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Part I
Hodge Theory (Pierre Py)

Reference: Claire Voisin: Hodge Theory and Complex Algebraic Geometry

1 Kahler manifold and Hodge decomposition

1.1 Introduction

Definition 1.1. Let V be a complex vector space of finite dimension, h is a hermitian form on V. If
h:V xV — C such that

1. Tt is bilinear over R
2. C-linear with respect to the first argument

3. Anti-C-linear with respect to the second argument

i.e., h(Au,v) = Ah(u,v) and h(u, Av) = Ah(u,v)
4. h(u,v) = h(v,u)
5. h(u,u) >0if u #0

Decompose h into real and imaginary parts, h(u,v) = (u,v) — iw(u,v) (where (u,v) is the real part
and w is the imaginary part)

Lemma 1.2. (, ) is a scalar product on V, and w is a simpletic form, i.e., skew-symmetric.
Note. — (, ) determines w and conversely

Proof. By the property 4. (, ) is real symmetric and w is skew-symmetric. (u,u) = h(u,u) > 0so (, ) is
scalar product
Let ug € V such that w(up,v) = 0Vv € V. This equates to h(ug,v) is real for all v. Also h(ug,iv) is

real for all v, but h(ug,iv) = —ih(ug,v) € S therefore, h(ug,v) = 0. Hence ug = 0, as h is non-degenerate.
So w is non-degenerate.

Now we show — (, ) determines w: w(u,v) = —Sh(u,v) = S(i2h(u,v)) = S(ih(iu,v)) = (iu,v), so
w(u,v) = (iu,v). O

Lemma 1.3. w(u,iu) > 0 for all u # 0.
Proof. Plug in v = tu in the last part of the previous lemma. O

Definition 1.4. We say that a skew-symmetric form on a complex vector space is positive if it has the
above property (of lemma 1.3)

If h(iu,iv) = h(u,v) then {w(z’u,iv) = w(uv) (%)

(tu, v) = (u,v)

Exercise. Prove that a 2-form on w on V satisfy (x) if and only if it is of type (1,1)



Let V' be a C-vector space of dim¢ V =n = 2k. Let z1,..., 2, be coordinates on V and ey, ..., e, be
a basis such that v = ), zje; for v € V. Define dz; : > zje; — z; and dzj : ) zie; — Z; for 1 < j < n.
Then dz,...,dz,,dz1,...,dz, € Homg(V,C). We have dimg Homg(V,C) = 2-2n = 4n. It A € C
and ¢ € Homg(V,C), define A¢ : v — Ap(v). So Homg(V,C) can be viewed as a C-vector space, then
dimc Homg(V, C) = 2n.

Exercise. dz1,...,dz,,dz1,...,dz, is a basis for Homg(V, C) as a C-vector space

Exercise. 1. An element ¢ € Homg(V, C) is C-linear if and only if ¢ can be written as ¢ = Y 1" | aidz;
where «; € C.

2. ¢ is antiC-linear map if and only if ¢ can be written as ¢ = Y | 8;dz; where 3; € C.

Let I be the set of {i; < --- <ir}. dzy = dz;, ANdzi, \--- Ndz;, is a k-linear alternating form V' to C.
dzr = dz;; Ndzi, \--- Ndz;, is a k-linear alternating form V to C

Definition 1.5. A k-form « on V (with values in C), is of type (p, ¢), with p+q = kif « = Z|1|=p7\J|=q Ar,gdziN\
dzj for \; ;€ C.

Any k-form « is a sum of forms of type (p,q) for 0 < p,q <k and p+ ¢ =k. Then a = Zpﬂ:k aP?
Example. Let V be of dimension 2
k=1 ,0)-forms are C-linear maps from V' — C

1
0, 1)-forms are anti-C-linear maps from V — C
2,0)-forms are dz1 A dzo

1

(
(
k=2 (
(1,1) forms are spanned by dz; A dz; for i,j € {1,2}
(0,2)-forms are dz1 A dz3
Exercise. The type of a form does not depend on the choice of basis.
Example. Let V = C", z; = x; + iy; then

d dz1
zZ1 + Z1/\

dri Ndzg = 9 dzo
dz1 N\ dzo dz1 N\ dzo
- 2 T T

(2,0)—form  (1,1)—form
Example. If X is a complex surface, z1, 29 are local coordinate on X, then a 2-form is a combination
o dz; Ndzy a (2,0)-form
dz1 N\ dzs
dz1 Ndzq

dzo N\ dza
dzo N dzZ1

are (1, 1)-forms

e dzy Ndz a (0,2)-form

Summary: If A is a hermitian form, w = —Sh is a (1,1)-form and is positive (i.e, w(u,iu) > 0).
Conversely if a (1, 1) form is positive it arises as w = —Jh for some hermitian form h.



1.2 Hermitian and Kihler metric on Complex Manifolds

Let M be a complex manifold.
Convention: Each tangent space of M, T, M is a complex vector space and write J (or J) for the
endomorphism J,, : TuM — T, M defined by v — iv. (J? = —id)

Definition 1.6. A hermitian metric on M is the following. For each z € M, h, is a hermitian metric on
T,M and h, is C* on M.

So as before we can write h = (, ) —iw. The (, ) is a Riemannian metric on M and w is a (1,1) form
on M

Definition 1.7. We say h is Kéhler if w is closed, i.e., dw = 0.

Example. o If dim¢g M =1, that is M is a Riemann surface, then any hermitian metric is Kéhler.:
Why? dw by definition is a 3-form on a 2-dimension R-manifold, so it must be zero.

e 0,0 operators: If f: M — Cis afunction. df is a 1-form and df; : Ty M — C. We can decompose as
dfy = 0fs + Ofs .Sodf =0f+3df. 0and 0 extend to operators from QF — QF+1 (where
~~ ~~

C—linear C—antilinear

QOF is the C-value k-forms) defined by

AanB) = danp+(—1)lanos
Aanp) = danB+(-Dands

Exercise. If a is a (p, g)-form (it is of type (p, ¢) at each point), then da is the sum of a (p + 1, q)
form and a (p,q + 1) form: 0 is the (p + 1, ¢) form and 0 is the (p,q + 1)piece

o M = P¢: We define a close positive (that is positive on each point on M) (1, 1)-form (it must be
the imaginary part of a hermitian metric) is defined by wy,) = =-001og(||z]|?). Check that it is
well defined, (does not define on the affine piece): hint: if f: U — C* is holomorphic, check that
ddlog |f|? = 0.

o If T'=C"/A, A alattice of C™, then any constant coefficient metric is K&hler.

o If (M,h) is Kdhler, and ¥ C M is a C-submanifold. Then (X, h|y) is K&hler. As d(w|y) = dw|x, =
w|y is closed.

Lemma 1.8. Let M be a complex manifold of C-dimension n with hermitian metric h. The Riemannian
w7l

volume form of (, ) is equal to “y.
(If V' is C-vector space with C-basis ey,..., e, then ey, Jey, e, Jeg, ..., en, Jey, is a positive real basis.
That is it has a canonical basis)

Corollary 1.9. Let M be a closed complex manifold, i.e., compact with no boundary. ThenVk € {1,...n},
WwF =wA - Aw is closed and non-zero in cohomology, i.e., w is not ezact.
——

k times

Proof. If w* = da for some a, then w” = WF AW = daAwW™ ™ = d(a Aw™ ). Hence by Stoke’s theorem
[y w™ =0, but [, % = Vol(M) > 0, hence contradiction. O



So HEY (M,R) # 0

Corollary 1.10. If M is compact, Kihler and 3P C M"™ closed C-submanifold, then the homology class
[X] € Hop(M), the fundamental class of ¥, is non-zero.

Proof. 0 < fz % = Vol; X, then ¥ is not homologeous to 0. O
Exercise. If X is a compact manifold and dim¢c X > 2 and h a Kéhler metric, and ¢ : X — R% . Prove

that ¢h is K&hler if and only if ¢ is constant.

1.3 Characterisations of Kihler metrics

Let (M, h) be a complex manifold with hermitian metric. Recall that V is the Levi-Civita connection of
R(h) = (, ) which is a Riemannian metric.

Theorem 1.11. The following are equivalent:
1. h is Kdhler
2. For any vector field X on U C M (open set) then V(JX) = J(VX)
Proof. 2. = 1. By definition of Levi-Civita connection d (X1, X2) = (VX1, Xo2) + (X1, VXy),

dw(Xi,x2) = d(JX1,X2)
<VJX1,X2>—|— <JX1,X2>
= <JVX1,X2> + <JX1,X2>

s0 dw (X1, X2) = w(VXy, Xo) + w(X1, VXo) (%).
dw(Xo, X1, X2) = Xo-w(X1, X2)—X1-w(Xo, X1)+X2-w(Xo, X1)—w([Xo, X1], X2)+w(Xo, [X1, Xo])+w([Xo, -
Use (%) and VxY — Vy X = [X Y] to show that dw(X;, Xo, X3) =0

1. = 2. Not done

1.4 The Hodge decomposition

We want to construct a decomposition of the de Rham cohomology group HE; (M, C) (C-valued differential
forms) of a compact Kéhler manifold.
If p+q = k, we define HP9(M) C H*(M) by HP9(M) =subspaces of class [a] such that o can be
represented by a closed form of type (p, q), i.e., there exists 8 of type (p, q) closed such that o — 3 is exact
Our goal:

Theorem 1.12. If M is compact Kdhler, then HX(M) = @,y - HP4(M). If o is a closed form (on a
complex manifold) and if o = oP? is its decomposition. A priori, the oP need not be closed

Example. X = (C*\ {0})/(v~ Jv). Then H'(X) # 0 but H'%(X) and H*!(X) are zero.



Hodge Theory:

Let (M, (, ) be Riemannian manifold

We need some norms on the space of forms on M, if eq,...,e, is a orthonormal R-basis of Tx M,
e},...,e;, the dual basis (using (,) on M) and for each multi-index {i; < --- < ir} = I, let e] =
e;, N---Aej.. then {e7}s forms a basis of AR(T,M)* (the space of k forms on T, M).

We declare that {e%} is orthonormal. This defines a scalar product on A*(T,M)* (depending only on
(,)). Westill denote it as (, ). If a, 5 are k-forms on M we define

<04>B>L2 = /M (g, By) Vol

Hodge Star Operator

x: AR(TM)* — AP~F(TM)*
>I<2 — (_1)k(p7k)

the following diagram

Let dimg M = p. . Fix x € M, because (, ) exists on A*(T,,M)* we have

AR(T, M )* —= (A*(T, M)*)*

T~

AP=4(T, M)

~

if Bis a (p — k)-form and a a k-form with a — (a A 5)/Vol then
(a, B) Vol = av A\ %3

d: A¥ — A*1 we want to construct the adjoint d* of d for {, );». That is we want d* : A¥ — AF~!
such that o € A*¥ B € Ak~1 then (o, d*(8)) 2 = (da, B) 2

Claim. If we define d* on A¥ by d* = (—1)* ¥~! d* then it works.

Proof. (0, B)r2 = [y, da AxB. d(a A*B) = da A x8 + (—1)*a A d % B, so by Stoke’s theorem 0 =
Jyda A8+ (=1)F [randx == (da, ) — (a,d*B) )

Definition 1.13. The Laplacian A : A¥ — A¥ is defined by A = dd* + d*d

Definition 1.14. A k-form « is harmonic if Ao =0

Lemma 1.15. (Aw, o) = |da|, + |[d* ol = (do, da) 12 4+ (dF o, d* o) 2 and (A, B) = (o, AB)

Proof. Exercise (formal) O
Corollary 1.16. Aa =0 if and only if dao =0 and d*a =0, i.e., harmonic forms are closed.

Theorem 1.17. Any smooth k-form o on M can be written as o sum of a harmonic one plus the Laplacian
of another form

The theorem says that for any «, there exists ay harmonic and 3 a k-form such that a = ag + AfS
So we have a map Harmonic k-forms— HE (M)

~

Corollary 1.18. Any de Rham cohomology class can be represented by a unique harmonic form H* (M)
ker(A : AF — AF)



Proof. Let a be a closed k-form. Write a = ag+ AS, apg-harmonic. So a = ag+dd* S+ d*dp and since ag
and dd*( are both closed we have d*d is also closed. 0 = (dd*df, dB) > = (d*df3,d*d) > = ||d*dp|| =0,

so d*df = 0. Hence oo — ap = d(d*f) is exact. Hence [a] = [a] so [@] is represented by a harmonic form.
We want to show that if «g is harmonic and o] = 0 then a9 = 0. Let a9 = d7y, then 0 = Ay implies
d*op = 0. So d*dy =0, hence (d*dv,v);2 =0= ||d7||%27 sody=a9g=0 O

We assume now that M is Kihler, (, ) = R(h) and h is a K&hler metric.

Theorem 1.19. In this case the Laplacian preserved the type of forms, that is A(AP?) C AP? where AP1
is the space of (p + q)-forms of type (p,q)

Corollary 1.20. The Hodge decomposition exists

Proof. « is harmonic so Aa = 0. Write a = ) a?? so Aa = > AaP?. So AaP? = 0, hence AaP? are
harmonic, thence they are closed. So [a] = > [aP9], therefore the HP span H*(M,C)
Check that this is a direct sum. O]

2 Ricci Curvature and Yau’s Theorem

Let (M, (, ) be a Riemannian manifold, V the Levi-Civiti connection

Curvature tensor of M
Let X,Y, Z be vector fields on open set of M.

Vy(VxZ) = Vx(VyZ) = VixyZ (¥)
Exercise. In Euclidean space, X,Y,Z : U — R™ VZ = dZ, then (x) =0

Fact. (%) is a tensor: The value of (x) at x € M depends only on X(x),Y (x),Z(x), this means that
(x) = R(X,Y)(Z) where R(X,Y) is the endomorphism of T,M. We call R the curvature tensor. [t is a
bilinear map T, M x T, — End(T, M)

1. R(X,Y)=—R(Y,X)

2. R(X,Y) is skew-symmetric for (, ), i.e., (R(X,Y)(Z2),T) =—(Z,R(X,Y)(T))
Part 1. tells us we can think of R as 2-form with values in the space of symmetric endomorphism of

T, M. If p=dimg M then skew-sym(T,M) has dimension @ X p(p72—1)'

The Ricci tensor of M will be (on each point x € M) a symmetric bilinear from on T,M. If X, Y
are tangent vectors Ricci(X,Y) := Tr(R(X, —), (Y)) (i.e., Tv(Z — R(X, Z)(Y))
3. (R(X,Y)(2),T) = (R(Z,T)(X),(Y))
Lemma 2.1. Ricci is symmetric

Proof. Let e, ..., e, be orthonormal basis of T;; M. Then
Ricci(X,Y) = > (R(X,e)(Y),e)

= D {R(.e)(X).e)

= Ricci(Y, X)



Next we assume M is Kihler.

Exercise. Prove that R(JX,JY) = R(X,Y) (use the fact that VJX = JVX), i.e., that R is of type
(1,1)

Let h = (, ) — iw be a Hermitian metric. We transform Ricci (a symmetric object) into something
skew-symmetric

Definition 2.2. The Ricci form of the Kéhler metric is 7, (X,Y) = Ricci(JX,Y)
Proposition 2.3. v, is skew-symmetric and a (1,1)-form
Proof. 7, is a (1,1)-form because v,(JX,JY) = 7,(X,Y)

Y (Y, X) = Ricci(JY, X)

= Ricci(-Y, JX)
= _7w(X7 Y)

O]

How to relate 7, to the 15 Chern Class of M?

We will define the 15! Chern Class of a holomorphic line bundle L — M. ¢;(L) € H?(M,R) (actually
c1(L) lives in H?(M,Z), we simply look at its image in H?(M,R)). Let h be a hermitian metric on L. If
s is a local holomorphic section without zeroes on some open set U, we define 2 = %85105; h(s,s)

1. Q does not depend on s, (i.e., 39 log h(s1, s1) = 00 1og h(sa, s2) is 51 and sy are two non-zero sections
on U)

2. ) is globally defined

3. The cohomology class of Q does not depend on h (any other hermitian metric on L is of the form

1 _
h' = fh for f >0, Q/:Q+Taalogf2)
T

is exact

We define ¢1(L) to be the class of Q. Now if M is a complex manifold its 15 Chern Class is that of the
bundle APTM — M (where p = dim¢ M)

Exercise. Let L — P¢ be the tautological line bundle. L can be endowed with the restriction of the
metric C"*1. Compute € as given above, you should find the negative of the example of K&hler metric of
CP" given earlier.

On a Kahler manifold R(X,Y") is C-linear, hence skew hermitian.
Proposition 2.4. 7,(X,Y) = —iTrc R(X,Y)
Corollary 2.5. v, is closed [32] = —c1(M)

Let w be a Kahler form on V. Any (1,1)-form a on V can be written as « = A\v + 8 (A € R or C),
where 3 satisfies B A w" ™1 = 0. (If 3 satisfies this we say that (3 is primitive)



Corollary 2.6. Let (M,h) be Kdhler. Then (, ) has zero Ricci curvature <= R AwW" =0 (equivalent
to saying R is primitive 2-form).

If (M, h) is Kéhler and if ¢; (M) = 0, then ~,, is cohomologeous to zeroes.

Theorem 2.7 (Calabi-Yau). If (M,w) is Kdhler, ci(M) = 0, then there exists a unique Kdahler metric
[wo] = [w]

ho = (, ) — iwo such that
Ywo = 0

. In other words, there is a unique metric with 0 Ricci curvature

and cohomologeous to w.

3 Hodge Structure

Let M be a finitely generated free module (M =2 Z!)

Definition 3.1. A Hodge structure of weight k on M is a decomposition M ®7C = ®p4,—1 VP such that
VP — Vap

Remark. e MC=M®R+iM R, so we have an involution a + ib — a — b this is the conjugation
which appears in the definition.

e In general we assume VP4 =0if p<Oorg<0

Example. If (M, h) is compact Kihler, H* x M, Z)/Torsion has a weight k Hodge structure. The com-
plexification of H*(X,Z)/Tor is H*(X,C) and we have the decomposition on H¥(X,C)

Definition 3.2. A polarization for a Hodge structure of weight k on M is a bilinear form Q : M x M — 7Z
which is

1. Symmetric for k£ even and skew-symmetric for k£ odd

2. QcM @ C x M @ C — C satisfies Qc(a,8) =0if a € VP4, 5 e VP4 and p # pf

3. acvra\ {0}, (—1) T (- 1)9%*Q(a, @) > 0

Example. M = H*(X,Z)/Tor, Q(c, 8) = [, w" * Aa A B (is integral value since [w] is integral). This
satisfy 1. and 2. but not 3. in general

Proposition 3.3. A weight 1 Hodge structure is the same thing as a complez torus (a polarised weight 1
Hodge structure is the same thing as an Abelian Variety)

Proof. M =7F M ®C = A@ A. Consider v € M, then its decomposition must be (a,@) (since v is real).
The projection 7 : M @ C — A is injective on ZF. 7(ZF) C A (exercise: m(ZF) is discrete, so its a lattice
in A). Then A/m(ZF) is the complex torus. O

If X is a K3 surface, we will see that M = H?(X,Z) is isomorphic to Z??, H*(X,7Z) = H*+ H1 4+ {02
of dimension 1,20, 1 respectively.

Lemma 3.4. If M and the intersection form are given, then the Hodge structure is determined by H?Y.
In particular, for a K3 surface the Hodge structure is determined by a point in P?' C P(H?(X,C)). This
points lives in the quadric defined by fX aNa=0

Exercise. If B is a (1,1)-form then 8 A 3 is semi-positive.



Part 11
Introduction to Complex Surfaces and K3 Surfaces
(Gianluca Pacienza)

References:
Barth,Peters, Vand De Ven: Compact Complex Surfaces
Beauville: Surfaces algebriques Complexes
Miranda: An overview of algebraic surfaces (Free on the internet)
*. Geometry des surfaces K3

4 Introduction to Surfaces
We assume X is Kéhler for this whole part

4.1 Surfaces

Definition 4.1. A compact complez surface (or more simply a surface) X is compact, connected, complex
manifold of dim¢ X = 2

Example. F € Clxo,...,r3] homogeneous. X := {F = 0} C P? (of course F = STFO == g—; = 0 has
no solutions)
More generally if Fy,...,F,_o € Clzg,...,z,] homogeneous polynomial of degree dy,...,d,_2 such

that (gf? (p)) has maximal rank at each p € X. (X is called complete intersection of multiple degree
J 17‘7

(di,...,dn—2))

Note. If > d; = n + 1 then X is a K3 surface

Definition 4.2. A surface is called algebraic if its field M (X) of meromorphic function satisfies
1. Vp#qe X, 3f € M(X) such that f(p) # f(q)
2. Vpe X, 3f,g € M(X) such that (f,g) gives local coordinates of X at p.

Example. 1. If X C P" is a surface then it is algebraic, since the ratios i—; of homogeneous coordinates
on P" restricted to X satisfies 1 and 2 (of Definition 4.2)

2. T = C?/A a complex torus of dim2. A “random” choice of A will lead to a non-algebraic surface

3. We will see that a “random” K3 surfaces is non-algebraic.

4.2 Forms on Surfaces
Definition 4.3. A differentiable 1-form (or C*°) w on a surface X is locally an expression:
fl (Za w)dz + f2(zv w>d§ + g1 (Za w)dw + 92(27 w>dw

where (z,w) are local coordinates and f;, g; are C* functions (plus patching conditions)

10



Remark. Since coordinate change preserves 0z, 9z, 0w, 0w the type is well defined:
(1,0) type: fdz + gdw
(0,1) type: fdz + gdw

Definition 4.4. (n = 1,2,3,4) A C* n-form w on a surface X is locally a linear combination of expressions
of the form f(z,Z,w,w)da; A -+ A day, with da; € {dz,dz,dw,dw) and f € C* (with the usual rule
da; A da; = 0 and antisymmetric) (plus combability conditions)

A type (p,q) means p-times dz or dw and g¢-time dz or dw

Definition 4.5. A holomorphic (and respectively meromorphic) n-form is an n-form of type (n,0) whose
coefficients are holomorphic (respectively meromorphic) functions.

Example. T = (CQ/A. If z1, zo are coordinates on C then dz1, dzo, dz1, dzs descend to the quotient

4.3 Divisors

Definition 4.6. A divisor is a finite formal sum D = EmiEZ m;Y;, Y; C X a codimension 1 subvarieties.
ie, D+ {%} K fi» gi local holomorphic function on U; such that (f;/g:)/(fj/9;) has no zeroes or
i) ie
poles on U; N U; # 0. Hence locally D =(zeroes of f;) — (zeroes of g;) (all counted with multiplicities)
Divisors form an abelian group Div(X), D = Y . m;Y;, E = )", n;Y; then D+ E = %" (n; + m;)Y],

equivalently if D = {j}} and E = {%}then D+E= {J;%}

Definition 4.7. If D is defined globally by zeroes and poles of a meromorphic function f € M(X) then
D is called principal

Prime(X) =Subgroup of principal divisors < Div(X)

Definition 4.8. Pic(X) := Div(X)/Prime(X).

Equivalently: We say D1, Dy € Div(X) are linearly equivalent if 3f € M(X) such that Dy — Dy =
div(f). We use the notation, D1 ~ Ds. So we get a group Div(X)/ ~.

(Which we will avoid calling it Pic(X), as it is abusive language if X is not algebraic.)

Definition 4.9. If F': X — Y is a morphism of manifolds and D = {L} € Div(Y) then the pull-back of

Gi
: * ol
Dis F'D = { £}

The exponential sequence

We have the exact sequence
exp

0—=7 Ox O% 0

where Oy is the sheaf of holomorphic functions on X and O% is the sheaf of non-vanishing holomorphic
functions on X.
by taking the long exact sequence in cohomology we get
0—— HY(X,Z) — H'(X,0x) — H'(X,0%) = H*(X,Z)
where H'(X, O%) represents {line bundles on X} /isom.

11



Fact. HP9(X) = HY(X,QF), where Q% is the sheaf of p-forms which are holomorphic.

Hence HY(X,0x) = H*'. So 0 - T — HY(X,0%) — NS(X) — 0, where T is the complex torus
of dimension H*! = HY(X,0x)/H'(X,Z) and NS(X) is the image of ¢; map insider H?(X,Z) called
Neron-Severi group of X, and its rank (as a Z-module) is called the Picard number of X. It is denoted
p(X)-

4.4 The canonical class

Let X be a surface and w be a meromorphic 2-form on X. Locally w = gdz A dw where f and g are local
holomorphic functions

Definition 4.10. The canonical divisor (associated to w) is Kx = {5} = number of zeroes and poles of

w.

Exercise. Check that if wy,ws are two meromorphic 2-forms on X then there exists f € M(X) such that
wi = f - wo.

The above exercise implies that the canonical divisors associated to wy and wy are linearly equivalent.
Hence Kx defines a unique class in Div(X)/ ~. This class is the canonical class of X

Definition 4.11. Given D € Div(X), set H(X,Ox(D)) := {f € M(X) : div(f) > —D} = C-vector
space of meromorphic functions with poles bounded by D.

Exercise. Show that HO(X,Ox(Kx)) = H'(X,Kx) & H*°(X) = H?(X,Q?X) = C-vector space of
holomorphic 2-forms on X

Definition 4.12. The genus of a surface X is py(X) = dimc H°(X, Kx) . More generally the n-th
plurigenus of X is dimec H(X,nKy)

Fact. (Important) The plurigenus are bimeromorphic invariants of X

Let (fo,..., fn) = HY(X,0x(D)). Let’s define ¢p : X --» P defined by = — [fo(z) : -+ : fu(2)]
(Note: not defined where, either all f; vanish at x or one of the f; has a pole at z)

Definition 4.13. Let X be a surface. Suppose H°(X,nKx) # 0 for some n > 0. The Kodaira dimension
of X is kod(X) := maxy,>odimim(¢,,x, ) (if possible) otherwise set kod(X) = —oo. (So kod(X) €
{=00,0,1,2}

Example. If X is a compact Riemann Sphere, the Riemann-Roch theorem tells us that kod(X) =
—00 X P!
0 pe(X) =1
1 pg(X) > 2

The Enriques-Kodaira classifications of surfaces consist of “describing” surfaces according to their
Kodaira dimension

Example. In each class:

kod = —oo Any complete intersection X4, 4, ,) CP" with Y d; <n+1
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kod =0 Any complete intersection X4,
(with dimg T = 2)

dn_o) C P with >>d; = n+ 1. You can also take a Torus

kod =2  Any complete intersection X(q, . 4, ,) C P" such that Yodi>n+1
kod =1 A surface X fibered over a genus > 2 curve B with fibers isomorphic to curves of genus 1. (e.g.

B € kl[zo, 71, x2] homomorphic, deg B = 3, K = M(B), g(B) > 2, then X = {B’' =0} C P%))

4.5 Numerical Invariants

Betti Numbers: b; := rk H'(X,Z) = dimg H*(X,R) = dim¢ H*(X, C) = ith Betti number of X
Euler Number e := > (—1)%b;

Hodge numbers h?? := dimc HP? = dim¢ H?(X, Q%)

They satisfy hP? = h9P = B2~ P29 = h27927P and by, = Zp—‘rq:k: hP? (Hodge decomposition). This gives
the Hodge diamond

h?? = 1
p2:1 B2 q q
}2:0 Rl 10,2 Py Bl Py
1.0 0.1 q q
100 1

where ¢ is called the irregularity of X. Note that e = 2 4 2p, + rbl — 4g

4.6 Intersection Number

Let C1,Cy C X be two irreducible curves. We want to define Cy - Cy. If Cy # Co, set Cp - Cy =
ZpeClﬁCz (Cl . Cg)p where (Cl . Cg)p = dim OX’p/(fl, f2) with CZ == {fz = 0} (locally)

Exercise. Check that (C;-Cs), = 1if C; and Cy are smooth at p are intersect transversely, i.e. C-Cy =
#points in C; N Cy counted with the right multiplicities (as usual)

If C; = Cy = C. If C is smooth, C? := deg(N¢/x), the normal bundle of C'in X. For the general
definition look at references.

4.7 Classical (and useful) results
Thom-Hirzebruch index theorem The index (number of positive eigenvalues minus number of negative

K% —2¢
3

eigenvalues) of the intersection product on H?(X) is equal to
Hodge index theorem The intersection product on H'' N H?(X) has signature (1, A%t — 1)
Noether’s formula 12x(Ox) = K% + e where x(Ox) = h°(Ox) — h'(Ox) + h*(Ox)

Riemann Roch Let D € Div(X), x (Ox(D)) = 22-Ex) 4\ (Ox) where x(L) = hO(L) — h'(L) + h*(L)
and L = Ox(D) in our case
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Genus formula Let C' C X be an irreducible curve, then 2p,(C)—2 = (C+ Kx)-C where p,(C) = h'(O¢)
is the arithmetic genus (and is equal to the topological genus of C' if C' is smooth)

Freedman X;,Cs simply connected surface. We haveX; = X5 (homorphically) if and only if H?(X1,Z) &
H?(X5,7) (isometrically)

5 Introduction to K3 surfaces
Definition 5.1. A surface X is a K3 surface if Kx =0 and b1(X) =0
Theorem 5.2. A K& surface is always Kdhler

Remark. Since by (X) = 2¢ an equivalent definition is Kx = 0 and h'(Ox) =0
Noether formula reads 12 - (2 —0) = 0 + e, that is 24 = e = 24+ 2 + h"! — 0, hence A1 = 20

Exercise. Let X be a K3 surface. Prove that Tx = Qﬁ(

A consequence of exercise is that dim¢ H(X,Tx) = 20
We have that the Hodge diamond of a K3 surface is

1
0 0
1 20 1
0 0
1

Fact. Hy(K3,7Z) has no torsion
Corollary 5.3. Let X be a K3 surface. Hi(X,Z) =0 and H2(X,Z) is a torsion free Z-module of rank 22

Proof. Hi(X,Z) ® R = 0 (since by = 0) so Hi1(X,Z) = 0. By general properties of algebraic topology,
we have that the torsion of Hs(X,Z) is isomorphic to the torsion of H;(X,Z). Hence no torsion. Since
ba(X) = 22, then Hy(X,Z) is a torsion free Z-module of rank 22 O

A closer look to H?(X,7)

e H?(X,Z) is endowed with the intersection form, which is even by the genus formula (2p,(C) — 2 =
(C+0)-C=C?

e The intersection form is indefinite (since, by Thon-Hizebucj, the index is —16)
e The intersection form is unimodular (its determinant is +1) by Poincaré duality
Now we have the following:

Fact. An indefinite, unimodular lattice is uniquely determined (up to isometry) by its rank, index and
parity (i.e., even or not)

Conclusion: H%(K3,Z) = H® @ (—Fg)®? where
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e H is a rank 2 Z-module with form given <(1) (1)> (Hyperbolic plane)

o Fg=7e &--- @ Zeg a rank 8 Z-module with the following Dykin diagram

€1 €2 €3 €4 €5 €6 er
e — 0 — 06— 06— 0 — 0 — o

€1

[
2 i=j
and (ej,e;) = ¢ —1 d(e;,ej) =1 (d(ei,e;) is given by the diagram)
0 else

(Check that H®? @ (—Fg)®? has the same rank, index and parity as H?(K3,7Z))
Note. The sign on H? is (3,19) while the sign on HY!' N H? is (1, 19)
We conclude with 3 classes of examples of K3
1. Complete intersections in P". Take X = X(dl,...,dn_g)]?n a complete intersection with surface of
multidegree (di,...,dp—2) such that ) d; = n + 1. By applying (n — 2) times the adjunction

formula, we find Kx = 0. By applying (n — 2) time the Lefschetz hyperplane theorem, we see
HY(X,Z) = HY(P",Z) = 0. So X is a K3 surface (for example X4 C P3, Xo3 CP* Xp95 CP?,...)

Parameter counts: (for X; C P?) We have 35 parameters (the complex dimension of the space of
degree 4 homogeneous polynomials in 4 variable) minus 16 parameters (the complex dimension of
4 x 4 invertible matrices). Hence a total of 19 parameters.

2. Double Planes: Take C' = Cg C P? a smooth sextic plane curve. LetX be the double cover of P?
branched along C, X = P? (c.f. [BPHVAV]).

Theorem 5.4. Kx = 7*(Kp2)+Ramification = 7*(—3H + $C) ~ 7*(—=3H + $H) = 0

One also computes that b;(X) =0, so X is a K3 surface

Parameter count: 28 parameters (the complex dimension of the space of homogeneous degree 6
polynomial in 3 variable) minus 9 parameters (the complex dimension of invertible 3 x 3 matrices
acting on P?) then 19 parameters.

3. Kummer Surfaces:

Let A be a complex torus of dimc 2. We have an involution ¢ : A — A, a — —a. Consider A/¢ (i.e
identify each point of A with its opposite)

Bad News: A/ has 16 singulars points (corresponding to the 16 fixed points of ¢) which are exactly
the 16 points of order 2 on A

Good News: We can get rid of them by Blowing up. Let € : A= A/t be the blow up at these 16

points.
A A
A
Alt=A">A/L
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Notice: That locally around an order 2 point ¢ : (o, 3) — (—a,—f), the invariants under ¢ are
a?, 8% aB. So A/t = SpecCla?, 82, aB] = Spec Clu, v, w]/(uv — w?). This shows that the singular
points of A/. are ordinary double points. If 7: A — A is the extension of ¢ to g, then one sees that
around the exceptional curves i : (z,y) — (z,—y). The upshot is that the quotient X := Z/’E is
smooth.

X is a K3 surface: The 2-form da A df descend to the quotient, and then lifts to A"\ {exceptional
curves}. One can check that it extend smoothly to A" without zeroes. As why it has no irregularity
(R0 = hO(Q%)), there does not exists a 1 form on A which is invariant under the involution ¢.
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