Fcon

(Qv, A) = ker[H1(Qv, A)→ H1(Qun
v , A)⊗Qp].

Proposition 6.6. If F = Fcon for A = E[pm] and ` 6= p, then H1
F (Q`, E[pm]) = H1

F∗(Q`, E[pm]∗) = H1
f (Q`, E[pm])

Proposition 6.7. If F = Fcon . The following are the same

0→ Selpm(E/Q)→ H1
F (Q, E[pm])→ H1

F (Qp, E[pm])/H1
f (Qp, E[pm])

0→ H1
F∗(Q, E[pm])→ Selpm(E/Q)→ H1

f (Qp, E[pm])/H1
F∗(Qp, E[pm])

6.3 The Hypotheses

H.1 A is an absolutely irreducible Fp[GQ]-module, not isomorphic to Fp or µp

H.2 There is τ ∈ GQ such that τ = 1 on µp∞ and A/(τ − 1)A is free of rank one over Zp

H.3 H1(Q(A)/Q, A) = H1(Q(A∗)/Q, A∗) = 0 where Q(A) is the �xed �eld of the kernel of GQ → Aut(A).

H.4 Either A 6∼= A∗ or p ≥ 5
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H.5 Let Σ be a �nite set of primes which contains ∞, p and ` such that A is rami�ed at ` and all ` such that
H1
F (Q`, A) 6= H1

un(Q`, A). For every ` ∈ Σ, H1(Qv, A)/H1
F (Qv, A) is torsion-free.

Remark. Fcon satis�es H.5

Let A = Tp(E) with Fcon Selmer structure. Assuming

• p ≥ 5

• the p-adic representations GQ → Aut(E[p∞]) = GL2(Zp) is surjective (for p ≥ 5 this is the same as GQ →
Aut(E[p]) is surjective). Then Tp(E) satis�es H.1 to H.5.

6.4 Euler - Kolyvagin Systems

Let Σ be a �nite set of primes containing∞, p and all primes where A rami�es. If ` /∈ Σ, P`(x) = det(1−Frob`x|A) ∈
Zp[x]. Let N = {npk : n is square free product of primes ` /∈ Σ, k ≥ 0}.

De�nition 6.8. An Euler system for A is a collection F = {Fn ∈ H1(Q(µn), A), n ∈ N} such that for n` ∈ N

Fn` =

{
P`(Frob−1

` )Fn ` 6= p

Fn otherwise
. Let ES(A) denote the Zp[GQ]-module of Euler system of A.

7 Kolyvagin Systems (Céline)

Notation. K a non-archimedian local �eld of characteristic 0. IK ⊂ GK , φ ∈ Gal(Kun/K) , k residue �eld, |k| = q.
A GK-Module

7.1 Transverse and Unrami�ed cohomology groups

De�nition 7.1. Suppose L/K is totally tamely rami�ed extension of degree q − 1. Then there is a canonical
isomorphism Gal(L/K) = k∗.

In this talk, K = Q` and L = Q`(µ`).
We de�ne the L-transverse cohomology subgroup H1

t (K,A) ⊂ H1(K,A) to be H1
t (K,A) = ker[H1(K,A) →

H1(L,A)] = H1(L/K,AGL).

Proposition 7.2. Suppose that A is a �nite unrami�ed GK-module such that (q − 1)A = 0. Then

1. H1
t (K,A) ∼= Hom(Gal(L/K), Aφ=1)

2. H1
t (K,A) ∼= Aφ=1

3. Direct sum decomposition: H1(K,A) = H1
u(K,A)⊕H1

t (K,A)

De�nition 7.3. Suppose that n|q − 1, let R = Z/mnZ. Suppose that A is an unrami�ed GK-module, free of
�nite rank over R, det(1 − φ|A) = 0. Consider P (x) = det(1 − φ|Ax) ∈ R[x]. By assumption P (1) = 0 so
P (x) = (x − 1)Q(x) with Q(x) ∈ R(x). By Cayley-Hamilton, P (φ−1) = 0, then Q(φ−1)A ⊂ Aφ=1. De�ne the
unrami�ed-transverse comparison map by

H1
u(K,A)

∼→ A/(φ− 1)A
Q(φ−1)→ Aφ=1 → H1

t (K,A)︸ ︷︷ ︸
φut

Example. Under the same hypotheses: Aφ=1 is free of rank one if and only if A/(φ− 1)A is also as well. In this
case φut is an isomorphism.
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7.2 Kolyvagin Systems: De�nition

Let A be a Zp-module of �nite rank with a continuous action of GQ. Assume that A is rami�ed at only �nitely
many primes. For every positive integer m, we have �nite GQ-module An := A/pnA. For a given Selmer structure
F for A, let Σ be a �nite set of places of Q containing p,∞, ` where A rami�es, all ` where H1

F (Q`, A) 6= H1
u(Q`, A).

De�nition 7.4. Let c be a positive integer such that c is not divisible by any prime in Σ. We de�ne F(c) for A as

follows, H1
F(c)(Qv, A) =

{
H1
F (Qv, A) v - c

H1
t (Qv, A) v|c

.

Fix a Zp[GQ]-module A and a Selmer structure F for A satisfying H.1 to H.5. If ` /∈ Σ, let ν(`) = max{m|l ≡ 1
mod pmandAm/(φ` − 1)Am is free of rank 1 overZ/pmZ}. De�ne NA =be the set of square free product of primes
` /∈ Σ. If n ∈ NA then we de�ne ν(n) = min{ν(`)|`|n} and set ν(1) =∞.

De�nition 7.5. A Kolyvagin System is a collection
{
κn ∈ H1

F(n)(Q, Aν(n))|n ∈ NA
}
such that if n` ∈ NA the

following commutes

κn ∈ H1
F(n)(Q, Aν(n))

��
H1
u(Q`, Aν(n))

φut ��
κn` ∈ H1

F(n`)(Q, Aν(n`))
res` // H1

t (Q`, Aν(nl))

Let KS(A) be the Zp-module of the Kolyvagin system for A.

7.3 Kolyvagin system construction

There exists a canonical map ES(A)→ KS(A,Fcan) such that if ξ → κ then κ1 = ξ1 in H1
Fcan

(Q, A)
Construction:

For every n ∈ NA, let Γn = Gal(Q(µn)/Q). If n = n1n2, Γn = Γn1
×Γn2

. With this identi�cation Γn =
∏
`|n Γ`.

For ` /∈ Σ, �x a generator σ` for Γ`, de�ne the Kolyvagin's Derivative operator D` :=
∑`−2
i=1 iσ

i
` ∈ Z[Γ`]. If

n ∈ NA, Dn =
∏
`|nD` ∈ Z[Γn].

Proposition 7.6. If ξ ∈ ES(A), n ∈ NA, then the image of Dnξn under H1(Q(µn), A) → H1(Q(µn), Aν(n)) lies
in H1(Q(µn), Aν(n))

Γn .

Proposition 7.7. If ξ ∈ ES(A), n ∈ NA, then the image of Dnξn has a canonical inverse image in H1(Q, Aν(n))
under the restriction map H1(Q, Aν(n))→ H1(Q(µn), Aν(n))

Γn .

Denote ξ′n to be the canonical inverse image of Dnξn as above. Let ξ′ = {ξ′n|n ∈ NA}.
Recall: H1(Q`, Aν(n)) = H1

u(Q`, Aν(n))⊕H1
t (Q`, Aν(n)), Res`(ξ

′
n), (ξ′n)`,u, (ξ

′
n)`,t.

For ξ′ to be a Kolyvagin system we need:

1. Res`(ξ
′
n) ∈ H1

Fcan
(Q`, Aν(n)) if ` - n

2. Res(ξ′n) ∈ H1
t (Q`, Aν(n)) if `|n

3. φut ◦ Res`(ξ
′
n/`) = (ξ′n)`,t ∈ H1

t (Q`, Aν(n)) for `|n

ξ′ satis�es 1 and 3, but (ξ′n)`,u 6= 0 in general. But we can de�ne a Weak Kolyvagin System by ignoring 2. and then
re�ning it to create a Strong Kolyvagin System.

7.4 Application

Give a Kolyvagin system for A, if κ1 6= 0, then H1
F∗(Q, A∗) is �nite and has length or equal to δ(K) where

δ(K) = max{j|κ1 ∈ pjH1
F (Q, A)}.
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8 Kato's Euler system

Let p ≥ 5 be prime. E/Q modular Elliptic Curve over Q conductor N . f newform weight 2, level N .
T = TpE
Euler system: (ζn ∈ H1(Q(ζn), T ))n∈N , Σ ⊃ {∞, p} ∪ primes(N)
N = {squarefree product of ` ∈ Σ× pk}

CoQ(ζn`)/Q(ζn)ζn` =

{
P`(Frob−1

` )ζn ` 6= p

ζn ` = p

8.1 Overview of construction

(O(Y (n,L))∗)
2 // H1

ét(Y (n,L),Zp(1))2 // H2
ét(Y1(N)Q(ζn),Zp(1))2

��
H2

ét(Y1(N)Q(ζn),Zp(2))

��
H1(Q(ζn), H1

ét(Y1(N)Q,Zp(2))

��
H1(Q(ζn), T (1))

Proposition 8.1. Let E/S be an elliptic curve, c prime to 6. Then there exists a unique cθE ∈ O(E\E[c])∗ such
that

1. divisors c2(0)− E[c]

2. For all a coprime to c, [a]∗ : O(E\E[ac])∗ → O(E\E[c])∗, [a]∗ cθE = cθE.

Proof.

Uniqueness: Let f = ug, u ∈ O(S)∗, f = [a]∗f = [a]∗ug = ua
2

[a]∗g = ua
2

g, Hence ua
2−1 = 1 so a = 2, 3 and u = 1.

Existence: [a]∗f = uaf with u ∈ O(S)∗. If we let ub
2−1
a = ua

2−1
b , g = u−3

2 u3f .

De�nition 8.2. N ≥ 3, Y (N) modular curve over Q represent S →

{
(E, e1, e2) E/S

e1, e2 Z/NZ− basis of N torsion
.

Y (N)(C) ∼= (Z/NZ)∗ × Γ(N)\H. If N |N ′, there is a map Y (N ′)→ Y (N) so O(Y (N)) ⊂ O(Y (N ′)).

De�nition 8.3. Let N ≥ 3, c coprime to 6N . (α, β) = ( aN ,
b
N ) ⊂ (Q/Z)2 \ {(0, 0)}. Then cgα,β := L∗α,β( cθE),

Lα,β = ae1 + be2 : Y (N)→ E[N ].

GL2(Z/NZ) 	 Y (N)

Proposition 8.4.

1. σ ∈ GL2(Z/NZ), σ∗ cgα,β = cg(α,β)σ

2. if a prime to c: then cgα,β =
∏
aα′=α,aβ′=β cgα′,β′ .

De�nition 8.5. LetM,N ≥ 3,M |L, N |L and de�ne Y (M,N) := G\Y (L) whereG =

{(
a b
c d

)
≡
(

1 0
0 1

)
mod

(
M M
N N

)}
⊂

GL2(Z/LZ), S → {(E, e1, e2) : E/S, e1 isM torsion,e2 isN torsion, (a, b) ∈ Z/NZ× Z/NZ 7→ ae1 + be2 is injective}.

De�nition 8.6. étale sheaves: 1→ µpn → O∗X
pn→ O∗X → 1. O(X)∗ → H1

ét(X,µpn), (Z/pnZ)(k) := (µpn)⊗k. Then
Hi

ét(X,Zp(k)) = lim←−H
i
ét(X,µpn(k)). O(X)∗ → H1

ét(X,Zp(1)).
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Hi
ét(X,Zp(k))×Hj

ét(X,Zp(k′))
∪→ Hi+j

ét (X,Zp(k + k′)), f, g ∈ O(X)∗, {f, g} := κ(f) ∪ κ(g) ∈ H2
ét(X,Zp(2)).

Lemma 8.7. f : U → V �nite étale, u ∈ O(U)∗, v ∈ O(V )∗, f∗{u, f∗v} = {f∗u, v}, f∗{f∗v, u} = {v, f∗u}.

De�nition 8.8. M,N ≥ 3, (c, 6M) = 1 and (d, 6N) = 1. De�ne c,dZM,N := { cg 1
M ,0, dg0, 1

N
} ∈ H2

ét(Y (M,N),Zp(2)).

Proposition 8.9. If we take M |M ′, N |N ′, (c, 6M ′) = 1 and (d, 6N ′) = 1 with primes(M) = primes(M ′) and
primes(N) = primes(N ′). Then Y (M ′, N ′)→ Y (M,N). The push-forwards of c,dZM ′,N ′ is c,dZM,N .

If ` - N
Y (M,N(`)

∼ //

))

Y (M(`), N)

uu
Y (M,N)

	 T ′(`)

Proposition 8.10. If we take M |M ′, N |N ′, (c, 6M ′) = 1 and (d, 6N ′) = 1, there is a map Y (M`,N`)→ Y (M,N)
de�ned by

c,dZM`,N` 7→
(

1− T ′(`)
(

1/` 0
0 1

)∗
+

(
1/` 0
0 1/`

)∗
`

)
· c,dZM,N

Let Y1(N) = Y (N, 1), n,N ≥ 3, n|L, N |L and primes(L) = primes(nN). Then Y1(N)Q(ζn)
∼= G\Y (L).

G =

{(
∗ ∗
0 1

)
mod N, det ≡ 1 mod n

}
, Y (n,L)→ Y1(N)Q(ζn)

De�nition 8.11. c,dZ1,n,N ∈ H2
ét(Y1(N)Q(ζn),Zp(2)) push-forward of c,dZn,N

Proposition. ` - nN

c,dZ1,n`,N` 7→
(

1− T ′(`)σ−1
` +

(
` 0
0 1/`

)∗
σ−2
` `

)
c,dZ1,n,N

where σ` ∈ Gal(Q(ζm)/Q) and

(
` 0
0 1

)∗
= σ`

De�ne c,dζn :=map of c,dZ1,np,Np. Σ = primes(6cdNp).

Theorem 8.12. ( c,dζn) is an Euler system

9 Euler Systems and BSD

Notation. Let E be an elliptic curve over Q, T = TpE Tate module. Σ =�nite set of prime containing p, ∞, and
all primes at which T rami�es. Euler system {cn}, cn ∈ H1(Q(µn), T )} with corestriction conditions

9.1 Recap: What can we do with Euler systems?

Mantra: Existence of Euler systems leads to bounds on Selmer groups.
Pedro, Alex and Florian: Used Heegner points to bound Sel(Q, E[p])
Céline: Kolyvagin systems, ζ ∈ KS(A), ζ1 6= 0⇒ Sel(Q, A∗) is �nite.
Today we'll use a variant,

Theorem 9.1. Let E/Q be an elliptic curve, T a Tate module, c ∈ ES(T ). If locsp(c1) 6= 0 ∈ H1(Qp, T )/H1
f (Qp, T ),

then Sel(Q, E[p∞]) is �nite.

Proposition 9.2. There exists an exact sequence 0→ E(Q)⊗Qp/Zp → Sel(Q, E[p∞])→X(E/Q)p∞ → 0

Lemma 9.3. If locsp(c1) 6= 0, then E(Q) and X(E/Q)p∞ are �nite.
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9.2 Twisting

Recall: Aurel constructed an Euler System for the �wrong� module, T (1), i.e., T twisted by the cyclotomic character
χp.

Motivation: Bloeh-Kato conjecture: �existence of 'nice' cohomology classes� ↔ �vanishing of L-values�
Euler Systems means lots of nice cohomology. So we might expect Euler systems to exists where there is a

systematic vanishing of L-functions.

Fact. For all elliptic curves over Q, L(E,S) has a simple zero at s = 0. (More generally, L(f, 0) = 0 for all
modular form f)

Twisting by characters of �nite order.

Let χ : GQ → Z∗p of �nite order. Let L := Qkerχ
, L/Q �nite. For all n, GLQ(µn) ⊂ ker(χ), hence the natural

map on cocycles induces an isomorphism

cm

cn

c1

H1(LQ(µn), T )⊗ χ
∼= // H1(LQ(µn), T ⊗ χ)

cor ��
cm ∈ H1(LQ(µn), T )

⊗Zχ
OO

H1(Q(µn), T ) 3 cχn

Theorem 9.4. cχ = {cχn} is an Euler Systems for
∑
∪{` : `|cond(χ)}

Twisting by χp

Problem: L := Qkerχ
= Q∞ = ∪kQ(µpk) so corestriction doesn't exist.

Idea: Z/pnZ(1) is a trivial GQ(µ
pk

)-module, hence T/pk ∼= T/pk ⊗ Z/pk(1) ∼= T/pk(1) as GQ(µ
pk

)-modules. So

H1(Q(µpk), T/pkT ) ∼= H1(Q(µpk), T/pkT (1))

De�nition. The Iwasawa cohomology group for T over Q(µn) is H1
∞(Q(µn), T ) = lim←−kH

1(Q(µnpk), T ) with respect
to corestriction.

Proposition 9.5. H1
∞(Q(µn), T ) ∼= lim←−kH

1(Q(µnpk), T/pkT )

Corollary 9.6. H1
∞(Q(µn), T ) ∼= H1

∞(Q(µn), T (1))

Note: If c ∈ ES(T ), then for any n, we can de�ne cn,∞ = {cnpk}k≥0 ∈ H1
∞(Q(µn), T ).

Theorem 9.7. cχp = {cχpn } is an Euler System.

9.3 BSD

General Euler systems machinery doesn't require conditions at p.
But: For the arithmetic applications, we'll need to be precise about conditions at p. Hence we will need p-adic

Hodge Theory.

Fact. There exists a speci�c H1
f (Qp, V ) ⊂ H1(Qp, V ), which is a 1-dimensional Qp-vector space where V = T ⊗Qp,

such that its Selmer group is equal to the usual Selmer group.
There exists an isomorphism, exp∗ : H1

s (Qp, V )→ Qp · ωE, where ωE is the regular di�erential for E.

Theorem 9.8 ((Kato)). Let E/Q be an elliptic curve, T a Tate module, c the Euler system described by Aurel,

c′ = cχ
−1
p . Then there exists rE ∈ Z \ {0} such that exp∗(locsp(c

′
1)) =

rELNp(E,1)ωE
ΩE

, where ΩE = real period of E
corresponding to ωE.

Corollary 9.9. If LNp(E, 1) 6= 0, then E(Q) and X(E/Q) are �nite.

Proof. Euler factors are non-zero at `|Np .

Theorem 9.10. Let L/Q be an abelian number �eld, χ : Gal(L/Q) → C∗. If L(E,χ, 1) 6= 0 then E(L)χ = {P ∈
E(L)⊗ C : σ(P ) = χ(σ)P∀σ ∈ Gal(L/Q)} and X(E/L)χ are �nite.

17



10 Euler Systems: Some Further Topics

10.1 Recap

Let E/Q be an elliptic curve.

Theorem 10.1. If L(E, 1) 6= 0, then E(Q) is �nite, and Xp∞(E/Q) is �nite for �many� primes p.

Kolyvagin: Proof using Heegner points in E(Km) where K is imaginary quadratic �eld, Km ring class �eld
(abelian extension of K such that Gal(K/Q) acts on Gal(Km/K) as −1)

Kato: Proof using Siegel units - cohomology classes for TpE over cyclotomic �elds.
Kato can tell you about L(E,χ, 1) where χ is a Dirichlet character
Kolyvagin: can tell you about L(E/K,ψ, 1) where ψ is a character of a ray class group of K such that ψσ = ψ−1.

1. Can we say something about arbitrary abelian extension of K (↔L-functions L(E/K), ψ, 1) for any ray class
character ψ)?

2. Are there Euler systems for other Galois representations (not just TpE)?

10.2 An Euler System for two modular forms

Theorem 10.2. Let f, g be two modular forms of weight 2.  Galois representations Tp(f), Tp(g). Then there
exists an Euler system for T = Tp(f)⊗ Tp(g).

Starting point: Siegel units,

cgα,β = c2gα,β − gcα,cβ

ga/N,b/N = qw
∏
n≥0

(
1− qnqa/Ne2πib/N

) ∏
n≥1

(
1− qnq−a/Ne−2πib/N

)
where w = 1

12 −
a

2N + a2

2N2 .
Not a modular form, it has poles at cusps (like the j-function). This lives in O(Y (N))∗. In particular can take

a = 0, b = 1, cg0,1/N ∈ O(Y1(N))∗ → H1
ét(Y1(N),Zp(1)) using a Kummer map.

Consider ∆ : Y1(N) ↪→ Y1(N) × Y1(N) diagonally. We get the pushfoward ∆∗ : H1
ét(Y1(N),Zp(1)) →

H3
et(Y1(N)2,Zp(2))→ H1(Q, Tp(f)⊗ Tp(g)) for all f, g weight 2 level N .
This idea is due to Beilinson in 1984 (�Beilinson - Flach elements�)

Theorem 10.3 (Lei-Lo�er-Zerbes). Can extend this to an Euler System as follows: for m ≥ 1, consider ∆m :
Y1(m2N)→ Y1(N)2 de�ned by z 7→ (z, z+ 1

m ). Then take cm = (∆m)∗( cg0,1/m2N ). This is only de�ned over Q(µn)
not Q.

(40 pages later) Some version of norm-compatibility relation holds.

10.3 Twisting

Recall: In Kato's setting, had to twist from Tp(E)(1) to Tp(E). This was possible because, modulo any power pr

of p, Tp(E)(1) ∼= Tp(E) as representations of Q(µpr ).
Interesting cases for Tp(f) ⊗ Tp(g) are not the ones we've immediately get at. Their elements are related to

L(f, g, 1) always being 0 (like L(E, 0) = 0 in Kato's case).
Want to consider weight f is 2 and weight g is 1.
Idea: The Galois representation of g mod pr shows up in cohomology of Y1(Npr).
Special case: K imaginary quadratic �eld, ψ ray class character of K. ψ gives a weight 1 modular form θψ. This

answers Q1.
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10.4 More Euler systems?

Suppose we have some variety Xand we want Euler Systems in cohomology of X.We look for subvariety Y ↪→ X
where Y is a modular curve (or product of modular curves). If you are lucky and pushforward of Siegel units lands
in the right degree, then maybe that will give an Euler System.

This is reasonable if X and Y are Shimura varieties (comes from Matrix groups, like modular curves come from
SL2 over Q)

Eg,

• GL2 ↪→ GL2×GL2 (BF elts)

• SO2 ↪→ GL2 (Heegner points)

• GL2×GL2 ↪→ GSp4

• SL2
∼= SU(1, 1) ↪→ SU(2, 1)

Problem: Very hard to show that these Euler Systems are not 0.

19


