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1 Introduction

In 1801, while studying binary quadratic forms, Gauss constructed a composition law in his Dis-
quisitones Arithmeticae [Gauss(1986)]. This composition law gave a group structure to the set of
equivalence classes of primitive binary quadratic forms of a given discriminant, which was remarkable
as this was done before the notion of a group existed. A useful consequence of this group structure
was discovered by Dirichlet around 1838, when he showed a bijection between this set and the set of
ideal classes of quadratic orders. This had a twofold impact: in one direction it gave a simpler method
of showing that composition did turn the aforementioned set into a group; while in the other direction
it gave a tool to compute and understand the ideal classes, a tool which is still used today.

It seems natural to ask if we can �nd other sets of equivalent forms and equip them with a generalised
composition law, which will not only turn the set into a group, but also give us a tool to explore di�erent
number �elds or rings. In 2004 Bhargava started to answer this question in a series of four articles,
where he �nds fourteen composition laws which can be used to �nd information on number rings and
their class groups. He �nds these composition laws by considering di�erent size cubes of integers and
creating di�erent forms from them. This idea was revolutionary as with this he managed to shed some
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light on quartic and quintic number �elds. Due to the impact they had the cubes are now referred to
as Bhargava's cubes.

This paper is divided in two main parts, in section 2 we will look at binary quadratic forms. We will
spend some time on the reduction theory of positive de�nitive forms, look at Dirichlet's composition,
before proving the correspondence between equivalence classes of primitive binary quadratic forms and
ideal classes of oriented orders of quadratic �elds. The aim of this section is to both show the depth
of information we have from binary quadratic forms, we will only cover a minute fraction of it, and to
introduce the main idea which links binary quadratic forms and ideal classes.

The second part, that is Section 3, will follow Bhargava's �rst, out of the four, papers. We will
look at 2 × 2 × 2 cubes of integers, and construct di�erent objects which will be in correspondence
with di�erent modules of a quadratic ring. Since we will be exploring quadratic rings, among our
constructions we will recover Gauss's composition law, but we shall look approach it from a di�erent
angle than in Section 2. The �ve objects we will be looking at are: binary quadratic forms; 2× 2× 2
cubes of integers; binary cubic forms; pairs of binary quadratic forms and quaternary alternating
2-forms.

Notation. In this paper if D < 0 then
√
D will be the notation for i

√
|D|.

2 A classical view on Gauss composition

2.1 Some de�nitions

To start this section we are going to follow [Cox(1989)] and [Lemmermeyer(2010)] to introduce the
concept of quadratic forms and how this led Gauss to create a composition law. We start by de�ning
our object of interest, namely:

De�nition 2.1. A binary quadratic form is a polynomial in two variables of the form f(x, y) =
ax2 + bxy + cy2 with a, b, c ∈ Z.

Furthermore we say a binary quadratic form is primitive if gcd(a, b, c) = 1.

Strictly speaking the above de�nition should be called �integral binary quadratic forms� but since
in this paper we will only deal with integral forms, that is where the coe�cients are over Z, we will drop
the adjective �integral�. In this paper, to represent the binary quadratic form ax2 + bxy+ cy2, we will
alternate between the notation (a, b, c) (as used originally by Gauss [Gauss(1986), Section 153]) when
we are not worried about the value of x and y, and the notation f(x, y) (as used by Cox [Cox(1989)]).
We note that any binary quadratic form is an integer multiple of a primitive binary quadratic form.
An important number related to a binary quadratic form is the discriminant :

De�nition 2.2. The discriminant, D, of a binary quadratic form (a, b, c) is the integer D = b2 − 4ac.

If we consider the group SL2(Z), that is the set of all two by two matrices with determinant 1 and
integer entries equipped with the multiplication operation, we can de�ne an action on the set of binary
quadratic forms as follow. Let f(x, y) be a binary quadratic form and

S =

(
r s
t u

)
∈ SL2(Z).

Then we can de�ne a new binary quadratic form fS(x, y) = f(rx+ sy, tx+ uy).

De�nition 2.3. We say two binary quadratic forms f(x, y) and f ′(x, y) are equivalent if there exists
S ∈ SL2(Z) such that fS(x, y) = f ′(x, y).

A number m is represented by a binary quadratic form f(x, y) if there exists (x1, y1) ∈ Z2 \{(0, 0)}
such that f(x1, y1) = m.

Next we note a few invariants of the action of SL2(Z).

Proposition 2.4. Let f(x, y) and f ′(x, y) be two equivalent binary quadratic forms then:

1. f(x, y) and f ′(x, y) have the same discriminant,

2. f(x, y) and f ′(x, y) represent the same numbers,
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3. let g and g′ be the gcd of the coe�cients of f(x, y) and f ′(x, y) respectively. Then g = g′.

Proof. First we note that to every binary quadratic form corresponds a two-by-two matrix. Namely if
f(x, y) = ax2 + bxy + cy2, then the matrix

A =

(
a b

2
b
2 c

)
is such that f(x, y) = xTAx, where x = (x, y) is a column vector. We can see that detA = ac− b

4 = −D4 ,
where D is the discriminant of f . By de�nition f ′ = fS = (Sx)TA(Sx) = xT (STAS)x and since
detS = 1 we have that det(STAS) = detA, i.e., the discriminant of f is the same as the discriminant
of f ′.

The binary quadratic form f can be considered as a map from Z2 \ {(0, 0)} → Z mapping (x, y) 7→
f(x, y). Letting f ′ = fS we get the following commutative diagram:

Z2 \ {(0, 0)}
f // Z

Z2 \ {(0, 0)}

∼=S

OO

f ′

99

Since SL2(Z) is a group, every element S ∈ SL2(Z) has an inverse, hence S really gives a bijection as
showed in the diagram. So the image of f ′ is the same as the image of f , that is, they represent the
same numbers.

Let g′ the gcd of the coe�cients of f ′(x, y). Then notice that the numbers that f ′(x, y) represents
are all divisible by g′. Also note that f(1, 0) = a, f(0, 1) = c and f(1, 1) = a + b + c, so using the
second statement of this theorem we know that g′|a, g′|c and g′|(a + b + c), hence g′|b . Hence g′|g,
and a symmetrical argument gives g|g′, so we have g = g′

The last part of the theorem gives in particular that if f(x, y) is primitive, then so is any binary
quadratic form equivalent to f(x, y). We note that 4af(x, y) = (2ax+ by)2 −Dy2, using this identity
we can see that if D is positive then f(x, y) can represent both positive and negative integers. On the
other hand if D is negative then (2ax + by)2 − Dy2 is always positive so f(x, y) can only represent
positive integers if a is positive or only negative integers if a is negative. This leads to the following
de�nition:

De�nition 2.5. A binary quadratic form (a, b, c) is called:

• positive de�nite if D < 0 and a > 0,

• negative de�nite if D < 0 and a < 0,

• inde�nite if D > 0.

2.2 Reduction of positive de�nite forms

In this subsection we will only study de�nite binary quadratic forms. Since the study of negative
de�nite binary quadratic form can be deduced from the study of positive de�nite quadratic forms, we
will not worry about them. Furthermore we assume all binary quadratic forms are primitive. We will
look at primitive inde�nite binary quadratic forms in a later subsection.

The next question to arise is how to determine when two binary quadratic forms are equivalent?
Lagrange came up with a reduction algorithm [Cox(1989), p35] which turns every binary quadratic
form into a unique equivalent form with minimal coe�cients.

Theorem 2.6 (De�nition). Every (primitive positive de�nite) binary quadratic form is equivalent to
a unique binary quadratic form Q = (a, b, c) where Q has the property that{

|b| ≤ a ≤ c in all cases,

b ≥ 0 if |b| = a or a = c.

The form Q is said to be (Lagrange) reduced.
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Remark. While there is a notion of reduced form in the inde�nite case, the reduced form is not unique.
That is, an inde�nite binary quadratic form can be equivalent to several reduced forms. For this reason
the theory of inde�nite binary quadratic form is quite interesting, but it would take us too far a�eld
to what we want to do.

Proof. For the proof of existence of such a quadratic form we will follow the constructive proof in
[Lemmermeyer(2010), p9] while for the uniqueness part we will have a close look at [Cox(1989), p27].

Existence: Let

Tn =

(
1 n
0 1

)
, U =

(
0 −1
1 0

)
∈ SL2(Z)

and let our binary quadratic form be (a, b, c). Note that T−n turns (a, b, c) into (a, b−2an, an2−bn+c)
and U turns (a, b, c) into (c,−b, a). We are going to apply the following algorithm:

1. If |b| > a, then apply T−n, with an appropriate n, to (a, b, c) to reduce b mod 2a so that |b| ≤ a.

2. If a > c, then apply U to (a, b, c).

3. If |b| ≤ a ≤ c, then stop; else go to 1.

This algorithm terminates when |b| ≤ a and a ≤ c, i.e., when the �rst two required conditions are met.
This algorithm has to terminate, because at every loop of the algorithm we are making |b| smaller
and since |b| ∈ N we can not keep reducing |b| inde�nitely. We now need to consider the two cases: if
|b| = a, or a = c with b < 0. In the �rst case the transformation T−1 takes (a,−a, c) to (a, a, c) which
is of the required form, while in the second case we use the matrix U to change (a,−b, a) into (a, b, a).
This proves the existence of reduced binary quadratic forms.

Uniqueness: Before we proceed we show that if f(x, y) = (a, b, c) is reduced, then the smallest
number it represent is a. Let f(x, y) be reduced. Notice that f(±1, 0) = a and f(0,±1) = c. Suppose
that x2 ≤ y2. Then |x| ≤ |y| so f(x, y) ≥ ax2+bxy+cx2 ≥ ax2−|bxy|+cy2 ≥ x2(a−|b|+c). Similarly if
y2 ≤ x2 then f(x, y) ≥ y2(a−|b|+c), so putting these together we get f(x, y) ≥ min{x2, y2}(a−|b|+c).
Hence if xy 6= 0 then f(x, y) ≥ a − |b| + c, and since f(x, y) is reduced a − |b| + c ≥ c > a. So a is
the smallest number represented by f(x, y). If furthermore we say a number is properly represented
if gcd(x, y) = 1, then, when a 6= c, we see that c is the next smallest properly represented number of
f(x, y).

Let f(x, y) = (a, b, c) be reduced with a < c < a − |b| + c, we deal with the case |b| = a or
a = c in the next paragraph. Suppose that g(x, y) = (a′, b′, c′) is an other reduced binary quadratic
form which is equivalent to f(x, y), then since the represent the same numbers (Proposition 2.4)
they must have the same �rst coe�cient, i.e., a = a′. We know a ≤ c′, (as g(x, y) is reduced) so
suppose a = c′ then g(±1, 0) = g(0,±1) = a. In that case, since g(x, y) is equivalent to f(x, y),
f(x, y) must also have four di�erent solutions to f(x, y) = a. This is a contradiction as we know: if
xy 6= 0 then f(x, y) ≥ a − |b| + c > a; and f(0, y) = cy2 > a; so (±1, 0) are the only two solutions to
f(x, y) = a. Hence a < c′ which, since c′ is the next smallest number properly represented by g(x, y),
means that c = c′. Since f(x, y) and g(x, y) are equivalent they have the same discriminant hence,
since a = a′, c = c′, we have b′ = ±b. By assumption g(x, y) = f(rx+ sy, tx+ uy) with ru− st = 1, so
a = g(1, 0) = f(r, t) and c = g(0, 1) = f(s, u). This implies that (r, t) = (±1, 0) and (s, u) = (0,±1).
So f = gid or f = g− id where id is the identity 2× 2 matrix and − id the 2× 2 diagonal matrix with
−1 as entries. In either case, this implies that b′ = b, i.e., f(x, y) = g(x, y).

If |b| = a or a = c then we no longer have the inequality a < c < a− |b|+ c. In both cases we still
have that a is the smallest number represented by f(x, y), hence a = a′. We show that in both cases
c = c′. If a = c and a < c′ then g(x, y) = a means (x, y) = (±1, 0) but f(x, y) = a has at least four
di�erent solutions which is a contradiction so we must have that a = c implies a = c′, i.e., c = c′. If
|b| = a and a < c then since we still have the inequality a < a− |b|+ c, we can use the same argument
as before to show that a < c′ and conclude that c = c′, as c′ is still the next smallest number properly
represented by g(x, y). So in all cases we have a = a′, c = c′ which means b′ = ±b as f(x, y), g(x, y)
have the same discriminant. Since either |b| = a or a = c we have b ≥ 0 and either |b′| = |b| = a or
c′ = c = a = a′. Hence b′ ≥ 0 and b′ = b, i.e., f(x, y) = g(x, y).

This theorem is useful in the study of equivalence classes of binary quadratic forms as it gives a
natural representative of such class. If we �x a discriminant D < 0 and denote by [f(x, y)] (or [(a, b, c)])
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the equivalence class of f(x, y), which we can represent by its reduced binary quadratic form, we can
look at the set of all equivalence classes of binary quadratic forms with discriminant D. We will let
h(D) denote the number of equivalent classes.

Theorem 2.7. Let D < 0 be �xed, then h(D) is equal to the number of reduced forms of discrimin-
ant D. Furthermore h(D) is �nite.

Proof. The �rst part follows from the previous theorem. For the second part �xD < 0 and let f(x, y) =
(a, b, c) be a reduced binary quadratic form of discriminant D. Then −D = 4ac− b2 ≥ 4a2−a2 = 3a2,
hence a ≤

√
−D/3. Since |b| ≤ a and a, b ∈ Z there are only a �nite number of possibilities for a and

b. Furthermore since c = D−b2
−4a we have that c is determined once a and b are known. So for a �xed

D < 0 there are only a �nite number of reduced binary quadratic forms with discriminant D.

2.3 Dirichlet composition

Stepping back to include inde�nite binary quadratic forms, we use the same notation [f(x, y)] to denote
the equivalence class of f(x, y). We have a set of equivalence classes of primitive binary quadratic
forms, so one might ask is can we �nd a binary operation to turn this set into a group? Gauss
answered this question by de�ning how to compose two binary quadratic forms of a given discriminant
D [Gauss(1986), section 235]. Unfortunately it is regarded by many mathematicians to be �di�cult,
sometimes even very di�cult� to understand and work with [Shanks(1989)]. It is often easier to follow
Dirichlet's basic idea (�rst appearing in [Dirichlet(1871), 10th Supplement]), which originally was
somewhat more restrictive as it imposes some conditions to the two forms to be composed, but does
have the advantage of having an explicit formula. We can slightly modify Dirichlet composition to
overcome the restriction imposed.

Dirichlet then found a group isomorphism between the set of equivalence classes of primitive binary
quadratic forms of a �xed discriminant and equivalence classes of proper ideals of �xed orders of a
quadratic �eld, hence easily establishing that the equivalence class of binary quadratic forms form an
abelian group. Intuitively, since binary quadratic forms represent an in�nite sets of numbers, given
two binary quadratic forms we want to �nd a third one that represents the pairwise products of the
numbers the two binary quadratic forms represent. For a historical point of view we are going to give
Gauss' de�nition of composition �rst.

Note. For this subsection we assume that D 6= 0 and that our binary quadratic forms are primitive.

De�nition 2.8. Let f(x, y) and g(x, y) be two binary quadratic form. De�ne a direct composition to
be a form F (x, y) = ax2 + bxy + cy2 such that

f(x, y)g(z, w) = F (B1(x, y; z, w), B2(x, y; z, w)) ,

a1b2 − a2b1 = f(1, 0),

a1c2 − a2c1 = g(1, 0),

where Bi(x, y; z, w) = aixz + bixw + ciyz + diyw, with ai, bi, ci, di ∈ Z, are bilinear forms.

As we can see, this de�nition is not very easy to work with as it does not give a way of automatically
creating a direct composition. For this end, Dirichlet's composition is much easier to use and is often
regarded as the way to do composition nowadays. To de�ne Dirichlet's composition we need the
following lemma.

Lemma 2.9. Let f(x, y) = (a, b, c) and g(x, y) = (a′, b′, c′) be two binary quadratic form of discrimin-

ant D and let gcd(a, a′, b+b
′

2 ) = e. ( Note that b and b′ must have the same parity since f(x, y), g(x, y)

have the same discriminant). Then there is a unique integer B modulo 2aa′

e2 such that:

B ≡ b mod
2a

e
,

B ≡ b′ mod
2a′

e
,

B2 ≡ D mod
4aa′

e2
.
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Proof. This proof loosely follows [Cox(1989), p 48]. First we are going to show that the three given
condition can be rearranged to give three equivalent conditions. If an integer B satis�es the �rst
two congruences then B2 − (b + b′)B + bb′ ≡ (B − b)(B − b′) ≡ 0 mod 4aa′

e . Hence rearranging
and dividing by 2e, which we can, since 2e|(b + b′) and 2e| (b(b+ b′)− 4ac) = (bb′ + D), we get that
b+b′

2e B ≡
bb′+D

2e mod 2aa′

e2 . Multiplying the �rst two congruences by a′

e and a
e respectively we have that

out initial conditions become:

a′

e
B ≡ a′

e
b mod

2aa′

e2
,

a

e
B ≡ a

e
b′ mod

2aa′

e2
,

b+ b′

2e
B ≡ bb′ +D

2e
mod

2aa′

e2
. (2.1)

We can just work backward to see the implication the other-way, as the �rst two congruence are
equivalent to B ≡ b mod 2a

e and B ≡ b′ mod 2a′

e . Then the argument works in reverse.
So we need to �nd B which satisfy the latter three conditions, which is easier to �nd as the equations

are all modulo 2aa′

e2 and all linear (we removed the B2 term). Since gcd(ae ,
a′

e ,
b+b′

2e ) = 1 by Euclid's

algorithm we know there exists n1, n2, n3 ∈ Z such that n1
a
e + n2

a′

e + n3
b+b′

2e = 1. Fix such n1, n2, n3

and let B be the unique number between 0 and 2aa′ such that B ≡ n1
ab′

e +n2
a′b
e +n3

bb′+D
2e mod 2aa′

e2 .

Note that since D = b′2 − 4a′c′ = b2 − 4ac then a′D ≡ a′b2 mod 2aa′

e2 and aD ≡ ab′2 mod 2aa′

e2 ,

furthermore since b ≡ b′ mod 2 we have aa′b ≡ aa′b′ mod 2aa′

e2 . Now we can see that

a′

e
B ≡ n1

a′ab′

e2
+ n2

a′a′b

e2
+ n3

a′bb′ + a′D

2e2
≡
(
n1
a

e
+ n2

a′

e
+ n3

b+ b′

2e

)
a′

e
b ≡ a′

e
b mod

2aa′

e2

a

e
B ≡ n1

aab′

e2
+ n2

aa′b

e2
+ n3

abb′ + a′D

2e2
≡
(
n1
a

e
+ n2

a′

e
+ n3

b+ b′

2e

)
a

e
b′ ≡ a′

e
b′ mod

2aa′

e2

b+ b′

2e
B ≡ n1

abb′ + ab′2

2e2
+ n2

a′b2 + a′b′b

2e2
+ n3

bb′ +D

2e

b+ b′

2e
≡ bb′ +D

2e
mod

2aa′

e2

Hence we have constructed a B which satis�es the congruences (2.1). Suppose that there is a second

B′ which satis�es the three relations, then after some rearrangement we have a′

e (B−B′) ≡ a
e (B−B′) ≡

b+b′

2e (B − B′) ≡ 0 mod 2aa′

e2 . Hence we have 2aa′

e2 |
a
e (B − B′), 2aa′

e2 |
a′

e (B − B′) and 2aa′

e2 |
b+b′

2e (B − B′),
this implies that 2a

e ,
2a′

e |(B − B
′). Using the fact that gcd(ae ,

a′

e ,
b+b′

2e ) = 1 and the last divisibility

condition we see that 2aa′

e2 |(B − B
′), i.e., B ≡ B′ mod 2aa′

e2 . Hence we have found a unique (modulo
2aa′

e2 ) B which satis�es the conditions.

De�nition 2.10. Let f(x, y) = (a, b, c), g(x, y) = (a′, b′, c′) be two binary quadratic forms of discrim-
inant D. Then the Dirichlet composition of f(x, y) and g(x, y) is the form

F (x, y) =
aa′

e2
x+Bxy +

e2(B2 −D)

4aa′
y2

where B is the (unique up to modulo 2aa′

e2 ) integer B of Lemma 2.9.

Remark. The proof of 2.9 gave us an explicit formula to calculate the integer B that we can use for
Dirichlet composition, namely B = n1

ab′

e + n2
a′b
e + n3

bb′+D
2e where n1, n2, n3 are such that n1a +

n2a
′ + n3

b+b′

2 = e. At this point the reader might wonder why we went to prove a non-trivial lemma
instead of de�ning B for Dirichlet composition as in the previous sentence, which is a nicer and more
straightforward de�nition. One of the reasons is that way we established some of the congruences that
B satisfy, which we will use in other proofs of this paper, and, in a few cases, the congruence gives an
easier B to work with than the explicit formula, which still involve running Euclid's algorithm.

Naturally we need to check a few properties of Dirichlet composition to see that they it is useful
when considering equivalence classes of binary quadratic forms, especially the implied claim that the
Dirichlet composition of two binary form is unique, in fact one can easily see that it is not. The
following theorem will clarify these issues.
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Theorem 2.11. Let f(x, y) = (a, b, c) and g(x, y) = (a′, b′, c′) be two binary quadratic forms of
discriminant D that are both positive de�nite or both inde�nite and F (x, y), F ′(x, y) be two Dirichlet
compositions . Then

• F (x, y) is a primitive binary quadratic form with discriminant D. If D < 0 then F (x, y) is
positive de�nite.

• [F (x, y)] = [F ′(x, y)].

Proof. For ease of notation we will assume gcd(a, a′, b+b
′

2 ) = 1 (one can check that replacing a, a′, b+b
′

2

by a
e ,

a′

e ,
b+b′

2e respectively in the right places will still make the argument hold). We prove that F is

primitive. Let C = B2−D
4aa′ so that F (x, y) = aa′x2 + Bxy + Cy2. Recall that (a, b, c) is equivalent to

(a, b+ 2an, an2 + bn+ c) (see proof of 2.6) and by de�nition B = b+ 2an for some n ∈ Z. Notice that
a′C = B2−D

4a = 4a2n2+4ban+b2−b2+4ac
4a = an2 +bn+c, hence (a, b, c) is equivalent to (a,B, a′C) similarly

(a′, b′, c′) is equivalent to (a′, B, aC). Notice that if we let X = xz−Cyw and Y = axw+ a′yz+Byw
then we can see that

F (X,Y ) = aa′x2z2 + aBx2zw + a2Cx2w2 + aa′C2y2w2

+a′2Cy2z2 + a′BCy2zw +B2xyzw + aBCxyw2

= (ax2 +Bxy + a′Cy2)(a′z2 +Bzw + aCw2)

Since (a,B, a′C) and (a′, B, aC) represent the same numbers as (a, b, c) and (a′, b′, c′) respectively we
see that F (x, y) represents all the numbers of the form f(x1, y1)g(z1, w1). Suppose that F (x, y) is
not primitive, that is, there is a prime p that divides the coe�cients of F (x, y), then p divides all the
numbers F (x, y) represents. Hence we have that p divides all the numbers of the form f(x1, y1)g(z1, w1),
so p|aa′. Suppose that p - a, then p|a′. But p|ac′ implies p|c′ and p|a(a′+b′+c′) hence p|b′ contradicting
the primitivity of g(x, y). So we have that p|a and p|a′, but the same argument can be repeated on
p|cc′ implying that p divides c and c′. Furthermore p|(a + b + c)(a′ + b′ + c′) implies p|bb′ so either
all the coe�cients of f(x, y) or all the coe�cients of g(x, y) are divisible by p again, contradicting
primitivity of f(x, y) or g(x, y). Hence there is no prime p that divides the coe�cients of F (x, y). The

discriminant of F (x, y) is B2 − 4(aa′)B
2−D

4aa′ = D. If D < 0 then both a, a′ > 0, hence so is aa′, so
F (x, y) is positive de�nite.

Let F (x, y) = (aa′, B,C) and F ′(x, y) = (aa′, B′, C ′) where B′ = B + 2aa′n for some n ∈ Z and

C ′ = B′2−D
4aa′ . Then applying T−n to (aa′, B, C) we get (aa′, B′, C ′). Hence [F (x, y)] = [F ′(x, y)]

2.4 The group of positive de�nite binary quadratic forms.

We are now on our way to show that the set of (primitive) binary quadratic forms of discriminant D,
which for this section we will denote C(D), is a �nite abelian group. We will split the proof in two
cases: when D < 0 and when D > 0 and square-free. The second case is a slight generalisation of the
�rst case and the proof is fairly similar, in fact it covers the �rst case. We split it into two cases so to
introduce new concepts slowly.

We are going to look at quadratic �elds, let us denote such a �eld as Q(
√
N) where N is a square-

free integer. So if α ∈ K = Q(
√
N) then α = a+ b

√
N for some a, b ∈ Q, we denote the conjugate of

α, i.e., the non-trivial automorphism acting on α, by α = a − b
√
N . Also in this paper by minimal

polynomial of an element α we will mean the least degree polynomial f ∈ Z[x] with coprime coe�cients
such that f(α) = 0 and the leading coe�cient of f is positive, not the least degree monic polynomial
f ∈ Q[x] such that f(α) = 0.

De�nition 2.12. Let K = Q(
√
N) be a quadratic �eld. We de�ned an order O in K to be a subset

of K such that

1. O is a subring of K,

2. O is a �nitely generated Z-module,

3. O contains a Q-basis of K.
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We note that O has rank two over Z and hence we can de�ne it by its basis α, β. We use the notation
[α, β] to mean the Z-module with α, β as its basis.

Let OK denote the maximal order and de�ne the discriminant of K to be as follow:

dK =

{
N if N ≡ 1 mod 4,

4N otherwise.

The conductor of O is the index [OK : O] = f and de�ne the discriminant of the order O = [α, β]
to be

D =

(
det

(
α α

β β

))2

.

One can show that OK = [1, ωK ] where ωK = dK+
√
dK

2 (a fact from MA3A6 Algebraic Number
Theory) and if f is the conductor of O then O = [1, fωK ]. Since the discriminant does not depend on
the choice of basis we can see that D = f2dK using the previous basis. We can see from the this that if
D is the discriminant of O the quadratic �eld, K, which O is an order of is K = Q(

√
D), furthermore

D satis�es D ≡ 1, 0 mod 4.

De�nition 2.13. Let K be a quadratic �eld and let I be an ideal of an order O. We say that I is a
proper ideal if O = {β ∈ K : βI ⊂ I}.

A fractional ideal I of O is a O-module such that ωI ⊆ O for some ω ∈ O. Given a fractional
ideal I, we say that it is invertible if there exists a fractional ideal J such that IJ = O.

Note that the de�nition of proper extends to fractional ideals, also by the de�nition of proper ideal,
every ideal I is a proper ideal of a unique order O. Recall that the norm of an element α ∈ K is
N(α) = αα, while the norm of an fractional ideal I = [α, β]CO = [1, τ ], is

N(I) = abs

(∣∣∣∣α α

β β

∣∣∣∣ 1√
|D|

)
,

where D is the discriminant of O (or K), or equivalently if α = a1 + a2τ, β = b1 + b2τ , then

N(I) = abs

(∣∣∣∣a1 a2

b1 b2

∣∣∣∣) .
This is often thought as the index of I in O, that is, N(I) = [L:I]

[L:O] where L is lattice containing both

O and I, that is, L is a Z-module of rank 2 which contains both O and I. Note that we have to take
the absolute value so that the de�nition is independent of the choice of the basis for I. We will use Tr
to denote the trace functions which maps α to α+ α.

Theorem 2.14. Let K = Q(τ) be a quadratic �eld and ax2 + bx + c the minimal polynomial of τ .
Then [1, τ ] is a proper fractional ideal for the order [1, aτ ] of K.

Proof. We can easily see that [1, τ ] is an [1, aτ ]-module as 1, τ, aτ and aτ2 = −bτ − c are all in [1, τ ],
furthermore a[1, τ ] ⊂ [1, aτ ], hence [1, τ ] is a fractional ideal of [1, aτ ]. From this it follows that
[1, aτ ] ⊂ {β ∈ K : β[1, τ ] ⊂ [1, τ ]}.

The condition {let β ∈ K be such that β[1, τ ] ⊂ [1, τ ]} is equivalent to the condition {let β ∈ K
be such that β ∈ [1, τ ] and βτ ∈ [1, τ ]}. Now β ∈ [1, τ ] means that there existsm,n ∈ Z such that
β = m+nτ . Hence βτ = mτ+nτ2 = mτ+ n

a (−bτ−c) = −cn
a +

(−bn
a +m

)
τ . So βτ ∈ [1, τ ] if and only if

a|n (since gcd(a, b, c) = 1 as they are the coe�cients of the minimal polynomial). Hence β = m+an′τ ,
implying that {β ∈ L : β[1, τ ] ⊂ [1, τ ]} ⊆ [1, aτ ]. So {β ∈ K : β[1, τ ] ⊂ [1, τ ]} = [1, aτ ]

In particular the previous theorem states that [1, τ ] is a proper ideal of only [1, aτ ]. The next
theorem shows us a property of quadratic �elds, which in general does not hold for higher degree
number �elds.

Theorem 2.15. Let O be an order in a quadratic �eld K and let I be a fractional O-ideal. Then I is
proper if and only if I is invertible.
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Proof. Suppose I is invertible, that is, there is another fractional ideal J such that IJ = O. If β ∈ K
and βI ⊂ I then βO = βIJ ⊂ IJ = O. Since βO ⊂ O we have β ∈ O, hence I is proper.

Suppose I = [α, β] (α, β ∈ K) is a proper fractional ideal. Letting τ = β
α we have I = α[1, τ ]. Let

ax2 + bx+ c be the minimal polynomial of τ . Then by Theorem 2.14, we know that O = [1, aτ ]. Since
τ is also a root of the minimal polynomial of τ we know that [1, aτ ] = [1, aτ ] = O and by Theorem 2.14
I = α[1, τ ] is proper fractional ideal of O. Next consider aII = aαα[1, τ ][1, τ ] = N(α)[a, aτ, aτ , aττ ].
Furthermore since we have an explicit quadratic polynomial which has τ and τ as its only roots we
know τ + τ = − b

a and ττ = c
a , so aIĪ = N(α)[a, aτ,−b, c] = N(α)[1, aτ ] = N(α)O (where the second

to last equality follows from the fact gcd(a, b, c) = 1). Hence there exists a fractional ideal, namely
J = a

N(α)I, such that IJ = O

De�nition 2.16. Let O be an order of a quadratic �eld K. Let I(O) denote the set of invertible
fractional ideals of O, and P (O) be the set of non-zero principal ideals of O.

It is quite clear, since every invertible ideal has an inverse and the multiplication of any two
invertible ideal is an invertible ideal, that I(O) forms an abelian group under multiplication. Notice
also that P (O) ⊂ I(O), which allows us to de�ne our object of interest.

De�nition 2.17. Let O be an order of a quadratic �eld K. We de�ne the ideal class group of O to
be C(O) = I(O)/P (O).

We can �nally prove our claim of C(D), with D < 0, forming a group by relating C(O) to C(D).

Theorem 2.18. Let D < 0 and O = [1, fωK ] an order with discriminant D of the quadratic �eld

K = Q(
√
D), where f is the conductor of O and ωK = dK+

√
dK

2 with dK the discriminant of K.

1. If f(x, y) = (a, b, c) is a binary quadratic form with discriminant D then
[
a, −b+

√
D

2

]
is a proper

ideal of O,

2. C(D) is a group and the map sending f(x, y) to
[
a, −b+

√
D

2

]
induces an isomorphism between

C(D) and C(O). Hence the order of C(O) is the class number h(D).

Proof. This proof follows [Cox(1989), p 137]. Let f(x, y) = (a, b, c) be a binary quadratic form with
discriminant D < 0. Since D < 0, the complex roots of f(x, 1) = ax2 + bx+ c are not real, so let τ be
the unique root with positive imaginary part, we say τ is the root of f(x, y). Since a > 0, it follows

that τ = −b+
√
D

2a , hence
[
a, −b+

√
D

2

]
= [a, aτ ] = a[1, τ ]. Recall that if D is the discriminant of O then

K = Q(
√
D) hence τ ∈ K. Now by Lemma 2.14 we know that a[1, τ ] is a proper ideal of the order

[1, aτ ] so we want to prove that O = [1, aτ ]. First recall that f2dK = D = b2 − 4ac hence fdK and b
have the same parity, so b+fdk

2 ∈ Z. We use this fact to show:

aτ =
−b+

√
D

2

=
−b+ f

√
dK

2

= −b+ fdK
2

+ f

(
dK +

√
dK

2

)
= −b+ fdK

2
+ fwK

Hence [1, aτ ] = [1, fωK ], so we have �nished proving the �rst part.
Before we prove the second part, we claim that if τ ∈ C and r, s, t, u ∈ Z then

=
(
rτ + s

tτ + u

)
= det

(
r s
t u

)
=(τ)

|tτ + u|2
(2.2)
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To prove this, let τ = x+ iy then

=
(
rτ + s

tτ + u

)
= =

(
(rx+ riy + s)(tx− tiy + u)

(u+ tx)2 + t2y2

)
=

1

|tτ + u|2
=(rtixy + ruiy − rtixy − stiy)

=
1

|tτ + u|2
det

(
r s
t u

)
=(iy)

We are going to show the map is well-de�ned. Let f(x, y) and f ′(x, y) be binary quadratic forms of
discriminant D and τ, τ ′ be their respective root. Suppose that they are equivalent, i.e., let f(x, y) =
f ′(rx+ sy, tx+ uy) with ru− st = 1. Then

0 = f(τ, 1) = f ′(rτ + s, tτ + u) = (tτ + u)2f ′
(
rτ + s

tτ + u
, 1

)
, (2.3)

but using equation (2.2) we have that rτ+s
tτ+u has positive imaginary part, hence by uniqueness of τ ′ we

have τ ′ = rτ+s
tτ+u . Let λ = tτ + u ∈ K∗ then λ[1, τ ′] = (tτ + u)[1, rτ+s

tτ+u ] = [tτ + u, rτ + s] = [1, τ ].
To show that the map is injective we work backward. Conversely suppose [1, τ ] = λ[1, τ ′] for some

λ ∈ K∗ then [1, τ ] = [λ, λτ ′], in other words λτ ′ = rτ + s and λ = tτ + u for some r, s, t, u ∈ Z, such
that the matrix

S =

(
r s
t u

)
is invertible. Rearranging we get τ ′ = rτ+s

tτ+u , but since τ and τ ′ both have positive imaginary parts
by equation (2.2), we have that the determinant of S is positive, i.e., ru − st = 1. Then by equation
(2.3) we have that f ′(rx + sy, tx + uy) and f(x, y) have the same roots, so it follows that they are
equal hence f(x, y) is equivalent to f ′(x, y). We have just shown that two binary quadratic forms are
equivalent if and only if [1, τ ] = λ[1, τ ′], but the last equality is the same as saying that [1, τ ] and
[1, τ ′] are in the same quotient. So we have proved that the map sending f(x, y) to a[1, τ ] induces an
injection C(D)→ C(O)

Now we show the map is surjective. Let I be a fractional ideal of O and let I = [α, β] for some
α, β ∈ K. Switching α and β if necessary we can assume that τ = β

α has a positive imaginary part and
let ax2 + bx+ c be the minimal polynomial of τ with a > 0. Let f(x, y) = ax2 + bxy + cy2, note that
since τ is a root and is not a real number the form f(x, y) must have a negative discriminant and hence

is positive de�nite. Furthermore since the discriminant of O = [1, aτ ] is D = (aτ − aτ)
2

= b2− 4ac we
have that the discriminant of f(x, y) is D. So f(x, y) is a binary quadratic form (it is primitive as it
ax2 + bx+ c is a minimal polynomial) that maps to a[1, τ ]. But a[1, τ ] lies in the class of I = [α, β] =
α[1, τ ] in C(O) so the map is surjective. We have a bijection between the sets C(D)→ C(O).

Let f(x, y) = (a, b, c) and g(x, y) = (a′, b′, c′) be two binary quadratic forms of discriminant D

and F (x, y) their Dirichlet composition, then their images are [a, −b+
√
D

2 ], [a′, −b
′+
√
D

2 ], [aa
′

e2 ,
−B+

√
D

2 ]

respectively where e = gcd(a, a′, b+b
′

2 ) and B = 1
e (n1ab

′+n2a
′b+n3

bb′+D
2 ) for some n1, n2, n3 ∈ Z such

that n1a+n2a
′+n3

b+b′

2 = e. To prove our claim that Dirichlet composition corresponds to multiplic-

ation of ideals (up to equivalence classes in both cases) we need to show that [a, −b+
√
D

2 ][a′, −b
′+
√
D

2 ] =

[aa′, a−b
′+
√
D

2 , a′ −b+
√
D

2 ,
1
2 (bb′+D)− 1

2 (b+b′)
√
D

2 ] is equivalent to [aa
′

e2 ,
−B+

√
D

2 ]. We claim that in fact the

product is equal to [aa
′

e ,
−B+

√
D

2 e]. To see this, if we recall that the norm is multiplicative, we see

that the N([aa′, a−b
′+
√
D

2 , a′ −b+
√
D

2 ,
1
2 (bb′+D)− 1

2 (b+b′)
√
D

2 ]) = aa′ = N([aa
′

e ,
−B+

√
D

2 e]), furthermore we

we can use our congruences (2.1) and the fact e|a, e|a′, e| b+b
′

2 to show that [a, −b+
√
D

2 ][a′, −b
′+
√
D

2 ] ⊆
[aa
′

e ,
−B+

√
D

2 e] (for example a−b
′+
√
D

2 = naa
′

e +me−B+
√
D

2 , wherem = a
e and n is such that

a
eB = a

e b
′+

2naa
′

22 ). Putting these two facts together together we have [a, −b+
√
D

2 ][a′, −b
′+
√
D

2 ] = [aa
′

e ,
−B+

√
D

2 e],

but [aa
′

e ,
−B+

√
D

2 e] = 1
e [aa

′

e2 ,
−B+

√
D

2 ], hence they are in the same ideal class, completing the proof.

Remark. We make a remark about the map we described when proving surjectivity of the bijection.
Note that if τ has for minimal polynomial ax2 + bx+ c then N(τ) = c

a and Tr(τ) = b
a . Furthermore,

we have that N([1, τ ]) = 1
a , so the binary quadratic form associated to [1, τ ] was x2+Tr(τ)xy+N(τ)y2

N([1,τ ]) .
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Now if τ = β
α , notice that N([1, τ ]) = β

α −
β
α = βα−αβ

αα = N([α,β])
N(α) and Tr(βα ) = Tr( βα

N(α) ) = Tr(αβ)
N(α) . So

we have that the binary quadratic form associated to I = [α, β] is

x2 + Tr(αβ)
N(α) xy + N(β)

N(α)y
2

N(I)
N(α)

=
N(α)x2 + Tr(αβ)xy +N(β)y2

N(I)
=
N(αx+ βy)

N(I)
.

2.5 General case

We are now going to consider the equivalence classes of primitive inde�nite binary quadratic forms.
The reason the previous proof would fail if D > 0 is that the roots of f(x, 1) are real, and hence our
inverse map is not unique as it depends on the choice of

√
D. This can be recti�ed by considering the

narrow class group instead of the class group. Before we can de�ne this we need a few de�nitions.

De�nition 2.19. An order O of discriminant D is said to be oriented once a choice of
√
D has been

made.

Once this choice has been made we can de�ne a map π : O → Z by π(τ) = τ−τ̄√
D
, which has the

particularity that π(x + y
√
D) = 2y With the idea of oriented order comes the idea of orientating

fractional ideal.

De�nition 2.20. An oriented fractional ideal of an oriented order O is a pair (I, ε), where I is a
fractional ideal of O and ε ∈ {±1} is the orientation. We say (I, ε) is positively oriented if ε = 1,
otherwise it is negatively oriented.

A basis α, β of an oriented fractional ideal (I, ε) is said to be correctly oriented if π(αβ) = αβ−αβ√
D

has the same sign as ε.

We de�ne the product of two oriented fractional ideal (I, ε) and (I ′, ε′), of an order O of discriminant
D, to be (II ′, εε′). This can easily be extended to the product of an oriented fractional ideal and an
element of Q(

√
D) to be α(I, ε) = (αI, sgn(N(α))ε), where sgn(α) is the usual sign function. We will

from now on assume that all fractional ideals of an oriented order are themselves oriented, hence we
will write I to mean the pair (I, ε). Furthermore, when talking about a basis of an oriented ideal,
we will amuse that the basis is correctly oriented. We just need one more de�nition, a re�nement of
equivalent ideals for our new setting, and then we can de�ne the narrow class group.

De�nition 2.21. Two oriented fractional ideals, I, J of an order O of a discriminant D, are equivalent
if there exists α ∈ Q(

√
D) such that αI = J .

We de�ned the narrow class group, C+(O), of an oriented order O, to be the set of equivalence
classes of oriented fractional invertible ideals.

Remark. In many literature, the narrow class group is de�ned di�erently as follows: Let P+(O) be
the set of principal fractional ideal of O with a generator of positive norm. The narrow class group is
C+(O) = I(O)/P+(O). While the usual narrow class groups has the property that C+(O) = C(O)
when D < 0, it has the problem that you need to deal with positive de�nite binary quadratic forms
separately from negative de�nite binary quadratic forms. Our de�nition has the advantage that it
gives the correct notion when D < 0 as it does not distinguish between positive de�nite and negative
de�nite, a distinction that we can not make in section 3.

Another side remark is that we can relate C+(O) to C(O) by considering the following short exact
sequence:

1 // {±1}/N(O∗) // C+(O) // C(O) // 1

ε
� // (O, ε) (I, ε)

� // I

If the discriminant D of O is negative, then every element of O, including units, have a positive norm,
hence {±1}/N(O∗} = {±1}. Furthermore the short exact sequence split, since the map de�ned by
I 7→ (I, 1) is a section of the map (I, ε) 7→ I, it is only well de�ned since ideals are only equivalent to
ideals with the same orientation. Since the short exact sequence split, we have by the splitting lemma
C+(O) ∼= {±1} × C(O). If D > 0 and O has a unit with negative norm, then {±1}/N(O∗) = 1, so
C+(O) ∼= C(O). Finally if D > 0 and O does not have any unit with negative norm, then all we can
say is that C+(O)� C(O).
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With the above remark we rede�ne C(D) to be the set of equivalence classes of primitive binary
quadratic forms of discriminant D. In particular when D < 0 then C(D) includes both positive de�nite
and negative de�nite form, hence it is twice the size of our previous C(D). With oriented fractional
ideals, we need to make a slight modi�cation to the de�nition of the norm of an ideal. Recall that
when we de�ned it, it was pointed out that we had to take the absolute value so that the de�nition is
independent of the choice of basis. It turns out that with oriented fractional we do not need to take
the absolute value anymore, or equivalently the norm of an oriented ideal is εN(I). Tha is if α, β is a
correctly oriented basis of I, then

N(I) =

(
α α

β β

)
1√
D

Theorem 2.22. Let D be a non-square integer and O an oriented order with discriminant D of the
quadratic �eld K = Q(

√
D). Then there is a bijection between the C(D) and C+(O) de�ned by [(a, b, c)]

maps to the equivalence class of [a, −b+
√
D

2 ]. This bijection is an isomorphism of groups.

Proof. This proof will follow the same structure as the proof of Theorem 2.18 with a few slight alter-

ation. We �rst show that [a, −b+
√
D

2 ] is a proper ideal of O. Let f(x, y) = (a, b, c) be a binary quadratic
form. Let τ be the root of f(x, 1) = ax2 + bx + c such that π(τ) has the same sign as a. Explicitly,

using the quadratic formula, we have τ = −b+
√
D

2a . Since N(a) > 0, we have [a, −b+
√
D

2 ] = a[1, τ ] is
equivalent to [1, τ ] in C+(O). By Theorem 2.14 we know [1, τ ] is a proper ideal.

We now check the map is well de�ned. Suppose that f(x, y) = (a, b, c) and f ′(x, y) = (a′, b′, c′)
such that f(x, y) = f ′(rx + sy, tx + uy) with ru − st = 1, this means that a′ = au2 − but + ct2. Let
τ be the root of f(x, 1) with π(τ) having the same sign as a, and τ ′ the root of f ′(x, 1) with π(τ ′)
having the same sign as a′, we show how to relate τ and τ ′. Consider

0 = f(τ, 1) = f ′(rτ + s, tτ + u) = (tτ + u)2f ′
(
rτ + s

tτ + u
, 1

)
(2.4)

and we calculate that

π

(
rτ + s

tτ + u

)
= π

(
(rτ + s)(tτ + u)

N(tτ + u)

)
= π

(
rtττ + su+ ruτ + stτ

N(tτ + u)

)
=

(ru− st)(τ − τ̄)

N(tτ + u)
√
D

=
π(τ)

N(tτ + u)
(2.5)

But we have that N(tτ + u) = (tτ + u)(tτ + u) = u2 + Tr(τ)tu + N(τ)t2 = u2 − b
a tu + c

a t
2 = a′

a . So
we have two cases:

Case 1. N(tτ + u) > 0: in which case a and a′ have both the same sign and τ ′ = rτ+s
tτ+u . Then if we

let λ = tτ + u ∈ Q(
√
D)∗, we have N(λ) > 0 and λ[1, τ ′] = [1, τ ]. Hence our two ideals are

equivalent, as both [1, τ ′] and [1, τ ] have the same orientation.

Case 2. N(tτ + u) < 0: in which case a and a′ have di�erent sign and τ ′ = rτ+s
tτ+u . Then if we let

λ = tτ + u ∈ Q(
√
D)∗, we have N(λ) < 0 and λ[1, τ ′] = [1, τ ]. But since [1, τ ′] and [1, τ ]

have di�erent orientation, we have that they are in fact equivalent.

Conversely, to show injectivity, suppose that [1, τ ] = λ[1, τ ′] for some λ = tτ + u ∈ Q(
√
D). Then we

have λτ ′ = rτ + s and λ = tτ + u for some r, s, t, u ∈ Z such that the matrix

S =

(
r s
t u

)
is invertible. Rearranging we get τ ′ = rτ+s

tτ+u , and by equation (2.5), we have

π(τ ′)

π(τ)
N(λ) = ru− st.

12



But since if N(λ) > 0 then π(τ) and π(τ ′) have the same sign, while if N(λ) < 0 then π(τ) and π(τ ′)
have di�erent sign, we have that ru− st = 1. So S is in SL2(Z) and f(x, 1) and f ′(x, 1) have the same
roots, hence they are equivalent. We have shown that two binary quadratic forms are equivalent if and
only if [1, τ ] = λ[1, τ ′] for some λ. Hence we have proved the map is injective.

We �nally show the map is surjective. Let I be a fractional ideal of O and let I = [α, β] for some
α, β ∈ K. Without loss of generality we can assume N(α) > 0, as every ideal has a basis with N(α) > 0
which can be achieved by taking the smallest α ∈ Q≥0 ∩ I. Let τ = β

α , so I = α[1, τ ]. Consider the
quadratic form

f(x, y) =
N(x+ τy)

N([1, τ ])
=
x2 + Tr(τ)xy +N(τ)y2

N([1, τ ])
.

Let ax2 + bxy + cy2 be the minimal polynomial of τ with sgn(a) = sgn(π(τ)), hence gcd(a, b, c) =
1. Then by Theorem 2.14 we see that that [1, τ ] is a proper fractional ideal for the order O, with
N([1, τ ]) = 1

a . Therefore f(x, y) = ax2aTr(τ)xy + N(τ)y2 = ax2 + bxy + cy2. This shows that the

map is surjective since f(x, y) 7→ [a, −b+
√
D

2 ] and I = α[1, τ ] = α[1, −b+
√
D

2a ] are both in the same ideal
class as N(α) > 0

Now that we have shown the bijection between C(D) and C+(O), we claim that the work we have
done in Theorem 2.18 shows how the bijection induces the isomorphism.

We know that, for D < 0, C(D) is �nite and since Dirichlet composition is symmetric we have
that C(D) is a �nite abelian group, we can prove the same results for D > 0, but this requires more
background in the reduction theory of inde�nite forms. We note that the inverse of the bijection is

given in the above theorem, that is I = [α, β] 7→ N(αx+βy)
N(I) .

We �nish this section by �nding the identity and the inverse of every element in C(D), as this is
often essential to group calculations.

Theorem 2.23. Let D ≡ 0, 1 mod 4. The identity element of C(D) is the class containing the principal
form {

x2 − D
4 y

2 if D ≡ 0 mod 4,

x2 − xy + 1−D
4 y2 if D ≡ 1 mod 4.

The inverse of the class containing the form ax2 + bxy + cy2 is the class containing ax2 − bxy + cy2.

Proof. Let f(x, y) = (a, b, c) and I(x, y) be the principal form. Let ε ∈ {0, 1} be such that ε ≡ D
mod 4. First we note that gcd(a, 1, b+ε2 ) = 1. We show that in this case B = b, where B is the integer
needed in Dirichlet composition. Since D = b2 − 4ac we easily see that b2 ≡ D mod 4a, furthermore
b ≡ b mod 2a. So if 4|D then 2|b so b ≡ 0 mod 2. If on the other hand 4 - D then 2 - b so b ≡ 1 mod 2.
Hence b satisfy the three congruence relation needed to �nd B in the Dirichlet composition. Hence

the Dirichlet composition of f(x, y) and I(x, y) is ax2 + bxy + b2−(b2−4ac)
4a y2 = f(x, y) as required.

Let f(x, y) = (a, b, c) and f(x, y) = (a,−b, c). Recall that (a,−b, c) is equivalent to (c, b, a) = g(x, y)
and gcd(a, b, c) = 1. It is easy to see that b satis�es the three congruence relations needed to �nd B,

hence the Dirichlet composition of f(x, y) and g(x, y) is acx2 + bxy + b2−D
4ac y

2 = acx2 + bxy + y2 =
(ac, b, 1). While this is not the principal form, recall that (a, b, c) is equivalent to (a, b+2an, an2+bn+c)
for any n ∈ Z. If D ≡ 0 mod 4 then 2|b so let n = b

2 then, if we let ∼ denote equivalence, notice that

(ac, b, 1) ∼ (1,−b, ac)
∼ (1,−b+ 2n, n2 − bn+ ac)

∼ (1, 0,
b2 − 2b2 + 4ac

4
)

∼ (1, 0,−D
4

)

which is the principal form when D ≡ 0 mod 4. Similarly if D ≡ 1 mod 4 we can show that (ac, b, 1)
is equivalent to the principal form by noticing that 2 - b so if we let n = b−1

2 then (ac, b, 1) ∼
(1,−b+2n, n2−bn+ac) ∼ (1,−1, b

2+2b+1−2b2−2b+4ac
4 ) = (1,−1, 1−D

4 ). Hence in both cases the Dirichlet
composition is in the class of the principal form, proving that the inverse of (a, b, c) is (a,−b, c).

13



3 Bhargava's cubes

3.1 A new look at Gauss composition

In this section we will refer to several types of equivalence, so we will say two objects A,B are G-
equivalent if there exists g ∈ G such that A = Bg, where G is a group and Bg the image of B after being
acted on by g. Note that by this de�nition, in Section 2 we talked about SL2(Z)-equivalent binary
quadratic forms. We will also switch from multiplicative notation to additive notation for the group
of binary quadratic forms, since we know the group is abelian. Furthermore throughout this section
we will assume all our spaces are non-degenerate, that is, whenever we talk about the discriminant of
an object; be it a cube of integers, a quadratic ring or otherwise, we will assume that it is non-zero.

As noted before, there is a link between binary quadratic forms and 2 × 2 matrices, so one might
wonder if we can �nd anything of interest using 2× 2× 2 cube of integers. This is what Bhargava does
[Bhargava(2004)]: he considers cubes of integers and explores six di�erent ways these cubes of integers
can represent forms; with each of these forms he explores the question of whether a composition law
can be associated to the forms so to create a group. We shall explore �ve di�erent composition laws
complete with proofs and examples.

Consider the space
(
Z2
)⊗3

, this has a basis {ei ⊗ ej ⊗ ek : i, j, k ∈ {1, 2}} where e1, e2 are the
standard Z-basis of Z2. So using this basis we have that each element of (Z2)⊗3 is uniquely determined
by the eight integers aij,k, that is x =

∑
i,j,k aijk(ei ⊗ ej ⊗ ek). If we let

(a, b, c, d, e, f, g, h) = (a1,1,1, a1,1,2, a1,2,1, a1,2,2, a2,1,1, a2,1,2, a2,2,1, a2,2,2)

then we can can represent every element of (Z2)⊗3 by a 2× 2× 2 cube of integers:

e f

a b

g h,

c d

(3.1)

So (Z2)⊗3 can be identi�ed with the space of all 2× 2× 2 cubes of integers.
If we let Γ = (SL2(Z))3, we have a right natural action on (Z2)⊗3, that is γ = γ1 × γ2 × γ3 ∈ Γ

gives a map γ1 ⊗ γ2 ⊗ γ3 : Z2 ⊗ Z2 ⊗ Z2 → Z2 ⊗ Z2 ⊗ Z2, with the map γi : Z2 → Z2 being the usual
left action. We want to see what this corresponds to in terms of cubes of integers. Let A ∈ (Z2)⊗3

and note that A has three di�erent ways to be �represented� by two matrices namely

M1 =

(
a b
c d

)
, N1 =

(
e f
g h

)
;

M2 =

(
a c
e g

)
, N2 =

(
b d
f h

)
;

M3 =

(
a e
b f

)
, N3 =

(
c g
d h

)
.

Let us consider γ × id× id acting on our cube, and for ease of use let us temporarily go back to ai,j,k
notation. With this in mind we see that M1 can be put in correspondence with

∑
a1,j,k(e1⊗ ej ⊗ ek),

N2 with
∑
a2,j,k(e2 ⊗ ej ⊗ ek), M2 with

∑
ai,1,k(ei ⊗ e1 ⊗ ek), ans so on. Let

γ =

(
r s
t u

)
∈ SL2(Z),

then the map γ : Z2 → Z2 sends (e1, e2) 7→ (re1 + se2, te1 + ue2), from this we see that the image of∑
a1,j,k(e1 ⊗ ej ⊗ ek) +

∑
a2,j,k(e2 ⊗ ej ⊗ ek) under γ × id× id is

∑
a1,j,k((re1 + te2) ⊗ ej ⊗ ek) +∑

a2,j,k((se1 + ue2)⊗ ej ⊗ ek). Regrouping terms together, we get
∑

(ra1,j,k + sa2,j,k)(e1⊗ ej ⊗ ek) +∑
(ta1,j,k +ua2,j,k)(e2⊗ ej ⊗ ek). When putting this back in terms of matrices, we see that γ× id× id
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sends (M1, N1) 7→ (rM1 +sN1, tM1 +uN1). If we repeat this argument with id×γ× id and id× id×γ,
then we see that in general, the natural action is de�ned as follows: we take an element

γ =

(
r1 s1

t1 u1

)
×
(
r2 s2

t2 u2

)
×
(
r3 s3

t3 u3

)
∈ Γ

then we de�ne the action of γ on A, denoted Aγ , by replacing, in any order, (Mi, Ni) by (riMi +
tiNi, siMi+uiNi). Notice that at each �stage� all theMi, Ni are a�ected but from our above discussion
we see that the order in which you apply each individual γi does not matter.

Example. Let A be the cube which has

M1 = N1 =

(
1 2
3 4

)
, γ =

(
1 1
1 2

)
×
(

2 1
3 2

)
×
(
−1 0
0 −1

)
.

We calculate Aγ : at the �rst stage we replace (M1, N1) by (M1 +N1,M1 + 2N1) so we get(
2 4
6 8

)
,

(
3 6
9 12

)
,

hence A′ = (2, 4, 6, 8, 3, 6, 9, 12). Next we need to replace our new M2 and N2, being respectively(
2 6
3 9

)
,

(
4 8
6 12

)
,

by (2M2+3N2,M2+2N2) which gives A′′ = (16, 10, 36, 22, 24, 15, 54, 33). Finally we apply the last com-
ponent of γ, which just negates every entry to �nd thatAγ = (−16,−10,−36,−22,−24,−15,−54,−33).
So we have that

Aγ =

−24 −15

−16 −10

−54 −33,

−36 −22

De�nition 3.1. Let A ∈ (Z2)⊗3 be a cube and Mi, Ni for i ∈ {1, 2, 3} be as above, then we construct
three binary quadratic forms QAi , denoted Qi if A is obvious, by setting Qi(x, y) = − det(Mix−Niy)

Explicitly

Q1 = −((ad− bc)x2 + (cf + bg − de− ah)xy + (eh− fg)y2)

= −(detM1x
2 + (cf + bg − de− ah)xy + detN1y

2).

We recall from Section 2 that the discriminant of a binary quadratic form ax2+bxy+cy2 isD = b2−4ac.
An explicit calculation shows that, given an arbitrary A ∈ (Z2)⊗3, the discriminant of Q1, Q2 and Q3

is the same, leading to the following de�nition.

De�nition 3.2. We de�ne the discriminant of A to be

D = Disc(Qi)

= a2h2 + b2g2 + c2f2 + d2e2 − 2(abgh+ cdef + acfh+ bdeg + aedh+ bfcg) + 4(adfg + bceh)

Lemma 3.3. Let A ∈ (Z2)⊗3 give rise to Q1, Q2, Q3 and γ = γ1 × γ2 × γ3 then Aγ gives rises to the

three binary quadratic forms Q
γ1
1 , Q

γ2
2 and Qγ33 . That is Q

(Aγ)
i = (QAi )γi .

Proof. We will only prove this for Q1 as the exact same argument can be used for Q2 and Q3. Let γ =
id×γ2×γ3, where id is the 2×2 identity matrix. By de�nition id does not change our original M1, N1

while γ2 (respectively γ3) just do column (respectively row) operations on M1, N1 simultaneously.
More precisely if

γ2 =

(
r s
t u

)
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and we denote the columns of M1x−N1y by c1, c2, then we have that γ2 acts by the column operation

c̃1 = rc1 + tc2 and c̃2 = sc1+(−st+ru)c2
r . So the determinant of M1x − N1y is, using linear algebra,

scaled by a factor of r · −st+rur = det(γ1) = 1. Hence det(M1x−N1y) is unchanged under γ2, so Q1 is
una�ected by γ.

Next consider γ = γ1 × id× id. In this case M1, N1 are only a�ected by

γ1 =

(
r s
t u

)
and an explicit calculation shows that −det((rM1 + tN1)x− (sM1 + uN1)y) = Q1(rx+ sy, tx+ uy) =
Qγ11

So a cube A ∈ (Z2)⊗3 gives rise to three binary quadratic form with the same discriminant. We
want to establish an operation on those three binary quadratic forms so to �nd a group. Barghava
inspired himself from the group law on elliptic curves: if three points P1, P2, P3 on a an elliptic curve
are collinear then the sum of P1, P2, P3 is 0

Axiom (The cube law). For all QA1 , Q
A
2 , Q

A
3 that arise from some A ∈ (Z2)⊗3 we have that the sum

of QA1 , Q
A
2 , Q

A
3 is zero.

A useful consequence of this axiom is that it leads to an identi�cation of two equivalent binary
quadratic forms. By that we mean if γ = γ1 × id× id then, as in the proof, we have two sets of
three binary quadratic cubes Q1, Q2, Q3 and Qγ11 , Q2, Q3, but we know the sums of these two sets
are zero, hence Q1 becomes identi�ed with Qγ11 . As in Section 2 given a binary quadratic form Q

we will denote by [Q] the set of SL2(Z)-equivalence classes of Q. We denote by C(
(
Sym2Z2

)∗
;D)

the set of equivalence classes of primitive binary quadratic forms with discriminant D. Note that
C(
(
Sym2Z2

)∗
;D) is the same as C(D) in section 2, but we now specify (Sym2Z2)∗ to make it explicit

that we are considering binary quadratic forms. We use the notation Sym2 Z2 to mean that we are
looking at the space of 2-variable (i.e., binary) symmetric (if we look at the associated matrix) forms
of degree 2 (i.e., quadratic). Furthermore we use (. . . )∗ to mean that the associated matrix does not
necessarily have entries in Z, in other words, if our quadratic form is (a, b, c), we do not require b to
be even.

Theorem 3.4 (Gauss composition). Let D ≡ 0, 1 mod 4 and let

Qid,D =

{
x2 − D

4 y
2 D ≡ 0 mod 4

x2 − xy + 1−D
4 y2 D ≡ 1 mod 4

Then there exists a unique binary operation to turn C(
(
Sym2Z2

)∗
;D) into an additive group with:

1. [Qid,D] is the identity,

2. for any cube A of discriminant D such that QA1 , Q
A
2 , Q

A
3 are primitive we have [QA1 ] + [QA2 ] +

[QA3 ] = [Qid,D]. (Part of the cube law)

Given Q1, Q2, Q3 with [Q1] + [Q2] + [Q3] = [Qid,D] then there exists a unique, up to Γ-equivalence,
cube A ∈ (Z2)⊗3 of discriminant D such that A gives rise to Q1, Q2, Q3.

Before we prove this, we are going to show that the cube law axiom is equivalent to Dirichlet
composition. Hence this theorem is a restatement of the fact that Dirichlet composition turns C(D)
into a group, which we have proved in the cases when D is not a square.

Let Aid,D be the following cube

Aid,D =

1 0

0 1

0 D
4 ,

1 0

Aid,D =

1 1

0 1

1 D+3
4

1 1

depending on whether D ≡ 0 mod 4 or D ≡ 1 mod 4 respectively. Then we note that Qid,D, what
we have called the principle form in section 2, is such that Aid,D gives rise to Q1 = Q2 = Q3 = Qid,D.
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De�nition 3.5. We say that A is primitive if the three binary quadratic forms it gives rise to are
primitive

Using this de�nition we can now show how the cube law axiom and Gauss composition are
equivalent. If we start with a primitive cube, as in �gure (3.1), we note that since the cube is
primitive its coe�cients have gcd 1. To see this let G = gcd(a, b, c, d, e, f, g, h) this implies that
G| gcd(bc − ad, ed + ah − bg − fc, fg − eh) = 1, where the equality is due to the fact that Q1 is
primitive, which implies that G = 1. We use that fact to �nd γ ∈ Γ such that Aγ is of the form
(1, 0, 0, d, 0, f, g, h) for some new d, f, g, h by applying the following steps: �rst let

U =

(
0 −1
1 0

)
, Tn =

(
1 n
0 1

)
∈ SL2(Z).

By applying appropriate copies of U × id× id, id×U × id and id× id×U , we can assume without loss
of generality that a is the smallest non-zero absolute entry of A. If a is coprime with either b, c or e, we
can use Euclid's algorithm to �nd a matrix in SL2(Z) changing a into 1. If not then apply appropriate
copies of Tn× id× id, id×Tn× id and id× id×Tn to reduce b, c and e modulo a. We can then replace
a with the smallest non-zero absolute entry and repeat the process. We either stop as soon as we have
a = 1, or if the �rst case does not occurs when we end up with A being of the form (a, 0, 0, d, 0, f, g, h).
In the latter case, notice that gcd(a, f) = 1 for primitivity to hold, and we can apply T to A to get
(a, 0, d, d, f, f, g + h, h), but then we are back in the case of gcd(a, e) = 1. Hence we can �nd γ ∈ Γ
such that Aγ is of the form (1, b, c, d, e, f, g, h), then use the 1 to reduce b, c and e to 0, i.e., we have

0 f

1 0

g h.

0 d

The three binary quadratic forms this cube gives rises to are

Q1 = −
∣∣∣∣ x −fy
−gy dx− hy

∣∣∣∣ = −dx2 + hxy + fgy2

Q2 = −
∣∣∣∣ x −dy
−fy gx− hy

∣∣∣∣ = −gx2 + hxy + dfy2

Q3 = −
∣∣∣∣ x −gy
−dy fx− hy

∣∣∣∣ = −fx2 + hxy + dgy2

Note that by construction QAi ∈ [Qi], and the cube law states that [Q1] + [Q2] = −[Q3]. In terms of
Dirichlet composition, noting that gcd(d, h, fg) = 1 implies gcd(d, g, h) = 1, we have [Q1] + [Q2] =

[−dx2 +hxy+fgy2]+ [−gx2 +hxy+dfy2] =
[
dgx2 +Bxy + B2−(h2+4dfg)

4dg y2
]
for some B that satis�es

B ≡ h mod 2d,B ≡ h mod 2g,B2 ≡ h2 + 4dfg mod 2dg. We can easily see that B = h works
hence [Q1] + [Q2] =

[
dgx2 + hxy − fy2

]
, but recall that ax2 + bxy + cy2 ∼ cy2 − bxy + ax2, hence

[Q1] + [Q2] = [−fx2 − hxy + dgy2] which in terms of Dirichlet composition we know is −[Q3]. So
Dirichlet composition corresponds to the Cube Law.

Proof of �rst part of Theorem 3.4 in the case D is not a square. The preceding paragraph shows how
the cube law is equivalent to Dirichlet composition. So, in the case D is not a square, Dirichlet
composition is a binary operation that satisfy the given condition since: we know it is an additive
binary operation de�ned on C((Sym2 Z2)∗;D); its identity is the equivalence class of the principal
form, now denoted [Qid,D]; it is equivalent to the cube law. Furthermore, the preceding paragraph
shows that if a binary operation satisfy the cube law, then it is Dirichlet composition, proving the
uniqueness part of the statement.

We will not �nish the proof of Theorem 3.4 as such, but instead it will be proven as parts of other
discussion and proves of later section. We will cover the case of when D is a square as part of the
second proof of Theorem 3.6, which we do on page 22. As for the second statement of the theorem,
we will show how we can extend Theorem 3.7 to prove this.
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3.2 Cubes of integers

Now that we have a de�nition of primitivity we can use this along with the notation [A] to denote the
set of Γ-equivalence classes of A. We will denote this new set of equivalence classes of primitive cubes

by C(
(
Z2
)⊗3

;D) . We show that we can equip this set so to form a group.

Theorem 3.6 (Composition of cubes of integers). Let D ≡ 0, 1 mod 4 and let Aid,D be as de�ned

above. Then there exists a unique binary operation that turns C(
(
Z2
)⊗3

;D) into an additive group
such that:

1. [Aid,D] is the identity,

2. for i = 1, 2, 3 the maps [A] 7→ [QAi ] are group homomorphism from C(
(
Z2
)3

;D) to

C(
(
Sym2Z2

)∗
;D).

Proof in the case D is not a square. This can be deduced from Theorem 3.4 by de�ning the addition
of cubes as follow. Let A,B be two primitive cubes with discriminant D. Now since ([QA1 ] + [QB1 ]) +

([QA2 ] + [QB2 ]) + ([QA3 ] + [QB3 ]) = [Qid,D] in C(
(
Sym2Z2

)∗
;D) by Theorem 3.4 we have that there

exists, up to Γ-equivalence, a unique cube C of discriminant D which gives rise to representatives of
[QA1 ] + [QB1 ], [QA2 ] + [QB2 ], [QA3 ] + [QB3 ]. We de�ne the composition of [A] and [B] to be [A] + [B] = [C].
One can easily see that the composition of cubes directly relates to the composition of binary quadratic
forms. By the way we have de�ned composition of cubes one can easily see that if fi([A]) = [QAi ] then
fi([A] + [B]) = fi([C]) = [QCi ] = [QAi ] + [QBi ] = fi([A]) + fi([B]) hence proving 2. For part 1 we know
that Aid,D gives rise to Qid,D three times, hence by de�nition and the fact [Qid,D] is the identity we
have that [Aid,D] is the identity.

Conversely, if we have an other binary operation satisfying 2, then because of the group homo-
morphism, the binary operation it maps to has to be Dirichlet composition. Moreover, once we have
chosen the identity of the group, as part 1 does, then the binary operation has to be unique.

We are going to later re-prove this theorem, on page 22, the way Bhargava does, as it follows a
similar approach to the proof of Dirichlet composition and hence at the same time proves Dirichlet
composition including the case when D is a square. While this is a useful theorem it does not give
an explicit formula (in the proof we will do later we will see a way of constructing the composition,
but it is not practical), much like Theorem 3.4 did not give an explicit formula. But in that case we
had showed that the binary operation was the same as Dirichlet's composition to which we have a
formula. Lemmermeyer took a more computational based approach to binary quadratic forms, and
when he looked at Bhargava's paper he wrote down a theorem [Lemmermeyer(2010), p80] with an
explicit formula, namely:

Theorem 3.7. Let D ≡ 0 or 1 mod 4. For any pair of primitive binary quadratic form Q1 = (a, b, c)
and Q2 = (a′, b′, c′) with discriminant D there is a cube A such that Q1 = QA1 and Q2 = QA2 .

More precisely: if aa′ 6= 0 and if we let e = gcd(a, a′, b+b
′

2 ) then there exists an integral solution
f, g to the equation

a′f − ag
e

=
b− b′

2

such that if we de�ne

h =
−f b+b

′

2 − ec′

a

then h is integral. Furthermore for all such f, g, h the cube

a′

e
b+b′

−2e

0 a
e

g h

e f

(3.2)
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gives rise to Q1, Q2.

Proof. We follow closely [Lemmermeyer(2010), pg 67]. The �rst paragraph is a restatement of the
second part of Theorem 3.4. But the second part will give us an explicit construction of a cube with
given two quadratic forms, as we will show that f, g can be found using Euclid's algorithm.

Without loss of generality assume a′ 6= 0. Let A be the cube of �gure (3.2) and let Mi, Ni for
i = 1, 2, 3 be as usual. Notice that − detM1 = a and −detM2 = a′ as required. We also want

b = ( b+b
′

2 −
ag
e + a′f

e ) and b′ = ( b+b
′

2 −
a′f
e + ag

e ) which can be rearranged as b−b
′

2 = a′f−ag
e . Notice that

gcd(ae ,
a′

e )| b−b
′

2 , asD = b2−4ac = b′2−4a′c′ implies ac−a′c′ =
(
b+b′

2

)(
b−b′

2

)
and gcd(ae ,

a′

e ,
b+b′

2e ) = 1.

Hence we can use Euclid's algorithm to �nd f, g ∈ Z which satisfy the equation a′f−ag
e = b−b′

2 .
Next we check what the conditions are needed on h so that A is the required cube, that is h

needs to be such that −detN1 =
− b+b

′
2 g−a′h
e = c and −detN2 =

−f b+b
′

2 −ah
e = c′. Recalling that

b2−b′2
4 = ac− a′c′ (since the two determinants are the same) and that g = −

(
b−b′

2

) (
e
a

)
− a′f

a we have

h =
−f b+b

′

2 − ec′

a

=
−ag b+b

′

2

aa′
−
(
b− b′

2

)(
b+ b′

2

)( e

aa′

)
− ec

a

=
−g b+b

′

2

a′
− e(ac− a′c′)− aec

aa′

=
−g b+b

′

2 − ec′

a′

Hence the two requirements boil down to showing that there exists f (or g) such that h ∈ Z, where

h is given as in the formula of the theorem. If
f b+b

′
2 −ec

′

a ∈ Z then we are done. If not notice that

−ahe =
b+b′

2 g

e − c ∈ Z and similarly for −a
′h
e ∈ Z, hence the denominator of h divides gcd(ae ,

a′

e ) = q,

so write h = p
q . Note that gcd(q, b+b

′

2e ) = 1 hence there exists r ∈ Z such that r b+b
′

2e ≡ p mod q. Let

N ′1 =

(
e′ g′

f ′ h′

)
= N1− r

αM1, then by the de�nition of q we have that e′ = e, f ′ and g′ are all integers.

Furthermore h′ =
p−r b+b

′
2e

q ∈ Z, a′f ′−ag′
e =

a′(f− raqe )−a(g− ra′qe )

e = a′f−ag
e as required. Hence we have

constructed our cube with all entries in Z which gives rise to our two quadratic forms.

While the above theorem only gave a construction for A given two binary quadratic forms, we
can still extend it to prove the second statement of Theorem 3.4. Given Q1, Q2, Q3 such that their
equivalence class sum to 0, we use the above theorem to construct a cube A which gives rise to Q1 and
Q2. Then we know that QA3 is equivalent to Q3, so there exists γ ∈ SL2(Z) such that (QA3 )γ = Q3,
hence Aid× id×γ gives rise to Q1, Q2 and Q3.

We note that to de�ne [A] + [B] where A,B ∈ (Z2)⊗3 we just need to calculate [QA1 ] + [QA
′

1 ]
and [QA2 ] + [QA

′

2 ] as, as discussed before, the cube constructed from representatives of these two
equivalence classes has to give rise to a third binary quadratic form representing [QA3 ] + [QA

′

3 ]. Hence
we can use Theorem 3.7 to write an explicit composition law. Given two primitive cubes of integers
A and A′ of discriminant D, we know by our discussion in section 3.1 that they are equivalent to the
cubes (1, 0, 0, d, 0, f, g, h) and (1, 0, 0, d′, 0, f ′, g′, h′). Hence we have that [QA1 ] + [QB1 ] = [(d, h, fg)] +

[(d′, h′, f ′g′)] = [dd
′

e′2 x
2 +Bxy+

e′2(B2−D)
4dd′ y2] and, recalling that [(a, b, c)] = [(c,−b, a)], we have [QA2 ] +

[QB2 ] = [(df,−h, g)] + [(d′f ′,−h′, g′)] = [dd
′ff ′

e2 x2 +B′xy + e2(B′2−D)
4dd′ff ′ ], where B,B′ satisfy

B ≡ h mod 2 d
e′ B′ ≡ −h mod 2dfe

B ≡ h′ mod 2d
′

e′ B′ ≡ −h′ mod 2d
′f ′

e

B2 ≡ D mod 4dd
′

e′2 B′2 ≡ D mod 4dd
′ff ′

e2

and e′ = gcd(d, d′, h+h′

2 ), e = gcd(df, df ′, h+h′

2 ). From this we notice that e′|e, so let a = e
e′ , and that

B+B′

2 = ad
e m+ df

e n = ad′

e m
′+ d′f ′

e n′ for somem,n,m′, n′ ∈ Z. Using the fact that gcd(ab, c) = lcm(a, b)
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if a|c and b|c, if we let G1 = gcd( de′ ,
df
e ), G2 = gcd(d

′

e′ ,
d′f ′

e ), G3 = gcd( de′ ,
d′f ′

e ) and G4 = gcd(d
′

e′ ,
df
e ),

then we have gcd(a
2dd′

e2 , dd
′ff ′

e2 , B+B′

2 ) = lcm(G1, G2, G3, G4). So let E = lcm(G1, G2, G3, G4) (notice
that E does not depend on B or B′) then we know we can �nd i, j, k that satisfy

dd′(ff ′i− a2j)

e2E
=
B −B′

2
, k = −ia

2dd′(B +B′)

2e2
− Ea2(B2 −D)

4ff ′

Then [A] + [A′] = [A′′] where A′′ is the cube

dd′ff ′

e2E
B+B′

−2E

0 dd′a2

Ee2

j k.

E i

The above paragraph, being full with formula which do not look pleasant, can become easily
confusing. So we give an example below to illustrate each steps of the above discussion.

Example. Let A = (11, 6,−7, 77, 5, 1,−3, 39) and B = (−2,−4, 2, 3,−19,−35,−14,−28) be two prim-
itive cubes with discriminant D = −167. We can apply(

1 0
−2 1

)
× id× id

to A to get A′ = (1, 4,−1,−1, 5, 1,−3, 39). Since we have a 1 as a �rst entry we can clear b, c and e
by using (

1 −5
0 1

)
×
(

1 −4
0 1

)
×
(

1 1
0 1

)
and end up with Aγ1 = (1, 0, 0, 3, 0,−19, 2, 17) where

γ1 =

(
1 −5
−2 11

)
×
(

1 −4
0 1

)
×
(

1 1
0 1

)
.

Similarly we �nd that Bγ2 = (1, 0, 0, 2, 0,−14, 3, 13) where

γ2 =

(
1 0
0 1

)
×
(

2 −3
−1 2

)
×
(

0 −1
1 0

)
.

This gives rise to the quadratic forms QA1 = −3x2 + 17xy − 38y2, QA2 = −2x2 + 17xy − 57y2 and
QB1 = −2x2 + 13xy − 42y2, QB2 = −3x2 + 13xy − 28y2. Since gcd(−3,−2, 15) = 1 we can apply
Dirichlet's composition on QA1 , Q

B
1 and QA2 , Q

B
2 , we just need to �nd B,B′ which satisfy

B ≡ 17 mod 6 B′ ≡ 17 mod 4
B ≡ 13 mod 4 B′ ≡ 13 mod 6
B2 ≡ −167 mod 24 B′2 ≡ −167 mod 24

One can check that B = 5 and B′ = 1 satisfy these conditions. So we get two new binary quadratic
forms QC1 = 6x2 + 5xy + 8y2 and QC2 = 6x2 + xy + 7y2. Now we set e = gcd(6, 6, 3) = 3 and we need
to solve6f−6g

3 = 2, 6h = −3f − 3 · 7. An easy solution is f = 1, g = 0, h = −4. Hence [A] + [B] = [C]
where C = (0, 2, 3, 1, 2,−1, 0,−4). In turns of cubes:

d 5 1 e

11 6

−3 39

b −7 77 c

+

d −19 −35 e

−2 −4

−14 −28

b 2 3 c

=

d 2 −1 e

0 2

0 −4

b 3 1 c
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We can check that [QA3 ]+[QB3 ] = [−19x2 +17xy+6y2]+[−14x2 +13xy+6y2] = [4x2−5xy+12y2] =
[QC3 ]. For this we calculate that QA3 +QB3 = 266x2 + 321xy + 97y2, recalling that (a, b, c) ∼ (c,−b, a)
and (a, b, c) ∼ (a, b + 2an, an2 + bn + c), we see that (266, 321, 97) ∼ (97,−321, 266) ∼ (97, 67, 12) ∼
(12,−67, 97) ∼ (12, 5, 4) ∼ (4,−5, 12) hence [QC3 ] = [266x2 + 321xy + 97y2] as expected.

Theorem 3.8. The inverse of the equivalence class containing A = (a, b, c, d, e, f, g, h) is the equiva-
lence class containing −A = (a,−b,−c, d,−e, f, g,−h).

Proof. We calculate that QA1 = (bc − ad)x2 + (de + ah − cf − bg)xy + (eh − fg)y2 = −Q−A1 and
QA2 = −Q−A2 . Hence [QA1 ] + [Q−A1 ] = [QA2 ] + [Q−A2 ] = [Qid,D], forcing [A] + [−A] = [Aid,D].

3.3 Another proof of Theorem 3.6

We are now going to prove Theorem 3.6 in a similar way to the proof of Theorem 2.18, in such a way
to cover the case when D is square. Recall though that throughout this paper we exclude the case
D = 0. To do this we will need to generalise our notion of orders and introduce the new concept of
quadratic rings, which we will use for the remainder of this paper.

De�nition 3.9. A quadratic ring O is a (commutative) ring isomorphic as an additive group to Z2.

From the de�nition, we have that O has has rank 2 in Z, furthermore as O is a ring 1 ∈ O. So O
has a basis of the form [1, τ ], since τ2 ∈ O we have that τ solves a quadratic equation x2 + bx+ c = 0
with b, c ∈ Z.

De�nition 3.10. The discriminant of a quadratic ring O = [1, τ ] is D = b2 − 4c, where b, c are such
that τ2 + bτ + c = 0.

A quadratic ring O of discriminant D is said to be oriented if a choice of
√
D ∈ O \ Z has been

made.

For this paper, we will assume, unless stated otherwise, that our rings are oriented. Note that D is
congruent to 0 or 1 mod 4. Conversely given D ∈ Z such that D ≡ ε mod 4 with ε ∈ {0, 1}, then there
exists a unique, up to orientation preserving isomorphism, oriented quadratic ring, namely O = [1, τ ]
where τ2 = ετ + D−ε

4 . Let us de�ne the conjugate of an element α = x+ τy ∈ O, denoted by α, to be

x + τy, where τ is the other root (not in Z) to the equation x2 − εx − D−ε
4 = 0. With this we de�ne

a map π : O → Z, by π(α) = α−α√
D

and we say an element α ∈ O to be positive if π(α) > 0. While

we will not need to actually choose
√
D, all our work only requires a choice to have been made, we

assume from here on that we take the positive square root, that is π(
√
D) > 0.

Notice how quadratic rings are a natural extension to the de�nition of orders in Section 2. To see
this note that if the discriminant D is square-free and not 1 then O is just the maximal order OK of

K = Q(
√
D). More generally if D is not a square then D = f2D0 and x2 + fD0x + f2D0−f2D0

4 is a
quadratic polynomial with discriminant D and root fωk, using the notation of Section 2.4. So O is an
order of the quadratic �eld Q(

√
D). For the remainder of this paper we will let K := Q⊗Z O. In the

case that O has a non-square discriminant D = f2D0, then using the fact O is an order, we have that
K = Q(

√
D) = Q(

√
D0).

We use the same de�nition of fractional ideals and oriented ideals for quadratic rings as we did for
orders. Hence we also have the same de�nition for the narrow class group of a quadratic ring O, that
is, C+(O) is the set of equivalence classes of invertible oriented fractional ideals of O.

Recall that the Cube Law Axiom was taken as an analogy of collinear points on an elliptic curve.
For a similar reason we are going to de�ne what it means for three fractional ideals to be collinear, the
reason for the term being that they will end up being in correspondence with binary quadratic forms
that add up to 0.

De�nition 3.11. Let O be a quadratic ring, we say the fractional ideals I1, I2, I3 are collinear if
I1I2I3 ⊆ O and N(I1)N(I2)N(I3) = 1

If all three ideals are invertible then we have in fact equality, i.e., I1I2I3 = O. In the same way we
de�ne equivalence of oriented fractional ideals we have the following de�nition.

De�nition 3.12. We say two triples of collinear fractional oriented ideals, (I1, I2, I3) and (I ′1, I
′
2, I
′
3),

are equivalent if there exists α1, α2, α3 ∈ K such that Ii = αiI
′
i for i = 1, 2, 3.
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We will denote the set of equivalence classes of collinear triples of oriented invertible fractional
ideals of an oriented quadratic ring O, by C(Col31,1,1;O). This can easily be seen to be a group when

we equip it with the binary operation (I1, I2, I3) · (I ′1, I ′2, I ′3) = (I1I
′
1, I2I

′
2, I3I

′
3). The notation Col31,1,1,

stands for the fact that we are considering three objects that are collinear, furthermore the 1, 1, 1
represent that we do not require our three ideals to be equal to each other, a requirement that we will
impose in later cases. We will now state and prove a theorem that will also prove Theorem 3.6.

Theorem 3.13. Let D ≡ 0, 1 mod 4 and O the oriented ring of discriminant D. Then there is a
bijection between C((Z2)⊗3;D) and C(Col31,1,1;O).

Proof. We are going to follow the ideas established by [Bhargava(2004), p 17]. For the moment let
us forget that we need our cubes to be primitive and our ideals to be invertible, we will deal with
that later on in the proof. Let (I1, I2, I3) be a representative of an equivalence class of collinear triple
of fractional ideals of the quadratic ring O and let D = Disc(O). Let 1, τ be a positively oriented
basis of O such that τ2 = ετ + D−ε

4 , with ε ∈ {0, 1} and ε ≡ D mod 4. Let α1, α2; β1, β2; and γ1, γ2

be correctly oriented basis of I1, I2 and I3 respectively, since I1I2I3 ⊆ O we have the following eight
equations

αiβjγk = ci,j,k + ai,j,kτ (3.3)

with ai,j,k, ci,j,k ∈ Z. We de�ne a map mapping (I1, I2, I3) to a cube A by setting

A = (a1,1,1, a1,1,2, a1,2,1, a1,2,2, a2,1,1, a2,1,2, a2,2,1, a2,2,2).

We show that this map is well de�ned. Suppose that we choose another basis for I1, say rα1+tα2, sα1+
uα2 with ru− st = 1 (our change of basis needs to be in SL2(Z) so to keep the correct orientation of
I1). Then we have that our triple gives rise to Aγ×id× id, where

γ =

(
r s
t u

)
∈ SL2(Z).

Hence changing the basis of the three ideals does not change the equivalence class of A. Furthermore
if we take an equivalent triple, say κ1I1, κ2I2, κ3I3, since they need also to be collinear we have
that N(κ1)N(κ2)N(κ3) = 1, in other words κ1κ2κ3 is a unit in O, hence our cube A does not
change. So we have shown that the map is well de�ned. Notice that the above map can be de�ned as
ai,j,k = π(αiβjγk).

Next we show that the cube has discriminant D. To this end, we show that the equations (3.3)
imply Disc(A) = N(I1)2N(I2)2N(I3)2Disc(O). This can be checked by direct arithmetic using the
formula of the discriminant of A, the formula for the norm of an ideal and the set of equations (3.3).
There is a more interesting approach done by [Bhargava(2004), p 18]. Start with the special case
I1 = I2 = I3 = O, α1 = β1 = γ1 = 1 and α2 = β2 = γ2 = τ , this gives rise to the cube Aid,D from
which we can easily see that Disc(A) = Disc(O). Now suppose we change I1 to a general oriented
fractional ideal [α1, α2], this is done by a transformation TT ∈ GL2(Q). Then the new cube A is
obtained by transforming Aid,D by T × id× id. If we let

T =

(
r s
t u

)
then we know from the proof of Theorem 3.3 thatQA1 = QTid,D andQA2 = QA3 = det(T )Qid,D, so we have

that the discriminant of all three binary quadratic forms are scaled by a factor of det(T )2 = N(I1)2.
Hence, recalling that the discriminant of A is the same as the discriminant of QAi , we have that the
discriminant of A is multiplied by a factor of N(I1)2. Again using the proof of Theorem 3.3, we can
�nd a similar result for changing I2, I3 from our current cube A, hence proving that for all cube
A we have Disc(A) = N(I1)2N(I2)2N(I3)2Disc(O). But since our ideals are collinear, and hence
N(I1)N(I2)N(I3) = 1, we have Disc(A) = Disc(O).

We need to verify that the map mapping I1, I2, I3 to A gives rise to exactly one set of equivalence
classes of cubes, i.e., we need to prove the map is both surjective and injective. To show this we �x a
cube A = (a1,11, a1,1,2, . . . , a2,2,1, a2,2,2) of discriminant D and consider the set of equations (3.3). As
we have only ai,j,k determined, the set of equations seems to be made of mostly indetermined variables,
namely αi, βj , γk and ci,j,k. We will show that in fact the cube determines all these indeterminate,
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proving surjectivity, but also we will show that the αi, βj , γk that A gives rise to gives a unique
equivalence class of collinear triples, hence proving injectivity. First we show that A determines the
ci,j,k. Since we are in a commutative ring we have

(αiβjγk)(αi′βj′γk′) = (αi′βjγk)(αiβj′γk′) = (αiβj′γk)(αi′βjγk′) = (αiβjγk′)(αi′βj′γk′),

so for example (α1β1γ1)(α2β2γ2) = (α2β1γ1)(α1β2γ2) which implies (c1,1,1 +a1,1,1τ)(c2,2,2 +a2,2,2τ) =
(c2,1,1 + a2,1,1τ)(c1,2,2 + a1,2,2τ). We can use the property of commutativity to write out nine di�erent
possible equations, see the appendix for which nine and why. With those nine equations, once we
multiplied them out, we can equate the coe�cients of 1 and the coe�cients of τ to get a total of 18
linear and quadratic equations. Solving those 18 equations in terms of ci,j,k and using the fact that
we need N(I1)N(I2)N(I3) > 0, since [1, τ ] is positively oriented, we �nd that there exists a unique
solution, see appendix, given by:

ci,j,k = (i′ − i)(j′ − j)(k′ − k)

[ai′,j,kai,j′,kai,j,k′ +
1

2
ai,j,k(ai,j,kai′,j′,k′ − ai′,j,kai,j′,k′ − ai,j′,kai′,j,k′ − ai,j,k′ai′,j′,k)]

−1

2
ai,j,kε (3.4)

where {i, i′} = {j, j′} = {k, k′} = {1, 2} and ε ∈ {1, 0} with ε ≡ D mod 4.
Now that we have the ai,j,k, ci,j,k we can determine appropriate αi, βj , γk which yields the correct

ai,j,k, ci,j,k under the set of equations (3.3). One can see that, since α1(α2βjγk) = α2(α1βjγk), the
ratio α1 : α2 is determined by the ratio (c1,j,k +a1,j,kτ) : (c2,j,k +a2,j,kτ), and this is true for any �xed
j, k ∈ {1, 2}. Similarly we can determined the ratio β1 : β2 by the ratio (ci,1,k+ai,1,kτ) : (ci,2,k+ai,2,kτ)
for any �xed i, k ∈ {1, 2}. Once αi and βj have been chosen, we can determine γk by the set of equations
(3.3). Note that while αi, βj , γk are only determined up to scalars in K, this does not matter as we are
we want collinear triples of oriented fractional ideals up to equivalence. So if we can show that in fact
the Z-module generated by α1, α2, the Z-module generated by β1, β2 and the Z-module generated by
γ1, γ2 are in fact fractional ideals of O, then we have showed that to any cube A, there exists a collinear
triple of oriented fractional ideals which maps to it, showing surjectivity of the map. Furthermore, due
to the uniqueness of the solution (3.4), we have that the equivalence class of collinear ideals mapping to
A is unique, which, with a bit more thoughts, shows injectivity. To see that we have proved injectivity
suppose we have two collinear triple of oriented fractional ideals, say (I1, I2, I3) and (J1, J2, J3), which
maps to A and Aγ respectively, where γ = γ1×γ2×γ3 ∈ Γ. Then we can change the basis of J1, J2, J3

by γ−1
1 , γ−1

2 and γ−1
3 respectively so that (J1, J2, J3) maps to A, by the work we did at the beginning

of the proof. But since the equivalence class of collinear ideals mapping to A is unique, we have that
(I1, I2, I3) and (J1, J2, J3) must be equivalent.

To check that the Z-module generated by α1, α2, the Z-module generated by β1, β2 and the Z-
module generated by γ1, γ2 are fractional ideals of O, we need to check that they are O-modules, so we
need to show that they are closed under multiplication by τ . To this end let us �x αi = (ci,1,1 +ai,1,1τ),
βj = (c2,j,2+a2,j,2τ), forcing γ1 = β−1

1 and γ2 = α−1
2 . Moreover let us denote byQi = aix

2+bixy+ciy
2,

the three binary quadratic forms associated to A. An explicit calculation, see appendix for example of
the �rst one, shows that we have in fact

τα1 =
b1 + ε

2
α1 + a1α2

−τα2 = c1α1 +
b1 − ε

2
α2

where ε is as usual. Similar equations can be worked out for the basis of I2, I3. So in particular we
have showed that I1, I2, I3 are fractional ideals of O.

All the above work did not require our ideals to be invertible or our cubes to be primitive, so the
above map is a bijection between equivalence classes of collinear triples of ordered fractional ideals of
O and equivalence classes of cubes of discriminant D. To �nish the proof of the theorem as stated, i.e.,
that the bijection is between C(Col31,1,1;O) and C((Z2)⊗3;D), we need to show that primitive cubes
are mapped from invertible ideals. We recall that if a cube is primitive, then it is equivalent to a cube
A = (1, 0, 0, d, 0, f, g, h). We use the above map to �nd the ideals which maps to it, speci�cally if we
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let I1 = [c1,1,1 + a1,1,1τ, c2,1,1 + a2,1,1τ ] and I2 = [c1,1,2 + a1,1,2τ, c1,2,2, + a1,2,2τ ], then we �nd that

I1 = [fg, h+
√
D

2 ] and I2 = [df, h+
√
D

2 ]. On the other hand we know that the �rst two binary quadratic
forms A gives rise to are−dx2+hxy+fgy2 ∼ fgx2−hxy+dy2 and−gx2+hxy+dfy2 ∼ dfx2−hxy−gy2.
So we have Gauss composition by de�ning a map which maps Ii to Qi, which is the same map as in
section 2. Since we know from the work in section 2 that this map is well de�ned, and that if Qi is
primitive then Ii is invertible, we have by de�nition that A being primitive means all the Qi's are,
hence we have that indeed the ordered collinear ideals are invertible. On the other hand if (I1, I2, I3)
are all invertible then due by Gauss composition they correspond to primitive binary quadratic forms.
Since by de�nition A is primitive if its associated binary quadratic forms are, we have that collinear
triples of oriented fractional ideals maps to primitive cubes of integers. Hence we have �nished proving
that there is a bijection between C((Z2)⊗3;D) and C(Col31,1,1;O).

This proof had several aim. One was to see Bhargava's neat approach which we are going to use
for a few more proofs, that is to think about these objects in more algebraic and abstract terms. We
showed along the way that each I correspond to one of the binary quadratic forms associated to the
cube of integers. Furthermore this theorem can be used to prove both Theorem 3.4 and Theorem 3.6.
To see how this proves the �rst theorem, notice that under the bijection mapping equivalence classes of
ideals and equivalence classes of binary quadratic forms we have that O maps to [Qid,D]. We also have
that for any primitive cube A, then the three ideals it gives rise to satis�es I1I2I3 = O, so the unique
group law which satisfy point 1 and 2 of Theorem 3.4, is the one that correspond to multiplication
of oriented ideals under the bijection C+(O). Finally, we have that given any three ideals I1, I2, I3
such that I1I2I3 = O, then they map to a primitive cube A which gives rise to Q1, Q2, Q3, the three
primitive binary quadratic forms which corresponds to the ideals. Hence we have also proven the last
statement of Theorem 3.4.

As for proving Theorem 3.6, this follows from the given bijection, as the three maps of part
2, translate into the map sending (I1, I2, I3) → Ii ∈ C+(O), which we know is a group homo-
morphism. We have also showed that (O,O,O) maps to Aid,D in the proof, so the unique binary
operation satisfying the theorem, is the one that correspond to multiplication of collinear triple of
invertible oriented fractional ideals. We also note out of interest that we have a natural bijection
from C(Col31,1,1;O) → C+(O) × C+(O) de�ned by (I1, I2, I3) 7→ (I1, I2), with inverse de�ned by
(I1, I2) 7→ (I1, I2, (I1I2)−1).

3.4 Binary cubic forms

We now move on to binary cubic forms. In the same way that we have previously described that
a symmetric 2 × 2 matrix can represent a binary quadratic form ax2 + 2bxy + cy2, we can have
a symmetric 2 × 2 × 2 �matrix�, or what we have called a cube, to represent a binary cubic form
ax3 + 3bx2y + 3cxy2 + dy3, namely using the triply symmetric cube:

b c

a b

c d.

b c

If Mi, Ni are as de�ned as in subsection 3.1 then ax3 + 3bx2y + 3cxy2 + dy3 = (xTMix, x
TNix)x

for all i ∈ {1, 2, 3}, where x = (x, y) is a column vector. In the same spirit as Sym2 Z2 denoted the
set of binary quadratic forms we use Sym3 Z2 to denote the set of binary cubic forms. Using the
correspondence between binary cubic forms and triply symmetric cube we have a natural inclusion

ι : Sym3 Z2 →
(
Z2
)⊗3

.

De�nition 3.14. The discriminant of C(x, y) = ax3 + 3bx2y + 3cxy2 + dy3 is D = a2d2 − 3b2c2 +
4b3d+ 4ac3 − 6abcd

We say a binary cubic form C(x, y) = ax3 + 3bx2y + 3cxy2 + dy3 is primitive if the corresponding
triply symmetric cube ι(C) is primitive.
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If we calculate the three binary quadratic form that ι(C) gives rise to we see that

Q
ι(C)
1 = Q

ι(C)
2 = Q

ι(C)
3 = −

∣∣∣∣ax− by bx− cy
bx− cy cx− dy

∣∣∣∣
= −((ac− b2)x2 + (bc− ad)xy + (bd− c2)y2)

hence we have that C is primitive if and only if gcd(ac− b2, bc− ad, bd− c2) = 1. We de�ne an SL2(Z)
action on C as follows: Let

γ =

(
r s
t u

)
∈ SL2(Z)

then Cγ(x, y) = C(rx + sy, tx + uy). As usual if we let [C] denote the SL2(Z)-equivalence class of C
(noting that this gives rise to the Γ-equivalence class of ι(C) where Γ = {γ× γ× γ : γ ∈ SL2(Z)} ≤ Γ)
and C(Sym3 Z2;D) denote the set of equivalence class of primitive binary cubic forms with discriminant
D, then we have the following theorem.

Theorem 3.15 (Composition of binary cubic forms). Let D ∼= 0, 1 mod 4 and let Cid,D be de�ned as

Cid,D =

{
3x2y + D

4 y
3 D ∼= 0 mod 4

3x2y + 3xy2 + D+3
4 y3 D ∼= 1 mod 4

then there exists a binary operation which turns C(Sym3 Z2;D) into an additive group such that

1. [Cid,D] is the identity,

2. the map given by [C] 7→ [ι(C)] is a group homomorphism from C(Sym3 Z2;D) to C(
(
Z2
)⊗3

;D).

Remark. At this point the reader might be surprised by the omission of the word unique in the above
theorem, but we will show in the example after the proof that the map described in 2. is non-injective in
certain cases. Hence we can construct di�erent binary operations that will satisfy the given conditions.
This will be remedied as in the proof we will give a bijection between C(Sym3 Z2;D) and a group,
hence we will have a natural binary operation. So when talking about the composition of binary
cubic form, except in the next example, we will mean composition with respect to this natural binary
operation.

Proof. Again we follow [Bhargava(2004), p 21], which is in the same style as the proof of Theorem
3.13. To this end let us introduce C(Col31;O) to denote the set of equivalence classes of the pair (I, δ),
where I is an ordered invertible fractional ideal of O and δ ∈ K∗ = (O⊗Z Q)∗ such that I3 = δO and
N(I)3 = N(δ). Here two pairs (I, δ) and (I ′, δ′) are equivalent if there exists α ∈ K such that I ′ = αI
and δ′ = α3δ. The notation is meant to represent the fact that we give one ideal, hence the subscript
1, but we require this ideal to be a �triple collinear�, hence the Col3. The words �triple collinear� are
quoted, as we are not actually using the property of collinearity (otherwise I3 = O) but something
that looks very much like it. We can easily turn C(Col31;O) into a group when we equip it with the
multiplication (I, δ) · (I ′, δ′) = (II ′, δδ′).

Under this notation we will show that there is a bijection between C(Sym3 Z2;D) and C(Col31;O),
where O is oriented quadratic ring of discriminant D, as then the proof will be straightforward. As in
the proof of Theorem 3.13, we will ignore, and not use, the fact that our ideals need to be invertible
and our binary cubic need to be primitive for the time being. Let 1, τ be a positively oriented basis of
the oriented order O of discriminant D, such that τ2 = ετ + D−ε

4 , where ε ∈ {0, 1} and ε ≡ D mod 4.
Fix the pair (I, δ) of oriented fractional ideal and invertible element of K, such that I3 ⊆ δO (we do
not necessarily have equality when the the ideal is not invertible) and N(I)3 = N(δ). We know that
I needs to be positively oriented for I3 ⊆ δO to hold, so let α, β be a positively oriented basis of I.
Since I3 ⊆ δO, we know that

α3 = δ(c0 + a0τ),

α2β = δ(c1 + a1τ),

αβ2 = δ(c2 + a2τ),

β3 = δ(c3 + a3τ), (3.5)
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for some ai, ci ∈ Z. We de�ne a map mapping (I, δ) to the binary cubic form C(x, y) = (a0, a1.a2, a3) =
a0x

3 +3a1x
2y+3a2xy

2 +a3y
3. We need to check this map is well de�ned. For this if we let π : O → Z

be de�ned as before, π(ζ) = ζ−ζ√
D
, then we have

π

(
(αx+ βy)3

δ

)
=

(α
3

δ −
α3

δ
)x3 + 3(α

2β
δ −

α2β

δ
)x2y + 3(αβ

2

δ −
αβ

2

δ
)xy2 + (β

3

δ −
β
3

δ
)y3

√
D

=
(τ − τ)(a0x

3 + 3a1x
2y + 3a2xy

2 + a3y
3) + (1− 1)(c0x

3 + c1x
2y + c2xy

2 + c3y
3)√

D

=
(τ − τ)(a0x

3 + 3a1x
2y + 3a2xy

2 + a3y
3)

τ − τ
= C(x, y)

Hence we can use the map π to give a basis-free description of C(x, y) as the map (I, δ)→ Z de�ned

by (ζ, δ) 7→ π( ζ
3

δ ). So if we change α, β by an element γ ∈ SL2(Z) to another basis of I (again we
have that γ ∈ SL2(Z) as the new basis needs to be positively oriented), then we change C(x, y) by the
same element γ, that is, the equivalence class of C(x, y) is independent of the choice of basis for I.
Conversely, if C ′(x, y) is in the same equivalence class of C(x, y), then C ′ = Cγ , for some γ ∈ SL2(Z),
and C ′ can be obtain from I as described above with the change of basis by γ. Finally if we take
another pair equivalent to (I, δ), say (κI, κ3δ), then we �nd that the κ3 cancel each other out in the
set of equations (3.5), hence the pair (κI, κ3δ) map to the same cube C(x, y) as (I, δ).

We show that the discriminant of C(x, y) is D. Similar as in the proof of 3.13, we show that the
equations (3.5) give the identity Disc(C(x, y)) = N(I)6N(δ)−2Disc(O). Start with the special case
I = O = [1, τ ] and δ = 1, this gives rise to the binary cubic form Cid,D from which we can easily see
that Disc(C(x, y)) = Disc(O). Now suppose we change I to a general (positively) oriented fractional
ideal [α, β] by a transformation T ∈ GL2(Q),

T =

(
r s
t u

)
Then the new binary cubic form C is obtained by transforming Cid,D, by that same element, i.e., in the
caseD ≡ 0 mod 4 we have C(x, y) = (3r2t+t3D4 , r

2u+2rst+D
4 t

2u, s2t+2rsu+D
4 tu

2, 3s2u+D
u u

3). We
can then calculate that the discriminant of C(x, y) is (ru−st)6D = det(T )6D. Since N(I) = det(T ), we
have that changing ideal scales the discriminant of C(x, y) by a factor ofN(I)6. On the other hand if we
change 1 to δ = a+bτ , we have that, using equations (3.5), our new cube is C(x, y) = 1

N(δ) (b, a, D4 b,
D
4 a),

(again this case is for D ≡ 0 mod 4) and we calculate that the discriminant is

1

N(δ)4
(4a4(

D

4
)− 8a2b2(

D

4
)2 + 4b4(

D

4
)3) =

D

N(δ)4
(a2 − b2D

4
)2 =

D

N(δ)2
.

So changing δ scales the discriminant by N(δ)−2, and since the changing I does not a�ect our argument
for changing δ and vice versa, we have proved that Disc(C(x, y)) = N(I)6N(δ)−2Disc(O). But we have
that N(I)3 = N(δ), hence Disc(C(x, y)) = Disc(O).

We now show that the above map is bijection, by showing that each equivalence classes of pairs
(I, δ) map to exactly one set of equivalence classes of binary cubic forms, i.e, we need to prove the map
is both surjective and injective. To show this we �x a binary quadratic form C(x, y) = (a0, a1, a2, a3)
of discriminant D and we consider the set of equations (3.5). As we only have ai determined, the set
of equations seems to be made of mostly indetermined variables, namely ci, α, β and δ. We will show
that in fact the binary cubic form determines all these indeterminate, proving surjectivity, but also we
will show that the α, β, δ that A can give rise to give a unique equivalence class of collinear triples.

First we show that C(x, y) determines the ci. Since we are in a commutative ring we have that
(α2β)2 = α3αβ2 and (αβ2)2 = α2ββ3. By expanding them using equations (3.5), recalling that
τ2 = ετ + D−ε

4 , and equating the coe�cients of τ and the coe�cients of 1, we get the following 4 linear
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and quadratic equations:

c0c2 + a0a2
D − ε

4
= c21 + a2

1

D − ε
4

c0a2 + c2a0 + εa0a2 = 2c1a1 + εa2
1

c1c3 + a1a3
D − ε

4
= c22 + a2

2

D − ε
4

c1a3 + c3a1 + εa1a3 = 2c2a2 + εa2
2

We can use SAGE 4.8, which uses Maxima [Stein et al.(2012), SAGE], to solve this set of equations
and �nd four di�erent solutions. Recalling that the basis α, β was positively oriented, hence that
π(αβ) > 0. we can try each of the four solutions and see that only one solutions works, namely:

c0 =
1

2
(2a3

1 − 3a0a1a2 + a2
0a3 − εa0)

c1 =
1

2
(a2

1a2 − 2a0a
2
2 + a0a1a3 − εa1)

c2 = −1

2
(a1a

2
2 − 2a2

1a3 + a0a2a3 + εa2)

c3 = −1

2
(2a3

2 − 3a1a2a3 + a0a
2
3 + εa3) (3.6)

where again ε ≡ D mod 4, with ε ∈ {0, 1}. Now that we have ci and ai, we can determine appropriate
α, β which yields the correct ci and ai under the set of equations (3.5). One can see that, since
equations (3.5) implies α

β = c0+a0τ
c1+a1τ

= c1+a1τ
c2+a2τ

= c2+a2τ
c3+a3τ

, we have that the ratio α : β is determined.
Hence α, β are determined, up to a scalar factor in K. Once α, β have been �xed, then δ is determined,
and it is clear that if we scale both α and β by κ, then δ change by a factor of κ3. If we can show
that the Z-module generated by α, β is in fact a fractional ideal of O, then we have showed for every
binary cubic form C(x, y), there exists an oreitned fractional ideal and δ which maps to it, showing
surjectivity. Furthermore, due to the uniqueness of the solution for the ci, we have that the equivalence
class of collinear pair (I, δ) mapping to A is unique, which, with a bit more thoughts, shows injectivity.
To see that we have proved injectivity, suppose we have two collinear pairs, say (I, δ) and (I ′, δ′),
which maps to C(x, y) and Cγ(x, y) respectively. Then we can change the basis of I ′ by γ−1 so that
I ′ maps to C(x, y). Then by the uniqueness of the equivalence class of collinear pairs which maps to
C(x, y), we have that (I, δ) and (I ′, δ′) are equivalent.

To check that the Z-module generated by α, β is a fractional ideal of O, we need to check that it
is an O-module, so we need to show that they are closed under multiplication by τ . To this end let us
�x α = (c1 + a1τ), β = (c2 + a2τ), then δ = αβ. We can use direct calculation to show that:

ατ =
a0a3 − a1a2 + ε

2
α+ (a2

1 − a0a2)β

−βτ = (a2
2 − a1a3)α+

a0a3 − a1a2 − ε
2

β,

see the appendix for an example on how to check the �rst equality.
All the above work did not require I to be invertible nor our binary cubic form to be primitive, so

the above map is a bijection between equivalence classes of collinear pairs (I, δ) of O and equivalence
classes of binary cubic forms. So to �nish our claim that there is a bijection between C(Sym3 Z2;D)
and C(Col31;O), we need to show that the pair (I, δ) map to a primitive cube when I is invertible,
and that primitive cubes are mapped from a pair where the ideal is invertible. For this we consider
the map [C]→ [ı(C)], and have a look at what this translate to in terms of oriented fractional ideals.
Using equations (3.4) and equations (3.6), we �nd that in fact c1,1,1 = c0, c1,1,2 = c1,2,1 = c2,1,1 = c1,
c1,2,2 = c2,1,2 = c2,2,1 = c2 and c2,2,2 = c3. Hence it is not hard to see that the map [C] 7→ [ı(C)]
correspond to the map sending the equivalence class of (I, δ) to the equivalence class of (I, I, I). Now
by de�nition a binary cubic form Cis primitive if and only if ı(C) is, but a cube is primitive if and only
if its three ideals are invertible, hence C is primitive if and only if I is invertible. So we have proved
that there is a bijection between C(Sym3 Z2;D) and C(Col31;O).

This is proves the theorem as along with the bijection, we saw that (O, 1) maps to Cid,D, and that
the group homomorphism C(Col31;O) → C(Col31,1,1;O) correspond to the map [C] 7→ [ı(C)]. Hence

27



the binary operation satisfying the theorem, is the one that correspond to multiplication of pairs (I, δ)
under the bijection between C(Col31;O) and C(Sym3 Z2;D).

Before we move on we consider the map which sends the equivalence class of (I, δ) to the equivalence
class of I in C+

3 (O), where C+
3 (O) denotes the subgroup of C+(O) whose elements have order dividing

3, i.e., the set of equivalence classes of ideals I such that I3k = O. We note that the map C(Col31;O)→
C+

3 (O) is quite clearly surjective, but it is not injective. If (I, δ) maps to the identity in C+
3 (O) then

I = O, but there is no condition on δ. Now two pairs (I, δ) and (I ′, δ′) are equivalent if there exists
κ ∈ K such that κI ′ = I and κ3δ′ = δ. The only κ such that κO = O is if κ ∈ O∗, hence the kernel
has for cardinality the number of units over the number of units which are cubes. This map highlight
the fact why the map [C] 7→ [ı(C)] is not injective, and what we expect the kernel to be. In the
next example we show directly that this map is not injective and show how this gives rise to di�erent
groups.

Example. Consider the set C(Sym3 Z2; 229), we are going to show that the map C(Sym3 Z2; 229)→
C((Z2)⊗3; 229) de�ned by [C] 7→ [ı(C)] is not injective. Following this we will give two di�erent
binary operations that turn C(Sym3 Z2; 229) into a group satisfying the conditions of the theorem.
Let (a0, a1, a2, a3) denote the binary cubic form a0x

3 + 3a1x
2y + 3a2xy

2 + y3, then C(Sym3 Z2; 229)
has 9 elements which can be represented by

(0, 1, 1, 58) (1, 2,−1, 5) (1,−2,−1,−5)
(1, 0, 1, 15) (1, 0, 3,−11) (−2, 1, 1, 6)

(1, 0, 1,−15) (−2,−1, 1,−6) (1, 0, 3, 11)

which we will also refer to as (C0,0, C0,1, C0,2, . . . , C2,2), e.g., C0,1 = (1, 0, 1, 15). The above table
was found using the bijection given in the above theorem, as it was easier to �nd the elements of

(Col31;Z[ 1+
√

229
2 ]), but for the sake of the example, we will forget the ideals and δ associated to each

binary cubic form. We will now show that [ı(Ci,0)] = [ı(Ci,1)] = [ı(Ci,0)], it will be easier to do this
if we use the bijection between C((Z2)⊗3;D) and C((I1, I2, I3);O) where O is the oriented quadratic
ring of discriminant D. Let 1, τ be a positively oriented basis of O with τ2 = τ + 57.

For C0,0 we have that ı(C0,0) = (0, 1, 1, 1, 1, 1, 1, 58), if we use equation (3.4) we �nd that {ci,j,k} =
(1, 0, 0, 57, 0, 57, 57, 57). We let α1 = c1,1,1 + a1,1,1τ = 1, α2 = c2,1,1 + a2,1,1τ = τ ,β1 = c2,1,2 +
a2,1,2τ = 57 + τ , β2 = c2,2,2 + a2,2,2τ = 57 + 58τ and from them construct I1 = [α1, α2] = [1, τ ],
I2 = [β1, β2] = [57 + τ, 57 + 58τ ] and I3 = [β−1

1 , α−1
2 ] = [ 58−τ

3249 ,
−1+τ

57 ]. We check that I1I2I3 = O as
required, (hence N(I1)N(I2)N(I3) = 1), so [ı(C1,1)] correspond to the equivalence class of the collinear
triple (I1, I2, I3). Using the exact same process we �nd that a representative of the equivalence class
of collinear triples that correspond to [ı(Ci,j)]:

Ci,j (I1, I2, I3) label
(0, 1, 1, 58)

(
[1, τ ], [57 + τ, 57 + 58τ ].

[
58−τ
3249 ,

−1+τ
57

])
(I1, I2, I3)

(1, 0, 1, 15) ([7 + τ,−1], [−8 + τ,−121 + 15τ ], [7 + τ,−1]) (I ′1, I
′
2, I
′
3)

(1, 0, 1,−15) ([−8 + τ,−1], [7 + τ,−106 + 15τ ], [−8 + τ,−1]) (I ′′1 , I
′′
2 , I
′′
3 )

(1, 2,−1, 5)
(
[13 + τ, 1 + 2τ ], [22− τ,−29 + 5τ ],

[
21+τ
405 ,

−3+2τ
225

])
(J1, J2, J3)

(1, 0, 3,−11)
(
[−6 + τ,−9], [15 + 3τ,−82− 11τ ],

[−6+τ
81 , −1

9

])
(J ′1, J

′
2, J
′
3)

(−2,−1, 1,−6)
(
[−15− 2τ,−3− τ ], [−12 + τ, 47− 6τ ],

[−11−τ
75 , 4−τ

45

])
(J ′′1 , J

′′
2 , J

′′
3 )

(1,−2,−1,−5)
(
[−14 + τ, 3− 2τ ], [−21− τ,−24− 5τ ],

[−22+τ
405 , −1−2τ

225

])
(K1,K2,K3)

(−2, 1, 1, 6)
(
[17− 2τ,−4 + τ ], [11 + τ, 41 + 6τ ],

[
12−τ

75 , 3+τ
45

])
(K ′1,K

′
2,K

′
3)

(1, 0, 3,−11)
(
[5 + τ,−9], [−18 + 3τ,−93 + 11τ ],

[
5+τ
81 ,

−1
9

])
(K ′′1 ,K

′′
2 ,K

′′
3 )

We can now verify that in fact I1 = I ′1 = I ′′1 = O; 1
57+τ I2 = I ′2 = I ′′2 = O; (57 + τ)I3 = I ′3 =

I ′′3 = O. Hence [ı(C0,0)] = [ı(C0,1)] = [ı(C0,2)] as required. We also check that 3−τ
25 J1 = J ′1 = J ′′1 ;

J2 = J ′2 = 73−7τ
25 J ′′2 ; J3 = −3+2τ

25 J ′3 = 24+5τ
81 J ′′3 , implying that [ı(C1,0)] = [ı(C1,1)] = [ı(C1,2)].

Finally 1+2τ
25 K1 = K ′1 = K ′′1 ; K2 = 66+7τ

25 K ′2 = K ′′2 ; K3 = −29+5τ
81 K ′3 = 1+τ

25 K
′′
3 , implying that

[ı(C2,0)] = [ı(C2,1)] = [ı(C2,2)].
So we have showed that the map sending [C] to [ı(C)] is not always injective. We can now construct

a binary operation such that C(Sym3 Z2; 229) ∼= C9 and the map becomes a group homomorphism.
De�ne the map φ : C(Sym3 Z2; 229)→ Z/9Z by [Ci,j ] 7→ i+ 3j, this is clearly a bijection and it gives
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rise to a unique binary operation, which we will denote +9. We now see easily that [C] 7→ [ı(C)] is a
group homomorphism

On the other had we can construct a second binary operation such that C(Sym3 Z2; 229) ∼= C3×C3

and the map f is still a group homomorphism. De�ne the map ψ : C(Sym3 Z2; 229) → Z/3Z⊕ Z/3Z
by [Ci,j ] 7→ (i, j). It is easy to see that the map de�ned by [C] 7→ [ı(C)] is still a group homomorphism

While the example above shows that we do not have a unique binary operation, the proof of the
previous theorem gave a natural binary operation to use, which we will call the composition, that is the
one that under the bijection correspond to (I, δ) · (I ′, δ′) = (II ′, δδ′). Let us calculate the composition
of two binary cubic forms. Let C(x, y) = a0x

3 +3a1x
2y+3a2xy

2 +a3y
3 and C ′(x, y) = b0x

3 +3b1x
2y+

3b2xy
2 +b3y

3 be two binary cubic forms of discriminant D = a2
0a

2
3−3a2

1a
2
2−6a0a1a2a3 +4(a0a

3
2 +a3

1a3).
Let O = [1, τ ] such that τ2 = ετ + D−ε

4 , where ε ∈ {0, 1}, ε ≡ D mod 4. De�ning ci as in theorem for
C(x, y) and di for C

′(x, y), we let I = [c1 +a1τ, c2 +a2τ ] = [α, β] and I ′ = [d1 +b1τ, d2 +b2τ ] = [α′, β′].
Then δ = αβ, δ′ = α′β′.We now need to calculate (II ′, δδ′). Now δδ′ is clear to calculate, but II ′ is
slightly harder. We will use binary quadratic composition, but we need to be careful that we do end
up with II ′ and not an ideal equivalent to it, otherwise our δδ′ would also need to change. Recall

from section 2 that a binary quadratic form attached to I = [α, β] = α[1, βα ] is N(αx+βy)
N(I) . If we let the

binary quadratic forms corresponding to [1, βα ], [1, β
′

α′ ] to be f, f ′ respectively we have

f =
N(α)x2 + Tr(αβ)xy +N(β)y2

N(I)
,

f ′ =
N(α′)x2 + Tr(α′β

′
)xy +N(β′)y2

N(I ′)
.

Calculating their composition and recalling that to the ideal attached to the binary quadratic form

(a, b, c) is [a, −b+
√
D

2 ], we �nd that[
1,
β

α

] [
1,
β′

α′

]
=
N(I)N(I ′)e2

N(αα′)

[
N(αα′)

N(I)N(I ′)e2
,
−B +

√
D

2

]

withB = 1
eN(I)N(I′) (n1N(α) Tr(α′β

′
)+n2N(α′) Tr(αβ)+n3

Tr(αβ) Tr(α′β
′
)+N(I)N(I′)D
2 ) mod 2N(αα′)

e2N(I)N(I′) ,

where e = gcd(N(α)
N(I) ,

N(α′)
N(I)′ ,

N(I′) Tr(αβ)+N(I) Tr(α′β
′
)

2N(I)N(I′) ) and n1, n2, n3 are such that n1
N(α)
N(I) + n2

N(α′)
N(I′) +

n3
N(I′) Tr(αβ)+N(I) Tr(α′β

′
)

2N(I)N(I′) = e. Then because of the factor of α and α′ we left out, we have

II =
αα′

e

N(I)N(I ′)e2

N(αα′)

[
N(αα′)

N(I)N(I ′)e2
,
−B +

√
D

2

]

Recalling that
√
D = 2τ − ε, we have the following set of formulas (from rearranging equations(3.5)):

c̃0 + ã0τ =
(αα′)2

ββ′e3

c̃1 + ã1τ =
(αα′)2

ββ′e
· N(I)N(I ′)

N(αα′)
·
(
−B − ε

2
+ τ

)
c̃2 + ã2τ =

(αα′)2

ββ′
N(I)2N(I ′)2e

N(αα′)2
·
(
−B − ε

2
+ τ

)2

c̃3 + ã3τ =
(αα′)2

ββ′
· N(I)3N(I ′)3e3

N(αα′)3

(
−B − ε

2
+ τ

)3

Hence our the composition of C(x, y) and C ′(x, y) will be C̃(x, y) = ã0x
3 + 3ã1x

2y + 3ã2xy
2 + ã3y

3.

Example. Let us compose the two binary cubic forms C(x, y) = x3 +6x2y−3xy2 +5y3 and C ′(x, y) =
−2x3 +3x2y+3xy2 +6y3, notice that this is C1,0 and C2,1 of the previous example, so we have D = 229
and ε = 1, hence τ2 = τ + 57. First we calculate the corresponding c1, c2, c

′
1, c
′
2. Using (3.6) we �nd

that c1 = 1, c2 = 22, c′1 = −4 and c′2 = 11, giving us the ideals I = [α, β] = [1 + 2τ, 22 − τ ] and
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I ′ = [α′, β′] = [−4 + τ, 11 + τ ]. We can now calculate N(I) = 45, N(I ′) = 15, N(α) = −225,
N(α′) = −45, Tr(αβ) = 315 and Tr(α′β′) = −195. So we set e = gcd(−5,−3,−3) = 1 and it follows
that we can pick n1 = 1, n2 = −2, n3 = 0 giving B = 107 mod 30 = 17. Putting this together we have

c̃0 + ã0τ = 107− 11τ

c̃1 + ã1τ = (107− 11τ) · 1

15
· (−9 + τ)

c̃2 + ã2τ = (107− 11τ) · 1

225
· (138− 17τ)

c̃3 + ã3τ = (107− 11τ) · 1

3375
· (−2211 + 274τ)

meaning that ã0 = −11, ã1 = 13, ã2 = −14 and ã3 = 15. So [x3 + 6x2y−3xy2 + 5y3] + [−2x3 + 3x2y+
3xy2 + 6y3] = [−11x3 + 39x2y − 42xy2 + 15y3] = [C ′′(x, y)]. Now if we apply the element(

1 0
1 1

)
∈ SL2(Z)

to C ′′(x, y), we �nd that C ′′(x, x+ y) = x3 + 3xy2 + 15y3 = C0,1 in our example, leading to think that
C(Sym3 Z2; 229) ∼= C3 × C3. We can in fact check that this is the case.

Theorem 3.16. The inverse of the equivalence class containing the primitive binary cube C(x, y) =
(a, b, c, d) = ax3 + 3bx2y + 3cxy2 + dy3 is the equivalence class containing the primitive binary cube
−C(x, y) = (a,−b, c,−d) = ax3 − 3bx2y + 3cxy2 − dy3.

Proof. Let us calculate the pairs (I, δ) associated to each of the two cubes. For this end we use equations
(3.6), and where a0 = a, a1 = b, a2 = c and a3 = d . Notice that c′0 = 1

2 (−2b3 +3abc−a2d−εa) = −c0−
aε. Similarly we �nd c′1 = c1 +εb, c′2 = −c2−εc and c′3 = c3 +εd. If we let I = [α, β] = [c0 +aτ, c1 +bτ ],
then I ′ = [−c0 − (ε − τ)a, c1 + (ε − τ)b] = [−α, β]. This means that δ = α2 and δ′2 = α2. Now we
recall from Theorem 2.15 that the inverse to I = [α, β] is a

N(α)I, and furthermore we have since seen

that a = N(α)
N(I) . In our case, making sure we orient I positively to keep with in line with I, we have

the inverse of I is 1
N(α) [−α, β]. So we calculate that II ′ = N(I)II−1 = N(I)O. Now N(I)3 = N(δ),

but N(δ) = N(α)2 = δδ′, so the pair (1,O) is equivalent to the pair (δδ′, II ′), meaning that our cubes
are inverses of each other.

3.5 Pairs of binary quadratic forms

We now have a quick look at pairs of binary quadratic forms. The idea is that for binary cubic forms
we looked at triply symmetric cube and found a subgroup of Γ which act on this triply symmetric
cubes and preserved the triple symmetry. In this case we will look at double symmetry, that is a cube
that when looking at two of the binary quadratic forms associated to them, they are the same. Such
cubes take the form

d e

a b

e f .

b c

This cube can be sliced into two 2× 2 symmetric matrices, so they can be viewed as a pair of binary
quadratic forms (ax2 + 2bxy + cy2, dx2 + 2exy + fy2) (as opposed to looking at the normal binary
quadratic forms associated to such a cube). Let us denote the space of pairs of binary quadratic forms
with an even middle coe�cients by Z2 ⊗ Sym2 Z2 (Here Z2 denotes the fact that we are using pairs
and Sym2 Z2 the fact that we are using binary quadratic forms with even middle coe�cient as appose
to (Sym2 Z2)∗ which allowed odd middle coe�cients). Then we have the natural inclusion map  :
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Z2⊗Sym2 Z2 → (Z2)⊗3. We can equip this set with an SL2(Z)×SL2(Z)-action by (f(x, y), g(x, y))γ =
(rfγ2(x, y) + tgγ2(x, y), sfγ2(x, y) + ugγ2(x, y)) where

γ =

(
r s
t u

)
× γ2 ∈ SL2(Z)× SL2(Z)

and fγ2(x, y) denotes the usual SL2(Z)-action on binary quadratic forms. Note that under the inclusion
map , the group action is transformed by the map SL2(Z) × SL2(Z) → Γ de�ned by (γ1, γ2) 7→
(γ1, γ2, γ2). If both f(x, y) and g(x, y) are primitive (under the normal de�nition of primitive for
binary quadratic form) then we can see that (f(x, y), g(x, y)) is a primitive cube.

De�nition 3.17. We de�ne the discriminant of ((a, 2b, c), (d, 2e, f)) to be D = c2d2 +a2f2−2afcd−
4(aebf + bdce− ace2 − b2fd). This is in fact the discriminant of the cube (f(x, y), g(x, y))

If we denote the SL2(Z) × SL2(Z)-equivalence classes of P ∈ Z2 ⊗ Sym2 Z2 by [P ], and the set
of equivalence class of pairs of primitive binary quadratic forms by C(Z2 ⊗ Sym2 Z2;D) we have the
following theorem.

Theorem 3.18 (Composition of pairs of binary quadratic forms). Let D ≡ 0, 1 mod 4 and let

Pid,D =

{
(2xy, x2 + D

4 y
2) D ≡ 0 mod 4

(2xy + y2, x2 + 2xy + D+3
4 y2) D ≡ 1 mod 4

Then there exists a unique binary operation to turn C(Z2 ⊗ Sym2 Z2;D) into an an additive group
with:

1. [Pid,D] is the identity,

2. the map given by [P ] 7→ [(P )] is a group homomorphism from C(Z2⊗Sym2 Z2;D) to C((Z2)⊗3;D)

Proof. For this proof we use Col31,1 to denotes the set of triple collinear invertible oriented fractional

ideals (I1, I2, I2), that is, we use Col3 to denote the fact we need three ideals to be collinear, while 1, 1
stands for the fact only at most two of them are di�erent. Let C(Col31,1;O) be the group of equivalence

classes of Col31,1, we claim that there is a bijection between C(Z2⊗Sym2 Z2;D) and C(Col31,1;O) where
O is the oriented ring of discriminant D. The proof of this claim is the same as the previous two proofs
and so we only give a sketch of it in the appendix.

With this bijection in mind, we can de�ne another bijection, this time between C(Col31,1;O) →
C+(O), by sending the equivalence class of (I1, I2, I2) to the equivalence class of I2. This is clearly bijec-
tive as the inverse de�ned by the equivalence class of I maps to the equivalence class of ((I2)−1, I, I),
is well de�ned. Translating this back into forms we have a group isomorphism between C(Z2 ⊗
Sym2 Z2;D)→ C((Sym2 Z2)∗;D) de�ned by [P ] 7→ [Q

(P )
2 ]. This group isomorphism is enough to prove

the theorem, as [Pid,D] is clearly isomorphic to [Qid,D], furthermore the isomorphism [P ] 7→ [Q
(P )
2 ]

is the composition of [P ] 7→ [(P )] and [A] 7→ [QA2 ]. Since we know the second of these two map is
a group homomorphism and that the composition is an isomorphism, we have that the �rst of these
two maps needs to be an injective group homomorphism, proving part 2. Hence the unique binary
operation is the one corresponding to the unique binary operation on C((Sym2 Z2)∗;D).

We can use the group isomorphism to compose two pairs of primitive binary quadratic forms.

Before we do that it would be useful to see the inverse of [P ] 7→ [Q
(P )
3 ]. If we start with a primitive

binary quadratic form (a, b, c) then we need to �nd a cube such that Q2 = Q3 = (a, b, c). If we use
Theorem 3.7, we can see that we let e = gcd(a, b) andf = g be such that h = −fb−ec

a ∈ Z. This leads
to the inverse being de�ned as (a, b, c) 7→ ((0, 2a

e ,
b
e ), (e, 2f, fb−eca )).

Let P = ((a, 2b, c), (d, 2e, f)) and P ′ = ((a′, 2b′, c′), (d′, 2e′, f ′)) be two pairs of primitive binary
quadratic forms. Then we calculate that

Q
(P )
3 = (db− ae)x2 + (af − dc)xy + (ec− bf)y2

Q
(P ′)
3 = (d′b′ − a′e′)x2 + (a′f ′ − d′c′)xy + (e′c′ − b′f ′)y2
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Then we let E = gcd(db − ae, d′b′ − a′e′, 1
2 (af + a′f ′ − dc − d′c′)), n1, n2, n3 be such that n1(db −

ae) + n2(d′b′− a′e′) + n3

2 (af + a′f ′− dc− d′c′) = e and set B = 1
E (n1(db− ae)(a′f ′− d′c′) + n2(d′b′−

a′e′)(af − dc) + n3

2 ((af − dc)(a′f ′ − d′c′) +D)), then

Q
(P )
3 +Q

(P ′)
3 =

(db− ae)(d′b′ − a′e′)
E2

x2 +Bxy +
E2(B2 −D)

4(db− ae)(d′b′ − a′e′)
y3.

Unfortunately, this does not simplify much more.

Example. Let us compose P = ((−5, 2·2,−3), (0, 2·1,−3)) and P ′ = ((−11, 2·12,−13), (0, 2·7,−17)),
that is P = (−5x2 + 4xy − 3y2, 2xy − 3y2) and P ′ = (−11x2 + 24xy − 13y2, 14xy − 17y2). We can
calculate that the discriminant D = 165. We have

Q
(P )
3 = 5x2 +−15xy + 3y2,

Q
(P ′)
3 = 77x2 + 187xy + 113y2.

Then we see that gcd(5, 77, 86) = 1 and that we can let n1 = 31, n2 = −2, n3 = 0. So we set
B = 31 · 5 · 187− 2 · 77 · −15 mod 2 · 5 · 77 = 495. Hence we have

Q
(P )
3 +Q

(P ′)
3 = 385x2 + 495xy + 159y2.

From here we let e = gcd(385, 495) = 55, and we need to �nd f such that h = −495f−8745
385 is integral.

One can check that we can let f = 1. Hence [P ] + [P ′] = [((0, 14, 9), (55, 2,−24))]. Writing out in full:

[(−5x2+4xy−3y2, 2xy−3y2)]+[(−11x2+24xy−13y2, 14xy−17y2)] = [(14xy+9y2, 55x2+2xy−24y2)]

Theorem 3.19. The inverse of the SL2(Z)×SL2(Z)-equivalence class containing P = ((a, 2b, c), (d, 2e, f)) ∈
Z2 ⊗ Sym2 Z2 is the SL2(Z)× SL2(Z)-equivalence class containing −P = ((a,−2b, c), (−d, 2e,−f)).

Proof. We use the isomorphisms between C(Z2 ⊗ Sym2 Z2;D) and C((Sym2 Z2)∗;D). We have [P ] +
[−P ] 7→ [QP ]+ [Q−P ] = [(db−ae, af −dc, ec− bf)]+ [(db−ae,−(af −dc), ec− bf)] = [QP ]− [QP ] = 0,
hence [P ] + [−P ] = 0.

3.6 Pairs of quaternary alternating 2-forms

We will now look at a fourth way of constructing a form from our 2×2×2 cube of integers, but to start
our motivation we need to take a di�erent look at (Z2)⊗3. Recall from Linear Algebra that the dual
of V , denoted V ∨, is the group HomZ(V,Z) of Z-linear maps from V to Z, furthermore if V is �nite
dimensional then there is, once we have chosen a basis of V , a natural isomorphism between V and
V ∨. Also recall from Rings and Modules that HomZ(V ⊗W,C) = BilinZ(V ×W,C). We say a linear
map φ is alternating if φ(v1, . . . , vi, vi+1, . . . , vn) = −φ(v1, . . . , vi+1, vi, . . . , vn) for all vj ∈ V and any
i ∈ [1, n], or alternatively if the associated matrix M is skew-symmetric, i.e., such that MT = −M .
We now formally de�ne the wedge product :

De�nition 3.20. Let V be a Z-module and T (V ) denote the tensor algebra of V , that is the set of
�nite sum of v ⊗ u with v, u ∈ V . Let I C T (V ) be the ideal generated by all elements of the form
v ⊗ v, v ∈ V . Then the wedge product of V is ∧(V ) = T (V )/I. The wedge product of two elements
u, v ∈ V is u ∧ v = u⊗ v mod I.

We let ∧k(V ) denote the kth wedge product, which is the vector subspace of ∧(V ) spanned by
elements of the form v1 ∧ v2 ∧ · · · ∧ vk with vi ∈ V .

One can see that the wedge product map V ×V → ∧2V is alternating, so we have HomZ(V ∧V,C) =
AltBilinZ(V × V,C). This extends to HomZ(∧kV,C) = (alternating bilinear forms on V k). If V is
�nite dimensional and we have chosen a basis for it, we can use the isomorphism between V and V ∨

to de�ne an isomorphism between (∧kV )∨ and ∧k(V ∨).
For ease of notation, let Li for i ∈ {1, 2, 3} denote a copy of (Z2)∨, since Li is �nite dimensional we

have L∨i = Z2. With this setup we can think of (Z2)⊗3 as the space of Z-trilinear map L1×L2×L3 → Z.
Given a trilinear map φ : L1 × L2 × L3 → Z we can construct a new trilinear map φ : L1 × (L2 ⊕
L3) × (L2 ⊕ L3) → Z given by φ(r, (s, t), (u, v)) = φ(r, s, v) − φ(r, u, t), which is alternating in the
second and third variable (i.e, φ(r, (s, t), (u, v)) = −φ(r, (u, v), (s, t)) ). Let us use Bhargava's notation
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id⊗∧2,2 to denote the map which takes φ to φ, where id represent the fact that the �rst variable stays
�xed, while ∧2,2 denotes the fact we �fused� (Bhargava's terminology) together the second and third
variable, so that they alternate. So we have a map TriliZ(L1 × L2 × L3,Z)→ (L1 ⊗ ∧2(L2 × L3))∨ =
(L1)∨ ⊗ AltBilinZ((L2 × L3)2,Z). If we �x the basis of Li to be the dual of the standard basis of Z2,
then we can use the isomorphism L1

∼= Z2 and L2 × L3
∼= Z4. This means we have a Z-linear map

id⊗∧2,2 : (Z2)⊗3 → Z2⊗∧2Z4, which takes 2× 2× 2 cubes of integers to pairs of alternating 2-forms.
We want to see how this map acts more visually so let us denote the basis of Li by d1, d2, such that
dj(ei) = δij , where e1, e2 is the standard Z-basis of Z2, and �x A = (a, b, c, d, e, f, g, h) ∈ (Z2)⊗3. Let
us restrict ourselves to

M1 =

(
a b
c d

)
,

then φ ∈ BilinZ(L2×L3,Z) is de�ned by φ(di, dj) = a(di(e1)⊗dj(e2)) + b(di(e1)⊗dj(e2)) + c(di(e2)⊗
dj(e1)) + d(di(e2) ⊗ dj(e2)), and φ((s, t), (u, v)) = φ(s, v) − φ(u, t). With this we can calculate that
φ((di, 0), (dj , 0)) = φ(di, 0) − φ(dj , 0) = 0, φ((d1, 0), (0, d1)) = φ(d1, d1) − φ(0, 0) = a − 0 = a,
φ((d1, 0), (0, d2)) = φ(d1, d2)− φ(0, 0) = b and so on. Repeating the argument on

N1 =

(
e f
g h

)
,

we get:

e f

a b →

g h

c d




0 0 a b
0 0 c d
−a −c 0 0
−b −d 0 0

 ,


0 0 e f
0 0 g h
−e −g 0 0
−f −h 0 0


 .

Let Γ′ = SL2(Z)× SL4(Z), then Γ′ acts on Z2 ⊗ ∧2Z4 in the following way: let (F1, F2) ∈ Z2 ⊗ ∧2Z4

and

γ =

(
r s
t u

)
× γ1 ∈ SL2(Z)× SL4(Z),

then (F1, F2)γ = (rF γ11 + tF γ12 , sF γ11 + uF γ12 ), where F γ11 = γT1 F1γ1 as usual (that is the action on
a binary quadratic form Q was γTSγ where S is the associated matrix to Q). We denote the Γ′-
equivalence class of (F1, F2) by [(F1, F2)]. Back to the map id⊗∧2,2, we want to see how the group
action on 2 × 2 × 2 cubes of integers translate to the group action on Z2 ⊗ ∧2Z4. To this end we
consider �rst how γ1× id× id ∈ Γ acts on A = (a, b, c, d, e, f, g, h), it is quite clear that this correspond
to γ1 × id ∈ Γ′ acting on (id⊗∧2,2)(A). Now we look at id×γ2 × id ∈ Γ, this gives rise to


0 0 ar + bt as+ bu
0 0 cr + dt cs+ du

−ar − bt −cr − dt 0 0
−as− bu −cs− du 0 0

 ,


0 0 er + ft es+ fu
0 0 gr + ht gs+ hu

−er − ft −gr − ht 0 0
−es− fu −gs− hu 0 0


 ,

when γ2 =

(
r s
t u

)
∈ SL2(Z).

We can see that this corresponds to the action of id×γ′2 ∈ Γ′ where

γ′2 =

(
γ2 0
0 id

)
or equivalently

(
id 0
0 γ2

)
∈ SL4(Z).

Similarly when considering how id× id×γ3 ∈ Γ acts on A, we �nd that this corresponds to the action
of id×γ′3 ∈ Γ′ where

γ′3 =

(
γ3 0
0 id

)
or equivalently

(
id 0
0 γ3

)
∈ SL4(Z).
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With this in mind it is not hard to see that that

(id⊗∧2,2)(Aγ1×γ2×γ3) = ((id⊗∧2,2)(A))γ1×(γ2⊕γ3) where γ2 ⊕ γ3 =

(
γ2 0
0 γ3

)
∈ SL4(Z).

So the map id⊗∧2,2 gives rise to a well de�ned map sending [A] to [(id⊗∧2,2)(A)].

De�nition 3.21. We say that an element (F1, F2) ∈ Z2 ⊗ ∧2Z4 is primitive if it is Γ′-equivalent to
(id⊗∧2,2)(A) for some primitive cube A.

The determinant of a skew-symmetric matrix, M , can be calculated to be a square, so we can
de�ne a de�ne a function Pfa�(M) =

√
det(M), where the sign of the square root is taken such that

Pfa�(I) = 1, where

I =

(
0 id
− id 0

)
.

So to any pair (F1, F2) ∈ Z2 ⊗∧2Z4 we can associate a binary quadratic form Q = Q(F1,F2) by setting
−Q(x, y) = Pfa�(F1x− F2y). If we let

F1 =


0 p a b
−p 0 c d
−a −c 0 q
−b −d −q 0

 F2 =


0 r e f
−r 0 g h
−e −g 0 s
−f −h −s 0

 ,
then explicit calculation shows

−Q(x, y) = (pq − ad+ bc)x2 + (ps+ rq − ah− ed+ cf + bg)xy + (rs− eh+ gf).

Notice that if (F1, F2) = (id⊗∧2,2)(A) then −Q = QA1 (where QA1 is as in the subsection on page 14),
since in this case we have p = q = r = s = 0. We set the discriminant of (F1, F2) to be Disc((F1, F2)) =
Disc(Q).

We use C(Z2⊗∧2Z4, D) to denote the set of Γ′-equivalence classes of primitive pairs of quaternary
alternating 2-forms (M,N) with discriminant D.

Theorem 3.22 (Composition of pairs of quaternary alternating 2-forms.). Let D ≡ 0 or 1 mod 4
and let Fid,D = (F1, F2)id,D := (id⊗∧2,2)(Aid,D). Then there exists a unique binary operation which
turns C(Z2 ⊗ ∧2Z4;D) into an additive group such that:

1. [(F1, F2)id,D] is the identity,

2. There is a group homomorphism C((Z2)⊗3, D)→ C(Z2⊗∧2Z4, D) de�ned by [A] 7→ [(id⊗∧2,2)(A)]

3. There is a group homomorphism C(Z2 ⊗ ∧2Z4, D) → C((Sym2 Z2)∗, D) de�ned by [(F1, F2)] 7→
[Q(F1,F2)]

Proof. We know the map of 2. is well de�ned by our discussion before the theorem. Furthermore since
an element F ∈ C(Z2 ⊗∧2Z4;D) is primitive, we know that there exists a primitive cube A such that
[(id⊗∧2,2)(A)] = [F ]. Hence this map is clearly surjective. From this it follows that the map gives
rise to a unique binary operation, which clearly has [Fid,D] as the identity. As for the homomorphism
of part 3., it is constructed by �nding A such that [(id⊗∧2,2)(A)] = [(F1, F2)] and sending [A] to
[QA1 ]. To show that the homomorphism of part 3. is well de�ned, we can after long and tedious
calculation of elements in [(F1, F2)id,D], show that the map acts trivially on the kernel of the map
[A] 7→ [(id⊗∧2,2)(A)]. Hence by the fundamental theorem of homomorphism of groups we have that
the map [(F1, F2)] 7→ [Q(F1,F2)] is well de�ned.

Due to the tedious and long calculation, while the rest of the above proof seemed fairly easy, this
was not a very enlightening. In fact, we can take a more interesting, if less straight-forward approach,
by constructing a bijection in the same style we have been doing so far, this will also prove something
stronger. But for this we need to extend some of the notions we applied to ideals into more general
module of a quadratic ring. So let O be an oriented quadratic ring and K = O ⊗Z Q.
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De�nition 3.23. We de�ne a rank n ideal of O to be an O-module of Kn having rank 2n as a
Z-module, hence it can be written as [α1, β1, . . . , αn, βn], with αi, βi ∈ Kn

Two rank n ideals are said to be in the same rank n ideal class if there exists an element λ ∈ GLn(K)
mapping one to the other.

This is a generalisation of fractional ideals which are rank 1 ideals by that de�nition and the
de�nition of rank n ideal class is compatible with fractional ideal class since GL1(K) ∼= K∗. With rank
n ideals also comes the idea of oriented rank n ideals, like in the case of fractional ideals. Recall that

I = [α, β] is positively oriented if αβ−αβ√
D

> 0, which is equivalent to the determinant of the matrix

transforming [1, τ ] to [α, β] being positive. So in the same spirit we de�ne:

De�nition 3.24. The basis of a rank n ideal M = [α1, β1, . . . , αn, βn] is positively oriented (respec-
tively negatively oriented) if the matrix transforming

[(1, 0, . . . , 0), (τ, 0, . . . , 0), (0, 1, . . . , 0), (0, τ, . . . , 0), . . . (0, 0, . . . 1), (0, 0, . . . , τ)]

to M has positive determinant (respectively negative determinant).
As usual the norm of an oriented rank n ideal M is de�ned to be the index of M in On, to be more

precise N(M) = |L/M | · |L/O|−1 where L is any lattice in Kn which contains both On and M .
Let Det(M) denote the ideal in O generated by all elements of the form det(x1, . . . , xn) where

xi ∈M ⊆ Kn and det is the canonical map (Kn)n → K de�ned by taking the determinant.
In particular ifM ∼= I1⊕· · ·⊕In ⊆ Kn for some ideals I1, . . . , In inO then Det(M) = I1 . . . In. With

this we can see that we can say, in the same spirit of a triple collinear oriented fractional ideals, a k-tuple
of oriented O-idealsM1, . . .Mn of ranks n1, . . . , nk respectively is collinear if Det(M1) . . .Det(Mk) ⊆ O
andN(M1) . . . N(Mk) = 1. Similarly we say two such collinear k-tuples (M1, . . . ,Mk) and (M ′1, . . . ,M

′
k)

to be equivalent if there exists elements λ1, . . . , λk in GLn1
(K), . . . ,GLnk(K) respectively such that

M ′i = λiMi for all i.

In the same spirit as before, let us use the notation Col21,2 to denote the set of collinear pairs
(I,M), where I is an oriented rank 1 ideal and M an oriented rank 2 ideal. Then we denote the set of
equivalence classes of collinear oriented invertible pairs of ideals of rank 1 and 2 respectively, (I,M),
of a quadratic ring O by C(Col21,2;O) and we get the following theorem.

Theorem 3.25. There is a bijection between C(Z2⊗∧2Z4;D) and C(Col21,2;O) where O is the oriented
quadratic ring of discriminant D.

Proof. As usual this will follow the work of Bhargava [Bhargava(2004), p 24]. For the moment let us
forget the conditions of primitive and invertible. As usual let O be and oritented ring and let D be
its discriminant. Let 1, τ be a positively oriented basis of O (with τ2 = ετ + D−ε

4 ), and let (I,M) be
such that IDet(M) ⊆ O and N(I)N(M) = 1. Let α1, α2 be a correctly oriented basis of I and let
β1, β2, β3, β4 be a correctly oriented basis of M . Since (I,M) are a collinear pair, we can use the fact
that IDet(M) ⊆ O to write a priori 32 equations:

αi det(βj , βk) = c
(i)
j,k + a

(i)
j,kτ (3.7)

for i ∈ {1, 2}, j, k ∈ {1, 2, 3, 4} and c
(i)
j,k, a

(i)
j,k ∈ Z. Noticing that det(βj , βj) = 0∀j we have cj,j =

aj,j = 0, furthermore since det(βj , βk) = −det(βk, βj) (Linear Algebra), we have that c
(i)
j,k = −c(i)k,j and

a
(i)
j,k = −a(i)

k,j cutting the number of unknown constant down to 24. Set Fi = {a(i)
j,k}j,k ∈ M4(K), i ∈

{1, 2}, by our previous two comment we have that the diagonal entries of Fi are 0 and FTi = −Fi, so
they are both 2-alternating forms. Hence F = (F1, F2) ∈ Z2 ⊗ ∧2Z4 is our desired pair of quaternary
alternating 2-forms.

If we choose another basis for I,M , we are applying a change of basis by an element γ ∈ SL2(Z)×
SL4(Z) = Γ′, again the element has to be in SL2(Z) × SL4(Z) to keep the orientation of I and M
the same, and by constructions of the map we can see that this will simply change F by the same
element γ. Hence our map is well de�ned and independent of choice of basis. Furthermore, if we take
an equivalence set (κ1I, κ2M), since we have that N(κ1)N(det(κ2)) = 1, we have that they map to
the same F . So our map is well de�ned and independent of the choice of basis.
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We show that F has discriminantD, by showing that equations (3.7) implies Disc(F ) = N(I)2N(M)2Disc(O).
First if we let I = [1, τ ] and M = [(1, 0), (τ, 0), (0, 1), (0, τ)], we see that F = Fid,D, in which case the
identity holds. Now suppose we change I to a general rank 1 ideal [α, β] by a an element

T =

(
r s
t u

)
∈ SL2(Z),

this changes Fid,D = (F1, F2) to (rF1 + tF2, sF1 + uF2), hence, once we have calculated the quadratic
form associated to it, changes the discriminant by a factor of det(T )2 = N(I)2. Similarly, if we change
M to a general rank 2 ideal, then we �nd that the discriminant is scaled by N(M)2. Hence giving the
identity Disc(F ) = N(I)2N(M)2Disc(O). But since N(I)N(M) = 1, we have that Disc(F ) = Disc(O).

As usual, we want to show that under this map every equivalence classes (I,M) get map to exactly

one [F ]. For this end we �x F = (F1, F2) ∈ Z2 ⊗ ∧2Z4 with Fi = {a(i)
j,k} and consider the set of

equations (3.7). We �rst need to following identity, that can easily be check through direct calculation:
If v1, v2, v3, v4 are four planar coordinates then det(v1, v3) · det(v2, v4) = det(v1, v2) · det(v3, v4) +
det(v1, v4) · det(v2, v3). We can use this identity to write

αi det(βk, βm) · αj det(βl, βn) = αi′ det(βk, βl) · αj′ det(βm, βn) + αi′′ det(βk, βn)αj′′ det(βl, βm)

for u, j ∈ {1, 2}, k, l,m, n ∈ {1, 2, 3, 4} and (i′, j′) and (i′′, j′′) are any ordered pairs equal either to
(i, j) or (j, i). If we expand this with all the di�erent possible combination and equates the τ and 1
separately we gets 94 linear and quadratic equations. Bhargava states [Bhargava(2004), p 25] that
these 94 equations plus the condition that N(I)N(M) > 0 give the following unique solution:

c
(i)
j,k = (i− i′)[a(i′)

j,k Pfa�(Fi)

−1

2
a

(i)
j,k(Pfa�(F1 + F2)− Pfa�(F1)− Pfa�(F2))]− 1

2
a

(i)
j,kε (3.8)

where {i, i′} = {1, 2}, j, k ∈ {1, 2, 3, 4} and ε ∈ {0, 1} as usual.
Once the a

(i)
j,k and c

(i)
j,k are know we can determine αi and βj . First notice that equations (3.7)

implies that α1 : α2 = (c
(1)
j,k + a

(1)
j,kτ) : (c

(1)
j,k + a

(2)
j,kτ) for j, k ∈ {1, 2, 3, 4}, we know the right hand

side of the equation is the same for all j, k ∈ {1, 2, 3, 4} due to the restrictions of equations (3.7). So

α1, α2 are uniquely determined up to a scalar factor in K, hence we can set αi = c
(i)
1,2 + a

(i)
1,2τ for

i = 1, 2. Once we have �xed our choice of α1, α2, we can use equations (3.7) to determine the values of
det(βj , βk). Hence β1, β2, β3, β4 are uniquely determined as elements of K2 up to a factor of SL2(K),
since det(γ · (βj , βk)) = det(βj , βk) for γ ∈ SL2(K). Once we have showed that these two Z-modules
are modules over O, then we have showed that to any pair of alternating quaternary 2-forms, there
exists a collinear pair (I,M) which maps to it, showing surjectivity of the map. Futhermore, due to the
uniqueness of the solution (3.8), we have that the equivalence class of collinear pair (I,M) mapping
to F is unique, which as before shows injectivity.

We need to check that these two Z-modules, one with basis α1, α2, the other with basis β1, β2, β3, β4

are modules over O. As with previous proofs we can use direct calculation to show the structure of
I = [α1, α2] is determined by

τα1 =
b1 + ε

2
α1 + a1α2

−τα2 = c1α1 +
b1 − ε

2
α2

where −Pfa�(F1x − F2y) = a1x
2 + b1xy + r1y

2. Let us use sgn(i, j, k, l) to denote the sign of the
permutation (i, j, k, l) of (1, 2, 3, 4), for example sgn(2, 1, 3, 4) = −1 and sgn(3, 2, 4, 1) = 1. As we have

�xed αi = c
(i)
1,2 + a

(i)
1,2τ , we can let β1 = (1, 0) and β2 = (0, 1) forcing β3 = (a3 + b3τ, c3 + d3τ), β4 =

(a4 + b4τ, c4 + d4τ) where ai + biτ = α−1
2 (c

(1)
2,i + a

(1)
2,i τ) and ci + diτ = α−1

1 (c
(1)
1,i + a

(1)
1,i τ). We can now

check, after some long calculations that

τβi =

4∑
j=1

tijβj
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where

tij =

sgn(i, j, k, l)(a
(1)
i,l a

(2)
i,k − a

(1)
i,ka

(2)
i,l ) i 6= j

1
2

∑
j,k,l
k<l

sgn(i, j, k, l)(a
(1)
k,la

(2)
i,j − a

(1)
i,j a

(2)
k,l ) + 1

2ε j = i

Hence we have that M is in fact an O-module.
We have showed that given F ∈ Z2⊗∧2Z4, we construct a, up to equivalence, unique pair of collinear

ideals of rank 1, 2 respectively, which under the map given by equations (3.7) maps to F . Let us consider
now the map id⊗∧2,2. Consider A = (a, b, c, d, e, f, g, h) ∈ (Z2)⊗3, this correspond to (I1, I2, I3)
where I1 = [c1,1,1 + aτ, c2,1,1 + eτ ], I2 = [c2,1,2 + fτ, c2,2,2 + hτ ],I3 = [(c2,1,2 + fτ)−1, (c2,1,1 + eτ)−1]
and ci,j,k is given by equation (3.3). On the other hand (id⊗∧2,2)(A) correspond to (I,M) where

I = [c
(1)
1,3 + aτ, c

(2)
1,3 + eτ ], (we can not use c

(i)
1,2 + a

(i)
1,2τ as it is zero and hence not invertible in K), and

M = [(0, c
(2)
1,4 + fτ), (0, c

(2)
2,4 + hτ), ((c

(2)
1,4 + fτ)−1, 0), ((c

(2)
1,3 + eτ)−1, 0)], (we use a slightly di�erent basis

for M than expected for ease of calculation, one can easily check that (I,M) is a collinear pair giving
(id⊗∧2,2)(A)). Notice that M = I2 ⊕ I3 meaning that the map (id⊗∧2,2) correspond to the map
which sends ((I1, I2, I3),O) to ((I1, I2 ⊕ I3),O). Furthermore a theorem by Bass [Bass(1962), Thm
1.7] states: Let R be a Noetherian integral domain, then every torsion free R-module is a direct sum
of modules of rank one if and only if all �nitely generated ideals of R have at most two generators.
In our case, O is a Noetherian ring with all fractional ideal having rank two, hence any torsion free
O-moduleM can be written as the direct sum of two fractional ideal. This means that the map sending
((I1, I2, I3,O) to ((I1, I2 ⊕ I3),O) is surjective, i.e., id⊗∧2,2 is a surjective group map.

None of the above required primitivity or invertibility, so to complete our proof, we need to show
that invertible ideals give rise to primitive pairs of quaternary alternating 2-forms. To do this we
use the above map id⊗∧2,2. Since a primitive pair of quaternary alternating 2-forms comes from a
primitive cube, and that a primitive cube is in bijection with invertible oriented fractional ideals we
have that (I1, I2⊕I3) have to be invertible. On the other hand since invertible ideals are only equivalent
to invertible ideal, an either I or M is not invertible, then they can not give rise to a primitive pair of
quaternary alternating 2-forms. Hence here completes the proof that there is an isomorphism between
the group C(Z2 ⊗ ∧2Z4;D) and C(Col21,2;O).

To �nish proving Theorem (3.22) we �nally, show that [(F1, F2)]→ [Q(F1,F2)] is a group homomor-
phism. (F1, F2) ∈ Z2 ⊗ ∧2Z4 correspond to pairs ((I,M),O) with (I,M) being a collinear pair, in
particular IDet(M) = O. Serre's cancellation theorem [Serre(1957), Prop 7] states that a module of
rank k over a dimension 1 ring O is uniquely determined by its determinant. In our case since from
the previous paragraph we know M = I2 ⊕ I3 and using the fact that IDetM = II2I3 = O, we have
that any pair ((I,M),O) is in fact of the form ((I, I−1 ⊕ O),O). Hence we have a bijection sending
((I,M),O) to (I,O), which correspond to the bijection C(Z2 ⊗ ∧2Z4, D)→ C((Sym2 Z2)∗, D) which
is de�ned by [(F1, F2)]→ [Q(F1,F2)]

Corollary 3.26. Every element in Z2 ⊗ ∧2Z4 is Γ′-equivalent to (id⊗∧2,2)(A) for some cube A ∈
(Z2)⊗3.

Corollary 3.27. There is an isomorphism of groups C(Z2 ⊗ ∧2Z4) → C((Sym2 Z2)∗, D) de�ned by
[(F1, F2)] 7→ [Q(F1,F2)].

The second corollary is the most surprising one of the two, although the �rst one is quite important
in its own right. The advantage of having gone through all this work to show the isomorphism is
that along the way we saw the inverse of the map de�ned by [(F1, F2)] 7→ [Q(F1,F2)]. It is the map
correspond to I 7→ (I, I−1 ⊕ O). Using the bijection between binary quadratic forms and fractional
oriented ideals, if we let O = [1, τ ] we have I = [a, −b−ε2 + τ ] and hence I−1 = 1

a [a, −b−ε2 + τ ]. With
some direct calculations we see that this gives the map

(a, b, c) 7→




0 0 0 a
0 0 −1 − ε+b2
0 1 0 0
−a ε+b

2 0 0

 ,


0 0 1 ε−b
2

0 0 0 c
−1 0 0 0
−ε+b

2 −c 0 0




where ε ∈ {0, 1} and ε ≡ b2 mod 4 as usual (since D = b2 − 4ac). The entry c was due to the

calculation (−b−ε2 )(−b−ε2a ) + (−b−ε2a )ε − D−ε
4a = b2−D

4a = c. We can now look at how to compose two
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primitive pairs of alternating quaternary alternating 2-forms. Let F and F ′ be two such forms of
discriminant D, with associated binary quadratic forms

−QF = (pq − ad+ bc)x2 + (−ps− rq + ah+ ed− cf − bg)xy + (rs− eh+ gf),

−QF
′

= (p′q′ − a′d′ + b′c′)x2 + (−p′s′ − r′q′ + a′h′ + e′d′ − c′f ′ − b′g′)xy + (r′s′ − e′h′ + g′f ′).

Then we set E = gcd(pq−ad+bc, p′q′−a′d′+b′c′, 1
2 (−ps−p′s′−rq−r′q′+ah+a′h′−c′f ′−bg−b′g′))

and we let n1, n2, n3 be as usual. Then the composition of F and F ′ is


0 0 0 A
0 0 −1 − ε+B2
0 1 0 0
−A ε+B

2 0 0




0 0 1 ε−B
2

0 0 0 C
−1 0 0 0
−ε+B

2 −C 0 0


 ,

where

A =
(pq − ad+ bc)(p′q′ − a′d′ + b′c′)

E2

B =
n1

E
(pq − ad+ bc)(−p′s′ − r′q′ + a′h′ + e′d′ − c′f ′ − b′g′)

+
n2

E
(p′q′ − a′d′ + b′c′)(−ps− rq + ah+ ed− cf − bg)

+
n3

2E
((−ps− rq + ah+ ed− cf − bg)(−p′s′ − r′q′ + a′h′ + e′d′ − c′f ′ − b′g′)−D)

C =
E2(B2 −D)

4(pq − ad+ bc)(p′q′ − a′d′ + b′c′)

Again, unfortunately not much cancellation or simpli�cation seems possible, but we show in the next
example that the calculations are not hard.

Example. Let us compose the folloiwng two pairs of quaternary alternating 2-forms, F and F ′, which
gives rise to the binary quadratic forms

−QF = (10·0−(−5)·9+7·(−3))x2+(−10·1−4·0+(−5)·(−5)+(−4)·9−(−3)·8−7·0)xy+(4·1−(−4)·(−5)+0·8)y2 = 24x2+3xy−16y2

−QF
′

= (3·1−0·0+0·0)x2+(−3·(−5)−0·1+0·11+(−5)·0−0·11−0·(−5))xy+(0·(−5)−(−5)·11+(−5)·11)y2 = 3x2+15xy−110y2.

We calculate the discriminant D = 1545, hence ε = 1, and E = gcd(24, 3, 9) = 3, so we let n1 = n3 = 0
and n2 = 1. Therefore we get B = 1

3 (3 · 3) = 3, A = 8 and C = 9−1545
4·8 = −48. Hence




0 10 −5 7
−10 0 −3 9

5 3 0 0
−7 −9 0 0

 ,


0 4 −4 8
−4 0 0 −5
4 0 0 1
−8 −5 −1 0



 +





0 3 0 0
−3 0 0 0
0 0 0 1
0 0 1 0

 ,


0 0 −5 11
0 0 −5 11
5 5 0 −5
11 11 5 0





=





0 0 0 24
0 0 −1 −2
0 1 0 0
−24 2 0 0

 ,


0 0 1 −1
0 0 0 −16
−1 0 0 0
1 16 0 0



 +





0 0 0 3
0 0 −1 −8
0 1 0 0
−3 8 0 0

 ,


0 0 1 −7
0 0 0 −110
−1 0 0 0
7 110 0 0





=





0 0 0 8
0 0 −1 −2
0 1 0 0
−8 2 0 0

 ,


0 0 1 −1
0 0 0 −48
−1 0 0 0
1 48 0 0





Theorem 3.28. The inverse of the class containing F ∈ Z2 ⊗ ∧2Z4 is the class containing −F ∈
Z2 ⊗ ∧2Z4, where:

F =




0 p a b
−p 0 c d
−a −c 0 q
−b −d −q 0

 ,


0 r e f
−r 0 g h
−e −g 0 s
−f −h −s 0


 ,−F =




0 p −a b
−p 0 c −d
a −c 0 q
−b d −q 0

 ,


0 −r e −f
r 0 −g h
−e g 0 −s
f −h s 0




Proof. Notice that [QF ] = [(pq− ad+ bc)x2 + (−ps− rq+ ah+ ed− cf − bg)xy+ (rs− eh+ gf)] while
[Q−F ] = [(pq − ad+ bc)x2 − (−ps− rq + ah+ ed− cf − bg)xy + (rs− eh+ gf), ]. So [Q−F ] = −[QF ],
hence [F ] + [−F ] = 0.
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3.7 Diagrams

To summarise this section, we started with cubes of integers and we have constructed �ve di�erent
objects. Between these objects we constructed the following discriminant-preserving maps:

Sym3 Z2
� _

ı

��
(Z2)⊗3

id⊗∧2,2

uu
A7→QAi

����
Z2 ⊗ ∧2Z4

(F1,F2)7→Q(F1,F2)

// (Sym2 Z2)∗ Z2 ⊗ Sym2 Z2
V6



ii

P 7→Q(P )
3

oo

The map ı and  were the natural inclusion discussed in subsection 3.4 and 3.5 respectively. It also
quite clear that the map sending A to QAi is surjective, since we have by Theorem 3.4 we can always
construct cube that will give rise to (a, b, c) and (a,−b, c). This diagram in turn creates 5 groups with
the following group homomorphisms:

C(Sym3 Z2;D)

α

��
C((Z2)⊗3;D)

βi
����

γ

vvvv
C(Z2 ⊗ ∧2Z4;D)

δ

∼= // C((Sym2 Z2)∗;D) C(Z2 ⊗ Sym2 Z2;D)
∼=
ε

oo
V6

ζ

ii

This diagram only commutes in the left triangle when taking the map β1, while for the right triangle
you need to take the map β3. On the way we showed that:

• the map α, de�ned by [C] 7→ [ı(C)] is neither injective, see the example in Section 3.4, nor
surjective. In the following example, we show, using two di�erent method, a cube which has no
preimages.:

Example. Consider the cube
1 0

0 2

0 −3.

1 0

of discriminant −24. We want to show that it is not equivalent to a triply symmetric cube.

For the �rst method we stay within C((Z2)⊗3;−24). Note that if Aγ1×γ2×γ3 = B where B is a

triply symmetric cube, then B = (Aid×γ2γ−1
1 ×γ3γ

−1
1 )γ1×γ1×γ1 , so if B is triply symmetric, then

so is Bγ
−1
1 ×γ

−1
1 ×γ

−1
1 = Aid×γ2γ−1

1 ×γ3γ
−1
1 . Hence we just need to show that Aγ is not a triply

symmetric cube for any γ ∈ id×SL2(Z)× SL2(Z). Suppose there exists

γ =

(
1 0
0 1

)
×
(
r2 s2

t2 u2

)
×
(
r3 s3

t3 u3

)
∈ id×SL2(Z)× SL2(Z),

such that Aγ is a triply symmetric cube, then using the triple symmetry of the cube and calcu-
lating Aγ we have the following set of equality:

2u2r3 + s2t3 = 2t2s3 + r2u3 = r2r3 − 3t2t3,

2u2s3 + s2u3 = s2r3 − 3u2t3 = r2s3 − 3t2u3.

39



If we rearrange the second equality of the �rst line we have r2(u3 − r3) = t2(−3t3 − 2s3), so
multiplying r2u2 − s2t2 = 1 by u3 − r3 we have t2(−3t3 − 2s3)u2 − t2(u3 − r3)s2 = (u3 − r3).
The left hand side is t2((s2r3 − 3u2t3) − (2u2s3 + s2u3)) = 0, so we must have u3 = r3 and
t2(−3t3 − 2s3) = 0. We have two cases:

Case 1. t2 6= 0: In which case 3t3 = −2s3. Since we have r3u3 − s3t3 = 1, we need to solve
r2
3 + 2

3s
2
3 = 1, which has only the solutions r3 = u3 = ±1 and t3 = s3 = 0. Substituting

all of this back into the equations above, we �nd 2u2 = r2 and s2 = −3t2. Again since
we have r2u2 − s2t2 = 1 we �nd 2u2

2 + 3u2
2 = 1, which has no solution over Z.

Case 2. t2 = 0: In which case we have r2 = u2 = ±1. Looking at the second set of equality we
�nd 2u2s3 + s2r3 = s2r3 − 3u2t3, since u2 6= 0 this implies s3 = −3t3. Then as in the
�rst case we �nd, since r3 = u3, that r3 = u3 = ±1 and t3 = s3 = 0, leading again to
a lack of solution

We have showed that no such γ can exist, hence A is not equivalent to a triply symmetric cube,
hence there is not binary cubic form C such that [α(C)] = [A].

For the second method we use the group isomorphism that we have constructed in this paper.
We will see that this is quicker and much easier than the above method. Let us use equations
(3.4) to construct the triple collinear oriented invertible fractional ideals which correspond to
A. Let τ be such that τ2 = −6 (since 8 ≡ 0 mod 4), we calculate that c1,1,1 = 2, c2,1,1 = 0,
c2,1,2 = −6, c2,2,2 = 0. Hence we have I1 = [2, τ ], I2 = [−6,−3τ ] and I3 = − 1

6 [1, τ ]. Now quite
clearly I3 is equivalent to O = [1, τ ]. On the other hand we claim that I1 is not principal. This
is due to the fact that N(2) = 4, N(τ) = 6, hence any element α which would generate I1, needs
to have norm dividing 2. Since I 6= O, we have that α is not a unit, furthermore, due to the fact
that N(a + bτ) = a2 + 6b2, we have that no element of O has norm 2. Hence such an α does
not exist and I1 is not principal. Since I1 is not equivalent to I3, we have that (I1, I2, I3) can
not be in the image of (I, δ) for any I or δ. This examples shows how easier it is to work using
the bijection. We also have some free information, namely that QA1 is equivalent to QA2 , since
I2 = −3I1, and we know that QA3 is equivalent to the principal binary quadratic form.

• The maps βi, de�ned by [A] 7→ [QAi ] for i = 1, 2, 3 are all surjective. This is due to the fact that,
for β1, the lower right triangle commutes, and due to the isomorphism of ε, we have that β1 has to
be surjective. Since the three maps are the same up, up to a composition with an automorphism
on C((Z2)⊗3;D). It is clearly not injective as one group is isomorphism to C+(O)2 while the
second group is isomorphic to C+(O). Still we use the following example to illustrate how to
argue without using the isomorphism, and to show two non-equivalent cubes which give rise to
the same three binary quadratic forms.

Example. Consider the two following cubes of discriminant −31:

A =

2 0

0 1

1 −4,

1 0

B =

2 −1

0 1

0 −4.

1 0

We calculate QA1 = x2 − xy + 8y2 = QB1 , so we have β1(A) = β1(B). On the other hand
QA2 = 2x2+xy+4y2 while QB2 = 2x2−xy+4y2, since they are both in reduced form, we know that
they are not SL2(Z)-equivalent. Now suppose [A] = [B], then there is γ = γ1 × γ2 × γ3 ∈ Γ such

that B = Aγ , but we recall that Q
(Aγ)
i = (QAi )γi , so in particular if B = Aγ then QB2 = (QA2 )γ2 .

Which is a contradiction since we have QB2 and QA2 are not equivalent. Hence we have [A] 6= [B]
but [β1(A)] = [QA1 ] = [QB1 ] = [β1(B)] showing that β1 is not injective. A similar argument
can be used to show that neither β2, β3 are injective. An interesting point to note is that
QA3 = 2x2 − xy + 4y2 and QB3 = 2x2 + xy + 4y2, hence while A and B are not equivalent they
both give rise to the same three binary quadratic forms.
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• The map γ, de�ned by [A] 7→ [(id⊗∧2,2)(A)], is surjective, by Corollary 3.26, but not injective,
consider the following example

Example. Let us use the same two cube of discriminant −31 as above. Then if we �nd the pairs
of quaternary alternating 2-forms they map two and calculate their associated binary quadratic
forms: Qγ(A) = x2 − xy + 8y2 = QA1 = QB1 = Qγ(B) = x2 − xy + 8y2. Since they are the same
we have that γ(A) and γ(B) are equivalent, hence γ is not injective.

• The map δ, de�ned by [F ] 7→ [QF ], is an isomorphism, by Corollary 3.27.

• The map ε, de�ned by [P ] 7→ [QP ], is an isomorphism, by Theorem 3.18.

• The map ζ, de�ned by [P ] 7→ [(P )], is injective, as seen in the proof of Theorem 3.18. It is not
surjective, consider the following example:

Example. Let us consider the following cube of discriminant −24

3 0

0 2

0 −1.

1 0

We want to show that this cube is not equivalent to a doubly symmetric cube. Notice that if

Aγ1×γ2×γ3 = B a doubly symmetry cube, then Aid× id×γ3γ−1
2 = Bγ

−1
1 ×γ

−1
2 ×γ

−1
2 , which is also a

doubly symmetric cube. Hence it is enough to show that there are no γ ∈ id× id×SL2(Z) such
that Aγ is a doubly symmetry cube. To see this, suppose that

γ =

(
1 0
0 1

)
×
(

1 0
0 1

)
×
(
r s
t u

)
is such that Aγ is a doubly symmetry cube. Calculating Aγ we see that we have 2r = u and
−s = 3t. Since we also need ru− st = 1, we need to solve 2r2 + 3t2 = 1. This has no solution in
Z, hence there is no γ such that Aγ , is doubly symmetric. So there is no pair of binary quadratic
form, P , such that [ζ(P )] = [A].

We can also look at the diagram in terms of the groups in a quadratic ring, note that in all the map
description we are talking about the equivalence class represented by:

C(Col31;O)

(I,δ)7→(I,I,I)

��

(I,δ) 7→(I) // C+
3 (O)

C+(O)× C+(O)
(I1,I2)7→(I1,I2,(I1I2)−1)//

C(Col31,1,1;O)
(I1,I2,I3) 7→(I1,I2)
oo

(I1,I2,I3)7→(Ii)

��

(I1,I2,I3) 7→(I1,I2⊕I3)

zz
C(Col21,2;O)

(I,M) 7→(I) //
C+(O)

(I)7→((I2)−1,I) //

(I)7→(I,I−1⊕M)

oo C(Col31,1;O)
(I1,I2)7→(I2)

oo

(I1,I2,I2) 7→(I1,I2,I2)

dd
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4 Conclusion and Further Work

In this paper we saw the construction of 5 di�erent groups and their links to ideals and modules of
quadratic rings. As mentioned before Bhargava take this further and goes on to explore cubic, quartic
and quintic rings, where he goes on to �nd many more interesting and important results. In section 2
we talked a bit about reduction theory for positive de�nite binary quadratic forms, this is something
that we could explore further for binary cubic forms. It would also be interesting to study the e�ect
reducing pairs of binary quadratic forms have on the binary quadratic form they are associated to.
This would also link nicely with the idea of how to determine when two forms are equivalent, especially
in the case of binary cubic forms as we can not link them to binary quadratic forms.

Better yet we have a strong tool to analyse pairs of quaternary alternating 2-forms, that is, we can
use the the bijection with binary quadratic forms. We can study the link between a single quaternary
alternating 2-form, by letting the second map be of the form(

0 id
− id 0

)
,

as then the pair is certainly primitive. In fact such a pair gives rise to the binary quadratic form
(bc− ad)x2 + (a+ d)xy + y2. So given a quaternary alternating 2-form given by the matrix

0 p
−p 0

M

−MT 0 q
−q 0


with M ∈ GL2(Z), the binary quadratic form associated to it is −det(M)x2 + Tr(M)xy + y2. Most
of the composition we have seen ended up with big formula and variable everywhere, yet when we did
the examples, there was not much work to do. For that reason it would be interesting to explore each
composition in a lot more details and see if we can establish certain relations, such as congruence, that
the composition would need to satisfy.
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A Appendix

A.1 Calculations to the proof of 3.13

A.1.1 Solving the 18 equations

We show the calculations which leads to the formula for the ci,j,k. We start with the nine equations
(which we get by writing out all possible equation and removing the redundant one, that is the one
that appears several time, or the one where we have the same thing on both side):

(α1β1γ1)(α2β2γ2) = (α2β1γ1)(α1β2γ2)

(α1β1γ1)(α2β2γ2) = (α1β2γ1)(α2β1γ2)

(α1β1γ1)(α2β2γ2) = (α1β1γ2)(α2β2γ1)

(α1β1γ1)(α1β2γ2) = (α1β2γ1)(α1β1γ2)

(α1β1γ1)(α2β1γ2) = (α1β1γ2)(α2β1γ1)

(α1β1γ1)(α2β2γ1) = (α1β2γ1)(α2β1γ1)

(α2β2γ2)(α2β1γ1) = (α2β1γ2)(α2β2γ1)

(α2β2γ2)(α1β2γ1) = (α1β2γ2)(α2β2γ1)

(α2β2γ2)(α1β1γ2) = (α2β1γ2)(α1β2γ2)

giving us the respective nine equation of the form (ci,j,k + ai,j,kτ)(ci′,j′,k′ + ai′,j′,k′τ) = (ci′,j,k +
ai′,j,kτ)(ci,j′,k′+ai,j′,k′τ). Now we recall that τ2 = ετ + D−ε

4 where ε ≡ D mod 4, ε ∈ {0, 1}, and that

D = a2
1,1,1a

2
2,2,2 + a2

1,1,2a
2
2,2,1 + a2

1,2,1a
2
2,1,2 + a2

2,1,1a
2
1,2,2

−2(a1,1,1a1,1,2a2,2,1a2,2,2 + a1,1,1a1,2,1a2,1,2a2,2,2 + a1,1,1a2,1,1a1,2,2a2,2,2

+a1,1,2a1,2,2a2,1,1a2,2,1 + a1,1,2a2,1,2a1,2,1a2,2,1 + a1,2,1a1,2,2a2,1,1a2,1,2)

+4(a1,1,1a1,2,2a2,1,2a2,2,1 + a2,2,1a2,1,2a1,2,2a2,2,2),

we expand the equations and equate the coe�cients of τ and the coe�cients of 1.

c1,1,1c2,2,2 +
D − ε

4
a1,1,1a2,2,2 = c2,1,1c1,2,2 +

D − ε
4

a2,1,1a1,2,2

c1,1,1a2,2,2 + c2,2,2a1,1,1 + εa1,1,1a2,2,2 = c2,1,1a1,2,2 + c1,2,2a2,1,1 + εa2,1,1a1,2,2

c1,1,1c2,2,2 +
D − ε

4
a1,1,1a2,2,2 = c1,2,1c2,1,2 +

D − ε
4

a1,2,1a2,1,2

c1,1,1a2,2,2 + c2,2,2a1,1,1 + εa1,1,1a2,2,2 = c1,2,1a2,1,2 + c2,1,2a1,2,1 + εa1,2,1a2,1,2

c1,1,1c2,2,2 +
D − ε

4
a1,1,1a2,2,2 = c1,1,2c2,2,1 +

D − ε
4

a1,1,2a2,2,1

c1,1,1a2,2,2 + c2,2,2a1,1,1 + εa1,1,1a2,2,2 = c1,1,2a2,2,1 + c2,2,1a1,1,2 + εa2,2,1a1,1,2

c1,1,1c1,2,2 +
D − ε

4
a1,1,1a1,2,2 = c1,2,1c1,1,2 +

D − ε
4

a1,2,1a1,1,2

c1,1,1a1,2,2 + c1,2,2a1,1,1 + εa1,1,1a1,2,2 = c1,2,1a1,1,2 + c1,1,2a1,2,1 + εa1,1,2a1,2,1

c1,1,1c2,1,2 +
D − ε

4
a1,1,1a2,1,2 = c1,1,2c2,1,1 +

D − ε
4

a1,1,2a2,1,1
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c1,1,1a2,1,2 + c2,1,2a1,1,1 + εa1,1,1a2,1,2 = c1,1,2a2,1,1 + c2,1,1a1,1,2 + εa1,1,2a2,2,1

c1,1,1c2,2,1 +
D − ε

4
a1,1,1a2,2,1 = c1,2,1c2,1,1 +

D − ε
4

a1,2,1a2,1,1

c1,1,1a2,2,1 + c2,2,1a1,1,1 + εa1,1,1a2,2,1 = c1,2,1a2,1,1 + c2,1,1a1,2,1 + εa2,1,1a1,2,1

c2,2,2c2,1,1 +
D − ε

4
a2,2,2a2,1,1 = c2,1,2c2,2,1 +

D − ε
4

a2,1,2a2,2,1

c2,2,2a2,1,1 + c2,1,1a2,2,2 + εa2,2,2a2,1,1 = c2,1,2a2,2,1 + c2,2,1a2,1,2 + εa2,1,2a2,2,1

c2,2,2c1,2,1 +
D − ε

4
a2,2,2a1,2,1 = c1,1,2c2,2,1 +

D − ε
4

a1,1,2a2,2,1

c2,2,2a1,2,1 + c1,2,1a2,2,2 + εa2,2,2a1,2,1 = c1,1,2a2,2,1 + c2,2,1a1,1,2 + εa1,1,2a2,2,1

c2,2,2c1,1,2 +
D − ε

4
a2,2,2a1,1,2 = c2,1,2c1,2,2 +

D − ε
4

a2,1,2a1,1,2

c2,2,2a1,1,2 + c1,1,2a2,2,2 + εa2,2,2a1,1,2 = c2,1,2a1,2,2 + c1,2,2a2,1,2 + εa2,1,2a1,2,2

We can then use a computer program (SAGE 4.8 which used Maxima took roughly 24hr on a standard
computer [Stein et al.(2012), SAGE]) to �nd that there are two solutions. Since we have the condition
that N(I1)N(I2)N(I3) > 0, we can try both solution and notice that only one works, hence we have
a unique solution, which, when looking at the coe�cients and sign of each solution, can be condensed
into the formula:

ci,j,k = (i′ − i)(j′ − j)(k′ − k)

[ai′,j,kai,j′,kai,j,k′ +
1

2
ai,j,k(ai,j,kai′,j′,k′ − ai′,j,kai,j′,k′ − ai,j′,kai′,j,k′ − ai,j,k′ai′,j′,k)]

−1

2
ai,j,kε

where {i, i′} = {j, j′} = {k, k′} = {1, 2}, and ε ∈ {0, 1} with ε ≡ D mod 4.

A.1.2 Showing I1, I2, I3 are fractional ideals.

If I1 = [α1, α2] = [c1,1,1 + a1,1,1τ, c2,1,1 + a2,1,1τ ] and Q1 = a1x
2 + b1xy + cy2, we want to show the

equalities

τα1 =
b1 + ε

2
α1 + a1α2

−τα2 = c1α2 +
b1 − ε

2
α2,

where ε ≡ D mod 4, ε ∈ {0, 1}. For ease of use, let A = (a, b, c, d, e, f, g, h) and we recall the following
formula:

D = a2h2 + b2g2 + c2f2 + d2e2 − 2(abgh+ cdef + acfh+ bdeg + aedh+ bfcg) + 4(adfg + bceh)

by de�nition of D;

a1 = bc− ad
b1 = de+ ah− cf − bg
c1 = fg − eh

by de�nition of Q1;

c1,1,1 = bce+
1

2
a(ah− cf − bg − de)− 1

2
aε

c2,1,1 = −afg − 1

2
e(ed− ah− cf − bg)− 1

2
eε

by using formula (3.4);

τ2 = ετ +
D − ε

4
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by de�nition of τ . From this we can calculate, recalling that ε2 = ε:

b1 + ε

2
α1 + a1α2 =

de+ ah− cf − bg + ε

2
(c1,1,1 + aτ) + (bc− ad)(c2,1,1 + eτ)

=
1

4
(a2deh+ a3h2 − a2cfh− a2bgh− acdef − a2cfh+ ac2f2 + abcfg

−abdeg − a2bgh+ abcfg + ab2g2 − ad2e2 − a2deh+ acdef + abdeg

−adeε− a2hε+ acfε+ abgε+ a2hε− acfε− abgε− adeε− aε)

+
1

2
(bcde2 + abceh− bc2ef − b2ceg + bceε+ (ade+ a2h− acf − abg + aε)τ

−bcde2 + abceh+ bc2ef + b2ceg + ae2d2 − a2deh− acdef − abdeg − bceε+ adeε)

+(−abcfg + a2dfg + (bce− ade)τ)

=
1

4
(a3h2 − 2a2cfh− 2a2bgh+ ac2f2 + 2abcfg + ab2g2 − ad2e2 − 2adeε− aε

+4abceh+ 2ae2d2 − 2a2deh− 2acdef − 2abdeg + 2adeε− 4abcfg + 4a2dfg

+(2ade+ 2a2h− 2acf − 2abg + 2aε+ 4bce− 4ade)τ)

=
1

4
(aD − aε) +

1

4
(2a(−de+ ah− cf − bg)− 2aε+ 4aε+ 4bce)τ

= (c1,1,1 + aε)τ +
D − ε
τ

a

= τ(c1,1,1 + aτ)

= τα1

We can use the same approach for −α2τ = c1α1 + b1−ε
2 α2. While we will not got through the

calculations to show

τβ1 =
b2 + ε

2
β1 + a2β2

−τβ2 = c2β1 +
b2 − ε

2
β2

τγ1 =
b3 + ε

2
γ3 + a3γ2

−τγ2 = c3γ1 +
b3 − ε

2
γ2

we will write down the following equations that are needed to check that they are correct.

I2 = [β1, β2] = [c2,1,2 + fτ, c2,2,2 + hτ ]

I3 = [γ1, γ2] = [β−1
1 , α−1

2 ] =

[
c2,1,2 + fε− fτ

c22,1,2 + εfc2,1,2 − D−ε
4 f2

,
c2,1,1 + eε− eτ

c22,1,1 + εec2,1,1 − D−ε
4 e2

]
a2 = ce− ag
b2 = ah+ bg − ed− cf
c2 = df − bh
a3 = be− af
b3 = ah+ cf − de− bg
c3 = gd− ch

c2,1,2 = bhe+
1

2
f(fc− ah− de− bg)− 1

2
fε

c2,2,2 = −dfg − 1

2
h(ah− de− bg − cf)− 1

2
hε

46



A.2 Calculation to prove in Theorem 3.15

We need to show that, in the set up of Theorem 3.15, the following equality holds:

ατ =
a0a3 − a1a2 + ε

2
α+ (a2

1 − a0a2)β

−βτ = (a2
2 − a1a3)α+

a0a3 − a1a2 − ε
2

β

where α = c1 + a1τ and β = c2 + a2τ . For ease of notation we let (a, b, c, d) = (a0, a1, a2, a3). We
recall that τ2 = ετ + D−ε

4 , where ε ≡ D mod 4, ε ∈ {0, 1} and by de�nition

D = a2d2 − 3b2c2 + 4ac3 + 4b3d− 6abcd

Using formula (3.6) we �nd that

c1 =
1

2
(b2c− 2ac2 + abd− εb)

c2 = −1

2
(bc2 − 2b2d+ acd+ εc)

We can now calculate that, using the fact ε2 = ε,

ad− bc+ ε

2
(c1 + bτ) + (b2 − ac)(c2 + cτ) =

1

4
(ab2cd− b3c2 − 2a2c2d+ 2abc3 + a2bd2 − ab2cd

+εb2c− 2εac2 + εabd− εabd+ εb2c− εb)

+
1

2
(adbτ − b2cτ + εbτ − b3c2 + 2b4d− ab2cd− εb2c

+abc3 − 2ab2cd+ a2c2d+ εac2)

+(b2cτ − ac2τ)

=
1

4
(−b3c2 − 2a2c2d+ 2abc3 + a2bd2 + 2εb2c− 2εac2 − εb

−2b3c2 + 4b4d− 6ab2cd− 2εb2c+ 2abc3 + 2a2c2d+ 2εac2

τ(2adb− 2b2c− 2εb+ 4εb+ 4b2c− ac2))

=
1

4
(b(−3b2c2 + 4ac3 + a2d2 + 4b3d− 6abcd)− εb)

+τ(
1

2
(adb− b2c− εb− ac2 + 2b2c) + εb)

=
1

4
(D − ε)b+ τ(c1 + εb)

= c1τ + b(ετ +
D − ε

4
)

= τα

Similar calculation can be done for −βτ using all the information already given.

A.3 Proof of the bijection between C(Z2 ⊗ Sym2 Z2;D) and C(Col31,1;O)
As this is similar to the proofs of Theorem (3.13) and Theorem (3.15), we only give a sketch proof here,
pointing out the important formula that are needed. As usual let O = [1, τ ] be positively oriented of
discriminant D. Then take (I1, I2, I2) to be a representative of an element of C(Col31,1;O), and let
I1 = [α1, α2] and I2 = [β1, β2] be correctly oriented basis, in particular I1 has to be positively oriented.
Then we have the following six equations

αiβ
2
1 = ci,0 + ai,0τ

αiβ1β2 = ci,1 + ai,1τ

αiβ
2
2 = ci,2 + ai,2τ (A.1)

for some ci,j , ai,j ∈ Z. Then we claim that the map sending the equivalence class of (I1, I2, I2) to
the equivalence class of P = ((a1,0, 2a1,1, a1,2), (a2,0, 2a2,1, a2,2)) = (a1,0x

2 + 2a1,1xy + a1,2y
2, a2,0x

2 +
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2a2,1xy+a2,2y
2) is the bijection we require. We can see that if we change the basis of I1 by γ ∈ SL2(Z)

(as it needs to keep the correct orientation), then we change P by γ × id, while if we change the basis
of I2 by γ ∈ SL2(Z) then we change P by id×γ. Furthermore if we change to another set of equivalent
triple, then we still map to P . So this map is well de�ned.

We show that P has discriminant D, by using the same process as before and showing that the
equations (A.1) gives rise to the equality Disc(P ) = N(I1)2N(I2)4Disc(O). But since I1, I2, I2are
collinear, we have N(I1)N(I2)2 = 1.

We show that the map is injective and surjective by showing that every P is map unto by exactly
one equivalence class of C(Col31,1;O). To this end �x P = ((a1,0, 2a1,1, a1,2), (a2,0, 2a2,1, a2,2)) and
consider equations (A.1). As usual we show that all the indeterminate ci,j , αi and βj are determined
by ai,j . We start by �nding ci,j in terms of ai,j . Since we are in a commutative ring, the following
5 equations holds (αiβ1β2)2 = (αiβ

2
1)(α1β

2
2) and (α1β1β2)(α2β1β) = (α1β

2
1)(α2β

2
2) = (α2β

2
1)(α1β

2
2).

Expanding them using equations (A.1), recalling that τ2 = ετ + D−ε
4 and equating coe�cients of τ

and 1 we have a total of 10 equations. Solving those 10 equations, using [Stein et al.(2012), SAGE],
give two solutions. But recalling that N(I1) > 0 we have the following unique solution:

ci,0 = (i′ − i)[a2
i,1ai′,0 − ai,0a1,1a2,1 +

1

2
(a2
i,0ai′,2 − ai,2a1,0a2,0 − ai,0ε)]

ci,1 = (i′ − i)1

2
[ai,1a1,0a2,2 + ai,1a2,0a1,2 − 2ai,0ai′,1ai,2 − ai,1ε]

ci,2 = (i′ − i)[a2
i,1ai′,2 − ai,2a1,1a2,1 +

1

2
(a2
i,2ai′,0 − ai,0a1,2a2,2 − ai,2ε)]

As before we notice that the ration β1 : β2 is determined by the ratio ci,0 + ai,0τ : ci,1 + ai,1τ , and
so the Z-modules are determined up to scalars in K. We �nally check that these two Z-modules are
fractional ideals of O by checking they are closed under multiplication by τ . Once again we can show
that:

α1τ =
a1,0a2,2 + a2,0a1,2 − 2a1,1a2,1 + ε

2
α1 + (a2

1,1 − a1,0a1,2)α2

−α2τ = (a2
2,1 − a2,0a2,2)α1 +

a1,0a2,2 + a2,0a1,2 − 2a1,1a2,1 − ε
2

α2

β1τ =
a1,0a2,2 − a1,2a2,0 + ε

2
α1 + (a2,0a1,1 − a1,0a2,1)α2

−β2τ = (a2,1a1,2 − a1,1a2,2)α1 +
a1,0a2,2 − a1,2a2,0 − ε

2
α2

To show that invertible ideals maps to primitive pairs of binary quadratic forms, we use the group
homomorphism (I1, I2, I2) 7→ (I1, I2, I2) between C(Col31,1;O) and C(Col31,1,1;O), and the fact that
primitive pairs of binary quadratic forms correspond to primitive cubes. This �nish the sketch proof
that there is a bijection between C(Z2 ⊗ Sym2 Z2;D) and C(Col31,1;O)
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