Introduction to Hodge Theory and K3 surfaces

Contents

Ι	Hodge Theory (Pierre Py)	2
1	Kähler manifold and Hodge decomposition1.1 Introduction1.2 Hermitian and Kähler metric on Complex Manifolds1.3 Characterisations of Kähler metrics1.4 The Hodge decomposition	2 2 4 5 5
2	Ricci Curvature and Yau's Theorem	7
3	Hodge Structure	9
II 1	Introduction to Complex Surfaces and K3 Surfaces (Gianluca Pacienza)	10 10
т	4.1Surfaces4.2Forms on Surfaces4.3Divisors4.4The canonical class4.5Numerical Invariants4.6Intersection Number4.7Classical (and useful) results	10 10 10 11 12 13 13 13
5	Introduction to K3 surfaces	14

Part I Hodge Theory (Pierre Py)

Reference: Claire Voisin: Hodge Theory and Complex Algebraic Geometry

1 Kähler manifold and Hodge decomposition

1.1 Introduction

Definition 1.1. Let V be a complex vector space of finite dimension, h is a hermitian form on V. If $h: V \times V \to \mathbb{C}$ such that

- 1. It is bilinear over \mathbb{R}
- 2. \mathbb{C} -linear with respect to the first argument
- 3. Anti-C-linear with respect to the second argument

i.e., $h(\lambda u, v) = \lambda h(u, v)$ and $h(u, \lambda v) = \overline{\lambda} h(u, v)$

4.
$$h(u, v) = h(v, u)$$

5. h(u, u) > 0 if $u \neq 0$

Decompose h into real and imaginary parts, $h(u, v) = \langle u, v \rangle - i\omega(u, v)$ (where $\langle u, v \rangle$ is the real part and ω is the imaginary part)

Lemma 1.2. \langle , \rangle is a scalar product on V, and ω is a simpletic form, i.e., skew-symmetric.

Note. $-\langle , \rangle$ determines ω and conversely

Proof. By the property 4. \langle , \rangle is real symmetric and ω is skew-symmetric. $\langle u, u \rangle = h(u, u) > 0$ so \langle , \rangle is scalar product

Let $u_0 \in V$ such that $\omega(u_0, v) = 0 \forall v \in V$. This equates to $h(u_0, v)$ is real for all v. Also $h(u_0, iv)$ is real for all v, but $h(u_0, iv) = -ih(u_0, v) \in \mathfrak{T}$ therefore, $h(u_0, v) = 0$. Hence $u_0 = 0$, as h is non-degenerate. So ω is non-degenerate.

Now we show $-\langle , \rangle$ determines ω : $\omega(u,v) = -\Im h(u,v) = \Im(i^2h(u,v)) = \Im(ih(iu,v)) = \langle iu,v \rangle$, so $\omega(u,v) = \langle iu,v \rangle$.

Lemma 1.3. $\omega(u, iu) > 0$ for all $u \neq 0$.

Proof. Plug in v = iu in the last part of the previous lemma.

Definition 1.4. We say that a skew-symmetric form on a complex vector space is *positive* if it has the above property (of lemma 1.3)

If
$$h(iu, iv) = h(u, v)$$
 then
$$\begin{cases} \omega(iu, iv) = \omega(u, v) \\ \langle iu, iv \rangle = \langle u, v \rangle \end{cases}$$
(*)

Exercise. Prove that a 2-form on ω on V satisfy (*) if and only if it is of type (1,1)

Let V be a \mathbb{C} -vector space of $\dim_{\mathbb{C}} V = n = 2k$. Let z_1, \ldots, z_n be coordinates on V and e_1, \ldots, e_n be a basis such that $v = \sum_i z_i e_i$ for $v \in V$. Define $dz_j : \sum z_i e_i \mapsto z_j$ and $d\overline{z_j} : \sum z_i e_i \mapsto \overline{z_j}$ for $1 \leq j \leq n$. Then $dz_1, \ldots, dz_n, d\overline{z_1}, \ldots, d\overline{z_n} \in \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C})$. We have $\dim_{\mathbb{R}} \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C}) = 2 \cdot 2n = 4n$. If $\lambda \in \mathbb{C}$ and $\phi \in \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C})$, define $\lambda \phi : v \mapsto \lambda \phi(v)$. So $\operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C})$ can be viewed as a \mathbb{C} -vector space, then $\dim_{\mathbb{C}} \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C}) = 2n$.

Exercise. $dz_1, \ldots, dz_n, d\overline{z}_1, \ldots, d\overline{z_n}$ is a basis for $\operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C})$ as a \mathbb{C} -vector space

- **Exercise.** 1. An element $\phi \in \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C})$ is \mathbb{C} -linear if and only if ϕ can be written as $\phi = \sum_{i=1}^{n} \alpha_i dz_i$ where $\alpha_i \in \mathbb{C}$.
 - 2. ϕ is anti \mathbb{C} -linear map if and only if ϕ can be written as $\phi = \sum_{i=1}^{n} \beta_i d\overline{z_i}$ where $\beta_i \in \mathbb{C}$.

Let I be the set of $\{i_1 < \cdots < i_k\}$. $dz_I = dz_{i_1} \wedge dz_{i_2} \wedge \cdots \wedge dz_{i_k}$ is a k-linear alternating form V to \mathbb{C} . $d\overline{z_I} = d\overline{z_{i_1}} \wedge d\overline{z_{i_2}} \wedge \cdots \wedge d\overline{z_{i_k}}$ is a k-linear alternating form V to \mathbb{C}

Definition 1.5. A k-form α on V (with values in \mathbb{C}), is of type (p,q), with p+q = k if $\alpha = \sum_{|I|=p,|J|=q} \lambda_{I,J} dz_I \wedge d\overline{z_J}$ for $\lambda_{I,J} \in \mathbb{C}$.

Any k-form α is a sum of forms of type (p,q) for $0 \le p,q \le k$ and p+q=k. Then $\alpha = \sum_{p+q=k} \alpha^{p,q}$

Example. Let V be of dimension 2

- $k = 1 \qquad (1,0)\text{-forms are } \mathbb{C}\text{-linear maps from } V \to \mathbb{C}$ $(0,1)\text{-forms are anti-}\mathbb{C}\text{-linear maps from } V \to \mathbb{C}$
- $\begin{array}{l} k=2 \qquad (2,0)\text{-forms are } dz_1 \wedge dz_2 \\ (1,1) \text{ forms are spanned by } dz_i \wedge d\overline{z_j} \text{ for } i,j \in \{1,2\} \\ (0,2)\text{-forms are } d\overline{z_1} \wedge d\overline{z_2} \end{array}$

Exercise. The type of a form does not depend on the choice of basis.

Example. Let $V = \mathbb{C}^n$, $z_i = x_i + iy_i$ then

$$dx_1 \wedge dz_2 = \frac{dz_1 + d\overline{z_1}}{2} \wedge dz_2$$
$$= \underbrace{\frac{dz_1 \wedge dz_2}{2}}_{(2,0)-\text{form}} + \underbrace{\frac{d\overline{z_1} \wedge dz_2}{2}}_{(1,1)-\text{form}}$$

Example. If X is a complex surface, z_1, z_2 are local coordinate on X, then a 2-form is a combination

- $dz_1 \wedge dz_2$ a (2,0)-form
- $\begin{cases} dz_1 \wedge d\overline{z_2} \\ dz_1 \wedge d\overline{z_1} \\ dz_2 \wedge d\overline{z_2} \\ dz_2 \wedge d\overline{z_1} \end{cases}$ are (1,1)-forms
- $d\overline{z_1} \wedge d\overline{z_2}$ a (0,2)-form

Summary: If h is a hermitian form, $\omega = -\Im h$ is a (1,1)-form and is positive (i.e., $\omega(u,iu) > 0$). Conversely if a (1,1) form is positive it arises as $\omega = -\Im h$ for some hermitian form h.

1.2 Hermitian and Kähler metric on Complex Manifolds

Let M be a complex manifold.

<u>Convention</u>: Each tangent space of M, $T_x M$ is a complex vector space and write J (or J_x) for the endomorphism $J_x: T_x M \to T_x M$ defined by $v \mapsto iv$. $(J^2 = -id)$

Definition 1.6. A hermitian metric on M is the following. For each $x \in M$, h_x is a hermitian metric on $T_x M$ and h_x is C^{∞} on M.

So as before we can write $h = \langle , \rangle - i\omega$. The \langle , \rangle is a Riemannian metric on M and ω is a (1,1) form on M

Definition 1.7. We say h is Kähler if ω is closed, i.e., $d\omega = 0$.

- **Example.** If dim_{\mathbb{C}} M = 1, that is M is a Riemann surface, then any hermitian metric is Kähler.: Why? $d\omega$ by definition is a 3-form on a 2-dimension \mathbb{R} -manifold, so it must be zero.
 - $\partial, \overline{\partial}$ operators: If $f: M \to \mathbb{C}$ is a function. df is a 1-form and $df_x: T_x M \to \mathbb{C}$. We can decompose as $df_x = \underbrace{\partial f_x}_{\mathbb{C}-\text{linear}} + \underbrace{\overline{\partial} f_x}_{\mathbb{C}-\text{antilinear}}$. So $df = \partial f + \overline{\partial} f$. ∂ and $\overline{\partial}$ extend to operators from $\Omega^k \to \Omega^{k+1}$ (where

 Ω^k is the \mathbb{C} -value k-forms) defined by

$$\frac{\partial(\alpha \wedge \beta)}{\partial(\alpha \wedge \beta)} = \frac{\partial\alpha \wedge \beta + (-1)^{|\alpha|} \alpha \wedge \partial\beta}{\partial\alpha \wedge \beta + (-1)^{|\alpha|} \alpha \wedge \partial\beta}$$

Exercise. If α is a (p,q)-form (it is of type (p,q) at each point), then $d\alpha$ is the sum of a (p+1,q) form and a (p,q+1) form: ∂ is the (p+1,q) form and $\overline{\partial}$ is the (p,q+1) piece

- $M = \mathbb{P}^n_{\mathbb{C}}$: We define a close positive (that is positive on each point on M) (1, 1)-form (it must be the imaginary part of a hermitian metric) is defined by $\omega_{[z]} = \frac{1}{2\pi i} \partial \overline{\partial} \log(||z||^2)$. Check that it is well defined, (does not define on the affine piece): hint: if $f: U \to \mathbb{C}^*$ is holomorphic, check that $\partial \overline{\partial} \log |f|^2 = 0$.
- If $T = \mathbb{C}^n / \Lambda$, Λ a lattice of \mathbb{C}^n , then any constant coefficient metric is Kähler.
- If (M, h) is Kähler, and $\Sigma \subset M$ is a \mathbb{C} -submanifold. Then $(\Sigma, h|_{\Sigma})$ is Kähler. As $d(\omega|_{\Sigma}) = d\omega|_{\Sigma} \Rightarrow \omega|_{\Sigma}$ is closed.

Lemma 1.8. Let M be a complex manifold of \mathbb{C} -dimension n with hermitian metric h. The Riemannian volume form of \langle , \rangle is equal to $\frac{\omega^n}{n!}$.

(If V is \mathbb{C} -vector space with \mathbb{C} -basis e_1, \ldots, e_n then $e_1, Je_1, e_2, Je_2, \ldots, e_n, Je_n$ is a positive real basis. That is it has a canonical basis)

Corollary 1.9. Let M be a closed complex manifold, i.e., compact with no boundary. Then $\forall k \in \{1, \ldots n\}$, $\omega^k = \underbrace{\omega \land \cdots \land \omega}_{k \text{ times}}$ is closed and non-zero in cohomology, i.e., ω is not exact.

Proof. If $\omega^k = d\alpha$ for some α , then $\omega^n = \omega^k \wedge \omega^{n-k} = d\alpha \wedge \omega^{n-k} = d(\alpha \wedge \omega^{n-k})$. Hence by Stoke's theorem $\int_M \omega^n = 0$, but $\int_M \frac{\omega^n}{n!} = \operatorname{Vol}(M) > 0$, hence contradiction.

So $H^{2n}_{\mathrm{DR}}(M,\mathbb{R})\neq 0$

Corollary 1.10. If M is compact, Kähler and $\Sigma^p \subset M^n$ closed \mathbb{C} -submanifold, then the homology class $[\Sigma] \in H_{2p}(M)$, the fundamental class of Σ , is non-zero.

Proof. $0 < \int_{\Sigma} \frac{\omega^p}{p!} = \operatorname{Vol}_h \Sigma$, then Σ is not homologeous to 0.

Exercise. If X is a compact manifold and $\dim_{\mathbb{C}} X \ge 2$ and h a Kähler metric, and $\phi : X \to \mathbb{R}^*_+$. Prove that ϕh is Kähler if and only if ϕ is constant.

1.3 Characterisations of Kähler metrics

Let (M, h) be a complex manifold with hermitian metric. Recall that ∇ is the Levi-Civita connection of $\Re(h) = \langle , \rangle$ which is a Riemannian metric.

Theorem 1.11. The following are equivalent:

- 1. h is Kähler
- 2. For any vector field X on $U \subset M$ (open set) then $\nabla(JX) = J(\nabla X)$

Proof. 2. \Rightarrow 1. By definition of Levi-Civita connection $d\langle X_1, X_2 \rangle = \langle \nabla X_1, X_2 \rangle + \langle X_1, \nabla X_2 \rangle$,

$$d\omega(X_1, x_2) = d \langle JX_1, X_2 \rangle$$

= $\langle \nabla JX_1, X_2 \rangle + \langle JX_1, X_2 \rangle$
= $\langle J\nabla X_1, X_2 \rangle + \langle JX_1, X_2 \rangle$

so
$$d\omega(X_1, X_2) = \omega(\nabla X_1, X_2) + \omega(X_1, \nabla X_2)$$
 (*).
 $d\omega(X_0, X_1, X_2) = X_0 \cdot \omega(X_1, X_2) - X_1 \cdot \omega(X_0, X_1) + X_2 \cdot \omega(X_0, X_1) - \omega([X_0, X_1], X_2) + \omega(X_0, [X_1, X_2]) + \omega([X_0, X_1], X_2) + \omega((X_0, X_1], X_2) + \omega((X_0, X_1], X_2) + \omega((X_0, X_1]) + \omega((X_0, X_1], X_2) + \omega((X_0, X_1]) + \omega((X_0, X_1], X_2) + \omega((X_0, X_1]) + \omega((X_$

1. \Rightarrow 2. Not done

1.4 The Hodge decomposition

We want to construct a decomposition of the de Rham cohomology group $H_{\text{DR}}^K(M, \mathbb{C})$ (\mathbb{C} -valued differential forms) of a compact Kähler manifold.

If p + q = k, we define $H^{p,q}(M) \subset H^k(M)$ by $H^{p,q}(M)$ =subspaces of class $[\alpha]$ such that α can be represented by a closed form of type (p,q), i.e., there exists β of type (p,q) closed such that $\alpha - \beta$ is exact Our goal:

Our goal:

Theorem 1.12. If M is compact Kähler, then $H^k(M) = \bigoplus_{p+q=k} H^{p,q}(M)$. If α is a closed form (on a complex manifold) and if $\alpha = \sum \alpha^{p,q}$ is its decomposition. A priori, the $\alpha^{p,q}$ need not be closed

Example. $X = (\mathbb{C}^2 \setminus \{0\})/(v \mapsto \frac{1}{2}v)$. Then $H^1(X) \neq 0$ but $H^{1,0}(X)$ and $H^{0,1}(X)$ are zero.

		l
		L
		L

Hodge Theory:

Let $(M, \langle , \rangle$ be Riemannian manifold

We need some norms on the space of forms on M, if e_1, \ldots, e_n is a orthonormal \mathbb{R} -basis of $T_X M$, e_1^*, \ldots, e_n^* the dual basis (using \langle , \rangle on M) and for each multi-index $\{i_1 < \cdots < i_R\} = I$, let $e_I^* = e_{i_1}^* \wedge \cdots \wedge e_{i_R}^*$. then $\{e_I^*\}_I$ forms a basis of $\Lambda^R(T_x M)^*$ (the space of k forms on $T_x M$).

We declare that $\{e_I^*\}_I$ is orthonormal. This defines a scalar product on $\Lambda^k(T_xM)^*$ (depending only on \langle , \rangle). We still denote it as \langle , \rangle . If α, β are k-forms on M we define

$$\langle \alpha, \beta \rangle_{L^2} = \int_M \langle \alpha_x, \beta_x \rangle \operatorname{Vol}$$

Hodge Star Operator

Let $\dim_{\mathbb{R}} M = p$. $\begin{cases} *: \Lambda^{k}(TM)^{*} \to \Lambda^{p-k}(TM)^{*} \\ *^{2} = (-1)^{k(p-k)} \end{cases}$. Fix $x \in M$, because \langle , \rangle exists on $\Lambda^{k}(T_{x}M)^{*}$ we have the following diagram

if β is a (p-k)-form and α a k-form with $\alpha \mapsto (\alpha \wedge \beta)/Vol$ then

$$\langle \alpha, \beta \rangle$$
 Vol = $\alpha \wedge *\beta$

 $d: \Lambda^k \to \Lambda^{k+1}$, we want to construct the adjoint d^* of d for \langle , \rangle_{L^2} . That is we want $d^*: \Lambda^k \to \Lambda^{k-1}$ such that $\alpha \in \Lambda^k$, $\beta \in \Lambda^{k-1}$ then $\langle \alpha, d^*(\beta) \rangle_{L^2} = \langle d\alpha, \beta \rangle_{L^2}$

Claim. If we define d^* on Λ^k by $d^* = (-1)^k *^{-1} d^*$ then it works.

 $\begin{array}{l} \textit{Proof.} \ (\partial \alpha, \beta)_{L^2} = \int_M d\alpha \wedge *\beta. \ d(\alpha \wedge *\beta) = d\alpha \wedge *\beta + (-1)^k \alpha \wedge d * \beta, \text{ so by Stoke's theorem } 0 = \int_M d\alpha \wedge *\beta + (-1)^k \int_M \alpha \wedge d * \beta = \dots = \langle d\alpha, \beta \rangle_{L^2} - \langle \alpha, d^*\beta \rangle_{L^2} \end{array} \qquad \Box$

Definition 1.13. The Laplacian $\Delta : \Lambda^k \to \Lambda^k$ is defined by $\Delta = dd^* + d^*d$

Definition 1.14. A k-form α is harmonic if $\Delta \alpha = 0$

Lemma 1.15.
$$\langle \Delta \alpha, \alpha \rangle = |d\alpha|_{L^2}^2 + |d^*\alpha|_{L^2}^2 = \langle d\alpha, d\alpha \rangle_{L^2} + \langle d^*\alpha, d^*\alpha \rangle_{L^2}$$
 and $\langle \Delta \alpha, \beta \rangle = \langle \alpha, \Delta \beta \rangle$

Proof. Exercise (formal)

Corollary 1.16. $\Delta \alpha = 0$ if and only if $d\alpha = 0$ and $d^* \alpha = 0$, i.e., harmonic forms are closed.

Theorem 1.17. Any smooth k-form α on M can be written as a sum of a harmonic one plus the Laplacian of another form

The theorem says that for any α , there exists α_0 harmonic and β a k-form such that $\alpha = \alpha_0 + \Delta\beta$ So we have a map Harmonic k-forms $\rightarrow H^k_{\text{DR}}(M)$

Corollary 1.18. Any de Rham cohomology class can be represented by a unique harmonic form $H^k(M) \cong \ker(\Delta : \Lambda^k \to \Lambda^k)$

Proof. Let α be a closed k-form. Write $\alpha = \alpha_0 + \Delta\beta$, α_0 -harmonic. So $\alpha = \alpha_0 + dd^*\beta + d^*d\beta$ and since α_0 and $dd^*\beta$ are both closed we have $d^*d\beta$ is also closed. $0 = \langle dd^*d\beta, d\beta \rangle_{L^2} = \langle d^*d\beta, d^*d\beta \rangle_{L^2} = ||d^*d\beta|| = 0$, so $d^*d\beta = 0$. Hence $\alpha - \alpha_0 = d(d^*\beta)$ is exact. Hence $[\alpha] = [\alpha_0]$ so $[\alpha]$ is represented by a harmonic form.

We want to show that if α_0 is harmonic and $[\alpha_0] = 0$ then $\alpha_0 = 0$. Let $\alpha_0 = d\gamma$, then $0 = \Delta \alpha_0$ implies $d^*\alpha_0 = 0$. So $d^*d\gamma = 0$, hence $\langle d^*d\gamma, \gamma \rangle_{L^2} = 0 = ||d\gamma||_{L^2}^2$, so $d\gamma = \alpha_0 = 0$

We assume now that M is Kähler, $\langle , \rangle = \Re(h)$ and h is a Kähler metric.

Theorem 1.19. In this case the Laplacian preserved the type of forms, that is $\Delta(A^{p,q}) \subset A^{p,q}$ where $A^{p,q}$ is the space of (p+q)-forms of type (p,q)

Corollary 1.20. The Hodge decomposition exists

Proof. α is harmonic so $\Delta \alpha = 0$. Write $\alpha = \sum \alpha^{p,q}$ so $\Delta \alpha = \sum \Delta \alpha^{p,q}$. So $\Delta \alpha^{p,q} = 0$, hence $\Delta \alpha^{p,q}$ are harmonic, thence they are closed. So $[\alpha] = \sum [\alpha^{p,q}]$, therefore the $H^{p,q}$ span $H^k(M,\mathbb{C})$

Check that this is a direct sum.

$\mathbf{2}$ **Ricci Curvature and Yau's Theorem**

Let (M, \langle , \rangle) be a Riemannian manifold, ∇ the Levi-Civiti connection

Curvature tensor of M

Let X, Y, Z be vector fields on open set of M.

$$\nabla_Y(\nabla_X Z) - \nabla_X(\nabla_Y Z) - \nabla_{[X,Y]} Z \ (*)$$

Exercise. In Euclidean space, $X, Y, Z: U \to \mathbb{R}^m, \nabla Z = dZ$, then (*) = 0

Fact. (*) is a tensor: The value of (*) at $x \in M$ depends only on X(x), Y(x), Z(x), this means that (*) = R(X,Y)(Z) where R(X,Y) is the endomorphism of T_xM . We call R the curvature tensor. It is a bilinear map $T_x M \times T_x \to \operatorname{End}(T_x M)$

- 1. R(X, Y) = -R(Y, X)
- 2. R(X,Y) is skew-symmetric for \langle , \rangle , i.e., $\langle R(X,Y)(Z),T\rangle = -\langle Z,R(X,Y)(T)\rangle$

Part 1. tells us we can think of R as 2-form with values in the space of symmetric endomorphism of $T_x M$. If $p = \dim_{\mathbb{R}} M$ then $skew-sym(T_x M)$ has dimension $\frac{p(p-1)}{2} \times \frac{p(p-1)}{2}$.

The Ricci tensor of M will be (on each point $x \in M$) a symmetric bilinear from on T_xM . If X, Y are tangent vectors Ricci(X,Y) := Tr(R(X,-),(Y)) (i.e., $Tr(Z \mapsto R(X,Z)(Y))$

3. $\langle R(X,Y)(Z),T\rangle = \langle R(Z,T)(X),(Y)\rangle$

Lemma 2.1. Ricci is symmetric

Proof. Let e_1, \ldots, e_p be orthonormal basis of $T_x M$. Then

$$\operatorname{Ricci}(X,Y) = \sum_{i} \langle R(X,e_{i})(Y),e_{i} \rangle$$
$$= \sum_{i} \langle R(Y,e_{i})(X),e_{i} \rangle$$
$$= \operatorname{Ricci}(Y,X)$$

Next we assume M is Kähler.

Exercise. Prove that R(JX, JY) = R(X, Y) (use the fact that $\nabla JX = J\nabla X$), i.e., that R is of type (1,1)

Let $h = \langle , \rangle - i\omega$ be a Hermitian metric. We transform Ricci (a symmetric object) into something skew-symmetric

Definition 2.2. The Ricci form of the Kähler metric is $\gamma_{\omega}(X, Y) = \text{Ricci}(JX, Y)$

Proposition 2.3. γ_{ω} is skew-symmetric and a (1,1)-form

Proof. γ_{ω} is a (1,1)-form because $\gamma_{\omega}(JX, JY) = \gamma_{\omega}(X,Y)$

$$\gamma_{\omega}(Y, X) = \operatorname{Ricci}(JY, X)$$

= $\operatorname{Ricci}(-Y, JX)$
= $-\gamma_{\omega}(X, Y)$

How to relate γ_{ω} to the 1st Chern Class of M?

We will define the 1st Chern Class of a holomorphic line bundle $L \to M$. $c_1(L) \in H^2(M, \mathbb{R})$ (actually $c_1(L)$ lives in $H^2(M, \mathbb{Z})$, we simply look at its image in $H^2(M, \mathbb{R})$). Let h be a hermitian metric on L. If s is a local holomorphic section without zeroes on some open set U, we define $\Omega = \frac{1}{2\pi i} \partial \overline{\partial} \log h(s, s)$

- 1. Ω does not depend on s, (i.e., $\partial \overline{\partial} \log h(s_1, s_1) = \partial \overline{\partial} \log h(s_2, s_2)$ is s_1 and s_2 are two non-zero sections on U)
- 2. Ω is globally defined
- 3. The cohomology class of Ω does not depend on h (any other hermitian metric on L is of the form $h' = fh \text{ for } f > 0, \ \Omega' = \Omega + \underbrace{\frac{1}{2\pi i} \partial \overline{\partial} \log f^2}_{\text{is exact}}$

We define $c_1(L)$ to be the class of Ω . Now if M is a complex manifold its 1st Chern Class is that of the bundle $\Lambda^p TM \to M$ (where $p = \dim_{\mathbb{C}} M$)

Exercise. Let $L \to \mathbb{P}^n_{\mathbb{C}}$ be the tautological line bundle. L can be endowed with the restriction of the metric \mathbb{C}^{n+1} . Compute Ω as given above, you should find the negative of the example of Kähler metric of \mathbb{CP}^n given earlier.

On a Kähler manifold R(X, Y) is \mathbb{C} -linear, hence skew hermitian.

Proposition 2.4. $\gamma_{\omega}(X,Y) = -i \operatorname{Tr}_{\mathbb{C}} R(X,Y)$

Corollary 2.5. γ_{ω} is closed $\left[\frac{\gamma_{\omega}}{2\pi}\right] = -c_1(M)$

Let ω be a Kähler form on V. Any (1,1)-form α on V can be written as $\alpha = \lambda v + \beta$ ($\lambda \in \mathbb{R}$ or \mathbb{C}), where β satisfies $\beta \wedge \omega^{n-1} = 0$. (If β satisfies this we say that β is *primitive*) **Corollary 2.6.** Let (M,h) be Kähler. Then \langle , \rangle has zero Ricci curvature $\iff R \wedge \omega^n = 0$ (equivalent to saying R is primitive 2-form).

If (M, h) is Kähler and if $c_1(M) = 0$, then γ_{ω} is cohomologeous to zeroes.

3 Hodge Structure

Let M be a finitely generated free module $(M \cong \mathbb{Z}^l)$

Definition 3.1. A Hodge structure of weight k on M is a decomposition $M \otimes_{\mathbb{Z}} \mathbb{C} = \bigoplus_{p+q=k} V^{p,q}$ such that $V^{p,q} = \overline{V^{q,p}}$

- *Remark.* $M \otimes \mathbb{C} = M \otimes \mathbb{R} + iM \otimes \mathbb{R}$, so we have an involution $a + ib \mapsto a ib$ this is the conjugation which appears in the definition.
 - In general we assume $V^{p,q} = 0$ if p < 0 or q < 0

Example. If (M, h) is compact Kähler, $H^k * M, \mathbb{Z}$ /Torsion has a weight k Hodge structure. The complexification of $H^k(X, \mathbb{Z})$ /Tor is $H^k(X, \mathbb{C})$ and we have the decomposition on $H^k(X, \mathbb{C})$

Definition 3.2. A *polarization* for a Hodge structure of weight k on M is a bilinear form $Q: M \times M \to \mathbb{Z}$ which is

- 1. Symmetric for k even and skew-symmetric for k odd
- 2. $Q_{\mathbb{C}}M \otimes \mathbb{C} \times M \otimes \mathbb{C} \to \mathbb{C}$ satisfies $Q_{\mathbb{C}}(\alpha, \overline{\beta}) = 0$ if $\alpha \in V^{p,q}, \beta \in V^{p',q'}$ and $p \neq p'$
- 3. $\alpha \in V^{p,q} \setminus \{0\}, (-1)^{\frac{k(k-1)}{2}} (-1)^q i^k Q(\alpha, \overline{\alpha}) > 0$

Example. $M = H^k(X, \mathbb{Z})/\text{Tor}, Q(\alpha, \beta) = \int_X \omega^{n-k} \wedge \alpha \wedge \beta$ (is integral value since $[\omega]$ is integral). This satisfy 1. and 2. but not 3. in general

Proposition 3.3. A weight 1 Hodge structure is the same thing as a complex torus (a polarised weight 1 Hodge structure is the same thing as an Abelian Variety)

Proof. $M = \mathbb{Z}^k$, $M \otimes \mathbb{C} = A \oplus \overline{A}$. Consider $v \in M$, then its decomposition must be (a, \overline{a}) (since v is real). The projection $\pi : M \otimes \mathbb{C} \to A$ is injective on \mathbb{Z}^k . $\pi(\mathbb{Z}^k) \subset A$ (exercise: $\pi(\mathbb{Z}^k)$ is discrete, so its a lattice in A). Then $A/\pi(\mathbb{Z}^k)$ is the complex torus.

If X is a K3 surface, we will see that $M = H^2(X, \mathbb{Z})$ is isomorphic to \mathbb{Z}^{22} , $H^2(X, \mathbb{Z}) = H^{2,0} + H^{1,1} + H^{0,2}$ of dimension 1, 20, 1 respectively.

Lemma 3.4. If M and the intersection form are given, then the Hodge structure is determined by $H^{2,0}$. In particular, for a K3 surface the Hodge structure is determined by a point in $\mathbb{P}^{21} \subset \mathbb{P}(H^2(X,\mathbb{C}))$. This points lives in the quadric defined by $\int_X \alpha \wedge \alpha = 0$

Exercise. If β is a (1, 1)-form then $\beta \wedge \overline{\beta}$ is semi-positive.

Part II Introduction to Complex Surfaces and K3 Surfaces (Gianluca Pacienza)

References:

Barth, Peters, Vand De Ven: Compact Complex Surfaces
Beauville: Surfaces algebriques Complexes
Miranda: An overview of algebraic surfaces (Free on the internet)
*: Geometry des surfaces K3

4 Introduction to Surfaces

We assume X is Kähler for this whole part

4.1 Surfaces

Definition 4.1. A compact complex surface (or more simply a surface) X is compact, connected, complex manifold of dim_{\mathbb{C}} X = 2

Example. $F \in \mathbb{C}[x_0, \ldots, x_3]$ homogeneous. $X := \{F = 0\} \subset \mathbb{P}^3$ (of course $F = \frac{\partial F}{\partial x_0} = \cdots = \frac{\partial F}{\partial x_3} = 0$ has no solutions)

More generally if $F_1, \ldots, F_{n-2} \in \mathbb{C}[x_0, \ldots, x_n]$ homogeneous polynomial of degree d_1, \ldots, d_{n-2} such that $\left(\frac{\partial F_i}{\partial x_j}(p)\right)_{i,j}$ has maximal rank at each $p \in X$. (X is called *complete intersection* of multiple degree (d_1, \ldots, d_{n-2}))

Note. If $\sum d_i = n + 1$ then X is a K3 surface

Definition 4.2. A surface is called *algebraic* if its field M(X) of meromorphic function satisfies

- 1. $\forall p \neq q \in X, \exists f \in M(X) \text{ such that } f(p) \neq f(q)$
- 2. $\forall p \in X, \exists f, g \in M(X)$ such that (f, g) gives local coordinates of X at p.
- **Example.** 1. If $X \subset \mathbb{P}^n$ is a surface then it is algebraic, since the ratios $\frac{x_i}{x_j}$ of homogeneous coordinates on \mathbb{P}^n restricted to X satisfies 1 and 2 (of Definition 4.2)
 - 2. $T = \mathbb{C}^2 / \Lambda$ a complex torus of dim 2. A "random" choice of Λ will lead to a non-algebraic surface
 - 3. We will see that a "random" K3 surfaces is non-algebraic.

4.2 Forms on Surfaces

Definition 4.3. A differentiable 1-form (or C^{∞}) ω on a surface X is locally an expression:

$$f_1(z,w)dz + f_2(z,w)d\overline{z} + g_1(z,w)dw + g_2(z,w)d\overline{w}$$

where (z, w) are local coordinates and f_i, g_i are C^{∞} functions (plus patching conditions)

Remark. Since coordinate change preserves $\partial z, \partial \overline{z}, \partial w, \partial \overline{w}$ the type is well defined:

- (1,0) type: fdz + gdw
- (0,1) type: $fd\overline{z} + gd\overline{w}$

Definition 4.4. $(n = 1, 2, 3, 4) \land C^{\infty} n$ -form ω on a surface X is locally a linear combination of expressions of the form $f(z, \overline{z}, w, \overline{w}) d\alpha_1 \land \cdots \land d\alpha_n$ with $d\alpha_i \in \{dz, d\overline{z}, dw, d\overline{w}\}$ and $f \in C^{\infty}$ (with the usual rule $d\alpha_i \land d\alpha_i = 0$ and antisymmetric) (plus combability conditions)

A type (p,q) means p-times dz or dw and q-time $d\overline{z}$ or $d\overline{w}$

Definition 4.5. A holomorphic (and respectively meromorphic) n-form is an n-form of type (n, 0) whose coefficients are holomorphic (respectively meromorphic) functions.

Example. $T = \mathbb{C}^2/\Lambda$. If z_1, z_2 are coordinates on \mathbb{C} then $dz_1, dz_2, d\overline{z_1}, d\overline{z_2}$ descend to the quotient

4.3 Divisors

Definition 4.6. A divisor is a finite formal sum $D = \sum_{m_i \in \mathbb{Z}} m_i Y_i$, $Y_i \subset X$ a codimension 1 subvarieties. i.e., $D \leftrightarrow \left\{\frac{f_i}{g_i}\right\}_{i \in I}$, f_i, g_i local holomorphic function on U_i such that $(f_i/g_i)/(f_j/g_j)$ has no zeroes or poles on $U_i \cap U_j \neq \emptyset$. Hence locally $D = (\text{zeroes of } f_i) - (\text{zeroes of } g_i)$ (all counted with multiplicities)

Divisors form an abelian group Div(X), $D = \sum_{i} m_i Y_i$, $E = \sum_{i} n_i Y_i$ then $D + E = \sum_{i} (n_i + m_i) Y_i$, <u>equivalently</u> if $D = \left\{\frac{f_i}{g_i}\right\}$ and $E = \left\{\frac{\alpha_i}{\beta_i}\right\}$ then $D + E = \left\{\frac{f_i \alpha_i}{g_i \beta_i}\right\}$.

Definition 4.7. If D is defined <u>globally</u> by zeroes and poles of a meromorphic function $f \in M(X)$ then D is called *principal*

 $\operatorname{Prime}(X) = \operatorname{Subgroup} \operatorname{of} \operatorname{principal} \operatorname{divisors} \leq \operatorname{Div}(X)$

Definition 4.8. $\operatorname{Pic}(X) := \operatorname{Div}(X)/\operatorname{Prime}(X).$

Equivalently: We say $D_1, D_2 \in \text{Div}(X)$ are *linearly equivalent* if $\exists f \in M(X)$ such that $D_1 - D_2 = \text{div}(f)$. We use the notation, $D_1 \sim D_2$. So we get a group $\text{Div}(X) / \sim$.

(Which we will avoid calling it Pic(X), as it is abusive language if X is not algebraic.)

Definition 4.9. If $F: X \to Y$ is a morphism of manifolds and $D = \left\{\frac{f_i}{g_i}\right\} \in \text{Div}(Y)$ then the *pull-back* of D is $F^*D = \left\{\frac{f_i \circ F}{g_i \circ F}\right\}$

The exponential sequence

We have the exact sequence

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathcal{O}_X \xrightarrow{\exp} \mathcal{O}_X^* \longrightarrow 0$$

where \mathcal{O}_X is the sheaf of holomorphic functions on X and \mathcal{O}_X^* is the sheaf of non-vanishing holomorphic functions on X.

by taking the long exact sequence in cohomology we get

$$0 \longrightarrow H^1(X, \mathbb{Z}) \longrightarrow H^1(X, \mathcal{O}_X) \longrightarrow H^1(X, \mathcal{O}_X^*) \xrightarrow{c_1} H^2(X, \mathbb{Z})$$

where $H^1(X, \mathcal{O}_X^*)$ represents {line bundles on X}/isom.

Fact. $H^{p,q}(X) = H^q(X, \Omega^p_X)$, where Ω^p_X is the sheaf of p-forms which are holomorphic.

Hence $H^1(X, \mathcal{O}_X) = H^{0,1}$. So $0 \to T \to H^1(X, \mathcal{O}_X^*) \to NS(X) \to 0$, where T is the complex torus of dimension $H^{0,1} = H^1(X, \mathcal{O}_X)/H^1(X, \mathbb{Z})$ and NS(X) is the image of c_1 map insider $H^2(X, \mathbb{Z})$ called *Neron-Severi* group of X, and its rank (as a \mathbb{Z} -module) is called the *Picard number* of X. It is denoted $\rho(X)$.

4.4 The canonical class

Let X be a surface and ω be a meromorphic 2-form on X. Locally $\omega = \frac{f}{g}dz \wedge dw$ where f and g are local holomorphic functions

Definition 4.10. The canonical divisor (associated to ω) is $K_X = \left\{\frac{f}{g}\right\}$ = number of zeroes and poles of ω .

Exercise. Check that if ω_1, ω_2 are two meromorphic 2-forms on X then there exists $f \in M(X)$ such that $\omega_1 = f \cdot \omega_2$.

The above exercise implies that the canonical divisors associated to ω_1 and ω_2 are linearly equivalent. Hence K_X defines a unique class in $\text{Div}(X)/\sim$. This class is the *canonical class* of X

Definition 4.11. Given $D \in \text{Div}(X)$, set $H^0(X, \mathcal{O}_X(D)) := \{f \in M(X) : \text{div}(f) \ge -D\} = \mathbb{C}$ -vector space of meromorphic functions with poles bounded by D.

Exercise. Show that $H^0(X, \mathcal{O}_X(K_X)) =: H^0(X, K_X) \xrightarrow{\sim} H^{2,0}(X) = H^2(X, \Omega^2 X) = \mathbb{C}$ -vector space of holomorphic 2-forms on X

Definition 4.12. The genus of a surface X is $p_g(X) = \dim_{\mathbb{C}} H^0(X, K_X)$. More generally the *n*-th plurigenus of X is $\dim_{\mathbb{C}} H^0(X, nK_X)$

Fact. (Important) The plurigenus are bimeromorphic invariants of X

Let $\langle f_0, \ldots, f_n \rangle = H^0(X, \mathcal{O}_X(D))$. Let's define $\phi_D : X \dashrightarrow \mathbb{P}^n$ defined by $x \mapsto [f_0(x) : \cdots : f_n(x)]$ (Note: not defined where, either all f_i vanish at x or one of the f_i has a pole at x)

Definition 4.13. Let X be a surface. Suppose $H^0(X, nK_X) \neq 0$ for some n > 0. The Kodaira dimension of X is $\operatorname{kod}(X) := \max_{m>0} \dim \operatorname{im}(\phi_{mK_X})$ (if possible) otherwise set $\operatorname{kod}(X) = -\infty$. (So $\operatorname{kod}(X) \in \{-\infty, 0, 1, 2\}$

Example. If X is a compact Riemann Sphere, the Riemann-Roch theorem tells us that $\operatorname{kod}(X) = \begin{cases} -\infty & X \cong \mathbb{P}^1 \\ 0 & p_g(X) = 1 \\ 1 & p_g(X) \ge 2 \end{cases}$

The Enriques-Kodaira classifications of surfaces consist of "describing" surfaces according to their Kodaira dimension

Example. In each class:

kod = $-\infty$ Any complete intersection $X_{(d_1,\dots,d_{n-2})} \subset \mathbb{P}^n$ with $\sum d_i < n+1$

- kod = 0 Any complete intersection $X_{(d_1,\dots,d_{n-2})} \subset \mathbb{P}^n$ with $\sum d_i = n+1$. You can also take a Torus (with dim_{\mathbb{C}} T = 2)
- kod = 2 Any complete intersection $X_{(d_1,\ldots,d_{n-2})} \subset \mathbb{P}^n$ such that $\sum d_i > n+1$
- kod = 1 A surface X fibered over a genus ≥ 2 curve \mathcal{B} with fibers isomorphic to curves of genus 1. (e.g. $B \in k[x_0, x_1, x_2]$ homomorphic, deg B = 3, K = M(B), $g(B) \geq 2$, then $X = \{B' = 0\} \subset \mathbb{P}^2_K$)

4.5 Numerical Invariants

Betti Numbers: $b_i := \operatorname{rk} H^i(X, \mathbb{Z}) = \dim_{\mathbb{R}} H^i(X, \mathbb{R}) = \dim_{\mathbb{C}} H^i(X, \mathbb{C}) = i$ th Betti number of X

Euler Number $e := \sum (-1)^i b_i$

Hodge numbers $h^{p,q} := \dim_{\mathbb{C}} H^{p,q} = \dim_{\mathbb{C}} H^q(X, \Omega_X^q)$

They satisfy $h^{p,q} = h^{q,p} = h^{2-p,2-q} = h^{2-q,2-p}$ and $b_k = \sum_{p+q=k} h^{p,q}$ (Hodge decomposition). This gives the Hodge diamond

where q is called the *irregularity* of X. Note that $e = 2 + 2p_g + h^{1,1} - 4g$

4.6 Intersection Number

Let $C_1, C_2 \subset X$ be two irreducible curves. We want to define $C_1 \cdot C_2$. If $C_1 \neq C_2$, set $C_1 \cdot C_2 = \sum_{p \in C_1 \cap C_2} (C_1 \cdot C_2)_p$ where $(C_1 \cdot C_2)_p = \dim \mathcal{O}_{X,p}/(f_1, f_2)$ with $C_i = \{f_i = 0\}$ (locally)

Exercise. Check that $(C_1 \cdot C_2)_p = 1$ if C_1 and C_2 are smooth at p are intersect transversely, i.e. $C_1 \cdot C_2 =$ #points in $C_1 \cap C_2$ counted with the right multiplicities (as usual)

If $C_1 = C_2 = C$. If C is smooth, $C^2 := \deg(N_{C/X})$, the normal bundle of C in X. For the general definition look at references.

4.7 Classical (and useful) results

Thom-Hirzebruch index theorem The index (number of positive eigenvalues minus number of negative eigenvalues) of the intersection product on $H^2(X)$ is equal to $\frac{K_X^2 - 2e}{3}$

Hodge index theorem The intersection product on $H^{1,1} \cap H^2(X)$ has signature $(1, h^{1,1} - 1)$

Noether's formula $12\chi(\mathcal{O}_X) = K_X^2 + e$ where $\chi(\mathcal{O}_X) = h^0(\mathcal{O}_X) - h^1(\mathcal{O}_X) + h^2(\mathcal{O}_X)$

Riemann Roch Let $D \in \text{Div}(X)$, $\chi(\mathcal{O}_X(D)) = \frac{D \cdot (D - K_X)}{2} + \chi(\mathcal{O}_X)$ where $\chi(L) = h^0(L) - h^1(L) + h^2(L)$ and $L = \mathcal{O}_X(D)$ in our case Genus formula Let $C \subset X$ be an irreducible curve, then $2p_a(C) - 2 = (C + K_X) \cdot C$ where $p_a(C) = h^1(\mathcal{O}_C)$ is the arithmetic genus (and is equal to the topological genus of C if C is smooth)

Freedman X_1, C_2 simply connected surface. We have $X_1 \cong X_2$ (homorphically) if and only if $H^2(X_1, \mathbb{Z}) \cong H^2(X_2, \mathbb{Z})$ (isometrically)

5 Introduction to K3 surfaces

Definition 5.1. A surface X is a K3 surface if $K_X = 0$ and $b_1(X) = 0$

Theorem 5.2. A K3 surface is always Kähler

Remark. Since $b_1(X) = 2q$ an equivalent definition is $K_X = 0$ and $h^1(\mathcal{O}_X) = 0$ Noether formula reads $12 \cdot (2-0) = 0 + e$, that is $24 = e = 2 + 2 + h^{1,1} - 0$, hence $h^{1,1} = 20$

Exercise. Let X be a K3 surface. Prove that $T_X \cong \Omega^1_X$

A consequence of exercise is that $\dim_{\mathbb{C}} H^1(X, T_X) = 20$ We have that the Hodge diamond of a K3 surface is

Fact. $H_1(K3,\mathbb{Z})$ has no torsion

Corollary 5.3. Let X be a K3 surface. $H_1(X,\mathbb{Z}) = 0$ and $H_2(X,\mathbb{Z})$ is a torsion free \mathbb{Z} -module of rank 22

Proof. $H_1(X,\mathbb{Z}) \otimes \mathbb{R} = 0$ (since $b_1 = 0$) so $H_1(X,\mathbb{Z}) = 0$. By general properties of algebraic topology, we have that the torsion of $H_2(X,\mathbb{Z})$ is isomorphic to the torsion of $H_1(X,\mathbb{Z})$. Hence no torsion. Since $b_2(X) = 22$, then $H_2(X,\mathbb{Z})$ is a torsion free \mathbb{Z} -module of rank 22

A closer look to $H^2(X, \mathbb{Z})$

- $H^2(X,\mathbb{Z})$ is endowed with the intersection form, which is even by the genus formula $(2p_a(C) 2 = (C+0) \cdot C = C^2)$
- The intersection form is indefinite (since, by Thon-Hizebucj, the index is -16)
- The intersection form is unimodular (its determinant is ± 1) by Poincaré duality

Now we have the following:

Fact. An indefinite, unimodular lattice is uniquely determined (up to isometry) by its rank, index and parity (i.e., even or not)

Conclusion: $H^2(\mathbf{K3},\mathbb{Z}) = H^{\oplus 3} \oplus (-E_8)^{\oplus 2}$ where

- *H* is a rank 2 \mathbb{Z} -module with form given $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ (Hyperbolic plane)
- $E_8 = \mathbb{Z}e_1 \oplus \cdots \oplus \mathbb{Z}e_8$ a rank 8 \mathbb{Z} -module with the following Dykin diagram

$$\stackrel{e_1}{\bullet} - \stackrel{e_2}{\bullet} - \stackrel{e_3}{\bullet} - \stackrel{e_4}{\bullet} - \stackrel{e_5}{\bullet} - \stackrel{e_6}{\bullet} - \stackrel{e_7}{\bullet} - \stackrel{e_6}{\bullet} - \stackrel{e_7}{\bullet} \\ | \\ e_1 \\ e_2 \\ e_2 \\ e_2 \\ e_1 \\ e_1 \\ e_1 \\ e_2 \\ e_2 \\ e_1 \\ e_2 \\ e_2 \\ e_1 \\ e_1 \\ e_2 \\ e_2 \\ e_1 \\ e_1 \\ e_2 \\ e_2 \\ e_2 \\ e_1 \\ e_2 \\ e_1 \\ e_2 \\ e_1 \\ e_1 \\ e_2 \\ e_2 \\ e_2 \\ e_2 \\ e_1 \\ e_2 \\$$

and $(e_i, e_j) = \begin{cases} 2 & i = j \\ -1 & d(e_i, e_j) = 1 \ (d(e_i, e_j) \text{ is given by the diagram}) \\ 0 & \text{else} \end{cases}$

(Check that $H^{\oplus 3} \oplus (-E_8)^{\oplus 2}$ has the same rank, index and parity as $H^2(\mathrm{K3},\mathbb{Z})$)

Note. The sign on H^2 is (3, 19) while the sign on $H^{1,1} \cap H^2$ is (1, 19)

We conclude with 3 classes of examples of K3

- Complete intersections in Pⁿ. Take X = X_{(d1,...,dn-2})Pⁿ a complete intersection with surface of multidegree (d₁,...,d_{n-2}) such that ∑d_i = n + 1. By applying (n 2) times the adjunction formula, we find K_X = 0. By applying (n 2) time the Lefschetz hyperplane theorem, we see H¹(X,Z) → H¹(Pⁿ,Z) = 0. So X is a K3 surface (for example X₄ ⊂ P³, X_{2,3} ⊂ P⁴, X_{2,2,2} ⊂ P⁵,...) Parameter counts: (for X₄ ⊂ P³) We have 35 parameters (the complex dimension of the space of degree 4 homogeneous polynomials in 4 variable) minus 16 parameters (the complex dimension of 4 × 4 invertible matrices). Hence a total of 19 parameters.
- 2. Double Planes: Take $C = C_6 \subset \mathbb{P}^2$ a smooth sextic plane curve. Let X be the double cover of \mathbb{P}^2 branched along $C, X \xrightarrow{\pi} \mathbb{P}^2$ (c.f. [BPHVdV]).

Theorem 5.4. $K_X = \pi^*(K_{\mathbb{P}^2}) + \text{Ramification} = \pi^*(-3H + \frac{1}{2}C) \sim \pi^*(-3H + \frac{6}{2}H) = 0$

One also computes that $b_1(X) = 0$, so X is a K3 surface

Parameter count: 28 parameters (the complex dimension of the space of homogeneous degree 6 polynomial in 3 variable) minus 9 parameters (the complex dimension of invertible 3×3 matrices acting on \mathbb{P}^2) then 19 parameters.

3. Kummer Surfaces:

Let A be a complex torus of dim_C 2. We have an involution $\iota : A \to A$, $a \mapsto -a$. Consider A/ι (i.e identify each point of A with its opposite)

Bad News: A/ι has 16 singulars points (corresponding to the 16 fixed points of ι) which are exactly the 16 points of order 2 on A

Good News: We can get rid of them by Blowing up. Let $\epsilon : \widetilde{A} \to A/\iota$ be the blow up at these 16 points.

$$\begin{array}{ccc} \epsilon : \widetilde{A} & \longrightarrow & A \\ & \downarrow & & \downarrow \\ \widetilde{A}/\widetilde{\iota} = A' > A/\iota \end{array}$$

Notice: That locally around an order 2 point $\iota : (\alpha, \beta) \mapsto (-\alpha, -\beta)$, the invariants under ι are $\alpha^2, \beta^2, \alpha\beta$. So $A/\iota = \operatorname{Spec} \mathbb{C}[\alpha^2, \beta^2, \alpha\beta] \cong \operatorname{Spec} \mathbb{C}[u, v, w]/(uv - w^2)$. This shows that the singular points of A/ι are ordinary double points. If $\tilde{\iota} : \tilde{A} \to \tilde{A}$ is the extension of ι to \tilde{A} , then one sees that around the exceptional curves $\tilde{i} : (x, y) \mapsto (x, -y)$. The upshot is that the quotient $X := \tilde{A}/\tilde{\iota}$ is smooth.

X is a K3 surface: The 2-form $d\alpha \wedge d\beta$ descend to the quotient, and then lifts to $A' \{$ exceptional curves $\}$. One can check that it extend smoothly to A' without zeroes. As why it has no irregularity $(h^{1,0} = h^0(\Omega^1_X))$, there does not exists a 1 form on A which is invariant under the involution ι .