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Part I

Hodge Theory (Pierre Py)

Reference: Claire Voisin: Hodge Theory and Complex Algebraic Geometry

1 Kähler manifold and Hodge decomposition

1.1 Introduction

De�nition 1.1. Let V be a complex vector space of �nite dimension, h is a hermitian form on V . If
h : V × V → C such that

1. It is bilinear over R

2. C-linear with respect to the �rst argument

3. Anti-C-linear with respect to the second argument

i.e., h(λu, v) = λh(u, v) and h(u, λv) = λh(u, v)

4. h(u, v) = h(v, u)

5. h(u, u) > 0 if u 6= 0

Decompose h into real and imaginary parts, h(u, v) = 〈u, v〉 − iω(u, v) (where 〈u, v〉 is the real part
and ω is the imaginary part)

Lemma 1.2. 〈 , 〉 is a scalar product on V , and ω is a simpletic form, i.e., skew-symmetric.

Note. −〈 , 〉 determines ω and conversely

Proof. By the property 4. 〈 , 〉 is real symmetric and ω is skew-symmetric. 〈u, u〉 = h(u, u) > 0 so 〈 , 〉 is
scalar product

Let u0 ∈ V such that ω(u0, v) = 0∀v ∈ V . This equates to h(u0, v) is real for all v. Also h(u0, iv) is
real for all v, but h(u0, iv) = −ih(u0, v) ∈ = therefore, h(u0, v) = 0. Hence u0 = 0, as h is non-degenerate.
So ω is non-degenerate.

Now we show −〈 , 〉 determines ω: ω(u, v) = −=h(u, v) = =(i2h(u, v)) = =(ih(iu, v)) = 〈iu, v〉, so
ω(u, v) = 〈iu, v〉.

Lemma 1.3. ω(u, iu) > 0 for all u 6= 0.

Proof. Plug in v = iu in the last part of the previous lemma.

De�nition 1.4. We say that a skew-symmetric form on a complex vector space is positive if it has the
above property (of lemma 1.3)

If h(iu, iv) = h(u, v) then

{
ω(iu, iv) = ω(u, v)

〈iu, iv〉 = 〈u, v〉
(∗)

Exercise. Prove that a 2-form on ω on V satisfy (∗) if and only if it is of type (1, 1)
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Let V be a C-vector space of dimC V = n = 2k. Let z1, . . . , zn be coordinates on V and e1, . . . , en be
a basis such that v =

∑
i ziei for v ∈ V . De�ne dzj :

∑
ziei 7→ zj and dzj :

∑
ziei 7→ zj for 1 ≤ j ≤ n.

Then dz1, . . . , dzn, dz1, . . . , dzn ∈ HomR(V,C). We have dimR HomR(V,C) = 2 · 2n = 4n. If λ ∈ C
and φ ∈ HomR(V,C), de�ne λφ : v 7→ λφ(v). So HomR(V,C) can be viewed as a C-vector space, then
dimC HomR(V,C) = 2n.

Exercise. dz1, . . . , dzn, dz1, . . . , dzn is a basis for HomR(V,C) as a C-vector space

Exercise. 1. An element φ ∈ HomR(V,C) is C-linear if and only if φ can be written as φ =
∑n

i=1 αidzi
where αi ∈ C.

2. φ is antiC-linear map if and only if φ can be written as φ =
∑n

i=1 βidzi where βi ∈ C.

Let I be the set of {i1 < · · · < ik}. dzI = dzi1 ∧ dzi2 ∧ · · · ∧ dzik is a k-linear alternating form V to C.
dzI = dzi1 ∧ dzi2 ∧ · · · ∧ dzik is a k-linear alternating form V to C

De�nition 1.5. A k-form α on V (with values in C), is of type (p, q), with p+q = k if α =
∑
|I|=p,|J |=q λI,JdzI∧

dzJ for λI,J ∈ C.
Any k-form α is a sum of forms of type (p, q) for 0 ≤ p, q ≤ k and p+ q = k. Then α =

∑
p+q=k α

p,q

Example. Let V be of dimension 2

k = 1 (1, 0)-forms are C-linear maps from V → C
(0, 1)-forms are anti-C-linear maps from V → C

k = 2 (2, 0)-forms are dz1 ∧ dz2

(1, 1) forms are spanned by dzi ∧ dzj for i, j ∈ {1, 2}
(0, 2)-forms are dz1 ∧ dz2

Exercise. The type of a form does not depend on the choice of basis.

Example. Let V = Cn, zi = xi + iyi then

dx1 ∧ dz2 =
dz1 + dz1

2
∧ dz2

=
dz1 ∧ dz2

2︸ ︷︷ ︸
(2,0)−form

+
dz1 ∧ dz2

2︸ ︷︷ ︸
(1,1)−form

Example. If X is a complex surface, z1, z2 are local coordinate on X, then a 2-form is a combination

• dz1 ∧ dz2 a (2, 0)-form

•


dz1 ∧ dz2

dz1 ∧ dz1

dz2 ∧ dz2

dz2 ∧ dz1

are (1, 1)-forms

• dz1 ∧ dz2 a (0, 2)-form

Summary: If h is a hermitian form, ω = −=h is a (1, 1)-form and is positive (i.e, ω(u, iu) > 0).
Conversely if a (1, 1) form is positive it arises as ω = −=h for some hermitian form h.
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1.2 Hermitian and Kähler metric on Complex Manifolds

Let M be a complex manifold.
Convention: Each tangent space of M , TxM is a complex vector space and write J (or Jx) for the

endomorphism Jx : TxM → TxM de�ned by v 7→ iv. (J2 = − id)

De�nition 1.6. A hermitian metric on M is the following. For each x ∈M , hx is a hermitian metric on
TxM and hx is C∞ on M .

So as before we can write h = 〈 , 〉 − iω. The 〈 , 〉 is a Riemannian metric on M and ω is a (1, 1) form
on M

De�nition 1.7. We say h is Kähler if ω is closed, i.e., dω = 0.

Example. • If dimCM = 1, that is M is a Riemann surface, then any hermitian metric is Kähler.:
Why? dω by de�nition is a 3-form on a 2-dimension R-manifold, so it must be zero.

• ∂, ∂ operators: If f : M → C is a function. df is a 1-form and dfx : TxM → C. We can decompose as
dfx = ∂fx︸︷︷︸

C−linear

+ ∂fx︸︷︷︸
C−antilinear

. So df = ∂f + ∂f . ∂ and ∂ extend to operators from Ωk → Ωk+1 (where

Ωk is the C-value k-forms) de�ned by

∂(α ∧ β) = ∂α ∧ β + (−1)|α|α ∧ ∂β
∂(α ∧ β) = ∂α ∧ β + (−1)|α|α ∧ ∂β

Exercise. If α is a (p, q)-form (it is of type (p, q) at each point), then dα is the sum of a (p+ 1, q)
form and a (p, q + 1) form: ∂ is the (p+ 1, q) form and ∂ is the (p, q + 1)piece

• M = PnC: We de�ne a close positive (that is positive on each point on M) (1, 1)-form (it must be
the imaginary part of a hermitian metric) is de�ned by ω[z] = 1

2πi∂∂ log(||z||2). Check that it is
well de�ned, (does not de�ne on the a�ne piece): hint: if f : U → C∗ is holomorphic, check that
∂∂ log |f |2 = 0.

• If T = Cn/Λ, Λ a lattice of Cn, then any constant coe�cient metric is Kähler.

• If (M,h) is Kähler, and Σ ⊂ M is a C-submanifold. Then (Σ, h|Σ) is Kähler. As d(ω|Σ) = dω|Σ ⇒
ω|Σ is closed.

Lemma 1.8. Let M be a complex manifold of C-dimension n with hermitian metric h. The Riemannian

volume form of 〈 , 〉 is equal to ωn

n! .

(If V is C-vector space with C-basis e1, . . . , en then e1, Je1, e2, Je2, . . . , en, Jen is a positive real basis.
That is it has a canonical basis)

Corollary 1.9. LetM be a closed complex manifold, i.e., compact with no boundary. Then ∀k ∈ {1, . . . n},
ωk = ω ∧ · · · ∧ ω︸ ︷︷ ︸

k times

is closed and non-zero in cohomology, i.e., ω is not exact.

Proof. If ωk = dα for some α, then ωn = ωk∧ωn−k = dα∧ωn−k = d(α∧ωn−k). Hence by Stoke's theorem´
M ωn = 0, but

´
M

ωn

n! = Vol(M) > 0, hence contradiction.
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So H2n
DR(M,R) 6= 0

Corollary 1.10. If M is compact, Kähler and Σp ⊂ Mn closed C-submanifold, then the homology class

[Σ] ∈ H2p(M), the fundamental class of Σ, is non-zero.

Proof. 0 <
´

Σ
ωp

p! = VolhΣ, then Σ is not homologeous to 0.

Exercise. If X is a compact manifold and dimCX ≥ 2 and h a Kähler metric, and φ : X → R∗+. Prove
that φh is Kähler if and only if φ is constant.

1.3 Characterisations of Kähler metrics

Let (M,h) be a complex manifold with hermitian metric. Recall that ∇ is the Levi-Civita connection of
<(h) = 〈 , 〉 which is a Riemannian metric.

Theorem 1.11. The following are equivalent:

1. h is Kähler

2. For any vector �eld X on U ⊂M (open set) then ∇(JX) = J(∇X)

Proof. 2. ⇒ 1. By de�nition of Levi-Civita connection d 〈X1, X2〉 = 〈∇X1, X2〉+ 〈X1,∇X2〉,

dω(X1, x2) = d 〈JX1, X2〉
= 〈∇JX1, X2〉+ 〈JX1, X2〉
= 〈J∇X1, X2〉+ 〈JX1, X2〉

so dω(X1, X2) = ω(∇X1, X2) + ω(X1,∇X2) (∗).

dω(X0, X1, X2) = X0·ω(X1, X2)−X1·ω(X0, X1)+X2·ω(X0, X1)−ω([X0, X1], X2)+ω(X0, [X1, X2])+ω([X0, X2], X1)

Use (∗) and ∇XY −∇YX = [X,Y ] to show that dω(X1, X2, X3) = 0

1. ⇒ 2. Not done

1.4 The Hodge decomposition

We want to construct a decomposition of the de Rham cohomology groupHK
DR(M,C) (C-valued di�erential

forms) of a compact Kähler manifold.
If p + q = k, we de�ne Hp,q(M) ⊂ Hk(M) by Hp,q(M) =subspaces of class [α] such that α can be

represented by a closed form of type (p, q), i.e., there exists β of type (p, q) closed such that α−β is exact
Our goal:

Theorem 1.12. If M is compact Kähler, then Hk(M) = ⊕p+q=kHp,q(M). If α is a closed form (on a

complex manifold) and if α =
∑
αp,q is its decomposition. A priori, the αp,q need not be closed

Example. X = (C2 \ {0})/(v 7→ 1
2v). Then H1(X) 6= 0 but H1,0(X) and H0,1(X) are zero.
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Hodge Theory:

Let (M, 〈 , 〉 be Riemannian manifold
We need some norms on the space of forms on M , if e1, . . . , en is a orthonormal R-basis of TXM ,

e∗1, . . . , e
∗
n the dual basis (using 〈 , 〉 on M) and for each multi-index {i1 < · · · < iR} = I, let e∗I =

e∗i1 ∧ · · · ∧ e
∗
iR
. then {e∗I}I forms a basis of ΛR(TxM)∗ (the space of k forms on TxM).

We declare that {e∗I}I is orthonormal. This de�nes a scalar product on Λk(TxM)∗ (depending only on
〈 , 〉). We still denote it as 〈 , 〉. If α, β are k-forms on M we de�ne

〈α, β〉L2 =

ˆ
M
〈αx, βx〉Vol

Hodge Star Operator

Let dimRM = p.

{
∗ : Λk(TM)∗ → Λp−k(TM)∗

∗2 = (−1)k(p−k)
. Fix x ∈M , because 〈 , 〉 exists on Λk(TxM)∗ we have

the following diagram

Λk(TxM)∗
∼

∗

''

(Λk(TxM)∗)∗

∼

Λp−q(TxM
∗)

if β is a (p− k)-form and α a k-form with α 7→ (α ∧ β)/Vol then

〈α, β〉Vol = α ∧ ∗β

d : Λk → Λk+1, we want to construct the adjoint d∗ of d for 〈 , 〉L2 . That is we want d∗ : Λk → Λk−1

such that α ∈ Λk, β ∈ Λk−1 then 〈α, d∗(β)〉L2 = 〈dα, β〉L2

Claim. If we de�ne d∗ on Λk by d∗ = (−1)k ∗−1 d∗ then it works.

Proof. (∂α, β)L2 =
´
M dα ∧ ∗β. d(α ∧ ∗β) = dα ∧ ∗β + (−1)kα ∧ d ∗ β, so by Stoke's theorem 0 =´

M dα ∧ ∗β + (−1)k
´
M α ∧ d ∗ β = · · · = 〈dα, β〉L2 − 〈α, d∗β〉L2

De�nition 1.13. The Laplacian ∆ : Λk → Λk is de�ned by ∆ = dd∗ + d∗d

De�nition 1.14. A k-form α is harmonic if ∆α = 0

Lemma 1.15. 〈∆α, α〉 = |dα|2L2 + |d∗α|2L2 = 〈dα, dα〉L2 + 〈d∗α, d∗α〉L2 and 〈∆α, β〉 = 〈α,∆β〉

Proof. Exercise (formal)

Corollary 1.16. ∆α = 0 if and only if dα = 0 and d∗α = 0, i.e., harmonic forms are closed.

Theorem 1.17. Any smooth k-form α onM can be written as a sum of a harmonic one plus the Laplacian

of another form

The theorem says that for any α, there exists α0 harmonic and β a k-form such that α = α0 + ∆β
So we have a map Harmonic k-forms→ Hk

DR(M)

Corollary 1.18. Any de Rham cohomology class can be represented by a unique harmonic form Hk(M) ∼=
ker(∆ : Λk → Λk)
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Proof. Let α be a closed k-form. Write α = α0 +∆β, α0-harmonic. So α = α0 +dd∗β+d∗dβ and since α0

and dd∗β are both closed we have d∗dβ is also closed. 0 = 〈dd∗dβ, dβ〉L2 = 〈d∗dβ, d∗dβ〉L2 = ||d∗dβ|| = 0,
so d∗dβ = 0. Hence α− α0 = d(d∗β) is exact. Hence [α] = [α0] so [α] is represented by a harmonic form.

We want to show that if α0 is harmonic and [α0] = 0 then α0 = 0. Let α0 = dγ, then 0 = ∆α0 implies
d∗α0 = 0. So d∗dγ = 0, hence 〈d∗dγ, γ〉L2 = 0 = ||dγ||2L2 , so dγ = α0 = 0

We assume now that M is Kähler, 〈 , 〉 = <(h) and h is a Kähler metric.

Theorem 1.19. In this case the Laplacian preserved the type of forms, that is ∆(Ap,q) ⊂ Ap,q where Ap,q
is the space of (p+ q)-forms of type (p, q)

Corollary 1.20. The Hodge decomposition exists

Proof. α is harmonic so ∆α = 0. Write α =
∑
αp,q so ∆α =

∑
∆αp,q. So ∆αp,q = 0, hence ∆αp,q are

harmonic, thence they are closed. So [α] =
∑

[αp,q], therefore the Hp,q span Hk(M,C)
Check that this is a direct sum.

2 Ricci Curvature and Yau's Theorem

Let (M, 〈 , 〉 be a Riemannian manifold, ∇ the Levi-Civiti connection

Curvature tensor of M

Let X,Y, Z be vector �elds on open set of M .

∇Y (∇XZ)−∇X(∇Y Z)−∇[X,Y ]Z (∗)

Exercise. In Euclidean space, X,Y, Z : U → Rm,∇Z = dZ, then (∗) = 0

Fact. (∗) is a tensor: The value of (∗) at x ∈ M depends only on X(x), Y (x), Z(x), this means that

(∗) = R(X,Y )(Z) where R(X,Y ) is the endomorphism of TxM . We call R the curvature tensor. It is a

bilinear map TxM × Tx → End(TxM)

1. R(X,Y ) = −R(Y,X)

2. R(X,Y ) is skew-symmetric for 〈 , 〉, i.e., 〈R(X,Y )(Z), T 〉 = −〈Z,R(X,Y )(T )〉
Part 1. tells us we can think of R as 2-form with values in the space of symmetric endomorphism of

TxM . If p = dimRM then skew-sym(TxM) has dimension p(p−1)
2 × p(p−1)

2 .

The Ricci tensor of M will be (on each point x ∈ M) a symmetric bilinear from on TxM . If X,Y
are tangent vectors Ricci(X,Y ) := Tr(R(X,−), (Y )) (i.e., Tr(Z 7→ R(X,Z)(Y ))

3. 〈R(X,Y )(Z), T 〉 = 〈R(Z, T )(X), (Y )〉

Lemma 2.1. Ricci is symmetric

Proof. Let e1, . . . , ep be orthonormal basis of TxM . Then

Ricci(X,Y ) =
∑
i

〈R(X, ei)(Y ), ei〉

=
∑
i

〈R(Y, ei)(X), ei〉

= Ricci(Y,X)
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Next we assume M is Kähler.

Exercise. Prove that R(JX, JY ) = R(X,Y ) (use the fact that ∇JX = J∇X), i.e., that R is of type
(1,1)

Let h = 〈 , 〉 − iω be a Hermitian metric. We transform Ricci (a symmetric object) into something
skew-symmetric

De�nition 2.2. The Ricci form of the Kähler metric is γω(X,Y ) = Ricci(JX, Y )

Proposition 2.3. γω is skew-symmetric and a (1, 1)-form

Proof. γω is a (1, 1)-form because γω(JX, JY ) = γω(X,Y )

γω(Y,X) = Ricci(JY,X)

= Ricci(−Y, JX)

= −γω(X,Y )

How to relate γω to the 1st Chern Class of M?
We will de�ne the 1st Chern Class of a holomorphic line bundle L→M . c1(L) ∈ H2(M,R) (actually

c1(L) lives in H2(M,Z), we simply look at its image in H2(M,R)). Let h be a hermitian metric on L. If
s is a local holomorphic section without zeroes on some open set U , we de�ne Ω = 1

2πi∂∂ log h(s, s)

1. Ω does not depend on s, (i.e., ∂∂ log h(s1, s1) = ∂∂ log h(s2, s2) is s1 and s2 are two non-zero sections
on U)

2. Ω is globally de�ned

3. The cohomology class of Ω does not depend on h (any other hermitian metric on L is of the form

h′ = fh for f > 0, Ω′ = Ω +
1

2πi
∂∂ log f2︸ ︷︷ ︸
is exact

)

We de�ne c1(L) to be the class of Ω. Now if M is a complex manifold its 1st Chern Class is that of the
bundle ΛpTM →M (where p = dimCM)

Exercise. Let L → PnC be the tautological line bundle. L can be endowed with the restriction of the
metric Cn+1. Compute Ω as given above, you should �nd the negative of the example of Kähler metric of
CPn given earlier.

On a Kähler manifold R(X,Y ) is C-linear, hence skew hermitian.

Proposition 2.4. γω(X,Y ) = −iTrCR(X,Y )

Corollary 2.5. γω is closed
[γω

2π

]
= −c1(M)

Let ω be a Kähler form on V . Any (1, 1)-form α on V can be written as α = λv + β (λ ∈ R or C),
where β satis�es β ∧ ωn−1 = 0. (If β satis�es this we say that β is primitive)
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Corollary 2.6. Let (M,h) be Kähler. Then 〈 , 〉 has zero Ricci curvature ⇐⇒ R ∧ ωn = 0 (equivalent

to saying R is primitive 2-form).

If (M,h) is Kähler and if c1(M) = 0, then γω is cohomologeous to zeroes.

Theorem 2.7 (Calabi-Yau). If (M,ω) is Kähler, c1(M) = 0, then there exists a unique Kähler metric

h0 = 〈 , 〉 − iω0 such that

{
[ω0] = [ω]

γω0 = 0
. In other words, there is a unique metric with 0 Ricci curvature

and cohomologeous to ω.

3 Hodge Structure

Let M be a �nitely generated free module (M ∼= Zl)

De�nition 3.1. A Hodge structure of weight k on M is a decomposition M ⊗ZC = ⊕p+q=kV p,q such that
V p,q = V q,p

Remark. • M ⊗C = M ⊗R+ iM ⊗R, so we have an involution a+ ib 7→ a− ib this is the conjugation
which appears in the de�nition.

• In general we assume V p,q = 0 if p < 0 or q < 0

Example. If (M,h) is compact Kähler, Hk ∗M,Z)/Torsion has a weight k Hodge structure. The com-
plexi�cation of Hk(X,Z)/Tor is Hk(X,C) and we have the decomposition on Hk(X,C)

De�nition 3.2. A polarization for a Hodge structure of weight k onM is a bilinear form Q : M×M → Z
which is

1. Symmetric for k even and skew-symmetric for k odd

2. QCM ⊗ C×M ⊗ C→ C satis�es QC(α, β) = 0 if α ∈ V p,q, β ∈ V p′,q′ and p 6= p′

3. α ∈ V p,q \ {0}, (−1)
k(k−1)

2 (−1)qikQ(α, α) > 0

Example. M = Hk(X,Z)/Tor, Q(α, β) =
´
X ω

n−k ∧ α ∧ β (is integral value since [ω] is integral). This
satisfy 1. and 2. but not 3. in general

Proposition 3.3. A weight 1 Hodge structure is the same thing as a complex torus (a polarised weight 1

Hodge structure is the same thing as an Abelian Variety)

Proof. M = Zk, M ⊗C = A⊕A. Consider v ∈M , then its decomposition must be (a, a) (since v is real).
The projection π : M ⊗ C→ A is injective on Zk. π(Zk) ⊂ A (exercise: π(Zk) is discrete, so its a lattice
in A). Then A/π(Zk) is the complex torus.

IfX is a K3 surface, we will see thatM = H2(X,Z) is isomorphic to Z22, H2(X,Z) = H2,0+H1,1+H0,2

of dimension 1, 20, 1 respectively.

Lemma 3.4. If M and the intersection form are given, then the Hodge structure is determined by H2,0.

In particular, for a K3 surface the Hodge structure is determined by a point in P21 ⊂ P(H2(X,C)). This

points lives in the quadric de�ned by
´
X α ∧ α = 0

Exercise. If β is a (1, 1)-form then β ∧ β is semi-positive.
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Part II

Introduction to Complex Surfaces and K3 Surfaces
(Gianluca Pacienza)

References:
Barth,Peters, Vand De Ven: Compact Complex Surfaces

Beauville: Surfaces algebriques Complexes

Miranda: An overview of algebraic surfaces (Free on the internet)
*: Geometry des surfaces K3

4 Introduction to Surfaces

We assume X is Kähler for this whole part

4.1 Surfaces

De�nition 4.1. A compact complex surface (or more simply a surface) X is compact, connected, complex
manifold of dimCX = 2

Example. F ∈ C[x0, . . . , x3] homogeneous. X := {F = 0} ⊂ P3 (of course F = ∂F
∂x0

= · · · = ∂F
∂x3

= 0 has
no solutions)

More generally if F1, . . . , Fn−2 ∈ C[x0, . . . , xn] homogeneous polynomial of degree d1, . . . , dn−2 such

that
(
∂Fi
∂xj

(p)
)
i,j

has maximal rank at each p ∈ X. (X is called complete intersection of multiple degree

(d1, . . . , dn−2))

Note. If
∑
di = n+ 1 then X is a K3 surface

De�nition 4.2. A surface is called algebraic if its �eld M(X) of meromorphic function satis�es

1. ∀p 6= q ∈ X, ∃f ∈M(X) such that f(p) 6= f(q)

2. ∀p ∈ X, ∃f, g ∈M(X) such that (f, g) gives local coordinates of X at p.

Example. 1. If X ⊂ Pn is a surface then it is algebraic, since the ratios xi
xj

of homogeneous coordinates

on Pn restricted to X satis�es 1 and 2 (of De�nition 4.2)

2. T = C2/Λ a complex torus of dim 2. A �random� choice of Λ will lead to a non-algebraic surface

3. We will see that a �random� K3 surfaces is non-algebraic.

4.2 Forms on Surfaces

De�nition 4.3. A di�erentiable 1-form (or C∞) ω on a surface X is locally an expression:

f1(z, w)dz + f2(z, w)dz + g1(z, w)dw + g2(z, w)dw

where (z, w) are local coordinates and fi, gi are C
∞ functions (plus patching conditions)
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Remark. Since coordinate change preserves ∂z, ∂z, ∂w, ∂w the type is well de�ned:
(1, 0) type: fdz + gdw
(0, 1) type: fdz + gdw

De�nition 4.4. (n = 1, 2, 3, 4) A C∞ n-form ω on a surfaceX is locally a linear combination of expressions
of the form f(z, z, w,w)dα1 ∧ · · · ∧ dαn with dαi ∈ {dz, dz, dw, dw) and f ∈ C∞ (with the usual rule
dαi ∧ dαi = 0 and antisymmetric) (plus combability conditions)

A type (p, q) means p-times dz or dw and q-time dz or dw

De�nition 4.5. A holomorphic (and respectively meromorphic) n-form is an n-form of type (n, 0) whose
coe�cients are holomorphic (respectively meromorphic) functions.

Example. T = C2/Λ. If z1, z2 are coordinates on C then dz1, dz2, dz1, dz2 descend to the quotient

4.3 Divisors

De�nition 4.6. A divisor is a �nite formal sum D =
∑

mi∈ZmiYi, Yi ⊂ X a codimension 1 subvarieties.

i.e., D ↔
{
fi
gi

}
i∈I

, fi, gi local holomorphic function on Ui such that (fi/gi)/(fj/gj) has no zeroes or

poles on Ui ∩ Uj 6= ∅. Hence locally D =(zeroes of fi) − (zeroes of gi) (all counted with multiplicities)

Divisors form an abelian group Div(X), D =
∑

imiYi, E =
∑

i niYi then D + E =
∑

i(ni + mi)Yi,

equivalently if D =
{
fi
gi

}
and E =

{
αi
βi

}
then D + E =

{
fiαi

giβi

}
.

De�nition 4.7. If D is de�ned globally by zeroes and poles of a meromorphic function f ∈ M(X) then
D is called principal

Prime(X) =Subgroup of principal divisors ≤ Div(X)

De�nition 4.8. Pic(X) := Div(X)/Prime(X).
Equivalently: We say D1, D2 ∈ Div(X) are linearly equivalent if ∃f ∈ M(X) such that D1 − D2 =

div(f). We use the notation, D1 ∼ D2. So we get a group Div(X)/ ∼.
(Which we will avoid calling it Pic(X), as it is abusive language if X is not algebraic.)

De�nition 4.9. If F : X → Y is a morphism of manifolds and D =
{
fi
gi

}
∈ Div(Y ) then the pull-back of

D is F ∗D =
{
fi◦F
gi◦F

}
The exponential sequence

We have the exact sequence

0 // Z // OX
exp // O∗X // 0

where OX is the sheaf of holomorphic functions on X and O∗X is the sheaf of non-vanishing holomorphic
functions on X.

by taking the long exact sequence in cohomology we get

0 // H1(X,Z) // H1(X,OX) // H1(X,O∗X)
c1 // H2(X,Z)

where H1(X,O∗X) represents {line bundles on X}/isom.
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Fact. Hp,q(X) = Hq(X,Ωp
X), where Ωp

X is the sheaf of p-forms which are holomorphic.

Hence H1(X,OX) = H0,1. So 0 → T → H1(X,O∗X) → NS(X) → 0, where T is the complex torus
of dimension H0,1 = H1(X,OX)/H1(X,Z) and NS(X) is the image of c1 map insider H2(X,Z) called
Neron-Severi group of X, and its rank (as a Z-module) is called the Picard number of X. It is denoted
ρ(X).

4.4 The canonical class

Let X be a surface and ω be a meromorphic 2-form on X. Locally ω = f
g dz ∧ dw where f and g are local

holomorphic functions

De�nition 4.10. The canonical divisor (associated to ω) is KX =
{
f
g

}
= number of zeroes and poles of

ω.

Exercise. Check that if ω1, ω2 are two meromorphic 2-forms on X then there exists f ∈M(X) such that
ω1 = f · ω2.

The above exercise implies that the canonical divisors associated to ω1 and ω2 are linearly equivalent.
Hence KX de�nes a unique class in Div(X)/ ∼. This class is the canonical class of X

De�nition 4.11. Given D ∈ Div(X), set H0(X,OX(D)) := {f ∈ M(X) : div(f) ≥ −D} = C-vector
space of meromorphic functions with poles bounded by D.

Exercise. Show that H0(X,OX(KX)) =: H0(X,KX)
∼→ H2,0(X) = H2(X,Ω2X) = C-vector space of

holomorphic 2-forms on X

De�nition 4.12. The genus of a surface X is pg(X) = dimCH
0(X,KX) . More generally the n-th

plurigenus of X is dimCH
0(X,nKX)

Fact. (Important) The plurigenus are bimeromorphic invariants of X

Let 〈f0, . . . , fn〉 = H0(X,OX(D)). Let's de�ne φD : X 99K Pn de�ned by x 7→ [f0(x) : · · · : fn(x)]
(Note: not de�ned where, either all fi vanish at x or one of the fi has a pole at x)

De�nition 4.13. Let X be a surface. Suppose H0(X,nKX) 6= 0 for some n > 0. The Kodaira dimension
of X is kod(X) := maxm>0 dim im(φmKX

) (if possible) otherwise set kod(X) = −∞. (So kod(X) ∈
{−∞, 0, 1, 2}

Example. If X is a compact Riemann Sphere, the Riemann-Roch theorem tells us that kod(X) =
−∞ X ∼= P1

0 pg(X) = 1

1 pg(X) ≥ 2

The Enriques-Kodaira classi�cations of surfaces consist of �describing� surfaces according to their
Kodaira dimension

Example. In each class:

kod = −∞ Any complete intersection X(d1,...,dn−2) ⊂ Pn with
∑
di < n+ 1
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kod = 0 Any complete intersection X(d1,...,dn−2) ⊂ Pn with
∑
di = n + 1. You can also take a Torus

(with dimC T = 2)

kod = 2 Any complete intersection X(d1,...,dn−2) ⊂ Pn such that
∑
di > n+ 1

kod = 1 A surface X �bered over a genus ≥ 2 curve B with �bers isomorphic to curves of genus 1. (e.g.
B ∈ k[x0, x1, x2] homomorphic, degB = 3, K = M(B), g(B) ≥ 2, then X = {B′ = 0} ⊂ P2

K)

4.5 Numerical Invariants

Betti Numbers: bi := rkH i(X,Z) = dimRH
i(X,R) = dimCH

i(X,C) = ith Betti number of X

Euler Number e :=
∑

(−1)ibi

Hodge numbers hp,q := dimCH
p,q = dimCH

q(X,Ωq
X)

They satisfy hp,q = hq,p = h2−p,2−q = h2−q,2−p and bk =
∑

p+q=k h
p,q (Hodge decomposition). This gives

the Hodge diamond

h2,2

h2,1 h1,2

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

⇒ 1

q q

pg h1,1 pg

q q

1

where q is called the irregularity of X. Note that e = 2 + 2pg + h1,1 − 4g

4.6 Intersection Number

Let C1, C2 ⊂ X be two irreducible curves. We want to de�ne C1 · C2. If C1 6= C2, set C1 · C2 =∑
p∈C1∩C2

(C1 · C2)p where (C1 · C2)p = dimOX,p/(f1, f2) with Ci = {fi = 0} (locally)

Exercise. Check that (C1 ·C2)p = 1 if C1 and C2 are smooth at p are intersect transversely, i.e. C1 ·C2 =
#points in C1 ∩ C2 counted with the right multiplicities (as usual)

If C1 = C2 = C. If C is smooth, C2 := deg(NC/X), the normal bundle of C in X. For the general
de�nition look at references.

4.7 Classical (and useful) results

Thom-Hirzebruch index theorem The index (number of positive eigenvalues minus number of negative

eigenvalues) of the intersection product on H2(X) is equal to
K2

X−2e
3

Hodge index theorem The intersection product on H1,1 ∩H2(X) has signature (1, h1,1 − 1)

Noether's formula 12χ(OX) = K2
X + e where χ(OX) = h0(OX)− h1(OX) + h2(OX)

Riemann Roch Let D ∈ Div(X), χ (OX(D)) = D·(D−KX)
2 + χ(OX) where χ(L) = h0(L)− h1(L) + h2(L)

and L = OX(D) in our case
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Genus formula Let C ⊂ X be an irreducible curve, then 2pa(C)−2 = (C+KX) ·C where pa(C) = h1(OC)
is the arithmetic genus (and is equal to the topological genus of C if C is smooth)

Freedman X1, C2 simply connected surface. We haveX1
∼= X2 (homorphically) if and only if H2(X1,Z) ∼=

H2(X2,Z) (isometrically)

5 Introduction to K3 surfaces

De�nition 5.1. A surface X is a K3 surface if KX = 0 and b1(X) = 0

Theorem 5.2. A K3 surface is always Kähler

Remark. Since b1(X) = 2q an equivalent de�nition is KX = 0 and h1(OX) = 0

Noether formula reads 12 · (2− 0) = 0 + e, that is 24 = e = 2 + 2 + h1,1 − 0, hence h1,1 = 20

Exercise. Let X be a K3 surface. Prove that TX ∼= Ω1
X

A consequence of exercise is that dimCH
1(X,TX) = 20

We have that the Hodge diamond of a K3 surface is

1

0 0

1 20 1

0 0

1

Fact. H1(K3,Z) has no torsion

Corollary 5.3. Let X be a K3 surface. H1(X,Z) = 0 and H2(X,Z) is a torsion free Z-module of rank 22

Proof. H1(X,Z) ⊗ R = 0 (since b1 = 0) so H1(X,Z) = 0. By general properties of algebraic topology,
we have that the torsion of H2(X,Z) is isomorphic to the torsion of H1(X,Z). Hence no torsion. Since
b2(X) = 22, then H2(X,Z) is a torsion free Z-module of rank 22

A closer look to H2(X,Z)

• H2(X,Z) is endowed with the intersection form, which is even by the genus formula (2pa(C)− 2 =
(C + 0) · C = C2)

• The intersection form is inde�nite (since, by Thon-Hizebucj, the index is −16)

• The intersection form is unimodular (its determinant is ±1) by Poincaré duality

Now we have the following:

Fact. An inde�nite, unimodular lattice is uniquely determined (up to isometry) by its rank, index and

parity (i.e., even or not)

Conclusion: H2(K3,Z) = H⊕3 ⊕ (−E8)⊕2 where
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• H is a rank 2 Z-module with form given

(
0 1
1 0

)
(Hyperbolic plane)

• E8 = Ze1 ⊕ · · · ⊕ Ze8 a rank 8 Z-module with the following Dykin diagram

e1• e2• e3• e4• e5• e6• e7•
e1•

and (ei, ej) =


2 i = j

−1 d(ei, ej) = 1

0 else

(d(ei, ej) is given by the diagram)

(Check that H⊕3 ⊕ (−E8)⊕2 has the same rank, index and parity as H2(K3,Z))

Note. The sign on H2 is (3, 19) while the sign on H1,1 ∩H2 is (1, 19)

We conclude with 3 classes of examples of K3

1. Complete intersections in Pn. Take X = X(d1,...,dn−2
)Pn a complete intersection with surface of

multidegree (d1, . . . , dn−2) such that
∑
di = n + 1. By applying (n − 2) times the adjunction

formula, we �nd KX = 0. By applying (n − 2) time the Lefschetz hyperplane theorem, we see
H1(X,Z)

∼→ H1(Pn,Z) = 0. So X is a K3 surface (for example X4 ⊂ P3, X2,3 ⊂ P4, X2,2,2 ⊂ P5, . . . )

Parameter counts: (for X4 ⊂ P3) We have 35 parameters (the complex dimension of the space of
degree 4 homogeneous polynomials in 4 variable) minus 16 parameters (the complex dimension of
4× 4 invertible matrices). Hence a total of 19 parameters.

2. Double Planes: Take C = C6 ⊂ P2 a smooth sextic plane curve. LetX be the double cover of P2

branched along C, X
π→ P2 (c.f. [BPHVdV]).

Theorem 5.4. KX = π∗(KP2)+Rami�cation = π∗(−3H + 1
2C) ∼ π∗(−3H + 6

2H) = 0

One also computes that b1(X) = 0, so X is a K3 surface

Parameter count: 28 parameters (the complex dimension of the space of homogeneous degree 6
polynomial in 3 variable) minus 9 parameters (the complex dimension of invertible 3 × 3 matrices
acting on P2) then 19 parameters.

3. Kummer Surfaces:

Let A be a complex torus of dimC 2. We have an involution ι : A → A, a 7→ −a. Consider A/ι (i.e
identify each point of A with its opposite)

Bad News: A/ι has 16 singulars points (corresponding to the 16 �xed points of ι) which are exactly
the 16 points of order 2 on A

Good News: We can get rid of them by Blowing up. Let ε : Ã→ A/ι be the blow up at these 16
points.

ε : Ã //
��

A
��

Ã/ι̃ = A′ // A/ι
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Notice: That locally around an order 2 point ι : (α, β) 7→ (−α,−β), the invariants under ι are
α2, β2, αβ. So A/ι = SpecC[α2, β2, αβ] ∼= SpecC[u, v, w]/(uv − w2). This shows that the singular
points of A/ι are ordinary double points. If ι̃ : Ã→ Ã is the extension of ι to Ã, then one sees that
around the exceptional curves ĩ : (x, y) 7→ (x,−y). The upshot is that the quotient X := Ã/ι̃ is
smooth.

X is a K3 surface: The 2-form dα ∧ dβ descend to the quotient, and then lifts to A′\{exceptional
curves}. One can check that it extend smoothly to A′ without zeroes. As why it has no irregularity
(h1,0 = h0(Ω1

X)), there does not exists a 1 form on A which is invariant under the involution ι.
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