Intersection Theory

1 Introduction (Simon Hampe)

1.1 Some motivational examples: What should intersection theory be?

Example. What is the “intersection” of C := {y = 23} and | = {y = 0}?

Naive answer: The point (0, 0).

Problem: It’s not “continuous”. Replace I; = {y = t}, then I, N C' = 2 points. This should somehow be reflected
in the “limit” ¢ — 0.

Algebraic approach: Intersection scheme: X = Spec K[z, y]/ (y — 2%,y) = Spec K[z]/ (z?), dimg = Ox (9,0) =
2. So we get somewhat more informal answer, twice the point (0, 0).

Example. What is the intersection of a line L in P? with itself?
Naive: L
Better answer: The equivalence class (?) of a point in P? .

Example. Numerative geometry

Question: How many lines in P? intersect four general lines? (Why four? and why General? should not depend
on the choice of lines)

Usual approach: via moduli spaces.

1. Find a suitable parameter space M for the objects we want to count. (Here: lines in P? 2 G(1,P?) = G(2,4))

2. Find subscheme (or equivalence classes thereof) that correspond to object fulfilling certain geometric condi-
tions. (Here: [Z] = lines meeting a given line)

3. Compute the “intersection product” of these classes. In particular, the product should be 0-dimensional, if we
want a finite answer. (Here: dim M = 4, dim Z = 3 therefore [Z]* is 0-dimensional and deg[Z]* = 2)

Insight: We need some equivalence

Definition 1.1. Z(\) =free abelian group on subvarieties on X = ©Z;(X) (where Zx is k-dimensional). We say
A ~ B if and only if there exists a subvariety X C P! x X such that A is the fibre over 0 and B is the fibre over 1.
A(X) = Z(X)/ ~ is the Chow group of X.

Theorem 1.2 (Hartshorne, p&427). There is a unique intersection theory on the Chow groups of smooth (quasi-
projective) varieties over k (= k) fulfilling:

1. It makes A(X) into a commutative ring with 1, graded by codimension
2. :

3.



5.

6. If Y, Z intersect properly, then'Y - Z =% mj;w; where w; are components of Y N Z, m; depends only on a
neighbourhood of w;.

1.2 An approach we will not take: Chow’s moving lemma

Definition 1.3.
1. Two subvarieties A, B of C' are dimensionally transverse, if AN B only have components of codimA + codimB
2. A and B are transverse at p, if X, A, B are smooth at p and T,A+T,B =T,X

3. A and B are generically transverse, if every components of A N B contains a point p, at which A, B are
transverse.

Theorem 1.4 (Strong Chow’s Moving Lemma [Chevakey 58, Roberts '70, Eischenbud-Harris, Chapter 5.2]). Let
X be smooth, quasi-projective over k = k.

1. Ifa € A(X), B € Z(X), there exists A € Z(z) such that [A] = o and A, B are generically transverse.
2. If A,B € Z(X) are generically transverse, then [A N B] depends only on [A] and [B].

Corollary 1.5. For X smooth, quasi-projvective, we can define the intersection product on A(X) by a-8 = [ANB],
where [A] = a, [B] = 8 and A, B are generically transverse.

Remark. This is not generalisable! Not really constructive.

Intersection multiplicity

If A, B are only dimensionally transverse, can we write [A] - [B] = > m;[C;] where C;are components of AN B and
m; to be determined?
Easy case: Plane curves. If F, G are plane curves in A%, p € A?,

0 ifp#FNG
i(p: F-G)=dimg Opng,p = § © if ', G have acommon component through p
finite otherwise

This works!

Generalisation 1: Module length. If M is a finitely generated A-module, then there exists a chain M = My 2
<+« 2 M, = 0 such that M;_,/M; = A/P; where P; is prime. If all P; are maximal, then r is independent of our
choice and we call the length of M [4(M) :=.

Lemma 1.6. If A, B are Cohen-Macauly and dimensionally transverse, Z a component of ANB, then i(Z,A-B) =
lOAmB,z (OAQB,Z)

Generalisation 2: Serre’s multiplicity formula.

Theorem 1.7 (Serre ’57). On a smooth variety X, the multiplicity of a component Z of a dimensionally transverse

intersection AN B is
dim X

Z (_1)ilcngth(9m3,z (TOI‘ZQX'Z(OAz, Osz))

=0



1.3 Owur approach: Following Fulton’s book

The standard construction
Given the fibre square

<.

where f is any morphism, 7 is closed, regular embedding.
X -V =58%(|C]) where S-W — ¢g*NxY =: N is the zero section, C' = Cy'V embedded in N (Nx is the normal
bundle, Cy the normal cone)

Example. Let X be smooth, then X = X, T = X x X, i =6 : z — (z,x) regular. For A, B subvareties, set
V = A x B, f the inclusion then W =ANB and [A]-[B]=X -V

Example. Let Hy,...,H; be effective Cartier divisors on some variety X, let V C X be a subvariety. Let
X=H; x---xHg, Y =X x---x X, i be the product embedding and V =V. Then W =H;Nn---NHz;NV and
X -V is a class of this.

Fact. Can write this in terms of Chern and Segre classes. Then X -V = {c¢(N)nNs(W,V)}

expeted dimension*

2 Divisors and Rational Equivalence (Paulo)

2.1 Length of a module
Let R be a commutative ring, M a module. Consider chains M = My 2 My 2 --- 2 M, = (0).
Definition 2.1. We say the length [g(M) = maximal among all length of such chains.

Fact (EIS,Thm 2.15). M = My 2 My 2 -+ 2 M, = (0), then Ig(M) = m if and only if M;/M; 1 is simple for
all i.

Example. Let R = K a field, M = V a vector space. Let {e1,...,e,} be a basis of V. Then we have the chain
My=V 2 {e1,...,en—1) 2+ 2 (e1) 2 (0). Hence ix (V) = dimg (V).

Example. Let R =7 and M = Z, we show that l3(Z) =c0oas Z D2 2Z 22 -13Z 2 ...
Example. Let R =7 and M = Z/mZ where m = p;y - - - - p,, then lz(Z/mZ) = r.

Let X be a scheme of pure dimension n. Let V' C X be a subvariety. Let f € R(X)*. We want to define
ord(f,V). To do this, let f = a/b where a,b € Ox. Then

OI‘d(f, V) = lov,x (OV,X/(G)) - lOv,X (OV,Z/(b))
Where by Oy x we mean the localisation of Ox at I(V), i.e., let S be the complement of I(V), then Oy x = Ox S~

Example. Consider C%z’y), let V = {z =0}, f = (2)% Then ord(f,V) = lo, « (Ov,x/(x)?) =2 as Oy,x/(z)* 2

Ov.x/(x) 2 (0). (For this example, Ox = C[z,y] and S = C[z, y]\(z), so Oy x = Clz,y]S™ 2 {f/glz 1 g})
2.2 Divisors

Let X be a variety over K of dimension n. Let Z,,_1 = {> 4. @i[Villai € Z,V;subvariety of X of dim = n — 1}.
We call an element D € Z,,_; a Weil Divisor and an element [V;] a prime divisor.

Definition 2.2. Let f € R(X), we define a divisor associated to f as div(f) = >, ord(f,V)[V]. We call then
principal divisors.



Definition 2.3. The class group of X is C1(C) = Z,,_ /principal divisors.
Definition 2.4. Let D € Z,_1 is effective if a; > 0 for all 1.
Definition 2.5. A Cartier Divisor is a collection {(U;, f;)}ier such that:
e {U;} is an open cover of X
e fi € R(U;)
e For all 4,5, fi/f; € O*(U;NU;).

Let D{(U;, f;)}, we can associate to it a Weil divisor: [D] = > ord(D,V)[V] where ord(D, V) = ord(f;, V) for
any 7 such that U; NV # 0.

We can also associate to it a line bundle: O(D) with transition data {(U;, f;)} (so a section of it is a collection
r = {r;} where r; € O(U;) and r; = f;/f;r;)

Pic(X) := Cartier Div/Principal Div 2 Line Bundle/Isom.

Let X be a scheme over K of dimension n. Define Z; = {>_ a;[V;]|V; C X subvariety of dimension k}. We call
C € Zy a k-cycle.

Example. Let Y be a scheme of pure dimension m, Y7, ...,Y] its irreducible components. We have Z,,,(Y) 3 [Y] =
> m;[Y;] where m; = loy, v (Oy, y)-

If Y C X subscheme then [Y] € Z,,,(X).
2.3 Rational equivalence

We want to consider Ay := Zj/ ~ (where ~ is to be determined), which we will call this the Chow group. There
are two equivalent way to define the equivalence

1. Let W C X be a subvariety of dimension k + 1, » € R(W). Then 0 ~ div(r) =Y ord(r, V)[V] € Zr(W) but
we can also think of div(r) € Zx(X)

Definition 2.6. Dy, Dy € Z;,(X) are equivalent, Dy ~ Do, if D; — Dy =Y div(r;) for some r; € R(W;).

2. Consider
X x P!

X% X}pl

Let Y C X x P! variety of dimension k + 1, f = g|y is dominant. p.[f~1(0)] — p«[f~1(c0)] ~ 0
To see why they are equivalent see [Ful,Prop 1.6]
Remark.
1. Zp(X) = Z1(Xred)
2. If k = m, then A, (X) = Z,,(X)

2.4 Pushforward

Let f : X — Y be a proper morphism. Let V C X be a subvariety, this gives f(V) = W a variety in Y. We can
0 dimW < dimV

deg(V,W) - [W] otherwise (where deg(V, W) := [R(V) : R(W).

define f, : Z X — Z;Y by [V] — {

Theorem 2.7 (Ful, Thm 1.4). If a ~ 0 then f.a ~ 0, hence we have well defined f. : Ax(X) = Ar(Y).



2.5 Pullback

Let f: X — Y be a flat morphism of relative dimension m. (Relative dimension means: if V C Y a subvariety,
then f~1(V) has every component of dimension m + dim(V))
We can to define f*[V] = [f~1(V)]. This extend by linearity to a map f* : Zp(Y) = Zritm(X).

Theorem 2.8 (Ful, Thm 1.7). If « ~ 0 then f*a ~ 0, hence we have well defined f* : Ax (V) = Aprm(X).
Example.
1. Consider the open embedding i : Y < X. Then ¢* is just the restriction map, that is [V] — [V N Y.
2. Let Z be a scheme of pure dimension m, consider f : X x Z — X. Then f* is defined by [V] — [V x Z].
3. Consider p: E — X an affine (projective) bundle, then we still have p*.

Proposition 2.9. If p: E — X is an affine bundle, p* : Ax X — ApyimFE is surjective.

2.6 Intersection with divisors

Consider o € Zj(X) and let D be a Cartier divisor on X. Then we want to define D - a € Ai_1(V). By linearity,
we can assume a = [V]. Two cases:

1. V ¢ supp(D). Then D intersects with V, let D =Y a;[W;], then D -V =" a;,[W; N V].

2. V C supp(D). We can not simply intersect. Let ¢ : V' — X. From D consider the line bundle O(D).
Consider the line bundle on V, i*O(D). There is a Cartier divisors C on V such that i*O(D) = O(C). Then
[C]=V-De Ap_1(V).

3 Chern Classes (Ian Vincent)

3.1 DMotivation

(Following Eisenbud)

Let 7 : E — X of rank n be a vector bundle and there exists sections s1, ..., s, of m such that for every p € X,
s1(p), ..., 8n(p) are linearly independent (in each fibre). Make some changes of coordinates so that s1(p),...,sn(p)
is a basis for each fibre.

Idea: If we have enough global sections finding their forced linear dependence measures the non-triviality
(twisting) of 7 : B — X.

3.2 Chern classes of line bundles

Let L be a line bundle over a scheme X. We define a function ¢; (L) N — : Ax(X) — Ai_1(X) in the following way.
If [V] € Ax(X) then choose a Cartier divisor C' on V such that L]y = Oy (C) then ¢1(L) N [V] := [C]. We extend
linearly to get a homomorphism A (X) — Ap_1(X)

Remark. This is well defined. If L = Ox (D) then if o = [V] we have ¢1(L) N [V] = D - « as defined last time.

Properties (Fulton Prop 3.1)
1. Commutativity: Let L, L’ be line bundles on X then ¢1(L) N (1 (L) Na) = 1 (L) N (1 (L) Na) € Ap—2(X)

2. Projection formula: Let f : X’ — X be a proper morphism, L a line bundle on X and « € Ay (X’). Then
fela(f*L)Na) = a(L) N fi(a)

3. Pullback: Let f: X’ — X be a flat morphism of relative dimension n, L a line bundle on X and « € Ax(X).

Then ¢ (f*L) N ffa= f*(c1(L) Na)




4. Additivity: Let L, L’ be line bundles on X, o € A,(X) then n(L® L) Na =c(L)Na+c (L) Na. In
particular, ¢; (L™ Na = —c¢1 (L) Na.

Example. Consider X = P" and let L* be a linear subspace of P” with dimension k. Then Opn(1) + H
hyperplane section of P". Then ¢;(Op(1)) N [L*] = [L*71]. More generally, if X C P" is a subvariety, then
a(Op(1))N[X]=[XNH].

3.3 Segre classes

Let 7w : E — X be a vector bundle of rank e+ 1 on X. Let P = P(FE) (turn E into projective space), Op(1) is the
“canonical line bundle on P”. Define homomorphism s; : A (X) — Ax_;(X) by s;(E)Na = m.(c1(Op(1)) T N7*a)
where 7* is a flat pullback from A,,(X) — Ajie(P). The product c¢;(Op(1))¢* is just composition. This is called
the ith Segre class.

Properties (Fulton 3.1)

1. Similarly we have commutativity

2. Projection

3. Pullback

4. For a € Ap(X), si(EF)Naifi <0 and so(F)Na=a.

3.4 (General Chern class

Let 7 : E — X be a vector bundle of rank n = ¢ + 1. We define s,(E) = 1 + s1(E)t + s2(E)t? + .... Then the
Chern class ¢;(FE) is the coefficient of the inverse power series, i.e., ¢;(E) = Y ¢;(E)t' = s,(E) L.
Explicitly, co(E) =1 (i-e., co(E) N = @), ¢1(t) = —s1(E). In general we have

siE) 10 ... ... 0
SQ(E) Sl(E) 1 0 0
ci(E) = (—1)"det
0
si(t) . s2(E) 51(F)

Remember s;(E) are endomorphism of A, (X) hence products here means compositions of functions.
Definition 3.1. The total Chern class is ¢(E) =1+ c1(E) + -+ + ce41(E)
Properties (Fulton, Thm 3.2)
1. Commutativity
Projection
Pullback
Vanishing: ¢;(E) =0 for i >tk F

ool N

Whitney sum: For any short exact sequences of Vector bundle on X: 0 — E' — E — E” — 0, then
ct(E) = ci(E e (E").

An important ingredients for this proof is the splitting construction: Let S be a finite collection of vector bundles
on X. There is a scheme X and a flat morphism f : X’ — X such that f*A,X — A, X’ is injective and furthermore
for each vector bundle F € S, fF has a filtration of subbundles E = E, > --- > Ey = 0 such that F;/F;11 = L; a
line bundle. Then ¢;(t) = [](1 + ¢1(L;)t).



3.5 Examples
e Consider Tpr (the tangent bundles of P"), we have an exact sequence 0 — Opn — Opn—1 (1)@("“) — Tpn — 0
(which is the dual of 0 — Qpn — Opa(1)®" 1) — Opn — 0). If H = ¢1(Opn (1)), by the splitting principle
then ¢y (Opn (1)@HD) = (1 + Ht)"*'. Now Opn is a trivial bundle on P* so by Whitney formula ¢;(Tp,) =
(1 +id¢)ntt

e Let X C P be a smooth hypersurface in P" of degree d. Let i : X < P” be a closed embedding. Then we
have the sequence 0 — Tx — i*Tpn — N — 0. We have ¢;(i*Tpx) is the restriction of (14 Ht)"*! to X. Now
c1(N) = c1(i*Opn (X)) = ¢1(i*Op(d)) = dH by surjectivity of Chern classes of line bundles. So by Whitney

n+1
formula, ¢;(Tx) = %'

Theorem 3.2 (Fulton Thm 3.3). Let m : E — X be a vector bundle of rank r. The flat pullback " : Ap_.(X) —
Ai(P(E)) is an isomorphism for every k > r. In particular, each element § € A(P(E)) is uniquely expressible in
the form B =3._, Cl(OP(E)(l))i N7, for some a; € Ag_p1i(X)

4 Segre Classes (Tom Ducat)

In the previous section we learned about Segre and Chern classes for line bundles.
Notation. hx = c1(Ox(1)).

Brief recap of last section: Let m : £ — X be a vector bundle over a scheme X of rank e + 1, consider
P(E), Op(g)(1) then the Segre class s;(F) is given by the formula: Ay X — Aj_; X defined by a — ans;(F) =

ﬂ*(hé;é_g) N7*a). The Chern classes ¢;(E) are defined by 3, ci(E)t' = (Zizo si(E)ti)i

In this section, we want to generalised Chern classes to more general objects than vector bundles.

4.1 Cones

Consider F* = EBZ-ZO}"i to be a graded sheaf of Ox-algebras over a scheme X. (Caveats: Ox — Fy surjective, F;

coherent and generate F*). Then the cone of X is C' = Spec F* = X. There are two ways of getting a projective
cone over X:

1. Projectivised cone P(C). P(C) = ProjxF°.

2. Projective closure C. C' = Proj(®o<i<aF z¢7") X

Remark. C C C is a dense affine open subset and C\C = P(C).
The hyperplane section hz N [C] = [P(C)].
For an arbitrary coherent sheaf F we can do this construction using SymF = @;>0F®?/sym perm.

Definition 4.1. The Segre class s(C) is defined to be s(C) = 7. (3,5 h’éﬂ [C]) € A X.
Proposition 4.2.

1. If E is a vector bundle over X then s(E) = c¢(E)~! N [X] (where ¢(E) = 1+ ¢1(E) + -+ + ¢.(E) the total
Chern class as defined in the previous section)

2. If C has irreducible components cq,. .., cx with geometric multiplicities m1, ..., my then s(C) =,
Proof.

1. The only issue that needs to be checked is E = ProjSym(E @ Ox). Now the short exact sequence 0 — Ox —
E — E — 0 gives rise to ¢(E) = ¢(E)c(Ox) = ¢(E)

2. This follows from [C] = Y m; [C;]

O

Remark. If we have a short exact sequence 0 - F — G — £ — 0 where £ is locally free, then s(F) = s(G) N c(E).



4.2 Normal Cones

Take a closed subscheme X C Y with ideal sheaf 7 = Tx,y. The normal cone of X in Y is CxY := Spec ®n>0
" /I"! . The Segre class of X in YV is s(X,Y) := s(CxY) € A, X.

Recall: The blow-up of X in Y is BlxY := Projy @,>0Z" > Y and E = 0~ (X) the exceptional divisor, has
ideal sheaf O(1). E = Proj(&I" ®o, Ox) = Proj(&I"/I"') =P(CxY).

Trick: X C Y, consider A' x Y D {0} x X, define MxY := Bly, (oY x A' = Y. The exceptional divisor is
isomorphic to CxY.

Example. X C Y is embedded regularly, i.e., the normal cone is a vector bundle then s(X,Y) = ¢(CxY)~ 1 N[X].

Lemma 4.3. Let X C Y, Y pure dimensional with irreducible components Y1, ...,Yy and multiplicities m1, ..., my
then s(X,Y) => m;s(X;,Y;) where X; = X NY;.

Proof. Consider MxY has irreducible components Mx,Y;, [MxY] =Y m; [Mx,Y;] € A,MxY. Sowe get [CxY]| =

Proposition 4.4. Iff : Y’ — Y is a morphism of pure dimensional schemes, X' C Y', X C Y are closed
subschemes such that X' = f~1(X) is the scheme theoretic pull-back. Then

1. Push-forward: If f is proper, Y irreducible, each components of Y' maps onto Y then f.S(X',Y') =
deg(Y'/Y)s(X,Y) € A X.

2. Pull-back: If f is flat then f*s(X,Y) =s(X",Y') € A X'
Note that deg(Y'/Y) = > m; deg(Y//Y)
Proof.

1. Reduce to Y’ irreducible,

Y’fYD

|

x’ MX/Y/?M)(Y ™
!

C

X' X

Cx'Y’ CxY =C

frs(X,Y) o) hen(c))

i>0

= A7 (RN (O]

i>0
= mQ_h=n[0)
= s(X"Y")

Corollary 4.5. Consider o:Y : BlxY — Y with ezceptional divisor E then s(X,Y) = ZiZI(—l)i_la*(Ei).



Example. Let Y be a surface, and let A, B, D be effective Cartier Divisors. Let A, B intersect transversely at
smooth points p € Y. Let X be the scheme theoretic intersection (A+D)N(B+ D). Then s(X,Y) = [D]—[D?|+[p].
To see this, let 0 : Y =BLY =Y, X =0*D + E (where E is the exceptional divisor). Then

S(X,Y) = o0.s(X,Y)
::@@fﬁﬁp

= 0.X —0.(c*"D?* +20*"DE + E?)
= [D] - [D?]+[p]

5 The basic construction (Simon)

5.1 The basic construction

The basic set up is the following: A fibre square is
wiy
i
X&
where
e i: X — Y is a regular embedding of dimension d
e V is purely k-dimensional, f : V — Y morphism
e W = f~1(X) is the inverse image scheme
Some preliminary definitions and facts:

e N :=g*NxY abundle of W (Recall NxY = CxY = Spec(®,>0Z"/Z""! where 7 is the ideal sheaf of X in
Y), with 7 : N — W the projection and s : W — N the zero section

Fact 5.1. Recall that 7* : Ag_q(W) — Ag(N) is an isomorphism. We define s* = (7*)71 : Ap(N) — Ap_a(W)
e (' = CwV the normal cone

Fact 5.2. If T is the ideal sheaf of X in Y, J the ideal sheaf of W in V, then there is a surjective morphism
OnfH (I — @, T/ T, This gives a closed embedding C N

A\

w

So we now have

)

wiv

| )

X<y

CS N
9

Fact 5.3. C is purely k-dimensional, so [X] € Ax(N). (This can be seen by: the blow up of V x Al in W x {0} is
purely (k+ 1)-dimensional. So the exceptional divisor P(C @ 1) is Cartier. Hence P(C & 1) is purely k-dimensional
and contains Cas a dense open subset)



Definition 5.4. The intersection product of V by X inY is X -V = X -y C := s*[C] € Ax_q(W) (i.e., the unique
class [Z] such that #*[Z] = [C])

Proposition 5.5.
1. XV =A{c(N)Ns(W,V)}i—a (where s(W, V) = s(C) = ¢ (350 c1(0())'NP(CP1)) withq: P(Co1) — W)

2. Ifd =1 (so X is a Cartier divisor), V a variety and f a closed embedding, then X -V is the same as
intersection with a divisor (as defined before)

3. If Y is pure dimensional, f a regular embedding, then X -V =V - X =(V x X) - Ay. ie., setup:

Y
|
Vx XY xY
4. If W — V is a regular embedding of codimension d' with normal bundle N' = CwV. Then X -V =
Cd_d/(W/N/) N [w]
5. If X x P — Y is a family of reqular embeddings, V a subvariety of ¥, V and Y are flat over P1. Then X -y, -V,
are equal for all t.

5.2 Distinguished components and canonical decomposition

Assume [C] = > m[C;] with C; the irreducible components of C. W > Z; := [[(C;) are the distinguished
components of X - V. For N; := N|z,, s; its zero section, «; := s7[C;]. Then X -V = > mya; is the canonical
decomposition of X - V.

Example. Let Y = sz’yyz], X; ={2y =0}, Xo = {& =0} and P = {& = y = 0}. We have to possibilities to
intersect X; and Xs.

1.
W:X2>V:X2

L

X=X —>Y

Hence C' = CyV = X5. In particular, X5 is the only distinguished components

W= Xo&V =X,
X=X,—>Y

Then let I = () in k[z,y]/ (zy). We have @,>ol" /1" = k[z,y,T]/ (x,yT). So we can see that C has two
components, namely {z = y = 0} and {x = T = 0}. Now N = Spec(k[z,y,T]/ (x)). So the distinguished
components are X5 and P.

10



5.3 Refined intersection
Given our fibred square

J

W—V
T
xts
we have a homomorphism 4' : Zj, (V) — Ay_q(W) defined by > n;[V;] = S n;(X - V;) (note that X - V; are actually
lies in Ak_d(X N ‘/;))
Fact (Non-trivial). This passes to rational equivalence!

We have refined Gysin homomorphism i' : ALV — Ap_qW.
Notation. f V =Y and f = id we write i' = i* : A,Y — A;_4X. In this case the map is [Z] — si[CznxV].
Remark. For any purely k-dimensional cycle [Z], i'[Z] = X - Z.

Theorem 5.6. Given the fibre diagram
X// Y//

|

X sy
where i : X =Y is a regular embedding of codimension d.

1. (Push-forward) If p is proper, a € A,Y", then i'p.(a) = q.(i'a) (note that the first i' is with respect to
X' —=Y' , while the second i is with respect to X" —=Y"

| |

X —Y X —Y

Merit: e.g., we can compute X -Y” by calculating X - (some blowup of Y”’). Therefore we see the advantage of
allowing arbitrary morphism to Y.

2. (Pull-back) If p is flat of regular dimension n, o € ALY then i'p*(a) = ¢*i'a

Merit: we can compute (part of) intersections products of locally by restricting to open subschemes

5.4 The intersection ring

Assumption: Y is smooth which implies § : Y — Y x Y (defined by y — (y,y)) is a regular embedding
Setup: For x € Ai(Y), y € A(Y)

y 2y xy

e

Y7>Y><Y

we define z -y := §*(x X y) € Apq1-n(Y)

Theorem 5.7. This makes A.(Y) into a graded (by codimension), commutative ring with unit pY].
The assignment Y to (A.(Y), ) is a contravariant function form smooth varieties to rings.
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6 Schubert Calculus (Aurelio Carlucci)

6.1 Recap on G(k,n)

Let V be a complex vector space of dimension n, let G(k, V) = {k — subspaceof V}, G(k,n) = G(k,C™).
Let A € G(K,n)
V1 Ul,l e V1k

VK Vg1 Vkk

where tk K = k. Let I = {iy,...,ir} C {1,...k}, Vi = Span{e;|i ¢ I}, U; = {A : ANV, = 0}, I*" matrix
non-singular

We have a map ¢ : Uy — CF(»=F) We have that ¢;(U; N Uyp) is open. Let AL be the I’-th minor of A7, we
have AT = (AL)~1. AT

6.2 Cell decomposition
Let V be a flag, that is V ={V; C Vo C--- C V,, = C"}. Let P" = G(1,n + 1), we can consider W; = C*~! = {I C
Crtl 1 Cc Vil € Viq}, we have PP =C°U--- UC™.

zero dim 1<n—k

Let V be a generic flag. Let A € G(K,n), we have ANV; = ] )
(1+k—n)dim otherwise

. Let (a1,...,a;) =a

be a cycle, let >~ (V) = {A € G(K,n)|dim(Vy—pti—a, NA) > i}
Remark. If a; > n —k, then dimV,,_, 114, < a; and ), = 0.
Let 0, = [X,], this construction is independent of the choice of flag. This is called a Schubert class.

Remark. We have that o, C o} if and only if a > b (i.e., a; > b; for all 7)
Example. Consider G(2,4)

. D (1,0): 01,0 ={A : dIm(ANVy—gtia,) > i}, Le, dim(ANV3) > 1 and dim(V NVy) > 2 which is trivial. So
01,0 = {A‘ dlm(A N ‘/2) Z 1}

T

(1,1), 011 : we need dim(A N Vs) > 1 and dim(A N Vz) > 2, but as the second implies the first, we have
0'171 = {A . A C Vg}

. [D(?,O), 02,0 : we need dim(ANVy) > 1, s0 Vi C A and dim(A N Vy) > 2 which is trivial, so o2 = {A :
C A}

=~

. ‘(2, 1), 021 : we need dim(ANVy) > 1,50 V4 C A and dim(ANV3) > 2s0o A C Vi. Hence 021 = {A:
VicAc s}

So we have V; C Vo C V3 C C, so take the flag {P} C lp C H (a point, line and hyperplane). So translating we
have

° Ul,oz{lnlo#@}
L] 0’1,1:{ZCH}
. UQ,OZ{PEZ}

e oy1={pelCh}

12



/ D\\
—=0O 00— 0™

\E/D 0o

Choose bases e; of V and let V; = span{ey,...,e;}. Let A C Zal___ak, then we can find v; with ANV, _p41-4, D
(v1), and we can normalise vy so that (v1,€,—kt+1-q,) = 1. We can find vo with (v1,v2) C ANV,,_kt2-_q, such that
(Vayen—kt+1—a,) = 0 and (ve,en_k11-a,) = 1. We can continue this process to find more v;. Basically, we are just

apply Gaussian elimination. So we end up with Z};l(n —k+j—a;—1)— Zle(k —J)=k(n—k)—=3;a;.

Fact. The Schubert classes are a free basis for A.(G(K,n)).

6.3 Complementary codimension

Proposition 6.1. Let V and W be general flags. Consider ¥,(V'), 5y(W) with |a| + |b| = k(n — k), then
e they intersect in a unique point if a; + by_1_; = n — kVi
e They are disjoint otherwise.

Proposition 6.2. A,(G(K,n)) & z(%).

If [I] € A™(G(k,n)) with [I'] = 37, _,, 700 where 7, = deg([I'] - 04+) = # (I'N Ea- (V)) where V is a generic
flag.

We have the multiplication of Schubert classes: o,0, = Z|0\=|u\+|b\ Yab,c0c. There is a formula for Special
Schubert classes, i.e., the one of the forms o, = 04,0,..0

Proposition 6.3. Let 0, € A(G(K,n)), BEN. Then 0g- 00 =3¢/ ja|+8ai<eci<es_1 Tc
For example

e 01 - 0. = sum of all Young diagram obtained from a.

[ ]

[, T I HE

o (00)? =2 (which in 2 - {pt} in G(2,4))

6.4 Giambelli’s formula

Consider o0, ...q,. This is equal to

Oa,y Oa1+1 Oa;+2 --- Oay+k—1
O—(Zg*l Uﬂ.g
Ua372
det
Oap—k+1 Uak

13



09 O
Example. We have 031 = (a 03) = 0901 — 03
0 01

® 011 = 02 — 09,50 02 = 03 + 011 (which we had calculated above)
o 00y = 03
® 01021 = 022

So we find that A,(G(1,P?)) = Z[o1, 2]/ (0} — 20102, 0309 — 03)
Suppose we have four lines in P3, 11,15, 13,14. We want to know how many general lines intersect [;. We can use
Schubert calculus. We calculate o1 (l;) (i.e., choosing a flag consisting of one component [;). Since o = 2 - E% =2

7 Riemann Roche (Miles Reid)

NB: This section needs some reworking, which will be done at a later stage

The statement of Riemann Roche is the following. Let X be smooth projective, we have f : X — Y defined
by F — Y(=1)'R!f.F, gives rise to fi : Ko(X) — Ko(Y). If Y is a point, h*(F) € Ko(pt) =dimension of finite
dimensional vector space over k, so Y (—1)'Rf.F becomes x(F).

Ko(X) —L A(X)2Q

f!l( |

Ko(Y) —2 A*(YV)®Q
This diagram only commutes after multiplying by Td;. That is
ch(fiF) = TdX/Yf*<Ch(]:))

, where Tdx/y = Tdx - (Tdy)~'. Let us define Tdy.
We have both KyX and K%X.

e KX is Ky(coherent sheave)
e KX is contravariant and is vector bundles over X divided by exact sequences.

If X is smooth then Ko X = K°X. As we can take ® and ® we have that Ky is a ring. We have c(E®F) = ¢(E)-c(F).
The Chern character of a line bundle by definition is ch(Ox (D)) := 1+ D + %2 + .- =exp(D). So we are turning
addition to multiplication.

Let E be a general coherent sheaf, and write is as a sum of line bundles:E = >~ Ox(«;) (this is not true, but
we can pretend that it is). Then by definition ch(F) := Y exp(«;).

Consider Tx, we are again going to pretend Tx = Y Ox(z;). We “have” ¢(Tx) = [[(1 + z;). We define
Tdx :=1]] 17?_11. . If we substitute x1 + 22 = ¢1, 122 = o etc, we find that:

1 1 1 1 1 .
Tdyxy =1+ e + ﬁ(cf + o)+ R + %(ﬂfiL +4c2cy + cre3 + 3¢ —cq) + 1410 (=t +...)

So we get x(F) = [ch(F) - Tdx],.- From this we deduce x(Ox) = Tdx[X].

Exercise. Let X be a smooth 3-fold, D a divisor on it and calculate ch(Ox (D)) = (1 +D+ %2 + %3> (1+ici+...)

evaluated at degree 3 terms. We should get x(Ox) + -5 Dc2 + 55 D(D — K)(2D — K) (note x(Ox) = 2;c1¢2).
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The advantage of this diagram is that it gives a stronger theorem for Riemann Roche while having a much
simpler proof.

If f=goh(9:Y —>Z h:X —Y and f: X — Z), it is enough to prove this diagram commutes for g and h
separately, i.e., show that (gh)r = gth and Td, - Td;, = Td;. Now for

X Ly xpr

1

Y

we can do i and p separately. Now p is just straightforward calculation. What about ¢? we do this as the inclusion
of divisors followed by blowup. We can reduce the case to only looking at divisors.

Question: Why does ;2= appear in Tdx. Think of X C V' a divisor, with the dimension of X and V' being n
and n + 1 respectively.

0—Tx — Ty, — Ny, —0

Recall that Ny, = (Ix/T%)".

O—)OV(—X) OV OX 0

x(0x) = x(Ov) = x(Ov(=X)) = Tdy — Tdy - e~°.

8 Miss multiplicities (Diane)
Definition 8.1. A sequence aq,as,... is log-concave if af > a;_1a;41. le., i — loga; is a concave function

This implies unimodal, i.e., one local maximal.
Question: Let X be a smooth projective variety of dimension d. Consider Z € Ay (X) for some k. Is Z = [V]
for some (reduced irreducible) V' C X7

Example.

e X =P? then Ay(P?) = Z (i.e., keeping track of degree). So the question is: is there an irreducible subvariety
of P? of dimension k& and degree m? Here we know the answer is yes if m > 0

o X = P2 x P? Ay(X) = span([P? x pt], [P* x P!], [pt x P?]). Let ¢ = a[P? x pt] + b[P* x P!] + c[pt x P?] Is
¢ = [v]? The necessary conditions are a,b,c > 0 and b? > ac (and they are sufficient for P? x P?). Note that
(a,b,c) are log-concave.

Theorem 8.2 (Huh). If ¢ = 3 ¢;[P! x P*~%] € Ay (P" x P™), then there exists | > 0 with I{ = [V] if and only if
(€0, ..., ep) is log-concave with no internal zeroes, or ¢ = [P™ x pt], [pt x P™], [P™ x P™] or [pt x pt].
8.1 Chromatic polynomials

Let G be a finite graph. A colouring of G with ¢ colours is a function f : Vert(G) — {1,..., g} for which f~1(s) is
an independent set (i.e., no two vertices are adjacent)

Example 8.3.

—2
—1
Let Xz(q) to be the number of ways to colour G with ¢ colours. For example above X (1) = Xg(2) = 0 and
Xc(3) =6.

1
3
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Theorem 8.4. X¢(q) is a polynomial in q with integer coefficients
In our case X (q) = q(q — 1)(q — 2)? = ¢* — 5¢> + 8¢* — 4q.
Conjecture (1968). Write Xg(q) = ang™ — an_1¢""* + -+ + (=1)"aq, then aq,...,a, is log-concave

This is now a theorem by Huh in 2012. The proof involves realising the a; as intersection numbers.

8.2 Hodge index theorem

Theorem 8.5 (Hodge index theorem). Let X be a smooth projective surface and let H be an ample divisor on X,
and suppose that D is a divisor with D - H =0, D # 0 (there exists C' such that D - C # 0). Then D? < 0.

This implies intersection pairing has signature (1,—1,...,—1).

Corollary 8.6. If Dy = aD + bH and Dy = ¢D + dH where H is ample, H- D =0 and D # 0 then (D1 - D2)2 >

(D?)(D3)

Proof. Di-Dy = acD*+bdH?, D? = a®?D?*+b*H?, D3 = ¢>D?+d?H? so check (D1-D3)?—D3?D3 = 2abed(D?)(H?)—

112 2 2(:2

(a’d® + b*c®)D?*H? = 2(D?)(H?)(abed — “4F=) > 0 O
So we are going to refer to the corollary when we talk about Hodge index theorem. Let ¢ = a[P? x pt] + b[P! x

P! + c[pt x P?] and suppose that ¢ = [V] where V is an irreducible surface in P? x P2. Let D; = [general line x P?]

and Dy = [P? x generalline] both in P2 x P2. Then D; - Dy = [P x PY], D? = [pt x P?] and D3 = [P? x pt]. So

let D} = i(Dy), Dy = i(Dy) as divisors in V. So D - Dy = [P* x P?] - [V] = b, D = [pt x P?] - [V] = a and

D% = [pt x P?] - [V] = ¢. Therefore the Hodge index theorem implies that b*> > ac.

8.3 Generalisations

Theorem 8.7. Let X be an irreducible complete variety (scheme) of dimension n, and let 61,...,5, € N'(X)gr
(divisors up to numerical equivalence) be nef classes. Then (61...0,)™ > (61)™ - (6n)™.

For a proof, see e.g., Lazarfeld “positivity bock” theorem 1.6.1.
A variant of this as follow:

Theorem. (a1, B1- - Bu_p)? = (aB1 - Bup) -+ (aBB1 -+ Bu_yp).

Corollary 8.8 (Khovansk_ii, Te_zissier). Let X be an irreducible complete variety (scheme) of dimension n, let o, 8
be nef divisors. Set s; = a'B""". Then for 1 <i<n—1, s? > s;_18i11.

Proof. Apply the variant to the case p =2, a1 =, ap = B and B - - o = o717 1, O

Approach to chromatic polynomials: From the graph (say with n + 1 edges and r 4+ 1 vertices), we get a
(n+ 1) x (r + 1) matrix of edges and vertices. Let V0 = row(A) N (K*®)" (the Torus (K*)"*1/K?®), let V be
the closure of graph of the Cremona transformation restricted to V (recall that the Cremona transformation is

2o+ @] > [£ 1o+ 0 L)) Note that V € P" x P". Let [V] = Y p/[P"~% x P'] € A,(P" x P"). The claim is that
the ' are the coefficients (up to sign) of X5(q) := X4(q)/(q — 1) (Note Xz(qg) is a polynomial since X,(1) = 0).
Easy exercise: u' is log-concave implies that the a; are log-concave. Take D; = [H x P"], Dy = [P" x H] then

pt = DiD5 ' [V] (or maybe p' = D" Di[V]). Hence p° is log-concave.
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9 Toric Intersection Theory (Magda)

Definition 9.1. A Toric variety is an irreducible variety X containing a torus T (C*)"™. This is a Zariski open
subset such that the action of Ty on itself extends to an algebraic action of Ty on X.

Example 9.2. X = C2, Ty = (C*)*. Then the action is (s, t)(x,y) = (sz, ty).

X = P[z’y)z}, Tn = (C*)? consisting of points xyz # 0. The action is [t; : to : t3][z 1 y : 2] = [tz : tay : t32]
where t1tot3 # 0. We look at orbits not, consider [t; :to : ¢3][1:0:0]=[¢t1:0:0=[1:0:0],80[1:0:0],[0:1:0]
and [0 : 0 : 1] are fixed points. The orbit of [z :y:0]is[1:a:0],0f [x:0:y]it’s [1:0: a] and for [0 : = : y] it’s
[0:1:a]for a#0. Asfor [z:y: 2] itis [a:b: c] where abc # 0 (under the assumption that zyz # 0).

We have a correspondence between the orbit and the cones of a picture. Let V(o) denote the orbit corresponding
to o, X(k) the set of k dimensional cone.

Let X be a n-dimensional variety. Recall that the Chow ring of X is A*(X) = ®}_,A4%(X) where A*(X) =
Z¥(X)/ ~. Recall that for smooth variety we had a product A*(X) x A¥(X) — AkH(X) which agreed with
intersection of transversal objects.

Let X5 be a complete smooth Toric variety.

Fact. [V (0)] for o of dimension k generates A*(Xy).

Example. For A'(Xy) = Pic(Xx) = {T — invdivisors}/{T—inv principal divisors} = Z=WI/ (div(X™);m € Z"),
where div(X™) = > (m,uy) Dy, m € Z", where uy, is the “generator” of the rays in X(1).

Example 9.3. Pic(P?) = Z3/ (D1 — D3, Dy» — D3) 2 7 (since m; = (1,0), ma = (0,1))
Pic(BI(P?)) = Z*/ (D1 — Do — D3, Dy — D3) = Z°.

We know that:

.Dal...Dak:{V(U) o—:<0'1,...,0'k>'

0 else
o 3, (mouy) Dy =0
So being given a fan of a Toric variety, we can construct the following ring:
e With each p; € ¥(1) associate a variable x; and let Z[z1,..., 2] where k = |2(1)| be a polynomial ring.
o Let I C Z[zy,...,xx) be the ideal generated by the monomials x;,, ..., x;;such that (p;,,...,p;,) ¢ =.

o Let J C Z[z1,...,xx] be generated by the linear forms >° (m, u,) Dy, m € Z", n = dim V.
Then R(X) := Z[z1,...,x;]/(I + J) is generated by the monomials z,,,...,x,, where all p}s are distinct.
Theorem 9.4. If X5 is complete and smooth then R(X) =2 A*(Xy)

Proof. See Fulton, Introduction to Toric varieties O
By the construction and from the definition of rational equivalence, we can see that if (p1,...,p;) € E(k), if
we assign the monomial z,,,...,z, to the cycle [V ({p1,...,p))], then we have a surjection R(X) — A*(Xx).

X,, = [D,,] this gives an isomorphism.

Example. A*(BI(P?)) & Z[xo,x1,22,23)/(I + J), I = (woz1,x0m3), J (¥1 — 0 — 73,72 — x3). So A*(BI(P?)) =
Zlzy, wo]/ (21 — w2)21, 23).

o A°(X) =7 5o rk(A9(X)) = 1
o AL(X) = Pic(X) = (x1,22) so tk(A%(X)) =2
) =

o A%(X) = (2%, m122,23) = (27) (from the relations) so rk(A4?(X)) =1
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o A"(X) =0 for n > 2 since the relations cancel everything down.
From this we can get that DZ = —1 as follows: Note that Dy - Do = 1-V ({p1, p2)).
zy = (21— x2)’
= 2 - 2xy1y + 22
= T1T2 —21’1.’E2+0

= —1'1‘1{E2

We expect that D3 = D2 = 0, which we do since, 23 = 0 = 0 2129, 23 = 25 = 0. So let us calculate D7, we have
that 22 = 1- 2119, so D? = 1.
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