## Introduction to Hodge Theory and K3 surfaces

## Contents

I Hodge Theory (Pierre Py) ..... 2
1 Kähler manifold and Hodge decomposition ..... 2
1.1 Introduction ..... 2
1.2 Hermitian and Kähler metric on Complex Manifolds ..... 4
1.3 Characterisations of Kähler metrics ..... 5
1.4 The Hodge decomposition ..... 5
2 Ricci Curvature and Yau's Theorem ..... 7
3 Hodge Structure ..... 9
II Introduction to Complex Surfaces and K3 Surfaces (Gianluca Pacienza) ..... 10
4 Introduction to Surfaces ..... 10
4.1 Surfaces ..... 10
4.2 Forms on Surfaces ..... 10
4.3 Divisors ..... 11
4.4 The canonical class ..... 12
4.5 Numerical Invariants ..... 13
4.6 Intersection Number ..... 13
4.7 Classical (and useful) results ..... 13
5 Introduction to K3 surfaces ..... 14

## Part I

## Hodge Theory (Pierre Py)

Reference: Claire Voisin: Hodge Theory and Complex Algebraic Geometry

## 1 Kähler manifold and Hodge decomposition

### 1.1 Introduction

Definition 1.1. Let $V$ be a complex vector space of finite dimension, $h$ is a hermitian form on $V$. If $h: V \times V \rightarrow \mathbb{C}$ such that

1. It is bilinear over $\mathbb{R}$
2. $\mathbb{C}$-linear with respect to the first argument
3. Anti- $\mathbb{C}$-linear with respect to the second argument

$$
\text { i.e., } h(\lambda u, v)=\lambda h(u, v) \text { and } h(u, \lambda v)=\bar{\lambda} h(u, v)
$$

4. $h(u, v)=\overline{h(v, u)}$
5. $h(u, u)>0$ if $u \neq 0$

Decompose $h$ into real and imaginary parts, $h(u, v)=\langle u, v\rangle-i \omega(u, v)$ (where $\langle u, v\rangle$ is the real part and $\omega$ is the imaginary part)

Lemma 1.2. $\langle$,$\rangle is a scalar product on V$, and $\omega$ is a simpletic form, i.e., skew-symmetric.
Note. $-\langle$,$\rangle determines \omega$ and conversely
Proof. By the property 4. $\langle$,$\rangle is real symmetric and \omega$ is skew-symmetric. $\langle u, u\rangle=h(u, u)>0$ so $\langle$,$\rangle is$ scalar product

Let $u_{0} \in V$ such that $\omega\left(u_{0}, v\right)=0 \forall v \in V$. This equates to $h\left(u_{0}, v\right)$ is real for all $v$. Also $h\left(u_{0}, i v\right)$ is real for all $v$, but $h\left(u_{0}, i v\right)=-i h\left(u_{0}, v\right) \in \Im$ therefore, $h\left(u_{0}, v\right)=0$. Hence $u_{0}=0$, as $h$ is non-degenerate. So $\omega$ is non-degenerate.

Now we show $-\langle$,$\rangle determines \omega: \omega(u, v)=-\Im h(u, v)=\Im\left(i^{2} h(u, v)\right)=\Im(i h(i u, v))=\langle i u, v\rangle$, so $\omega(u, v)=\langle i u, v\rangle$.

Lemma 1.3. $\omega(u, i u)>0$ for all $u \neq 0$.
Proof. Plug in $v=i u$ in the last part of the previous lemma.
Definition 1.4. We say that a skew-symmetric form on a complex vector space is positive if it has the above property (of lemma 1.3)

$$
\text { If } h(i u, i v)=h(u, v) \text { then }\left\{\begin{array}{l}
\omega(i u, i v)=\omega(u, v)  \tag{*}\\
\langle i u, i v\rangle=\langle u, v\rangle
\end{array}\right.
$$

Exercise. Prove that a 2 -form on $\omega$ on $V$ satisfy ( $*$ ) if and only if it is of type ( 1,1 )

Let $V$ be a $\mathbb{C}$-vector space of $\operatorname{dim}_{\mathbb{C}} V=n=2 k$. Let $z_{1}, \ldots, z_{n}$ be coordinates on $V$ and $e_{1}, \ldots, e_{n}$ be a basis such that $v=\sum_{i} z_{i} e_{i}$ for $v \in V$. Define $d z_{j}: \sum z_{i} e_{i} \mapsto z_{j}$ and $d \overline{z_{j}}: \sum z_{i} e_{i} \mapsto \overline{z_{j}}$ for $1 \leq j \leq n$. Then $d z_{1}, \ldots, d z_{n}, d \bar{z}_{1}, \ldots, d \overline{z_{n}} \in \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C})$. We have $\operatorname{dim}_{\mathbb{R}} \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C})=2 \cdot 2 n=4 n$. If $\lambda \in \mathbb{C}$
 $\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C})=2 n$.
Exercise. $d z_{1}, \ldots, d z_{n}, d \bar{z}_{1}, \ldots, d \overline{z_{n}}$ is a basis for $\operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C})$ as a $\mathbb{C}$-vector space
Exercise. 1. An element $\phi \in \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C})$ is $\mathbb{C}$-linear if and only if $\phi$ can be written as $\phi=\sum_{i=1}^{n} \alpha_{i} d z_{i}$ where $\alpha_{i} \in \mathbb{C}$.
2. $\phi$ is antiC-linear map if and only if $\phi$ can be written as $\phi=\sum_{i=1}^{n} \beta_{i} d \overline{z_{i}}$ where $\beta_{i} \in \mathbb{C}$.

Let $I$ be the set of $\left\{i_{1}<\cdots<i_{k}\right\} . d z_{I}=d z_{i_{1}} \wedge d z_{i_{2}} \wedge \cdots \wedge d z_{i_{k}}$ is a $k$-linear alternating form $V$ to $\mathbb{C}$. $d \overline{z_{I}}=d \overline{z_{1}} \wedge d \overline{z_{2}} \wedge \cdots \wedge d \overline{z_{i_{k}}}$ is a $k$-linear alternating form $V$ to $\mathbb{C}$

Definition 1.5. A $k$-form $\alpha$ on $V$ (with values in $\mathbb{C}$ ), is of type $\left(p, q\right.$ ), with $p+q=k$ if $\alpha=\sum_{|I|=p,|J|=q} \lambda_{I, J} d z_{I} \wedge$ $d \overline{z_{J}}$ for $\lambda_{I, J} \in \mathbb{C}$.

Any $k$-form $\alpha$ is a sum of forms of type $(p, q)$ for $0 \leq p, q \leq k$ and $p+q=k$. Then $\alpha=\sum_{p+q=k} \alpha^{p, q}$
Example. Let $V$ be of dimension 2
$k=1 \quad(1,0)$-forms are $\mathbb{C}$-linear maps from $V \rightarrow \mathbb{C}$
$(0,1)$-forms are anti- $\mathbb{C}$-linear maps from $V \rightarrow \mathbb{C}$
$k=2 \quad(2,0)$-forms are $d z_{1} \wedge d z_{2}$
$(1,1)$ forms are spanned by $d z_{i} \wedge d \overline{z_{j}}$ for $i, j \in\{1,2\}$
(0,2)-forms are $d \overline{z_{1}} \wedge d \overline{z_{2}}$
Exercise. The type of a form does not depend on the choice of basis.
Example. Let $V=\mathbb{C}^{n}, z_{i}=x_{i}+i y_{i}$ then

$$
\begin{aligned}
d x_{1} \wedge d z_{2} & =\frac{d z_{1}+d \overline{z_{1}}}{2} \wedge d z_{2} \\
& =\underbrace{\frac{d z_{1} \wedge d z_{2}}{2}}_{(2,0)-\text { form }}+\underbrace{\frac{d \overline{z_{1}} \wedge d z_{2}}{2}}_{(1,1)-\text { form }}
\end{aligned}
$$

Example. If $X$ is a complex surface, $z_{1}, z_{2}$ are local coordinate on $X$, then a 2 -form is a combination

- $d z_{1} \wedge d z_{2}$ a $(2,0)$-form
- $\left\{\begin{array}{l}d z_{1} \wedge d \overline{z_{2}} \\ d z_{1} \wedge d \overline{z_{1}} \\ d z_{2} \wedge d \overline{z_{2}} \\ d z_{2} \wedge d \overline{z_{1}}\end{array} \quad\right.$ are $(1,1)$-forms
- $d \overline{z_{1}} \wedge d \overline{z_{2}}$ a ( 0,2 )-form

Summary: If $h$ is a hermitian form, $\omega=-\Im h$ is a ( 1,1 )-form and is positive (i.e, $\omega(u, i u)>0$ ). Conversely if a $(1,1)$ form is positive it arises as $\omega=-\Im h$ for some hermitian form $h$.

### 1.2 Hermitian and Kähler metric on Complex Manifolds

Let $M$ be a complex manifold.
Convention: Each tangent space of $M, T_{x} M$ is a complex vector space and write $J$ (or $J_{x}$ ) for the endomorphism $J_{x}: T_{x} M \rightarrow T_{x} M$ defined by $v \mapsto i v .\left(J^{2}=-\mathrm{id}\right)$

Definition 1.6. A hermitian metric on $M$ is the following. For each $x \in M, h_{x}$ is a hermitian metric on $T_{x} M$ and $h_{x}$ is $C^{\infty}$ on $M$.

So as before we can write $h=\langle\rangle-,i \omega$. The $\langle$,$\rangle is a Riemannian metric on M$ and $\omega$ is a $(1,1)$ form on $M$

Definition 1.7. We say $h$ is Kähler if $\omega$ is closed, i.e., $d \omega=0$.
Example. - If $\operatorname{dim}_{\mathbb{C}} M=1$, that is $M$ is a Riemann surface, then any hermitian metric is Kähler.: Why? $d \omega$ by definition is a 3 -form on a 2 -dimension $\mathbb{R}$-manifold, so it must be zero.

- $\partial, \bar{\partial}$ operators: If $f: M \rightarrow \mathbb{C}$ is a function. $d f$ is a 1 -form and $d f_{x}: T_{x} M \rightarrow \mathbb{C}$. We can decompose as $d f_{x}=\underbrace{\partial f_{x}}_{\mathbb{C} \text {-linear }}+\underbrace{\bar{\partial} f_{x}}_{\mathbb{C} \text {-antilinear }}$. So $d f=\partial f+\bar{\partial} f$. $\partial$ and $\bar{\partial}$ extend to operators from $\Omega^{k} \rightarrow \Omega^{k+1}$ (where $\Omega^{k}$ is the $\mathbb{C}$-value $k$-forms) defined by

$$
\begin{aligned}
& \partial(\alpha \wedge \beta)=\partial \alpha \wedge \beta+(-1)^{|\alpha|} \alpha \wedge \partial \beta \\
& \bar{\partial}(\alpha \wedge \beta)=\bar{\partial} \alpha \wedge \beta+(-1)^{|\alpha|} \alpha \wedge \bar{\partial} \beta
\end{aligned}
$$

Exercise. If $\alpha$ is a $(p, q)$-form (it is of type $(p, q)$ at each point), then $d \alpha$ is the sum of a ( $p+1, q$ ) form and a $(p, q+1)$ form: $\partial$ is the $(p+1, q)$ form and $\bar{\partial}$ is the $(p, q+1)$ piece

- $M=\mathbb{P}_{\mathbb{C}}^{n}$ : We define a close positive (that is positive on each point on $M$ ) $(1,1$ )-form (it must be the imaginary part of a hermitian metric) is defined by $\omega_{[z]}=\frac{1}{2 \pi i} \partial \bar{\partial} \log \left(\|z\|^{2}\right)$. Check that it is well defined, (does not define on the affine piece): hint: if $f: U \rightarrow \mathbb{C}^{*}$ is holomorphic, check that $\partial \bar{\partial} \log |f|^{2}=0$.
- If $T=\mathbb{C}^{n} / \Lambda, \Lambda$ a lattice of $\mathbb{C}^{n}$, then any constant coefficient metric is Kähler.
- If $(M, h)$ is Kähler, and $\Sigma \subset M$ is a $\mathbb{C}$-submanifold. Then $\left(\Sigma,\left.h\right|_{\Sigma}\right)$ is Kähler. As $d\left(\left.\omega\right|_{\Sigma}\right)=\left.d \omega\right|_{\Sigma} \Rightarrow$ $\left.\omega\right|_{\Sigma}$ is closed.

Lemma 1.8. Let $M$ be a complex manifold of $\mathbb{C}$-dimension $n$ with hermitian metric $h$. The Riemannian volume form of $\langle$,$\rangle is equal to \frac{\omega^{n}}{n!}$.
(If $V$ is $\mathbb{C}$-vector space with $\mathbb{C}$-basis $e_{1}, \ldots, e_{n}$ then $e_{1}, J e_{1}, e_{2}, J e_{2}, \ldots, e_{n}, J e_{n}$ is a positive real basis. That is it has a canonical basis)

Corollary 1.9. Let $M$ be a closed complex manifold, i.e., compact with no boundary. Then $\forall k \in\{1, \ldots n\}$, $\omega^{k}=\underbrace{\omega \wedge \cdots \wedge \omega}_{k \text { times }}$ is closed and non-zero in cohomology, i.e., $\omega$ is not exact.

Proof. If $\omega^{k}=d \alpha$ for some $\alpha$, then $\omega^{n}=\omega^{k} \wedge \omega^{n-k}=d \alpha \wedge \omega^{n-k}=d\left(\alpha \wedge \omega^{n-k}\right)$. Hence by Stoke's theorem $\int_{M} \omega^{n}=0$, but $\int_{M} \frac{\omega^{n}}{n!}=\operatorname{Vol}(M)>0$, hence contradiction.

$$
\text { So } H_{\mathrm{DR}}^{2 n}(M, \mathbb{R}) \neq 0
$$

Corollary 1.10. If $M$ is compact, Kähler and $\Sigma^{p} \subset M^{n}$ closed $\mathbb{C}$-submanifold, then the homology class $[\Sigma] \in H_{2 p}(M)$, the fundamental class of $\Sigma$, is non-zero.

Proof. $0<\int_{\Sigma} \frac{\omega^{p}}{p!}=\operatorname{Vol}_{h} \Sigma$, then $\Sigma$ is not homologeous to 0 .
Exercise. If $X$ is a compact manifold and $\operatorname{dim}_{\mathbb{C}} X \geq 2$ and $h$ a Kähler metric, and $\phi: X \rightarrow \mathbb{R}_{+}^{*}$. Prove that $\phi h$ is Kähler if and only if $\phi$ is constant.

### 1.3 Characterisations of Kähler metrics

Let $(M, h)$ be a complex manifold with hermitian metric. Recall that $\nabla$ is the Levi-Civita connection of $\Re(h)=\langle$,$\rangle which is a Riemannian metric.$

Theorem 1.11. The following are equivalent:

1. $h$ is Kähler
2. For any vector field $X$ on $U \subset M$ (open set) then $\nabla(J X)=J(\nabla X)$

Proof. 2. $\Rightarrow$ 1. By definition of Levi-Civita connection $d\left\langle X_{1}, X_{2}\right\rangle=\left\langle\nabla X_{1}, X_{2}\right\rangle+\left\langle X_{1}, \nabla X_{2}\right\rangle$,

$$
\begin{aligned}
d \omega\left(X_{1}, x_{2}\right) & =d\left\langle J X_{1}, X_{2}\right\rangle \\
& =\left\langle\nabla J X_{1}, X_{2}\right\rangle+\left\langle J X_{1}, X_{2}\right\rangle \\
& =\left\langle J \nabla X_{1}, X_{2}\right\rangle+\left\langle J X_{1}, X_{2}\right\rangle
\end{aligned}
$$

so $d \omega\left(X_{1}, X_{2}\right)=\omega\left(\nabla X_{1}, X_{2}\right)+\omega\left(X_{1}, \nabla X_{2}\right)(*)$.
$d \omega\left(X_{0}, X_{1}, X_{2}\right)=X_{0} \cdot \omega\left(X_{1}, X_{2}\right)-X_{1} \cdot \omega\left(X_{0}, X_{1}\right)+X_{2} \cdot \omega\left(X_{0}, X_{1}\right)-\omega\left(\left[X_{0}, X_{1}\right], X_{2}\right)+\omega\left(X_{0},\left[X_{1}, X_{2}\right]\right)+\omega\left(\left[X_{0}, 2\right.\right.$
Use $(*)$ and $\nabla_{X} Y-\nabla_{Y} X=[X, Y]$ to show that $d \omega\left(X_{1}, X_{2}, X_{3}\right)=0$
$1 . \Rightarrow 2$. Not done

### 1.4 The Hodge decomposition

We want to construct a decomposition of the de Rham cohomology group $H_{\mathrm{DR}}^{K}(M, \mathbb{C})(\mathbb{C}$-valued differential forms) of a compact Kähler manifold.

If $p+q=k$, we define $H^{p, q}(M) \subset H^{k}(M)$ by $H^{p, q}(M)=$ subspaces of class $[\alpha]$ such that $\alpha$ can be represented by a closed form of type $(p, q)$, i.e., there exists $\beta$ of type $(p, q)$ closed such that $\alpha-\beta$ is exact Our goal:

Theorem 1.12. If $M$ is compact Kähler, then $H^{k}(M)=\oplus_{p+q=k} H^{p, q}(M)$. If $\alpha$ is a closed form (on a complex manifold) and if $\alpha=\sum \alpha^{p, q}$ is its decomposition. A priori, the $\alpha^{p, q}$ need not be closed

Example. $X=\left(\mathbb{C}^{2} \backslash\{0\}\right) /\left(v \mapsto \frac{1}{2} v\right)$. Then $H^{1}(X) \neq 0$ but $H^{1,0}(X)$ and $H^{0,1}(X)$ are zero.

## Hodge Theory:

Let ( $M,\langle$,$\rangle be Riemannian manifold$
We need some norms on the space of forms on $M$, if $e_{1}, \ldots, e_{n}$ is a orthonormal $\mathbb{R}$-basis of $T_{X} M$, $e_{1}^{*}, \ldots, e_{n}^{*}$ the dual basis (using $\langle$,$\rangle on M$ ) and for each multi-index $\left\{i_{1}<\cdots<i_{R}\right\}=I$, let $e_{I}^{*}=$ $e_{i_{1}}^{*} \wedge \cdots \wedge e_{i_{R}}^{*}$. then $\left\{e_{I}^{*}\right\}_{I}$ forms a basis of $\Lambda^{R}\left(T_{x} M\right)^{*}$ (the space of $k$ forms on $T_{x} M$ ).

We declare that $\left\{e_{I}^{*}\right\}_{I}$ is orthonormal. This defines a scalar product on $\Lambda^{k}\left(T_{x} M\right)^{*}$ (depending only on $\langle\rangle$,$) . We still denote it as \langle$,$\rangle . If \alpha, \beta$ are $k$-forms on $M$ we define

$$
\langle\alpha, \beta\rangle_{L^{2}}=\int_{M}\left\langle\alpha_{x}, \beta_{x}\right\rangle \mathrm{Vol}
$$

## Hodge Star Operator

Let $\operatorname{dim}_{\mathbb{R}} M=p .\left\{\begin{array}{l}*: \Lambda^{k}(T M)^{*} \rightarrow \Lambda^{p-k}(T M)^{*} \\ *^{2}=(-1)^{k(p-k)}\end{array}\right.$. . Fix $x \in M$, because $\langle$,$\rangle exists on \Lambda^{k}\left(T_{x} M\right)^{*}$ we have the following diagram

if $\beta$ is a $(p-k)$-form and $\alpha$ a $k$-form with $\alpha \mapsto(\alpha \wedge \beta) / V o l$ then

$$
\langle\alpha, \beta\rangle \mathrm{Vol}=\alpha \wedge * \beta
$$

$d: \Lambda^{k} \rightarrow \Lambda^{k+1}$, we want to construct the adjoint $d^{*}$ of $d$ for $\langle,\rangle_{L^{2}}$. That is we want $d^{*}: \Lambda^{k} \rightarrow \Lambda^{k-1}$ such that $\alpha \in \Lambda^{k}, \beta \in \Lambda^{k-1}$ then $\left\langle\alpha, d^{*}(\beta)\right\rangle_{L^{2}}=\langle d \alpha, \beta\rangle_{L^{2}}$
Claim. If we define $d^{*}$ on $\Lambda^{k}$ by $d^{*}=(-1)^{k} *^{-1} d *$ then it works.
Proof. $(\partial \alpha, \beta)_{L^{2}}=\int_{M} d \alpha \wedge * \beta . \quad d(\alpha \wedge * \beta)=d \alpha \wedge * \beta+(-1)^{k} \alpha \wedge d * \beta$, so by Stoke's theorem $0=$ $\int_{M} d \alpha \wedge * \beta+(-1)^{k} \int_{M} \alpha \wedge d * \beta=\cdots=\langle d \alpha, \beta\rangle_{L^{2}}-\left\langle\alpha, d^{*} \beta\right\rangle_{L^{2}}$
Definition 1.13. The Laplacian $\Delta: \Lambda^{k} \rightarrow \Lambda^{k}$ is defined by $\Delta=d d^{*}+d^{*} d$
Definition 1.14. A $k$-form $\alpha$ is harmonic if $\Delta \alpha=0$
Lemma 1.15. $\langle\Delta \alpha, \alpha\rangle=|d \alpha|_{L^{2}}^{2}+\left|d^{*} \alpha\right|_{L^{2}}^{2}=\langle d \alpha, d \alpha\rangle_{L^{2}}+\left\langle d^{*} \alpha, d^{*} \alpha\right\rangle_{L^{2}}$ and $\langle\Delta \alpha, \beta\rangle=\langle\alpha, \Delta \beta\rangle$
Proof. Exercise (formal)
Corollary 1.16. $\Delta \alpha=0$ if and only if $d \alpha=0$ and $d^{*} \alpha=0$, i.e., harmonic forms are closed.
Theorem 1.17. Any smooth $k$-form $\alpha$ on $M$ can be written as a sum of a harmonic one plus the Laplacian of another form

The theorem says that for any $\alpha$, there exists $\alpha_{0}$ harmonic and $\beta$ a $k$-form such that $\alpha=\alpha_{0}+\Delta \beta$ So we have a map Harmonic $k$-forms $\rightarrow H_{\mathrm{DR}}^{k}(M)$

Corollary 1.18. Any de Rham cohomology class can be represented by a unique harmonic form $H^{k}(M) \cong$ $\operatorname{ker}\left(\Delta: \Lambda^{k} \rightarrow \Lambda^{k}\right)$

Proof. Let $\alpha$ be a closed $k$-form. Write $\alpha=\alpha_{0}+\Delta \beta, \alpha_{0}$-harmonic. So $\alpha=\alpha_{0}+d d^{*} \beta+d^{*} d \beta$ and since $\alpha_{0}$ and $d d^{*} \beta$ are both closed we have $d^{*} d \beta$ is also closed. $0=\left\langle d d^{*} d \beta, d \beta\right\rangle_{L^{2}}=\left\langle d^{*} d \beta, d^{*} d \beta\right\rangle_{L^{2}}=\left\|d^{*} d \beta\right\|=0$, so $d^{*} d \beta=0$. Hence $\alpha-\alpha_{0}=d\left(d^{*} \beta\right)$ is exact. Hence $[\alpha]=\left[\alpha_{0}\right]$ so $[\alpha]$ is represented by a harmonic form.

We want to show that if $\alpha_{0}$ is harmonic and $\left[\alpha_{0}\right]=0$ then $\alpha_{0}=0$. Let $\alpha_{0}=d \gamma$, then $0=\Delta \alpha_{0}$ implies $d^{*} \alpha_{0}=0$. So $d^{*} d \gamma=0$, hence $\left\langle d^{*} d \gamma, \gamma\right\rangle_{L^{2}}=0=\|d \gamma\|_{L^{2}}^{2}$, so $d \gamma=\alpha_{0}=0$

We assume now that $M$ is Kähler, $\langle\rangle=,\Re(h)$ and $h$ is a Kähler metric.
Theorem 1.19. In this case the Laplacian preserved the type of forms, that is $\Delta\left(A^{p, q}\right) \subset A^{p, q}$ where $A^{p, q}$ is the space of $(p+q)$-forms of type $(p, q)$
Corollary 1.20. The Hodge decomposition exists
Proof. $\alpha$ is harmonic so $\Delta \alpha=0$. Write $\alpha=\sum \alpha^{p, q}$ so $\Delta \alpha=\sum \Delta \alpha^{p, q}$. So $\Delta \alpha^{p, q}=0$, hence $\Delta \alpha^{p, q}$ are harmonic, thence they are closed. So $[\alpha]=\sum\left[\alpha^{p, q}\right]$, therefore the $H^{p, q}$ span $H^{k}(M, \mathbb{C})$

Check that this is a direct sum.

## 2 Ricci Curvature and Yau's Theorem

Let $(M,\langle$,$\rangle be a Riemannian manifold, \nabla$ the Levi-Civiti connection

## Curvature tensor of $M$

Let $X, Y, Z$ be vector fields on open set of $M$.

$$
\nabla_{Y}\left(\nabla_{X} Z\right)-\nabla_{X}\left(\nabla_{Y} Z\right)-\nabla_{[X, Y]} Z(*)
$$

Exercise. In Euclidean space, $X, Y, Z: U \rightarrow \mathbb{R}^{m}, \nabla Z=d Z$, then $(*)=0$
Fact. (*) is a tensor: The value of $(*)$ at $x \in M$ depends only on $X(x), Y(x), Z(x)$, this means that $(*)=R(X, Y)(Z)$ where $R(X, Y)$ is the endomorphism of $T_{x} M$. We call $R$ the curvature tensor. It is a bilinear map $T_{x} M \times T_{x} \rightarrow \operatorname{End}\left(T_{x} M\right)$

1. $R(X, Y)=-R(Y, X)$
2. $R(X, Y)$ is skew-symmetric for $\langle$,$\rangle , i.e., \langle R(X, Y)(Z), T\rangle=-\langle Z, R(X, Y)(T)\rangle$

Part 1. tells us we can think of $R$ as 2 -form with values in the space of symmetric endomorphism of $T_{x} M$. If $p=\operatorname{dim}_{\mathbb{R}} M$ then skew-sym $\left(T_{x} M\right)$ has dimension $\frac{p(p-1)}{2} \times \frac{p(p-1)}{2}$.
The Ricci tensor of $M$ will be (on each point $x \in M$ ) a symmetric bilinear from on $T_{x} M$. If $X, Y$ are tangent vectors Ricci $(X, Y):=\operatorname{Tr}(R(X,-),(Y))$ (i.e., $\operatorname{Tr}(Z \mapsto R(X, Z)(Y))$
3. $\langle R(X, Y)(Z), T\rangle=\langle R(Z, T)(X),(Y)\rangle$

Lemma 2.1. Ricci is symmetric
Proof. Let $e_{1}, \ldots, e_{p}$ be orthonormal basis of $T_{x} M$. Then

$$
\begin{aligned}
\operatorname{Ricci}(X, Y) & =\sum_{i}\left\langle R\left(X, e_{i}\right)(Y), e_{i}\right\rangle \\
& =\sum_{i}\left\langle R\left(Y, e_{i}\right)(X), e_{i}\right\rangle \\
& =\operatorname{Ricci}(Y, X)
\end{aligned}
$$

Next we assume $M$ is Kähler.
Exercise. Prove that $R(J X, J Y)=R(X, Y)$ (use the fact that $\nabla J X=J \nabla X)$, i.e., that $R$ is of type $(1,1)$

Let $h=\langle\rangle-,i \omega$ be a Hermitian metric. We transform Ricci (a symmetric object) into something skew-symmetric

Definition 2.2. The Ricci form of the Kähler metric is $\gamma_{\omega}(X, Y)=\operatorname{Ricci}(J X, Y)$
Proposition 2.3. $\gamma_{\omega}$ is skew-symmetric and a $(1,1)$-form
Proof. $\gamma_{\omega}$ is a $(1,1)$-form because $\gamma_{\omega}(J X, J Y)=\gamma_{\omega}(X, Y)$

$$
\begin{aligned}
\gamma_{\omega}(Y, X) & =\operatorname{Ricci}(J Y, X) \\
& =\operatorname{Ricci}(-Y, J X) \\
& =-\gamma_{\omega}(X, Y)
\end{aligned}
$$

How to relate $\gamma_{\omega}$ to the $1^{\text {st }}$ Chern Class of $M$ ?
We will define the $1^{\text {st }}$ Chern Class of a holomorphic line bundle $L \rightarrow M . c_{1}(L) \in H^{2}(M, \mathbb{R})$ (actually $c_{1}(L)$ lives in $H^{2}(M, \mathbb{Z})$, we simply look at its image in $\left.H^{2}(M, \mathbb{R})\right)$. Let $h$ be a hermitian metric on $L$. If $s$ is a local holomorphic section without zeroes on some open set $U$, we define $\Omega=\frac{1}{2 \pi i} \partial \bar{\partial} \log h(s, s)$

1. $\Omega$ does not depend on $s$, (i.e., $\partial \bar{\partial} \log h\left(s_{1}, s_{1}\right)=\partial \bar{\partial} \log h\left(s_{2}, s_{2}\right)$ is $s_{1}$ and $s_{2}$ are two non-zero sections on $U$ )
2. $\Omega$ is globally defined
3. The cohomology class of $\Omega$ does not depend on $h$ (any other hermitian metric on $L$ is of the form

$$
h^{\prime}=f h \text { for } f>0, \Omega^{\prime}=\Omega+\underbrace{\frac{1}{2 \pi i} \partial \bar{\partial} \log f^{2}}_{\text {is exact }})
$$

We define $c_{1}(L)$ to be the class of $\Omega$. Now if $M$ is a complex manifold its $1^{\text {st }}$ Chern Class is that of the bundle $\Lambda^{p} T M \rightarrow M$ (where $p=\operatorname{dim}_{\mathbb{C}} M$ )

Exercise. Let $L \rightarrow \mathbb{P}_{\mathbb{C}}^{n}$ be the tautological line bundle. $L$ can be endowed with the restriction of the metric $\mathbb{C}^{n+1}$. Compute $\Omega$ as given above, you should find the negative of the example of Kähler metric of $\mathbb{C P}^{n}$ given earlier.

On a Kähler manifold $R(X, Y)$ is $\mathbb{C}$-linear, hence skew hermitian.
Proposition 2.4. $\gamma_{\omega}(X, Y)=-i \operatorname{Tr}_{\mathbb{C}} R(X, Y)$
Corollary 2.5. $\gamma_{\omega}$ is closed $\left[\frac{\gamma_{\omega}}{2 \pi}\right]=-c_{1}(M)$
Let $\omega$ be a Kähler form on $V$. Any (1, 1)-form $\alpha$ on $V$ can be written as $\alpha=\lambda v+\beta(\lambda \in \mathbb{R}$ or $\mathbb{C})$, where $\beta$ satisfies $\beta \wedge \omega^{n-1}=0$. (If $\beta$ satisfies this we say that $\beta$ is primitive)

Corollary 2.6. Let $(M, h)$ be Kähler. Then $\langle$,$\rangle has zero Ricci curvature \Longleftrightarrow R \wedge \omega^{n}=0$ (equivalent to saying $R$ is primitive 2 -form).

If ( $M, h$ ) is Kähler and if $c_{1}(M)=0$, then $\gamma_{\omega}$ is cohomologeous to zeroes.
Theorem 2.7 (Calabi-Yau). If $(M, \omega)$ is Kähler, $c_{1}(M)=0$, then there exists a unique Kähler metric $h_{0}=\langle\rangle-,i \omega_{0}$ such that $\left\{\begin{array}{l}{\left[\omega_{0}\right]=[\omega]} \\ \gamma_{\omega_{0}}=0\end{array}\right.$. In other words, there is a unique metric with 0 Ricci curvature and cohomologeous to $\omega$.

## 3 Hodge Structure

Let $M$ be a finitely generated free module ( $M \cong \mathbb{Z}^{l}$ )
Definition 3.1. A Hodge structure of weight $k$ on $M$ is a decomposition $M \otimes_{\mathbb{Z}} \mathbb{C}=\oplus_{p+q=k} V^{p, q}$ such that $V^{p, q}=\overline{V^{q, p}}$

Remark. - $M \otimes \mathbb{C}=M \otimes \mathbb{R}+i M \otimes \mathbb{R}$, so we have an involution $a+i b \mapsto a-i b$ this is the conjugation which appears in the definition.

- In general we assume $V^{p, q}=0$ if $p<0$ or $q<0$

Example. If $(M, h)$ is compact Kähler, $\left.H^{k} * M, \mathbb{Z}\right) /$ Torsion has a weight $k$ Hodge structure. The complexification of $H^{k}(X, \mathbb{Z}) /$ Tor is $H^{k}(X, \mathbb{C})$ and we have the decomposition on $H^{k}(X, \mathbb{C})$
Definition 3.2. A polarization for a Hodge structure of weight $k$ on $M$ is a bilinear form $Q: M \times M \rightarrow \mathbb{Z}$ which is

1. Symmetric for $k$ even and skew-symmetric for $k$ odd
2. $Q_{\mathbb{C}} M \otimes \mathbb{C} \times M \otimes \mathbb{C} \rightarrow \mathbb{C}$ satisfies $Q_{\mathbb{C}}(\alpha, \bar{\beta})=0$ if $\alpha \in V^{p, q}, \beta \in V^{p^{\prime}, q^{\prime}}$ and $p \neq p^{\prime}$
3. $\alpha \in V^{p, q} \backslash\{0\},(-1)^{\frac{k(k-1)}{2}}(-1)^{q} i^{k} Q(\alpha, \bar{\alpha})>0$

Example. $M=H^{k}(X, \mathbb{Z}) /$ Tor, $Q(\alpha, \beta)=\int_{X} \omega^{n-k} \wedge \alpha \wedge \beta$ (is integral value since [ $\omega$ ] is integral). This satisfy 1 . and 2 . but not 3 . in general
Proposition 3.3. A weight 1 Hodge structure is the same thing as a complex torus (a polarised weight 1 Hodge structure is the same thing as an Abelian Variety)

Proof. $M=\mathbb{Z}^{k}, M \otimes \mathbb{C}=A \oplus \bar{A}$. Consider $v \in M$, then its decomposition must be ( $a, \bar{a}$ ) (since $v$ is real). The projection $\pi: M \otimes \mathbb{C} \rightarrow A$ is injective on $\mathbb{Z}^{k} . \pi\left(\mathbb{Z}^{k}\right) \subset A$ (exercise: $\pi\left(\mathbb{Z}^{k}\right)$ is discrete, so its a lattice in $A)$. Then $A / \pi\left(\mathbb{Z}^{k}\right)$ is the complex torus.

If $X$ is a K3 surface, we will see that $M=H^{2}(X, \mathbb{Z})$ is isomorphic to $\mathbb{Z}^{22}, H^{2}(X, \mathbb{Z})=H^{2,0}+H^{1,1}+H^{0,2}$ of dimension 1, 20, 1 respectively.
Lemma 3.4. If $M$ and the intersection form are given, then the Hodge structure is determined by $H^{2,0}$. In particular, for a K3 surface the Hodge structure is determined by a point in $\mathbb{P}^{21} \subset \mathbb{P}\left(H^{2}(X, \mathbb{C})\right)$. This points lives in the quadric defined by $\int_{X} \alpha \wedge \alpha=0$

Exercise. If $\beta$ is a $(1,1)$-form then $\beta \wedge \bar{\beta}$ is semi-positive.

## Part II

## Introduction to Complex Surfaces and K3 Surfaces (Gianluca Pacienza)

References:

Barth,Peters, Vand De Ven: Compact Complex Surfaces
Beauville: Surfaces algebriques Complexes
Miranda: An overview of algebraic surfaces (Free on the internet)
*: Geometry des surfaces K3

## 4 Introduction to Surfaces

We assume $X$ is Kähler for this whole part

### 4.1 Surfaces

Definition 4.1. A compact complex surface (or more simply a surface) $X$ is compact, connected, complex manifold of $\operatorname{dim}_{\mathbb{C}} X=2$

Example. $F \in \mathbb{C}\left[x_{0}, \ldots, x_{3}\right]$ homogeneous. $X:=\{F=0\} \subset \mathbb{P}^{3}$ (of course $F=\frac{\partial F}{\partial x_{0}}=\cdots=\frac{\partial F}{\partial x_{3}}=0$ has no solutions)

More generally if $F_{1}, \ldots, F_{n-2} \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ homogeneous polynomial of degree $d_{1}, \ldots, d_{n-2}$ such that $\left(\frac{\partial F_{i}}{\partial x_{j}}(p)\right)_{i, j}$ has maximal rank at each $p \in X$. ( $X$ is called complete intersection of multiple degree $\left.\left(d_{1}, \ldots, d_{n-2}\right)\right)$

Note. If $\sum d_{i}=n+1$ then $X$ is a K3 surface
Definition 4.2. A surface is called algebraic if its field $M(X)$ of meromorphic function satisfies

1. $\forall p \neq q \in X, \exists f \in M(X)$ such that $f(p) \neq f(q)$
2. $\forall p \in X, \exists f, g \in M(X)$ such that $(f, g)$ gives local coordinates of $X$ at $p$.

Example. 1. If $X \subset \mathbb{P}^{n}$ is a surface then it is algebraic, since the ratios $\frac{x_{i}}{x_{j}}$ of homogeneous coordinates on $\mathbb{P}^{n}$ restricted to $X$ satisfies 1 and 2 (of Definition 4.2)
2. $T=\mathbb{C}^{2} / \Lambda$ a complex torus of $\operatorname{dim} 2$. A "random" choice of $\Lambda$ will lead to a non-algebraic surface
3. We will see that a "random" K3 surfaces is non-algebraic.

### 4.2 Forms on Surfaces

Definition 4.3. A differentiable 1 -form (or $C^{\infty}$ ) $\omega$ on a surface $X$ is locally an expression:

$$
f_{1}(z, w) d z+f_{2}(z, w) d \bar{z}+g_{1}(z, w) d w+g_{2}(z, w) d \bar{w}
$$

where $(z, w)$ are local coordinates and $f_{i}, g_{i}$ are $C^{\infty}$ functions (plus patching conditions)

Remark. Since coordinate change preserves $\partial z, \partial \bar{z}, \partial w, \partial \bar{w}$ the type is well defined:
$(1,0)$ type: $f d z+g d w$
$(0,1)$ type: $f d \bar{z}+g d \bar{w}$
Definition 4.4. $(n=1,2,3,4)$ A $C^{\infty} n$-form $\omega$ on a surface $X$ is locally a linear combination of expressions of the form $f(z, \bar{z}, w, \bar{w}) d \alpha_{1} \wedge \cdots \wedge d \alpha_{n}$ with $d \alpha_{i} \in\{d z, d \bar{z}, d w, d \bar{w})$ and $f \in C^{\infty}$ (with the usual rule $d \alpha_{i} \wedge d \alpha_{i}=0$ and antisymmetric) (plus combability conditions)

A type $(p, q)$ means $p$-times $d z$ or $d w$ and $q$-time $d \bar{z}$ or $d \bar{w}$
Definition 4.5. A holomorphic (and respectively meromorphic) $n$-form is an $n$-form of type ( $n, 0$ ) whose coefficients are holomorphic (respectively meromorphic) functions.

Example. $T=\mathbb{C}^{2} / \Lambda$. If $z_{1}, z_{2}$ are coordinates on $\mathbb{C}$ then $d z_{1}, d z_{2}, d \overline{z_{1}}, d \overline{z_{2}}$ descend to the quotient

### 4.3 Divisors

Definition 4.6. A divisor is a finite formal $\operatorname{sum} D=\sum_{m_{i} \in \mathbb{Z}} m_{i} Y_{i}, Y_{i} \subset X$ a codimension 1 subvarieties. i.e., $D \leftrightarrow\left\{\frac{f_{i}}{g_{i}}\right\}_{i \in I}, f_{i}, g_{i}$ local holomorphic function on $U_{i}$ such that $\left(f_{i} / g_{i}\right) /\left(f_{j} / g_{j}\right)$ has no zeroes or poles on $U_{i} \cap U_{j} \neq \emptyset$. Hence locally $D=$ (zeroes of $\left.f_{i}\right)$ (zeroes of $g_{i}$ ) (all counted with multiplicities)

Divisors form an abelian group $\operatorname{Div}(X), D=\sum_{i} m_{i} Y_{i}, E=\sum_{i} n_{i} Y_{i}$ then $D+E=\sum_{i}\left(n_{i}+m_{i}\right) Y_{i}$, equivalently if $D=\left\{\frac{f_{i}}{g_{i}}\right\}$ and $E=\left\{\frac{\alpha_{i}}{\beta_{i}}\right\}$ then $D+E=\left\{\frac{f_{i} \alpha_{i}}{g_{i} \beta_{i}}\right\}$.

Definition 4.7. If $D$ is defined globally by zeroes and poles of a meromorphic function $f \in M(X)$ then $D$ is called principal
$\operatorname{Prime}(X)=$ Subgroup of principal divisors $\leq \operatorname{Div}(X)$
Definition 4.8. $\operatorname{Pic}(X):=\operatorname{Div}(X) / \operatorname{Prime}(X)$.
Equivalently: We say $D_{1}, D_{2} \in \operatorname{Div}(X)$ are linearly equivalent if $\exists f \in M(X)$ such that $D_{1}-D_{2}=$ $\operatorname{div}(f)$. We use the notation, $D_{1} \sim D_{2}$. So we get a group $\operatorname{Div}(X) / \sim$.
(Which we will avoid calling it $\operatorname{Pic}(X)$, as it is abusive language if $X$ is not algebraic.)
Definition 4.9. If $F: X \rightarrow Y$ is a morphism of manifolds and $D=\left\{\frac{f_{i}}{g_{i}}\right\} \in \operatorname{Div}(Y)$ then the pull-back of $D$ is $F^{*} D=\left\{\frac{f_{i} \circ F}{g_{i} \circ F}\right\}$

## The exponential sequence

We have the exact sequence

$$
0 \longrightarrow \mathbb{Z} \longrightarrow \mathcal{O}_{X} \xrightarrow{\exp } \mathcal{O}_{X}^{*} \longrightarrow 0
$$

where $\mathcal{O}_{X}$ is the sheaf of holomorphic functions on $X$ and $\mathcal{O}_{X}^{*}$ is the sheaf of non-vanishing holomorphic functions on $X$.
by taking the long exact sequence in cohomology we get

$$
0 \longrightarrow H^{1}(X, \mathbb{Z}) \longrightarrow H^{1}\left(X, \mathcal{O}_{X}\right) \longrightarrow H^{1}\left(X, \mathcal{O}_{X}^{*}\right) \xrightarrow{c_{1}} H^{2}(X, \mathbb{Z})
$$

where $H^{1}\left(X, \mathcal{O}_{X}^{*}\right)$ represents $\{$ line bundles on $X\} /$ isom.

Fact. $H^{p, q}(X)=H^{q}\left(X, \Omega_{X}^{p}\right)$, where $\Omega_{X}^{p}$ is the sheaf of $p$-forms which are holomorphic.
Hence $H^{1}\left(X, \mathcal{O}_{X}\right)=H^{0,1}$. So $0 \rightarrow T \rightarrow H^{1}\left(X, \mathcal{O}_{X}^{*}\right) \rightarrow N S(X) \rightarrow 0$, where $T$ is the complex torus of dimension $H^{0,1}=H^{1}\left(X, \mathcal{O}_{X}\right) / H^{1}(X, \mathbb{Z})$ and $N S(X)$ is the image of $c_{1}$ map insider $H^{2}(X, \mathbb{Z})$ called Neron-Severi group of $X$, and its rank (as a $\mathbb{Z}$-module) is called the Picard number of $X$. It is denoted $\rho(X)$.

### 4.4 The canonical class

Let $X$ be a surface and $\omega$ be a meromorphic 2-form on $X$. Locally $\omega=\frac{f}{g} d z \wedge d w$ where $f$ and $g$ are local holomorphic functions
Definition 4.10. The canonical divisor (associated to $\omega$ ) is $K_{X}=\left\{\frac{f}{g}\right\}=$ number of zeroes and poles of $\omega$.

Exercise. Check that if $\omega_{1}, \omega_{2}$ are two meromorphic 2 -forms on $X$ then there exists $f \in M(X)$ such that $\omega_{1}=f \cdot \omega_{2}$.

The above exercise implies that the canonical divisors associated to $\omega_{1}$ and $\omega_{2}$ are linearly equivalent. Hence $K_{X}$ defines a unique class in $\operatorname{Div}(X) / \sim$. This class is the canonical class of $X$

Definition 4.11. Given $D \in \operatorname{Div}(X)$, set $H^{0}\left(X, \mathcal{O}_{X}(D)\right):=\{f \in M(X): \operatorname{div}(f) \geq-D\}=\mathbb{C}$-vector space of meromorphic functions with poles bounded by $D$.

Exercise. Show that $H^{0}\left(X, \mathcal{O}_{X}\left(K_{X}\right)\right)=: H^{0}\left(X, K_{X}\right) \xrightarrow{\sim} H^{2,0}(X)=H^{2}\left(X, \Omega^{2} X\right)=\mathbb{C}$-vector space of holomorphic 2-forms on $X$

Definition 4.12. The genus of a surface $X$ is $p_{g}(X)=\operatorname{dim}_{\mathbb{C}} H^{0}\left(X, K_{X}\right)$. More generally the $n$-th plurigenus of $X$ is $\operatorname{dim}_{\mathbb{C}} H^{0}\left(X, n K_{X}\right)$

Fact. (Important) The plurigenus are bimeromorphic invariants of $X$
Let $\left\langle f_{0}, \ldots, f_{n}\right\rangle=H^{0}\left(X, \mathcal{O}_{X}(D)\right)$. Let's define $\phi_{D}: X \rightarrow \mathbb{P}^{n}$ defined by $x \mapsto\left[f_{0}(x): \cdots: f_{n}(x)\right]$ (Note: not defined where, either all $f_{i}$ vanish at $x$ or one of the $f_{i}$ has a pole at $x$ )

Definition 4.13. Let $X$ be a surface. Suppose $H^{0}\left(X, n K_{X}\right) \neq 0$ for some $n>0$. The Kodaira dimension of $X$ is $\operatorname{kod}(X):=\max _{m>0} \operatorname{dimim}\left(\phi_{m K_{X}}\right)$ (if possible) otherwise set $\operatorname{kod}(X)=-\infty$. (So $\operatorname{kod}(X) \in$ $\{-\infty, 0,1,2\}$

Example. If $X$ is a compact Riemann Sphere, the Riemann-Roch theorem tells us that $\operatorname{kod}(X)=$ $\begin{cases}-\infty & X \cong \mathbb{P}^{1} \\ 0 & p_{g}(X)=1 \\ 1 & p_{g}(X) \geq 2\end{cases}$

The Enriques-Kodaira classifications of surfaces consist of "describing" surfaces according to their Kodaira dimension

Example. In each class:
$\operatorname{kod}=-\infty$ Any complete intersection $X_{\left(d_{1}, \ldots, d_{n-2}\right)} \subset \mathbb{P}^{n}$ with $\sum d_{i}<n+1$
$\operatorname{kod}=0 \quad$ Any complete intersection $X_{\left(d_{1}, \ldots, d_{n-2}\right)} \subset \mathbb{P}^{n}$ with $\sum d_{i}=n+1$. You can also take a Torus (with $\operatorname{dim}_{\mathbb{C}} T=2$ )
$\operatorname{kod}=2 \quad$ Any complete intersection $X_{\left(d_{1}, \ldots, d_{n-2}\right)} \subset \mathbb{P}^{n}$ such that $\sum d_{i}>n+1$
$\operatorname{kod}=1 \quad$ A surface $X$ fibered over a genus $\geq 2$ curve $\mathcal{B}$ with fibers isomorphic to curves of genus 1 . (e.g. $B \in k\left[x_{0}, x_{1}, x_{2}\right]$ homomorphic, $\operatorname{deg} B=3, K=M(B), g(B) \geq 2$, then $\left.X=\left\{B^{\prime}=0\right\} \subset \mathbb{P}_{K}^{2}\right)$

### 4.5 Numerical Invariants

Betti Numbers: $b_{i}:=\operatorname{rk} H^{i}(X, \mathbb{Z})=\operatorname{dim}_{\mathbb{R}} H^{i}(X, \mathbb{R})=\operatorname{dim}_{\mathbb{C}} H^{i}(X, \mathbb{C})=i$ th Betti number of $X$
Euler Number $e:=\sum(-1)^{i} b_{i}$
Hodge numbers $h^{p, q}:=\operatorname{dim}_{\mathbb{C}} H^{p, q}=\operatorname{dim}_{\mathbb{C}} H^{q}\left(X, \Omega_{X}^{q}\right)$
They satisfy $h^{p, q}=h^{q, p}=h^{2-p, 2-q}=h^{2-q, 2-p}$ and $b_{k}=\sum_{p+q=k} h^{p, q}$ (Hodge decomposition). This gives the Hodge diamond

where $q$ is called the irregularity of $X$. Note that $e=2+2 p_{g}+h^{1,1}-4 g$

### 4.6 Intersection Number

Let $C_{1}, C_{2} \subset X$ be two irreducible curves. We want to define $C_{1} \cdot C_{2}$. If $C_{1} \neq C_{2}$, set $C_{1} \cdot C_{2}=$ $\sum_{p \in C_{1} \cap C_{2}}\left(C_{1} \cdot C_{2}\right)_{p}$ where $\left(C_{1} \cdot C_{2}\right)_{p}=\operatorname{dim} \mathcal{O}_{X, p} /\left(f_{1}, f_{2}\right)$ with $C_{i}=\left\{f_{i}=0\right\}$ (locally)
Exercise. Check that $\left(C_{1} \cdot C_{2}\right)_{p}=1$ if $C_{1}$ and $C_{2}$ are smooth at $p$ are intersect transversely, i.e. $C_{1} \cdot C_{2}=$ \#points in $C_{1} \cap C_{2}$ counted with the right multiplicities (as usual)

If $C_{1}=C_{2}=C$. If $C$ is smooth, $C^{2}:=\operatorname{deg}\left(N_{C / X}\right)$, the normal bundle of $C$ in $X$. For the general definition look at references.

### 4.7 Classical (and useful) results

Thom-Hirzebruch index theorem The index (number of positive eigenvalues minus number of negative eigenvalues) of the intersection product on $H^{2}(X)$ is equal to $\frac{K_{X}^{2}-2 e}{3}$
Hodge index theorem The intersection product on $H^{1,1} \cap H^{2}(X)$ has signature $\left(1, h^{1,1}-1\right)$
Noether's formula $12 \chi\left(\mathcal{O}_{X}\right)=K_{X}^{2}+e$ where $\chi\left(\mathcal{O}_{X}\right)=h^{0}\left(\mathcal{O}_{X}\right)-h^{1}\left(\mathcal{O}_{X}\right)+h^{2}\left(\mathcal{O}_{X}\right)$
Riemann Roch Let $D \in \operatorname{Div}(X), \chi\left(\mathcal{O}_{X}(D)\right)=\frac{D \cdot\left(D-K_{X}\right)}{2}+\chi\left(\mathcal{O}_{X}\right)$ where $\chi(L)=h^{0}(L)-h^{1}(L)+h^{2}(L)$ and $L=\mathcal{O}_{X}(D)$ in our case

Genus formula Let $C \subset X$ be an irreducible curve, then $2 p_{a}(C)-2=\left(C+K_{X}\right) \cdot C$ where $p_{a}(C)=h^{1}\left(\mathcal{O}_{C}\right)$ is the arithmetic genus (and is equal to the topological genus of $C$ if $C$ is smooth)

Freedman $X_{1}, C_{2}$ simply connected surface. We have $X_{1} \cong X_{2}$ (homorphically) if and only if $H^{2}\left(X_{1}, \mathbb{Z}\right) \cong$ $H^{2}\left(X_{2}, \mathbb{Z}\right)$ (isometrically)

## 5 Introduction to K3 surfaces

Definition 5.1. A surface $X$ is a K 3 surface if $K_{X}=0$ and $b_{1}(X)=0$
Theorem 5.2. A K3 surface is always Kähler
Remark. Since $b_{1}(X)=2 q$ an equivalent definition is $K_{X}=0$ and $h^{1}\left(\mathcal{O}_{X}\right)=0$
Noether formula reads $12 \cdot(2-0)=0+e$, that is $24=e=2+2+h^{1,1}-0$, hence $h^{1,1}=20$
Exercise. Let $X$ be a K3 surface. Prove that $T_{X} \cong \Omega_{X}^{1}$
A consequence of exercise is that $\operatorname{dim}_{\mathbb{C}} H^{1}\left(X, T_{X}\right)=20$
We have that the Hodge diamond of a K3 surface is

|  |  | 1 |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 0 |  | 0 |  |
| 1 |  | 20 |  | 1 |
|  | 0 |  | 0 |  |
|  |  | 1 |  |  |

Fact. $H_{1}(K 3, \mathbb{Z})$ has no torsion
Corollary 5.3. Let $X$ be a $K 3$ surface. $H_{1}(X, \mathbb{Z})=0$ and $H_{2}(X, \mathbb{Z})$ is a torsion free $\mathbb{Z}$-module of rank 22
Proof. $H_{1}(X, \mathbb{Z}) \otimes \mathbb{R}=0$ (since $\left.b_{1}=0\right)$ so $H_{1}(X, \mathbb{Z})=0$. By general properties of algebraic topology, we have that the torsion of $H_{2}(X, \mathbb{Z})$ is isomorphic to the torsion of $H_{1}(X, \mathbb{Z})$. Hence no torsion. Since $b_{2}(X)=22$, then $H_{2}(X, \mathbb{Z})$ is a torsion free $\mathbb{Z}$-module of rank 22

A closer look to $H^{2}(X, \mathbb{Z})$

- $H^{2}(X, \mathbb{Z})$ is endowed with the intersection form, which is even by the genus formula ( $2 p_{a}(C)-2=$ $\left.(C+0) \cdot C=C^{2}\right)$
- The intersection form is indefinite (since, by Thon-Hizebucj, the index is -16 )
- The intersection form is unimodular (its determinant is $\pm 1$ ) by Poincaré duality

Now we have the following:
Fact. An indefinite, unimodular lattice is uniquely determined (up to isometry) by its rank, index and parity (i.e., even or not)

Conclusion: $H^{2}(\mathrm{~K} 3, \mathbb{Z})=H^{\oplus 3} \oplus\left(-E_{8}\right)^{\oplus 2}$ where

- $H$ is a rank $2 \mathbb{Z}$-module with form given $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ (Hyperbolic plane)
- $E_{8}=\mathbb{Z} e_{1} \oplus \cdots \oplus \mathbb{Z} e_{8}$ a rank $8 \mathbb{Z}$-module with the following Dykin diagram

and $\left(e_{i}, e_{j}\right)=\left\{\begin{array}{ll}2 & i=j \\ -1 & d\left(e_{i}, e_{j}\right)=1 \\ 0 & \text { else }\end{array}\left(d\left(e_{i}, e_{j}\right)\right.\right.$ is given by the diagram $)$
(Check that $H^{\oplus 3} \oplus\left(-E_{8}\right)^{\oplus 2}$ has the same rank, index and parity as $H^{2}(\mathrm{~K} 3, \mathbb{Z})$ )
Note. The sign on $H^{2}$ is $(3,19)$ while the sign on $H^{1,1} \cap H^{2}$ is $(1,19)$
We conclude with 3 classes of examples of K3

1. Complete intersections in $\mathbb{P}^{n}$. Take $X=X_{\left(d_{1}, \ldots, d_{n-2}\right)} \mathbb{P}^{n}$ a complete intersection with surface of multidegree $\left(d_{1}, \ldots, d_{n-2}\right)$ such that $\sum d_{i}=n+1$. By applying $(n-2)$ times the adjunction formula, we find $K_{X}=0$. By applying $(n-2)$ time the Lefschetz hyperplane theorem, we see $H^{1}(X, \mathbb{Z}) \xrightarrow{\sim} H^{1}\left(\mathbb{P}^{n}, \mathbb{Z}\right)=0$. So $X$ is a K 3 surface (for example $X_{4} \subset \mathbb{P}^{3}, X_{2,3} \subset \mathbb{P}^{4}, X_{2,2,2} \subset \mathbb{P}^{5}, \ldots$ )
Parameter counts: (for $X_{4} \subset \mathbb{P}^{3}$ ) We have 35 parameters (the complex dimension of the space of degree 4 homogeneous polynomials in 4 variable) minus 16 parameters (the complex dimension of $4 \times 4$ invertible matrices). Hence a total of 19 parameters.
2. Double Planes: Take $C=C_{6} \subset \mathbb{P}^{2}$ a smooth sextic plane curve. Let $X$ be the double cover of $\mathbb{P}^{2}$ branched along $C, X \xrightarrow{\pi} \mathbb{P}^{2}$ (c.f. [BPHVdV]).

Theorem 5.4. $K_{X}=\pi^{*}\left(K_{\mathbb{P}^{2}}\right)+$ Ramification $=\pi^{*}\left(-3 H+\frac{1}{2} C\right) \sim \pi^{*}\left(-3 H+\frac{6}{2} H\right)=0$
One also computes that $b_{1}(X)=0$, so $X$ is a K3 surface
Parameter count: 28 parameters (the complex dimension of the space of homogeneous degree 6 polynomial in 3 variable) minus 9 parameters (the complex dimension of invertible $3 \times 3$ matrices acting on $\mathbb{P}^{2}$ ) then 19 parameters.
3. Kummer Surfaces:

Let $A$ be a complex torus of $\operatorname{dim}_{\mathbb{C}} 2$. We have an involution $\iota: A \rightarrow A, a \mapsto-a$. Consider $A / \iota$ (i.e identify each point of $A$ with its opposite)
Bad News: $A / \iota$ has 16 singulars points (corresponding to the 16 fixed points of $\iota$ ) which are exactly the 16 points of order 2 on $A$
Good News: We can get rid of them by Blowing up. Let $\epsilon: \widetilde{A} \rightarrow A / \iota$ be the blow up at these 16 points.


Notice: That locally around an order 2 point $\iota:(\alpha, \beta) \mapsto(-\alpha,-\beta)$, the invariants under $\iota$ are $\alpha^{2}, \beta^{2}, \alpha \beta$. So $A / \iota=\operatorname{Spec} \mathbb{C}\left[\alpha^{2}, \beta^{2}, \alpha \beta\right] \cong \operatorname{Spec} \mathbb{C}[u, v, w] /\left(u v-w^{2}\right)$. This shows that the singular points of $A / \iota$ are ordinary double points. If $\widetilde{\iota}: \widetilde{A} \rightarrow \widetilde{A}$ is the extension of $\iota$ to $\widetilde{A}$, then one sees that around the exceptional curves $\widetilde{i}:(x, y) \mapsto(x,-y)$. The upshot is that the quotient $X:=\widetilde{A} / \widetilde{\iota}$ is smooth.
$X$ is a K3 surface: The 2-form $d \alpha \wedge d \beta$ descend to the quotient, and then lifts to $A^{\prime} \backslash\{$ exceptional curves\}. One can check that it extend smoothly to $A^{\prime}$ without zeroes. As why it has no irregularity $\left(h^{1,0}=h^{0}\left(\Omega_{X}^{1}\right)\right)$, there does not exists a 1 form on $A$ which is invariant under the involution $\iota$.

