# Intersection Theory

# 1 Introduction (Simon Hampe)

## 1.1 Some motivational examples: What should intersection theory be?

**Example.** What is the "intersection" of  $C := \{y = x^3\}$  and  $l = \{y = 0\}$ ?

Naive answer: The point (0,0).

Problem: It's not "continuous". Replace  $l_t = \{y = t\}$ , then  $l_t \cap C = 2$  points. This should somehow be reflected in the "limit"  $t \to 0$ .

Algebraic approach: Intersection scheme:  $X = \operatorname{Spec} K[x, y] / \langle y - x^2, y \rangle = \operatorname{Spec} K[x] / \langle x^2 \rangle$ ,  $\dim_K = \mathcal{O}_{X,(0,0)} = 2$ . So we get somewhat more informal answer, twice the point (0, 0).

**Example.** What is the intersection of a line L in  $\mathbb{P}^2$  with itself? Naive: LBetter answer: The equivalence class (?) of a point in  $\mathbb{P}^2$ .

#### **Example.** Numerative geometry

Question: How many lines in  $\mathbb{P}^3$  intersect four general lines? (Why four? and why General? should not depend on the choice of lines)

Usual approach: via moduli spaces.

- 1. Find a suitable parameter space M for the objects we want to count. (Here: lines in  $\mathbb{P}^3 \cong G(1,\mathbb{P}^3) = G(2,4)$ )
- 2. Find subscheme (or equivalence classes thereof) that correspond to object fulfilling certain geometric conditions. (Here:  $[Z] \cong$  lines meeting a given line)
- 3. Compute the "intersection product" of these classes. In particular, the product should be 0-dimensional, if we want a finite answer. (Here: dim M = 4, dim Z = 3 therefore  $[Z]^4$  is 0-dimensional and deg $[Z]^4 = 2$ )

Insight: We need some equivalence

**Definition 1.1.**  $Z(\lambda)$  =free abelian group on subvarieties on  $X = \bigoplus Z_k(X)$  (where  $Z_K$  is k-dimensional). We say  $A \sim B$  if and only if there exists a subvariety  $X \subseteq \mathbb{P}^1 \times X$  such that A is the fibre over 0 and B is the fibre over 1.  $A(X) = Z(X)/\sim$  is the Chow group of X.

**Theorem 1.2** (Hartshorne, pg 427). There is a unique intersection theory on the Chow groups of smooth (quasiprojective) varieties over  $k \ (=\overline{k})$  fulfilling:

1. It makes A(X) into a commutative ring with 1, graded by codimension

- 2. ÷
- *3.* :

*...* 

4. i

- 5. ÷
- 6. If Y, Z intersect properly, then  $Y \cdot Z = \sum m_j w_j$  where  $w_j$  are components of  $Y \cap Z$ ,  $m_j$  depends only on a neighbourhood of  $w_j$ .

## 1.2 An approach we will not take: Chow's moving lemma

#### Definition 1.3.

- 1. Two subvarieties A, B of C are dimensionally transverse, if  $A \cap B$  only have components of  $\operatorname{codim} A + \operatorname{codim} B$
- 2. A and B are transverse at p, if X, A, B are smooth at p and  $T_pA + T_pB = T_pX$
- 3. A and B are generically transverse, if every components of  $A \cap B$  contains a point p, at which A, B are transverse.

**Theorem 1.4** (Strong Chow's Moving Lemma [Chevakey '58, Roberts '70, Eischenbud-Harris, Chapter 5.2]). Let X be smooth, quasi-projective over  $k = \overline{k}$ .

- 1. If  $\alpha \in A(X)$ ,  $B \in Z(X)$ , there exists  $A \in Z(x)$  such that  $[A] = \alpha$  and A, B are generically transverse.
- 2. If  $A, B \in Z(X)$  are generically transverse, then  $[A \cap B]$  depends only on [A] and [B].

**Corollary 1.5.** For X smooth, quasi-projvective, we can define the intersection product on A(X) by  $\alpha \cdot \beta = [A \cap B]$ , where  $[A] = \alpha$ ,  $[B] = \beta$  and A, B are generically transverse.

Remark. This is not generalisable! Not really constructive.

#### Intersection multiplicity

If A, B are only dimensionally transverse, can we write  $[A] \cdot [B] = \sum m_i [C_i]$  where  $C_i$  are components of  $A \cap B$  and  $m_i$  to be determined?

Easy case: Plane curves. If F, G are plane curves in  $\mathbb{A}^2, p \in \mathbb{A}^2$ ,

$$i(p:F \cdot G) = \dim_K \mathcal{O}_{F \cap G, p} = \begin{cases} 0 & \text{if } p \neq F \cap G \\ \infty & \text{if } F, G \text{ have a common component through } p \\ \text{finite} & \text{otherwise} \end{cases}$$

This works!

Generalisation 1: Module length. If M is a finitely generated A-module, then there exists a chain  $M = M_0 \supseteq \cdots \supseteq M_r = 0$  such that  $M_{i-1}/M_i = A/P_i$  where  $P_i$  is prime. If all  $P_i$  are maximal, then r is independent of our choice and we call the length of  $M l_A(M) := r$ .

**Lemma 1.6.** If A, B are Cohen-Macauly and dimensionally transverse, Z a component of  $A \cap B$ , then  $i(Z, A \cdot B) = l_{\mathcal{O}_{A \cap B, Z}}(\mathcal{O}_{A \cap B, Z})$ 

Generalisation 2: Serre's multiplicity formula.

**Theorem 1.7** (Serre '57). On a smooth variety X, the multiplicity of a component Z of a dimensionally transverse intersection  $A \cap B$  is

$$\sum_{i=0}^{\dim X} (-1)^{i} \operatorname{length}_{\mathcal{O}_{A \cap B, Z}} \left( \operatorname{Tor}_{i}^{\mathcal{O}_{X, Z}}(\mathcal{O}_{A, Z}, \mathcal{O}_{B, Z}) \right)$$

#### **1.3** Our approach: Following Fulton's book

#### The standard construction

Given the fibre square



where f is any morphism, i is closed, regular embedding.

 $X \cdot V = S^*([C])$  where  $S \cdot W \to g^* N_X Y =: N$  is the zero section,  $C = C_W V$  embedded in N ( $N_X$  is the normal bundle,  $C_W$  the normal cone)

**Example.** Let  $\mathcal{X}$  be smooth, then  $X = \mathcal{X}$ ,  $T = X \times X$ ,  $i = \delta : x \mapsto (x, x)$  regular. For A, B subvareties, set  $V = A \times B$ , f the inclusion then  $W = A \cap B$  and  $[A] \cdot [B] = X \cdot V$ 

**Example.** Let  $H_1, \ldots, H_d$  be effective Cartier divisors on some variety  $\mathcal{X}$ , let  $\mathcal{V} \subseteq \mathcal{X}$  be a subvariety. Let  $X = H_1 \times \cdots \times H_d, Y = \mathcal{X} \times \cdots \times \mathcal{X}$ , *i* be the product embedding and  $V = \mathcal{V}$ . Then  $W = H_1 \cap \cdots \cap H_d \cap V$  and  $X \cdot V$  is a class of this.

**Fact.** Can write this in terms of Chern and Segre classes. Then  $X \cdot V = \{c(N) \cap s(W, V)\}_{\text{expeted dimension}}$ .

## 2 Divisors and Rational Equivalence (Paulo)

## 2.1 Length of a module

Let R be a commutative ring, M a module. Consider chains  $M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_m = (0)$ .

**Definition 2.1.** We say the *length*  $l_R(M)$  = maximal among all length of such chains.

**Fact** (EIS,Thm 2.15).  $M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_m = (0)$ , then  $l_R(M) = m$  if and only if  $M_i/M_{i+1}$  is simple for all *i*.

**Example.** Let R = K a field, M = V a vector space. Let  $\{e_1, \ldots, e_n\}$  be a basis of V. Then we have the chain  $M_0 = V \supseteq \langle e_1, \ldots, e_{n-1} \rangle \supseteq \cdots \supseteq \langle e_1 \rangle \supseteq (0)$ . Hence  $l_K(V) = \dim_K(V)$ .

**Example.** Let  $R = \mathbb{Z}$  and  $M = \mathbb{Z}$ , we show that  $l_{\mathbb{Z}}(\mathbb{Z}) = \infty$  as  $\mathbb{Z} \supseteq 2\mathbb{Z} \supseteq 2 \cdot 13\mathbb{Z} \supseteq \ldots$ 

**Example.** Let  $R = \mathbb{Z}$  and  $M = \mathbb{Z}/m\mathbb{Z}$  where  $m = p_1 \cdots p_r$ , then  $l_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}) = r$ .

Let X be a scheme of pure dimension n. Let  $V \subseteq X$  be a subvariety. Let  $f \in R(X)^*$ . We want to define  $\operatorname{ord}(f, V)$ . To do this, let f = a/b where  $a, b \in \mathcal{O}_X$ . Then

$$\operatorname{ord}(f, V) = l_{\mathcal{O}_{V,X}}(\mathcal{O}_{V,X}/(a)) - l_{\mathcal{O}_{V,X}}(\mathcal{O}_{V,Z}/(b))$$

Where by  $O_{V,X}$  we mean the localisation of  $\mathcal{O}_X$  at I(V), i.e., let S be the complement of I(V), then  $\mathcal{O}_{V,X} = \mathcal{O}_X S^{-1}$ .

**Example.** Consider  $\mathbb{C}^2_{(x,y)}$ , let  $V = \{x = 0\}$ ,  $f = (x)^2$ . Then  $\operatorname{ord}(f, V) = l_{\mathcal{O}_{V,X}}(\mathcal{O}_{V,X}/(x)^2) = 2$  as  $\mathcal{O}_{V,X}/(x)^2 \supseteq \mathcal{O}_{V,X}/(x) \supseteq (0)$ . (For this example,  $\mathcal{O}_X = \mathbb{C}[x, y]$  and  $S = \mathbb{C}[x, y] \setminus (x)$ , so  $\mathcal{O}_{V,X} = \mathbb{C}[x, y]S^{-1} \ni \{f/g | x \nmid g\}$ )

#### 2.2 Divisors

Let X be a variety over K of dimension n. Let  $Z_{n-1} = \{\sum_{\text{finite}} a_i[V_i] | a_i \in \mathbb{Z}, V_i \text{ subvariety of } X \text{ of } \dim = n-1\}$ . We call an element  $D \in Z_{n-1}$  a Weil Divisor and an element  $[V_i]$  a prime divisor.

**Definition 2.2.** Let  $f \in R(X)$ , we define a divisor associated to f as  $\operatorname{div}(f) = \sum_{V} \operatorname{ord}(f, V)[V]$ . We call then *principal divisors*.

**Definition 2.3.** The class group of X is  $Cl(C) = Z_{n-1}/principal divisors.$ 

**Definition 2.4.** Let  $D \in Z_{n-1}$  is effective if  $a_i \ge 0$  for all i.

**Definition 2.5.** A Cartier Divisor is a collection  $\{(U_i, f_i)\}_{i \in I}$  such that:

- $\{U_i\}$  is an open cover of X
- $f_i \in R(U_i)$
- For all  $i, j, f_i/f_j \in \mathcal{O}^*(U_i \cap U_j)$ .

Let  $D\{(U_i, f_i)\}$ , we can associate to it a Weil divisor:  $[D] = \sum \operatorname{ord}(D, V)[V]$  where  $\operatorname{ord}(D, V) = \operatorname{ord}(f_i, V)$  for any *i* such that  $U_i \cap V \neq \emptyset$ .

We can also associate to it a line bundle:  $\mathcal{O}(D)$  with transition data  $\{(U_i, f_i)\}$  (so a section of it is a collection  $r = \{r_i\}$  where  $r_i \in \mathcal{O}(U_i)$  and  $r_i = f_i/f_jr_j$ )

 $\operatorname{Pic}(X) := \operatorname{Cartier} \operatorname{Div}/\operatorname{Principal} \operatorname{Div} \cong \operatorname{Line} \operatorname{Bundle}/\operatorname{Isom}.$ 

Let X be a scheme over K of dimension n. Define  $Z_k = \{\sum a_i[V_i] | V_i \subseteq X \text{ subvariety of dimension } k\}$ . We call  $C \in Z_k$  a k-cycle.

**Example.** Let Y be a scheme of pure dimension  $m, Y_1, \ldots, Y_l$  its irreducible components. We have  $Z_m(Y) \ni [Y] = \sum m_i[Y_i]$  where  $m_i = l_{\mathcal{O}_{Y_i,Y}}(\mathcal{O}_{Y_i,Y})$ . If  $Y \subseteq X$  subscheme then  $[Y] \in Z_m(X)$ .

## 2.3 Rational equivalence

We want to consider  $A_k := Z_k / \sim$  (where  $\sim$  is to be determined), which we will call this the *Chow group*. There are two equivalent way to define the equivalence

1. Let  $W \subseteq X$  be a subvariety of dimension k + 1,  $r \in R(W)$ . Then  $0 \sim \operatorname{div}(r) = \sum \operatorname{ord}(r, V)[V] \in Z_k(W)$  but we can also think of  $\operatorname{div}(r) \in Z_k(X)$ 

**Definition 2.6.**  $D_1, D_2 \in Z_k(X)$  are equivalent,  $D_1 \sim D_2$ , if  $D_1 - D_2 = \sum \operatorname{div}(r_i)$  for some  $r_i \in R(W_i)$ .

2. Consider



Let  $Y \subseteq X \times \mathbb{P}^1$  variety of dimension k+1,  $f = q|_Y$  is dominant.  $p_*[f^{-1}(0)] - p_*[f^{-1}(\infty)] \sim 0$ 

To see why they are equivalent see [Ful,Prop 1.6] *Remark.* 

- 1.  $Z_k(X) \cong Z_k(X_{\text{red}})$
- 2. If k = m, then  $A_m(X) = Z_m(X)$

## 2.4 Pushforward

Let  $f: X \to Y$  be a proper morphism. Let  $V \subseteq X$  be a subvariety, this gives f(V) = W a variety in Y. We can define  $f_*: Z_k X \to Z_k Y$  by  $[V] \mapsto \begin{cases} 0 & \dim W < \dim V \\ \deg(V, W) \cdot [W] & \text{otherwise} \end{cases}$  (where  $\deg(V, W) := [R(V) : R(W)]$ .

**Theorem 2.7** (Ful, Thm 1.4). If  $\alpha \sim 0$  then  $f_*\alpha \sim 0$ , hence we have well defined  $f_*: A_k(X) \to A_k(Y)$ .

## 2.5 Pullback

Let  $f: X \to Y$  be a flat morphism of relative dimension m. (Relative dimension means: if  $V \subseteq Y$  a subvariety, then  $f^{-1}(V)$  has every component of dimension  $m + \dim(V)$ )

We can to define  $f^*[V] = [f^{-1}(V)]$ . This extend by linearity to a map  $f^*: Z_k(Y) \to Z_{k+m}(X)$ .

**Theorem 2.8** (Ful, Thm 1.7). If  $\alpha \sim 0$  then  $f^*\alpha \sim 0$ , hence we have well defined  $f^* : A_k(Y) \to A_{k+m}(X)$ .

#### Example.

- 1. Consider the open embedding  $i: Y \hookrightarrow X$ . Then  $i^*$  is just the restriction map, that is  $[V] \mapsto [V \cap Y]$ .
- 2. Let Z be a scheme of pure dimension m, consider  $f: X \times Z \to X$ . Then  $f^*$  is defined by  $[V] \mapsto [V \times Z]$ .
- 3. Consider  $p: E \to X$  an affine (projective) bundle, then we still have  $p^*$ .

**Proposition 2.9.** If  $p: E \to X$  is an affine bundle,  $p^*: A_k X \to A_{k+m} E$  is surjective.

### 2.6 Intersection with divisors

Consider  $\alpha \in Z_k(X)$  and let D be a Cartier divisor on X. Then we want to define  $D \cdot \alpha \in A_{k-1}(V)$ . By linearity, we can assume  $\alpha = [V]$ . Two cases:

- 1.  $V \not\subseteq \text{supp}(D)$ . Then D intersects with V, let  $D = \sum a_i[W_i]$ , then  $D \cdot V = \sum a_i[W_i \cap V]$ .
- 2.  $V \subseteq \operatorname{supp}(D)$ . We can not simply intersect. Let  $i : V \hookrightarrow X$ . From D consider the line bundle  $\mathcal{O}(D)$ . Consider the line bundle on V,  $i^*\mathcal{O}(D)$ . There is a Cartier divisors C on V such that  $i^*\mathcal{O}(D) \cong \mathcal{O}(C)$ . Then  $[C] = V \cdot D \in A_{k-1}(V)$ .

## 3 Chern Classes (Ian Vincent)

## 3.1 Motivation

(Following Eisenbud)

Let  $\pi: E \to X$  of rank *n* be a vector bundle and there exists sections  $s_1, \ldots, s_n$  of  $\pi$  such that for every  $p \in X$ ,  $s_1(p), \ldots, s_n(p)$  are linearly independent (in each fibre). Make some changes of coordinates so that  $s_1(p), \ldots, s_n(p)$  is a basis for each fibre.

Idea: If we have enough global sections finding their forced linear dependence measures the non-triviality (twisting) of  $\pi: E \to X$ .

#### 3.2 Chern classes of line bundles

Let L be a line bundle over a scheme X. We define a function  $c_1(L) \cap - : A_k(X) \to A_{k-1}(X)$  in the following way. If  $[V] \in A_k(X)$  then choose a Cartier divisor C on V such that  $L|_V \cong \mathcal{O}_V(C)$  then  $c_1(L) \cap [V] := [C]$ . We extend linearly to get a homomorphism  $A_k(X) \to A_{k-1}(X)$ 

*Remark.* This is well defined. If  $L = \mathcal{O}_X(D)$  then if  $\alpha = [V]$  we have  $c_1(L) \cap [V] = D \cdot \alpha$  as defined last time.

**Properties** (Fulton Prop 3.1)

- 1. Commutativity: Let L, L' be line bundles on X then  $c_1(L) \cap (c_1(L') \cap \alpha) = c_1(L') \cap (c_1(L) \cap \alpha) \in A_{k-2}(X)$
- 2. <u>Projection formula</u>: Let  $f: X' \to X$  be a proper morphism, L a line bundle on X and  $\alpha \in A_k(X')$ . Then  $\overline{f_*(c_1(f^*L) \cap \alpha) = c_1(L) \cap f_*(\alpha)}$
- 3. <u>Pullback</u>: Let  $f: X' \to X$  be a flat morphism of relative dimension n, L a line bundle on X and  $\alpha \in A_k(X)$ . Then  $c_1(f^*L) \cap f^*\alpha = f^*(c_1(L) \cap \alpha)$

4. <u>Additivity</u>: Let L, L' be line bundles on  $X, \alpha \in A_n(X)$  then  $c_1(L \otimes L') \cap \alpha = c_1(L) \cap \alpha + c_1(L') \cap \alpha$ . In particular,  $c_1(L^{-1}) \cap \alpha = -c_1(L) \cap \alpha$ .

**Example.** Consider  $X = \mathbb{P}^n$  and let  $L^k$  be a linear subspace of  $\mathbb{P}^n$  with dimension k. Then  $\mathcal{O}_{\mathbb{P}^n}(1) \leftrightarrow H$  hyperplane section of  $\mathbb{P}^n$ . Then  $c_1(\mathcal{O}_{\mathbb{P}}(1)) \cap [L^k] = [L^{k-1}]$ . More generally, if  $X \subseteq \mathbb{P}^n$  is a subvariety, then  $c_1(\mathcal{O}_{\mathbb{P}}(1)) \cap [X] = [X \cap H]$ .

#### **3.3** Segre classes

Let  $\pi: E \to X$  be a vector bundle of rank e + 1 on X. Let P = P(E) (turn E into projective space),  $\mathcal{O}_P(1)$  is the "canonical line bundle on P". Define homomorphism  $s_i: A_k(X) \to A_{k-i}(X)$  by  $s_i(E) \cap \alpha = \pi_*(c_1(\mathcal{O}_p(1))^{e+1} \cap \pi^*\alpha)$  where  $\pi^*$  is a flat pullback from  $A_n(X) \to A_{k+e}(P)$ . The product  $c_1(\mathcal{O}_P(1))^{e+i}$  is just composition. This is called the *i*th Segre class.

**Properties** (Fulton 3.1)

- 1. Similarly we have commutativity
- 2. Projection
- 3. Pullback
- 4. For  $\alpha \in A_k(X)$ ,  $s_i(E) \cap \alpha$  if i < 0 and  $s_0(E) \cap \alpha = \alpha$ .

#### 3.4 General Chern class

Let  $\pi: E \to X$  be a vector bundle of rank n = e + 1. We define  $s_t(E) = 1 + s_1(E)t + s_2(E)t^2 + \dots$  Then the Chern class  $c_t(E)$  is the coefficient of the inverse power series, i.e.,  $c_t(E) = \sum c_i(E)t^i = s_t(E)^{-1}$ .

Explicitly,  $c_0(E) = 1$  (i.e.,  $c_0(E) \cap \alpha = \alpha$ ),  $c_1(t) = -s_1(E)$ . In general we have

$$c_{i}(E) = (-1)^{i} \det \begin{pmatrix} s_{1}(E) & 1 & 0 & \dots & \dots & 0 \\ s_{2}(E) & s_{1}(E) & 1 & 0 & & 0 \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & 0 \\ \vdots & & & & \ddots & 0 \\ \vdots & & & & \ddots & 1 \\ s_{i}(t) & \dots & \dots & & s_{2}(E) & s_{1}(E) \end{pmatrix}$$

Remember  $s_i(E)$  are endomorphism of  $A_*(X)$  hence products here means compositions of functions.

**Definition 3.1.** The total Chern class is  $c(E) = 1 + c_1(E) + \cdots + c_{e+1}(E)$ 

**Properties** (Fulton, Thm 3.2)

- 1. Commutativity
- 2. Projection
- 3. Pullback
- 4. Vanishing:  $c_i(E) = 0$  for  $i > \operatorname{rk} E$
- 5. Whitney sum: For any short exact sequences of Vector bundle on X:  $0 \to E' \to E \to E'' \to 0$ , then  $c_t(E) = c_t(E')c_t(E'')$ .

An important ingredients for this proof is the splitting construction: Let S be a finite collection of vector bundles on X. There is a scheme X and a flat morphism  $f: X' \to X$  such that  $f^*A_*X \to A_*X'$  is injective and furthermore for each vector bundle  $E \in S$ , fE has a filtration of subbundles  $E = E_r > \cdots > E_0 = 0$  such that  $E_i/E_{i+1} = L_i$  a line bundle. Then  $c_t(t) = \prod (1 + c_1(L_i)t)$ .

#### 3.5 Examples

- Consider  $T_{\mathbb{P}^n}$  (the tangent bundles of  $\mathbb{P}^n$ ), we have an exact sequence  $0 \to \mathcal{O}_{\mathbb{P}^n} \to \mathcal{O}_{\mathbb{P}^{n-1}}(1)^{\oplus (n+1)} \to T_{\mathbb{P}^n} \to 0$ (which is the dual of  $0 \to \Omega_{\mathbb{P}^n} \to \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus (n+1)} \to \mathcal{O}_{\mathbb{P}^n} \to 0$ ). If  $H = c_1(\mathcal{O}_{\mathbb{P}^n}(1))$ , by the splitting principle then  $c_t(\mathcal{O}_{\mathbb{P}^n}(1)^{\oplus (n+1)}) = (1 + Ht)^{n+1}$ . Now  $\mathcal{O}_{\mathbb{P}^n}$  is a trivial bundle on  $\mathbb{P}^n$  so by Whitney formula  $c_t(T_{\mathbb{P}^n}) =$  $(1 + \mathrm{id} t)^{n+1}$
- Let  $X \subseteq \mathbb{P}^n$  be a smooth hypersurface in  $\mathbb{P}^n$  of degree d. Let  $i: X \hookrightarrow \mathbb{P}^n$  be a closed embedding. Then we have the sequence  $0 \to T_X \to i^* T_{\mathbb{P}^n} \to \mathcal{N} \to 0$ . We have  $c_t(i^* T_{\mathbb{P}^n})$  is the restriction of  $(1 + Ht)^{n+1}$  to X. Now  $c_1(\mathcal{N}) = c_1(i^* \mathcal{O}_{\mathbb{P}^n}(X)) = c_1(i^* \mathcal{O}_{\mathbb{P}}(d)) = dH$  by surjectivity of Chern classes of line bundles. So by Whitney formula,  $c_t(T_X) = \frac{(1+Ht)^{n+1}}{(1+dHt)}$ .

**Theorem 3.2** (Fulton Thm 3.3). Let  $\pi : E \to X$  be a vector bundle of rank r. The flat pullback  $\pi^r : A_{k-r}(X) \to A_k(P(E))$  is an isomorphism for every  $k \ge r$ . In particular, each element  $\beta \in A_k(P(E))$  is uniquely expressible in the form  $\beta = \sum_{i=1}^r c_1(\mathcal{O}_{P(E)}(1))^i \cap \pi^r \alpha_i$  for some  $\alpha_i \in A_{k-r+i}(X)$ 

## 4 Segre Classes (Tom Ducat)

In the previous section we learned about Segre and Chern classes for line bundles.

Notation.  $h_X = c_1(\mathcal{O}_X(1)).$ 

Brief recap of last section: Let  $\pi : E \to X$  be a vector bundle over a scheme X of rank e + 1, consider  $\mathbb{P}(E)$ ,  $\mathcal{O}_{\mathbb{P}(E)}(1)$  then the Segre class  $s_i(E)$  is given by the formula:  $A_k X \to A_{k-i} X$  defined by  $\alpha \mapsto \alpha \cap s_i(E) = \pi_*(h_{\mathbb{P}(E)}^{i+e} \cap \pi^* \alpha)$ . The Chern classes  $c_i(E)$  are defined by  $\sum_{i\geq 0} c_i(E)t^i = \left(\sum_{i\geq 0} s_i(E)t^i\right)^{-1}$ 

In this section, we want to generalised Chern classes to more general objects than vector bundles.

#### 4.1 Cones

Consider  $\mathcal{F}^{\bullet} = \bigoplus_{i \geq 0} \mathcal{F}^i$  to be a graded sheaf of  $\mathcal{O}_X$ -algebras over a scheme X. (Caveats:  $\mathcal{O}_X \twoheadrightarrow \mathcal{F}_0$  surjective,  $\mathcal{F}_1$  coherent and generate  $\mathcal{F}^{\bullet}$ ). Then the *cone* of X is  $C = \operatorname{Spec} \mathcal{F}^{\bullet} \xrightarrow{\pi} X$ . There are two ways of getting a projective cone over X:

- 1. Projectivised cone  $\mathbb{P}(C)$ .  $\mathbb{P}(C) = \operatorname{Proj}_X \mathcal{F}^{\bullet}$ .
- 2. Projective closure  $\overline{C}$ .  $\overline{C} = \operatorname{Proj}(\bigoplus_{0 \le i \le d} \mathcal{F}^i z^{d-i}) \xrightarrow{\overline{\pi}} X$

*Remark.*  $C \subseteq \overline{C}$  is a dense affine open subset and  $\overline{C} \setminus C \cong \mathbb{P}(C)$ .

The hyperplane section  $h_{\overline{C}} \cap [\overline{C}] = [\mathbb{P}(C)].$ 

For an arbitrary coherent sheaf  $\mathcal{F}$  we can do this construction using  $\operatorname{Sym}\mathcal{F} = \bigoplus_{i\geq 0}\mathcal{F}^{\otimes i}/\operatorname{sym}$  perm.

**Definition 4.1.** The Segre class s(C) is defined to be  $s(C) = \overline{\pi}_*(\sum_{i>0} h_{\overline{C}}^i \cap [\overline{C}]) \in A_*X$ .

#### Proposition 4.2.

1. If E is a vector bundle over X then  $s(E) = c(E)^{-1} \cap [X]$  (where  $c(E) = 1 + c_1(E) + \cdots + c_r(E)$  the total Chern class as defined in the previous section)

2. If C has irreducible components  $c_1, \ldots, c_k$  with geometric multiplicities  $m_1, \ldots, m_k$  then  $s(C) = \sum_i m_i s(C_i)$ . Proof.

- 1 100j.
  - 1. The only issue that needs to be checked is  $\overline{E} = \operatorname{ProjSym}(E \oplus \mathcal{O}_X)$ . Now the short exact sequence  $0 \to \mathcal{O}_X \to \overline{E} \to E \to 0$  gives rise to  $c(\overline{E}) = c(E)c(\mathcal{O}_X) = c(E)$

2. This follows from  $\left[\overline{C}\right] = \sum m_i \left[\overline{C}_i\right]$ 

*Remark.* If we have a short exact sequence  $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{E} \to 0$  where  $\mathcal{E}$  is locally free, then  $s(\mathcal{F}) = s(\mathcal{G}) \cap c(E)$ .

## 4.2 Normal Cones

Take a closed subscheme  $X \subset Y$  with ideal sheaf  $\mathcal{I} = \mathcal{I}_{X/Y}$ . The normal cone of X in Y is  $C_X Y := \text{Spec} \oplus_{n \geq 0} \mathcal{I}^n / \mathcal{I}^{n+1}$ . The Segre class of X in Y is  $s(X,Y) := s(C_X Y) \in A_* X$ .

Recall: The blow-up of X in Y is  $\operatorname{Bl}_X Y := \operatorname{Proj}_Y \oplus_{n \ge 0} \mathcal{I}^n \xrightarrow{\sigma} Y$  and  $E = \sigma^{-1}(X)$  the exceptional divisor, has ideal sheaf  $\mathcal{O}(1)$ .  $E = \operatorname{Proj}(\oplus \mathcal{I}^n \otimes_{\mathcal{O}_Y} \mathcal{O}_X) = \operatorname{Proj}(\oplus \mathcal{I}^n / \mathcal{I}^{n+1}) = \mathbb{P}(C_X Y)$ .

Trick:  $X \subset Y$ , consider  $\mathbb{A}^1 \times Y \supset \{0\} \times X$ , define  $M_X Y := \operatorname{Bl}_{X \times \{0\}} Y \times \mathbb{A}^1 \to Y$ . The exceptional divisor is isomorphic to  $\overline{C_X Y}$ .

**Example.**  $X \subset Y$  is embedded regularly, i.e., the normal cone is a vector bundle then  $s(X,Y) = c(C_XY)^{-1} \cap [X]$ .

**Lemma 4.3.** Let  $X \subset Y$ , Y pure dimensional with irreducible components  $Y_1, \ldots, Y_k$  and multiplicities  $m_1, \ldots, m_k$ then  $s(X, Y) = \sum m_i s(X_i, Y_i)$  where  $X_i = X \cap Y_i$ .

Proof. Consider  $M_X Y$  has irreducible components  $M_{X_i} Y_i$ ,  $[M_X Y] = \sum m_i [M_{X_i} Y_i] \in A_* M_X Y$ . So we get  $[\overline{C_X Y}] = \sum m_i [\overline{C_{X_i} Y_i}]$ .

**Proposition 4.4.** If  $f: Y' \to Y$  is a morphism of pure dimensional schemes,  $X' \subset Y'$ ,  $X \subset Y$  are closed subschemes such that  $X' = f^{-1}(X)$  is the scheme theoretic pull-back. Then

- 1. Push-forward: If f is proper, Y irreducible, each components of Y' maps onto Y then  $f_*S(X',Y') = \deg(Y'/Y)s(X,Y) \in A_*X$ .
- 2. Pull-back: If f is flat then  $f^*s(X,Y) = s(X',Y') \in A_*X'$

Note that  $\deg(Y'/Y) = \sum m_i \deg(Y'_i/Y)$ 

Proof.

1. Reduce to Y' irreducible,

$$\begin{array}{c} X' \xrightarrow{\subset} Y' \xrightarrow{f} Y < \stackrel{\supset}{\longrightarrow} X \\ \uparrow & \uparrow & \uparrow & \uparrow \\ \pi' & M_{X'}Y' \xrightarrow{>} M_XY & \pi \\ C_{X'}Y' \xrightarrow{} C_XY = C \end{array}$$

2.

$$\begin{aligned} f^*s(X,Y) &= f^*\pi_*(\sum_{i\geq 0} h^i_{\overline{C}} \cap [C]) \\ &= \pi'_*\overline{f}^*(\sum_{i\geq 0} h^i_{\overline{C}} \cap [\overline{C}]) \\ &= \pi'_*(\sum_{i\geq 0} h^i_{\overline{C}} \cap [\overline{C}]) \\ &= s(X',Y') \end{aligned}$$

**Corollary 4.5.** Consider  $\sigma: \widetilde{Y}: \operatorname{Bl}_X Y \to Y$  with exceptional divisor E then  $s(X,Y) = \sum_{i \ge 1} (-1)^{i-1} \sigma_*(E^i)$ .

**Example.** Let Y be a surface, and let A, B, D be effective Cartier Divisors. Let A, B intersect transversely at smooth points  $p \in Y$ . Let X be the scheme theoretic intersection  $(A+D) \cap (B+D)$ . Then  $s(X,Y) = [D] - [D^2] + [p]$ . To see this, let  $\sigma : \tilde{Y} = Bl_p Y \to Y$ ,  $\tilde{X} = \sigma^* D + E$  (where E is the exceptional divisor). Then

$$\begin{split} S(X,Y) &= \sigma_* s(\tilde{X},\tilde{Y}) \\ &= \sigma_* ((1-\tilde{X})[\tilde{X}]) \\ &= \sigma_* \tilde{X} - \sigma_* (\sigma^* D^2 + 2\sigma^* DE + E^2) \\ &= [D] - [D^2] + [p] \end{split}$$

## 5 The basic construction (Simon)

## 5.1 The basic construction

The basic set up is the following: A fibre square is

$$\begin{array}{c|c} W \stackrel{j}{\succ} V \\ g \\ \downarrow & \downarrow f \\ X \stackrel{(i)}{\leftarrow} Y \end{array}$$

where

- $i: X \hookrightarrow Y$  is a regular embedding of dimension d
- V is purely k-dimensional,  $f: V \to Y$  morphism
- $W = f^{-1}(X)$  is the inverse image scheme

Some preliminary definitions and facts:

•  $N := g^* N_X Y$  a bundle of W (Recall  $N_X Y = C_X Y = \operatorname{Spec}(\bigoplus_{n \ge 0} \mathcal{I}^n / \mathcal{I}^{n+1}$  where  $\mathcal{I}$  is the ideal sheaf of X in Y), with  $\pi : N \to W$  the projection and  $s : W \to N$  the zero section

**Fact 5.1.** Recall that  $\pi^* : A_{k-d}(W) \to A_k(N)$  is an isomorphism. We define  $s^* = (\pi^*)^{-1} : A_k(N) \to A_{k-d}(W)$ 

•  $C = C_W V$  the normal cone

**Fact 5.2.** If  $\mathcal{I}$  is the ideal sheaf of X in Y,  $\mathcal{J}$  the ideal sheaf of W in V, then there is a surjective morphism  $\bigoplus_n f^*(\mathcal{I}^n/\mathcal{I}^{n+1}) \to \bigoplus_n \mathcal{J}^n/\mathcal{J}^{n+1}$ . This gives a closed embedding  $C \hookrightarrow N$ 

So we now have



 $\begin{array}{c} -1 \mathbf{v} \\ \begin{pmatrix} \pi \\ \psi \end{pmatrix} s \\ W \geqslant V \\ g \\ \psi \\ \end{pmatrix} j \\ \downarrow j$ 

**Definition 5.4.** The intersection product of V by X in Y is  $X \cdot V = X \cdot_Y C := s^*[C] \in A_{k-d}(W)$  (i.e., the unique class [Z] such that  $\pi^*[Z] = [C]$ )

#### Proposition 5.5.

- 1.  $X \cdot V = \{c(N) \cap s(W, V)\}_{k-d}$  (where  $s(W, V) = s(C) = q_*(\sum_{i \ge 0} c_1(O(1))^i \cap P(C \oplus 1))$  with  $q: P(C \oplus 1) \to W$ )
- 2. If d = 1 (so X is a Cartier divisor), V a variety and f a closed embedding, then  $X \cdot V$  is the same as intersection with a divisor (as defined before)
- 3. If Y is pure dimensional, f a regular embedding, then  $X \cdot V = V \cdot X = (V \times X) \cdot \Delta_Y$ . ie., setup:

$$\begin{array}{c|c} Y \\ & \delta \\ \\ V \times X \hookrightarrow Y \times Y \end{array}$$

- 4. If  $W \hookrightarrow V$  is a regular embedding of codimension d' with normal bundle  $N' = C_W V$ . Then  $X \cdot V = c_{d-d'}(W/N') \cap [w]$ .
- 5. If  $X \times \mathbb{P}^1 \hookrightarrow \mathcal{Y}$  is a family of regular embeddings,  $\mathcal{V}$  a subvariety of  $\mathcal{Y}$ ,  $\mathcal{V}$  and  $\mathcal{Y}$  are flat over  $\mathbb{P}^1$ . Then  $X \cdot_{Y_t} \cdot V_t$  are equal for all t.

#### 5.2 Distinguished components and canonical decomposition

Assume  $[C] = \sum m_i[C_i]$  with  $C_i$  the irreducible components of C.  $W \ge Z_i := \prod(C_i)$  are the distinguished components of  $X \cdot V$ . For  $N_i := N|_{Z_i}$ ,  $s_i$  its zero section,  $\alpha_i := s_i^*[C_i]$ . Then  $X \cdot V = \sum m_i \alpha_i$  is the canonical decomposition of  $X \cdot V$ .

**Example.** Let  $Y = \mathbb{P}^2_{[x,y,z]}$ ,  $X_1 = \{xy = 0\}$ ,  $X_2 = \{x = 0\}$  and  $P = \{x = y = 0\}$ . We have to possibilities to intersect  $X_1$  and  $X_2$ .

1.

$$W = X_2 > V = X_2$$

$$\downarrow \qquad \qquad \downarrow$$

$$X = X_1 \longrightarrow Y$$

Hence  $C = C_W V = X_2$ . In particular,  $X_2$  is the only distinguished components

2.



Then let  $I = \langle \overline{x} \rangle$  in  $k[x, y] / \langle xy \rangle$ . We have  $\bigoplus_{n \ge 0} I^n / I^{n+1} \cong k[x, y, T] / \langle x, yT \rangle$ . So we can see that C has two components, namely  $\{x = y = 0\}$  and  $\{x = T = 0\}$ . Now  $N = \text{Spec}(k[x, y, T] / \langle x \rangle)$ . So the distinguished components are  $X_2$  and P.

## 5.3 Refined intersection

Given our fibred square

$$\begin{array}{c} W \xrightarrow{j} V \\ g \\ \downarrow \\ X \xrightarrow{i} Y \end{array}$$

we have a homomorphism  $i^!: Z_k(V) \to A_{k-d}(W)$  defined by  $\sum n_i[V_i] \mapsto \sum n_i(X \cdot V_i)$  (note that  $X \cdot V_i$  are actually lies in  $A_{k-d}(X \cap V_i)$ ).

Fact (Non-trivial). This passes to rational equivalence!

We have refined Gysin homomorphism  $i^! : A_k V \to A_{k-d} W$ . Notation. If V = Y and f = id we write  $i^! = i^* : A_k Y \to A_{k-d} X$ . In this case the map is  $[Z] \mapsto s_N^*[C_{Z \cap X} V]$ . Remark. For any purely k-dimensional cycle  $[Z], i^![Z] = X \cdot Z$ .

Theorem 5.6. Given the fibre diagram



where  $i: X \to Y$  is a regular embedding of codimension d.

Merit: e.g., we can compute  $X \cdot Y'$  by calculating  $X \cdot (\text{some blowup of } Y'')$ . Therefore we see the advantage of allowing arbitrary *morphism* to Y.

2. (Pull-back) If p is flat of regular dimension n,  $\alpha \in A_k Y'$  then  $i'p^*(\alpha) = q^*i'\alpha$ Merit: we can compute (part of) intersections products of locally by restricting to open subschemes

## 5.4 The intersection ring

Assumption: Y is smooth which implies  $\delta: Y \to Y \times Y$  (defined by  $y \mapsto (y, y)$ ) is a regular embedding Setup: For  $x \in A_k(Y), y \in A_l(Y)$ 

$$\begin{array}{ccc} Y & \stackrel{\delta}{\longrightarrow} Y \times Y \\ & & & & \\ \downarrow & & & \\ Y & \stackrel{\delta}{\longrightarrow} Y \times Y \end{array}$$

we define  $x \cdot y := \delta^*(x \times y) \in A_{k+l-n}(Y)$ 

**Theorem 5.7.** This makes  $A_*(Y)$  into a graded (by codimension), commutative ring with unit pY]. The assignment Y to  $(A_*(Y), )$  is a contravariant function form smooth varieties to rings.

## 6 Schubert Calculus (Aurelio Carlucci)

## 6.1 Recap on G(k, n)

Let V be a complex vector space of dimension n, let  $G(k, V) = \{k - subspace \text{ of } V\}, G(k, n) = G(k, \mathbb{C}^n).$ Let  $\Lambda \in G(K, n)$ 

$$\begin{pmatrix} v_1 \\ \vdots \\ v_K \end{pmatrix} = \begin{pmatrix} v_{1,1} & \dots & v_{1k} \\ \vdots & & \\ v_{k1} & & v_{kk} \end{pmatrix}$$

where  $\operatorname{rk} K = k$ . Let  $I = \{i_1, \ldots, i_k\} \subset \{1, \ldots, k\}, V_I = \operatorname{Span}\{e_i | i \notin I\}, U_i = \{\Lambda : \Lambda \cap V_I = \emptyset\}, I^{th}$  matrix non-singular

We have a map  $\phi_I : U_I \to \mathbb{C}^{k(n-k)}$ . We have that  $\phi_I(U_I \cap U_{I'})$  is open. Let  $\Lambda_{I'}^I$  be the I'-th minor of  $\Lambda^I$ , we have  $\Lambda^I = (\Lambda_{I'}^I)^{-1} \cdot \Lambda^{I'}$ .

### 6.2 Cell decomposition

Let  $\mathcal{V}$  be a *flag*, that is  $\mathcal{V} = \{V_1 \subsetneq V_2 \subsetneq \cdots \subsetneq V_n = \mathbb{C}^n\}$ . Let  $\mathbb{P}^n = G(1, n+1)$ , we can consider  $W_i \cong \mathbb{C}^{i-1} = \{l \subsetneq \mathbb{C}^{n+1} : l \subset V_i, l \nsubseteq V_{i-1}\}$ , we have  $\mathbb{P}^n = \mathbb{C}^0 \cup \cdots \cup \mathbb{C}^n$ .

Let  $\mathcal{V}$  be a generic flag. Let  $\Lambda \in G(K, n)$ , we have  $\Lambda \cap V_i = \begin{cases} \operatorname{zero \, dim} & i \leq n-k \\ (1+k-n) \, \operatorname{dim} & \operatorname{otherwise} \end{cases}$ . Let  $(a_1, \dots, a_k) = a$ be a cycle, let  $\sum_a(\mathcal{V}) = \{\Lambda \in G(K, n) | \dim(V_{n-k+i-a_i} \cap \Lambda) \geq i \}$ Remark. If  $a_i > n-k$ , then  $\dim V_{n-k+1-a_i} < a_i$  and  $\sum_a = \emptyset$ .

Let  $\sigma_a = [\Sigma_a]$ , this construction is independent of the choice of flag. This is called a Schubert class. *Remark.* We have that  $\sigma_a \subset \sigma_b$  if and only if  $a \ge b$  (i.e.,  $a_i \ge b_i$  for all i)

**Example.** Consider G(2,4)

- $\Box$  (1,0):  $\sigma_{1,0} = \{\Lambda : \dim(\Lambda \cap V_{n-k+i-a_i}) \ge i\}$ , i.e,  $\dim(\Lambda \cap V_2) \ge 1$  and  $\dim(V \cap V_4) \ge 2$  which is trivial. So  $\sigma_{1,0} = \{\Lambda | \dim(\Lambda \cap V_2) \ge 1\}$ .
- $[1,1), \sigma_{1,1}$ : we need dim $(\Lambda \cap V_2) \ge 1$  and dim $(\Lambda \cap V_3) \ge 2$ , but as the second implies the first, we have  $\sigma_{1,1} = \{\Lambda : \Lambda \subset V_3\}$
- [1, 0] (2,0),  $\sigma_{2,0}$ : we need dim $(\Lambda \cap V_1) \ge 1$ , so  $V_1 \subset \Lambda$  and dim $(\Lambda \cap V_4) \ge 2$  which is trivial, so  $\sigma_{2,0} = \{\Lambda : V_1 \subset \Lambda\}$
- $[1] (2,1), \ \sigma_{2,1} : \text{we need } \dim(\Lambda \cap V_1) \ge 1, \text{ so } V_1 \subset \Lambda \text{ and } \dim(\Lambda \cap V_3) \ge 2 \text{ so } \Lambda \subset V_3. \text{ Hence } \sigma_{2,1} = \{\Lambda : V_1 \subset \Lambda \subset V_3\}.$

So we have  $V_1 \subset V_2 \subset V_3 \subset \mathbb{C}$ , so take the flag  $\{P\} \subset l_0 \subset H$  (a point, line and hyperplane). So translating we have

- $\sigma_{1,0} = \{l \cap l_0 \neq \emptyset\}$
- $\sigma_{1,1} = \{l \subset H\}$
- $\sigma_{2,0} = \{P \in l\}$
- $\sigma_{2,1} = \{p \in l \subset h\}$



Choose bases  $e_i$  of V and let  $V_i = \operatorname{span}\{e_1, \ldots, e_i\}$ . Let  $\Lambda \subset \sum_{a_1 \ldots a_k}$ , then we can find  $v_1$  with  $\Lambda \cap V_{n-k+1-a_1} \supset \langle v_1 \rangle$ , and we can normalise  $v_1$  so that  $\langle v_1, e_{n-k+1-a_1} \rangle = 1$ . We can find  $v_2$  with  $\langle v_1, v_2 \rangle \subseteq \Lambda \cap V_{n-k+2-a_2}$  such that  $\langle v_2, e_{n-k+1-a_1} \rangle = 0$  and  $\langle v_2, e_{n-k+1-a_2} \rangle = 1$ . We can continue this process to find more  $v_i$ . Basically, we are just apply Gaussian elimination. So we end up with  $\sum_{j=1}^{n} (n-k+j-a_j-1) - \sum_{j=1}^{k} (k-j) = k(n-k) - \sum_{j} a_j$ .

**Fact.** The Schubert classes are a free basis for  $A_*(G(K, n))$ .

#### 6.3 Complementary codimension

**Proposition 6.1.** Let  $\mathcal{V}$  and  $\mathcal{W}$  be general flags. Consider  $\Sigma_a(V), \Sigma_b(W)$  with |a| + |b| = k(n-k), then

- they intersect in a unique point if  $a_i + b_{k-1-i} = n k \forall i$
- They are disjoint otherwise.

**Proposition 6.2.**  $A_*(G(K,n)) \cong \mathbb{Z}^{\binom{n}{k}}$ .

If  $[\Gamma] \in A^m(G(k,n))$  with  $[\Gamma] = \sum_{|a|=m} \gamma_a \sigma_a$  where  $\gamma_a = \deg([\Gamma] \cdot \sigma_{a^*}) = \#(\Gamma \cap \Sigma_{a^*}(\mathcal{V}))$  where  $\mathcal{V}$  is a generic flag.

We have the multiplication of Schubert classes:  $\sigma_a \sigma_b = \sum_{|c|=|a|+|b|} \gamma_{a,b,c} \sigma_c$ . There is a formula for Special Schubert classes, i.e., the one of the forms  $\sigma_{\alpha} = \sigma_{\alpha,0,\dots,0}$ 

**Proposition 6.3.** Let  $\sigma_{\alpha} \in A(G(K, n)), \beta \in \mathbb{N}$ . Then  $\sigma_{\beta} \cdot \sigma_{a} = \sum_{|e|=|a|+\beta, a_{i} \leq e_{i} \leq e_{i-1}} \sigma_{e}$ 

For example

•  $\sigma_1 \cdot \sigma_e = \text{sum of all Young diagram obtained from } a$ .



#### 6.4 Giambelli's formula

Consider  $\sigma_{a_1...a_k}$ . This is equal to

$$\det \begin{pmatrix} \sigma_{a_1} & \sigma_{a_1+1} & \sigma_{a_1+2} & \dots & \sigma_{a_1+k-1} \\ \sigma_{a_2-1} & \sigma_{a_2} & & & \\ \sigma_{a_3-2} & & & & \\ \vdots & & & & \\ \sigma_{a_k-k+1} & & & \sigma_{a_k} \end{pmatrix}$$

**Example.** We have  $\sigma_{2,1} = \begin{pmatrix} \sigma_2 & \sigma_3 \\ \sigma_0 & \sigma_1 \end{pmatrix} = \sigma_2 \sigma_1 - \sigma_3$ 

- $\sigma_{11} = \sigma_1^2 \sigma_2$ , so  $\sigma_1^2 = \sigma_2 + \sigma_{11}$  (which we had calculated above)
- $\sigma_1^2 \sigma_2 = \sigma_2^2$
- $\sigma_1 \sigma_{21} = \sigma_{22}$

So we find that  $A_*(\mathbb{G}(1,\mathbb{P}^3)) = \mathbb{Z}[\sigma_1,\sigma_2]/(\sigma_1^3 - 2\sigma_1\sigma_2,\sigma_1^2\sigma_2 - \sigma_2^2)$ 

Suppose we have four lines in  $\mathbb{P}^3$ ,  $l_1$ ,  $l_2$ ,  $l_3$ ,  $l_4$ . We want to know how many general lines intersect  $l_i$ . We can use Schubert calculus. We calculate  $\sigma_1(l_i)$  (i.e., choosing a flag consisting of one component  $l_i$ ). Since  $\sigma_1^4 = 2 \cdot \Box \Box = 2$ 

# 7 Riemann Roche (Miles Reid)

NB: This section needs some reworking, which will be done at a later stage

The statement of Riemann Roche is the following. Let X be smooth projective, we have  $f: X \to Y$  defined by  $\mathcal{F} \mapsto \sum (-1)^i R^i f_* \mathcal{F}$ , gives rise to  $f_!: K_0(X) \to K_0(Y)$ . If Y is a point,  $h^i(\mathcal{F}) \in K_0(\mathrm{pt})$  =dimension of finite dimensional vector space over k, so  $\sum (-1)^i R^i f_* \mathcal{F}$  becomes  $\chi(\mathcal{F})$ .

$$\begin{array}{c|c} K_0(X) \stackrel{\operatorname{ch}}{\longrightarrow} A^*(X) \otimes \mathbb{Q} \\ f_! & & & \\ f_* & & \\ K_0(Y) \stackrel{\operatorname{ch}}{\longrightarrow} A^*(Y) \otimes \mathbb{Q} \end{array}$$

This diagram only commutes after multiplying by  $Td_f$ . That is

$$\operatorname{ch}(f_!\mathcal{F}) = \operatorname{Td}_{X/Y}f_*(\operatorname{ch}(\mathcal{F}))$$

, where  $\operatorname{Td}_{X/Y} = \operatorname{Td}_X \cdot (\operatorname{Td}_Y)^{-1}$ . Let us define  $\operatorname{Td}_X$ .

We have both  $K_0X$  and  $K^0X$ .

- $K_0X$  is  $K_0$ (coherent sheave)
- $K^0X$  is contravariant and is vector bundles over X divided by exact sequences.

If X is smooth then  $K_0 X = K^0 X$ . As we can take  $\oplus$  and  $\otimes$  we have that  $K_0$  is a ring. We have  $c(E \oplus F) = c(E) \cdot c(F)$ . The *Chern character* of a line bundle by definition is  $ch(\mathcal{O}_X(D)) := 1 + D + \frac{D^2}{2} + \cdots = exp(D)$ . So we are turning addition to multiplication.

Let E be a general coherent sheaf, and write is as a sum of line bundles:  $E = \sum \mathcal{O}_X(\alpha_i)$  (this is not true, but we can pretend that it is). Then by definition  $ch(E) := \sum exp(\alpha_i)$ .

Consider  $T_X$ , we are again going to pretend  $T_X = \sum \mathcal{O}_X(x_i)$ . We "have"  $c(T_X) = \prod (1 + x_i)$ . We define  $\mathrm{Td}_X := \prod \frac{x_i}{1 - e^{-x_i}}$ . If we substitute  $x_1 + x_2 = c_1, x_1 x_2 = c_2$  etc, we find that:

$$\mathrm{Td}_X = 1 + \frac{1}{2}c_1 + \frac{1}{12}(c_1^2 + c_2) + \frac{1}{24}c_1c_2 + \frac{1}{720}(-c_1^4 + 4c_1^2c_2 + c_1c_3 + 3c_2^2 - c_4) + \frac{1}{1440}(-c_1^5 + \dots)$$

So we get  $\chi(\mathcal{F}) = [\operatorname{ch}(\mathcal{F}) \cdot \operatorname{Td}_X]_n$ . From this we deduce  $\chi(\mathcal{O}_X) = \operatorname{Td}_X[X]$ .

**Exercise.** Let X be a smooth 3-fold, D a divisor on it and calculate  $\operatorname{ch}(\mathcal{O}_X(D)) = \left(1 + D + \frac{D^2}{2} + \frac{D^3}{6}\right) \left(1 + \frac{1}{2}c_1 + \dots\right)$  evaluated at degree 3 terms. We should get  $\chi(\mathcal{O}_X) + \frac{1}{12}Dc_2 + \frac{1}{12}D(D-K)(2D-K)$  (note  $\chi(\mathcal{O}_X) = \frac{1}{24}c_1c_2$ ).

The advantage of this diagram is that it gives a stronger theorem for Riemann Roche while having a much simpler proof.

If  $f = g \circ h$   $(g : Y \to Z, h : X \to Y \text{ and } f : X \to Z)$ , it is enough to prove this diagram commutes for g and h separately, i.e., show that  $(gh)_{!} = g_{!}h_{!}$  and  $\mathrm{Td}_{g} \cdot \mathrm{Td}_{h} = \mathrm{Td}_{f}$ . Now for



we can do i and p separately. Now p is just straightforward calculation. What about i? we do this as the inclusion of divisors followed by blowup. We can reduce the case to only looking at divisors.

Question: Why does  $\frac{x}{1-e^{-x}}$  appear in  $\operatorname{Td}_X$ . Think of  $X \subset V$  a divisor, with the dimension of X and V being n and n+1 respectively.

$$0 \longrightarrow T_X \longrightarrow T_{V|_X} \longrightarrow N_{V|_X} \longrightarrow 0$$

Recall that  $N_{V|_X} = \left(\mathcal{I}_X/\mathcal{I}_X^2\right)^*$ .

$$0 \longrightarrow \mathcal{O}_V(-X) \longrightarrow \mathcal{O}_V \longrightarrow \mathcal{O}_X \longrightarrow 0$$

$$\chi(\mathcal{O}_X) = \chi(\mathcal{O}_V) - \chi(\mathcal{O}_V(-X)) = \mathrm{Td}_V - \mathrm{Td}_V \cdot e^{-x}.$$

## 8 Miss multiplicities (Diane)

**Definition 8.1.** A sequence  $a_1, a_2, \ldots$  is *log-concave* if  $a_i^2 \ge a_{i-1}a_{i+1}$ . I.e.,  $i \mapsto \log a_i$  is a concave function

This implies unimodal, i.e., one local maximal.

Question: Let X be a smooth projective variety of dimension d. Consider  $Z \in A_k(X)$  for some k. Is Z = [V] for some (reduced irreducible)  $V \subseteq X$ ?

#### Example.

- $X = \mathbb{P}^d$ , then  $A_k(\mathbb{P}^d) = \mathbb{Z}$  (i.e., keeping track of degree). So the question is: is there an irreducible subvariety of  $\mathbb{P}^d$  of dimension k and degree m? Here we know the answer is yes if m > 0
- $X = \mathbb{P}^2 \times \mathbb{P}^2 A_2(X) = \operatorname{span}([\mathbb{P}^2 \times \operatorname{pt}], [\mathbb{P}^1 \times \mathbb{P}^1], [\operatorname{pt} \times \mathbb{P}^2])$ . Let  $\zeta = a[\mathbb{P}^2 \times \operatorname{pt}] + b[\mathbb{P}^1 \times \mathbb{P}^1] + c[\operatorname{pt} \times \mathbb{P}^2]$  Is  $\zeta = [v]$ ? The necessary conditions are  $a, b, c \ge 0$  and  $b^2 \ge ac$  (and they are sufficient for  $\mathbb{P}^2 \times \mathbb{P}^2$ ). Note that (a, b, c) are log-concave.

**Theorem 8.2** (Huh). If  $\zeta = \sum e_i[\mathbb{P}^i \times \mathbb{P}^{k-i}] \in A_k(\mathbb{P}^n \times \mathbb{P}^m)$ , then there exists l > 0 with  $l\zeta = [V]$  if and only if  $(e_0, \ldots, e_p)$  is log-concave with no internal zeroes, or  $\zeta = [\mathbb{P}^n \times \text{pt}]$ ,  $[\text{pt} \times \mathbb{P}^m]$ ,  $[\mathbb{P}^n \times \mathbb{P}^m]$  or  $[\text{pt} \times \text{pt}]$ .

### 8.1 Chromatic polynomials

Let G be a finite graph. A colouring of G with q colours is a function  $f : Vert(G) \to \{1, \ldots, g\}$  for which  $f^{-1}(i)$  is an independent set (i.e., no two vertices are adjacent)

#### Example 8.3.



Let  $X_G(q)$  to be the number of ways to colour G with q colours. For example above  $X_G(1) = X_G(2) = 0$  and  $X_G(3) = 6$ .

**Theorem 8.4.**  $X_G(q)$  is a polynomial in q with integer coefficients

In our case  $X_G(q) = q(q-1)(q-2)^2 = q^4 - 5q^3 + 8q^2 - 4q$ .

**Conjecture** (1968). Write  $X_G(q) = a_n q^n - a_{n-1} q^{n-1} + \dots + (-1)^n a_0$ , then  $a_0, \dots, a_n$  is log-concave

This is now a theorem by Huh in 2012. The proof involves realising the  $a_i$  as intersection numbers.

### 8.2 Hodge index theorem

**Theorem 8.5** (Hodge index theorem). Let X be a smooth projective surface and let H be an ample divisor on X, and suppose that D is a divisor with  $D \cdot H = 0$ ,  $D \not\equiv 0$  (there exists C such that  $D \cdot C \neq 0$ ). Then  $D^2 < 0$ .

This implies intersection pairing has signature  $(1, -1, \ldots, -1)$ .

**Corollary 8.6.** If  $D_1 = aD + bH$  and  $D_2 = cD + dH$  where *H* is ample,  $H \cdot D = 0$  and  $D \neq 0$  then  $(D_1 \cdot D_2)^2 \ge (D_1^2)(D_2^2)$ 

*Proof.*  $D_1 \cdot D_2 = acD^2 + bdH^2$ ,  $D_1^2 = a^2D^2 + b^2H^2$ ,  $D_2^2 = c^2D^2 + d^2H^2$  so check  $(D_1 \cdot D_2)^2 - D_1^2D_2^2 = 2abcd(D^2)(H^2) - (a^2d^2 + b^2c^2)D^2H^2 = 2(D^2)(H^2)(abcd - \frac{a^2d^2 + b^2c^2}{2}) \ge 0$ 

So we are going to refer to the corollary when we talk about Hodge index theorem. Let  $\zeta = a[\mathbb{P}^2 \times \text{pt}] + b[\mathbb{P}^1 \times \mathbb{P}^1] + c[\text{pt} \times \mathbb{P}^2]$  and suppose that  $\zeta = [V]$  where V is an irreducible surface in  $\mathbb{P}^2 \times \mathbb{P}^2$ . Let  $D_1 = [\text{general line} \times \mathbb{P}^2]$  and  $D_2 = [\mathbb{P}^2 \times \text{general line}]$  both in  $\mathbb{P}^2 \times \mathbb{P}^2$ . Then  $D_1 \cdot D_2 = [\mathbb{P}^1 \times \mathbb{P}^1]$ ,  $D_1^2 = [\text{pt} \times \mathbb{P}^2]$  and  $D_2^2 = [\mathbb{P}^2 \times \text{pt}]$ . So let  $D_1' = i(D_1)$ ,  $D_2' = i(D_2)$  as divisors in V. So  $D_1' \cdot D_2' = [\mathbb{P}^1 \times \mathbb{P}^2] \cdot [V] = b$ ,  $D_1'^2 = [\text{pt} \times \mathbb{P}^2] \cdot [V] = a$  and  $D_2'^2 = [\text{pt} \times \mathbb{P}^2] \cdot [V] = c$ . Therefore the Hodge index theorem implies that  $b^2 \ge ac$ .

## 8.3 Generalisations

**Theorem 8.7.** Let X be an irreducible complete variety (scheme) of dimension n, and let  $\delta_1, \ldots, \delta_n \in N^1(X)_{\mathbb{R}}$ (divisors up to numerical equivalence) be nef classes. Then  $(\delta_1 \ldots \delta_n)^n \ge (\delta_1)^n \cdots (\delta_n)^n$ .

For a proof, see e.g., Lazarfeld "positivity bock" theorem 1.6.1. A variant of this as follow:

**Theorem.**  $(\alpha_1 \cdots \alpha_p \cdot \beta_1 \cdots \beta_{n-p})^p \ge (\alpha_1^p \beta_1 \cdots \beta_{n-p}) \cdots (\alpha_p^p \beta_1 \cdots \beta_{n-p}).$ 

**Corollary 8.8** (Khovanskii, Teissier). Let X be an irreducible complete variety (scheme) of dimension n, let  $\alpha, \beta$  be nef divisors. Set  $s_i = \alpha^i \beta^{n-i}$ . Then for  $1 \le i \le n-1$ ,  $s_i^2 \ge s_{i-1}s_{i+1}$ .

*Proof.* Apply the variant to the case p = 2,  $\alpha_1 = \alpha$ ,  $\alpha_2 = \beta$  and  $\beta_1 \cdots \beta_{n-2} = \alpha^{1i-1} \beta^{n-i-1}$ .

Approach to chromatic polynomials: From the graph (say with n + 1 edges and r + 1 vertices), we get a  $(n + 1) \times (r + 1)$  matrix of edges and vertices. Let  $V^0 = \operatorname{row}(A) \cap (K^{\bullet})^n$  (the Torus  $(K^{\bullet})^{n+1}/K^{\bullet}$ ), let  $\widetilde{V}$  be the closure of graph of the Cremona transformation restricted to V (recall that the Cremona transformation is  $[x_0 : \cdots : x_n] \mapsto [\frac{1}{x_0} : \cdots : \frac{1}{x_n}]$ ) Note that  $\widetilde{V} \subset \mathbb{P}^n \times \mathbb{P}^n$ . Let  $[\widetilde{V}] = \sum \mu^i [\mathbb{P}^{r-i} \times \mathbb{P}^i] \in A_r(\mathbb{P}^n \times \mathbb{P}^n)$ . The claim is that the  $\mu^i$  are the coefficients (up to sign) of  $X_{\widetilde{G}}(q) := X_q(q)/(q-1)$  (Note  $X_{\widetilde{G}}(q)$  is a polynomial since  $X_q(1) = 0$ ). Easy exercise:  $\mu^i$  is log-concave implies that the  $a_i$  are log-concave. Take  $D_1 = [H \times \mathbb{P}^n]$ ,  $D_2 = [\mathbb{P}^n \times H]$  then  $\mu^i = D_1^r D_2^{r-i}[\widetilde{V}]$  (or maybe  $\mu^i = D_1^{r-i} D_2^i[\widetilde{V}]$ ). Hence  $\mu^i$  is log-concave.

## 9 Toric Intersection Theory (Magda)

**Definition 9.1.** A *Toric variety* is an irreducible variety X containing a torus  $T_N(\mathbb{C}^*)^n$ . This is a Zariski open subset such that the action of  $T_N$  on itself extends to an algebraic action of  $T_N$  on X.

**Example 9.2.**  $X = \mathbb{C}^2$ ,  $T_N = (\mathbb{C}^*)^2$ . Then the action is (s,t)(x,y) = (sx,ty).

 $X = \mathbb{P}^2_{[x,y,z]}, T_N = (\mathbb{C}^*)^2 \text{ consisting of points } xyz \neq 0. \text{ The action is } [t_1:t_2:t_3][x:y:z] = [t_1x:t_2y:t_3z]$ where  $t_1t_2t_3 \neq 0$ . We look at orbits not, consider  $[t_1:t_2:t_3][1:0:0] = [t_1:0:0] = [1:0:0]$ , so [1:0:0], [0:1:0]and [0:0:1] are fixed points. The orbit of [x:y:0] is [1:a:0], of [x:0:y] it's [1:0:a] and for [0:x:y] it's [0:1:a] for  $a \neq 0$ . As for [x:y:z] it is [a:b:c] where  $abc \neq 0$  (under the assumption that  $xyz \neq 0$ ).

We have a correspondence between the orbit and the cones of a picture. Let  $V(\sigma)$  denote the orbit corresponding to  $\sigma$ ,  $\Sigma(k)$  the set of k dimensional cone.

Let X be a n-dimensional variety. Recall that the Chow ring of X is  $A^*(X) = \bigoplus_{k=0}^n A^k(X)$  where  $A^k(X) = Z^k(X) / \sim$ . Recall that for smooth variety we had a product  $A^k(X) \times A^k(X) \to A^{k+1}(X)$  which agreed with intersection of transversal objects.

Let  $X_{\Sigma}$  be a complete smooth Toric variety.

**Fact.**  $[V(\sigma)]$  for  $\sigma$  of dimension k generates  $A^k(X_{\Sigma})$ .

**Example.** For  $A^1(X_{\Sigma}) = \operatorname{Pic}(X_{\Sigma}) = \{T - \operatorname{inv} \operatorname{divisors}\}/\{T - \operatorname{inv} \operatorname{principal} \operatorname{divisors}\} = \mathbb{Z}^{|\Sigma(1)|} / \langle \operatorname{div}(X^m); m \in \mathbb{Z}^n \rangle$ , where  $\operatorname{div}(X^m) = \sum_n \langle m, u_p \rangle D_p, m \in \mathbb{Z}^n$ , where  $u_p$  is the "generator" of the rays in  $\Sigma(1)$ .

**Example 9.3.**  $\operatorname{Pic}(\mathbb{P}^2) = \mathbb{Z}^3 / \langle D_1 - D_3, D_{2^n} - D_3 \rangle \cong \mathbb{Z}$  (since  $m_1 = (1, 0), m_2 = (0, 1)$ )  $\operatorname{Pic}(\operatorname{Bl}(\mathbb{P}^2)) = \mathbb{Z}^4 / \langle D_1 - D_0 - D_3, D_2 - D_3 \rangle \cong \mathbb{Z}^2$ .

We know that:

• 
$$D_{\sigma_1} \cdots D_{\sigma_k} = \begin{cases} V(\sigma) & \sigma = \langle \sigma_1, \dots, \sigma_k \rangle \\ \emptyset & \text{else} \end{cases}$$

• 
$$\sum_{p} \langle m, u_p \rangle D_p = 0$$

So being given a fan of a Toric variety, we can construct the following ring:

- With each  $\rho_i \in \Sigma(1)$  associate a variable  $x_i$  and let  $\mathbb{Z}[x_1, \ldots, x_k]$  where  $k = |\Sigma(1)|$  be a polynomial ring.
- Let  $I \subset \mathbb{Z}[x_1, \ldots, x_k]$  be the ideal generated by the monomials  $x_{i_1}, \ldots, x_{i_i}$  such that  $\langle \rho_{i_1}, \ldots, \rho_{i_i} \rangle \notin \Sigma$ .
- Let  $J \subset \mathbb{Z}[x_1, \ldots, x_k]$  be generated by the linear forms  $\sum_p \langle m, u_p \rangle D_p, m \in \mathbb{Z}^n, n = \dim V.$

Then  $R(\Sigma) := \mathbb{Z}[x_1, \ldots, x_k]/(I+J)$  is generated by the monomials  $x_{\rho_1}, \ldots, x_{\rho_i}$  where all  $\rho'_i$ s are distinct.

**Theorem 9.4.** If  $X_{\Sigma}$  is complete and smooth then  $R(\Sigma) \cong A^*(X_{\Sigma})$ 

Proof. See Fulton, Introduction to Toric varieties

By the construction and from the definition of rational equivalence, we can see that if  $\langle \rho_1, \ldots, \rho_l \rangle \in E(k)$ , if we assign the monomial  $x_{\rho_1}, \ldots, x_{\rho_l}$  to the cycle  $[V(\langle \rho_1, \ldots, \rho_l \rangle)]$ , then we have a surjection  $R(\Sigma) \to A^*(X_{\Sigma})$ .  $X_{\rho_i} \mapsto [D_{\rho_i}]$  this gives an isomorphism.

**Example.**  $A^*(\mathrm{Bl}(\mathbb{P}^2)) \cong \mathbb{Z}[x_0, x_1, x_2, x_3]/(I+J), I = \langle x_0 x_1, x_2 x_3 \rangle, J \langle x_1 - x_0 - x_3, x_2 - x_3 \rangle.$  So  $A^*(\mathrm{Bl}(\mathbb{P}^2)) \cong \mathbb{Z}[x_1, x_2]/\langle (x_1 - x_2)x_1, x_2^2 \rangle.$ 

- $A^0(X) \cong \mathbb{Z}$  so  $\operatorname{rk}(A^0(X)) = 1$
- $A^1(X) = \operatorname{Pic}(X) = \langle x_1, x_2 \rangle$  so  $\operatorname{rk}(A^2(X)) = 2$
- $A^2(X) = \langle x_1^2, x_1 x_2, x_2^2 \rangle = \langle x_1^2 \rangle$  (from the relations) so  $\operatorname{rk}(A^2(X)) = 1$

•  $A^n(X) = 0$  for n > 2 since the relations cancel everything down.

From this we can get that  $D_0^2 = -1$  as follows: Note that  $D_1 \cdot D_2 = 1 \cdot V(\langle \rho_1, \rho_2 \rangle)$ .

$$\begin{aligned} x_0^2 &= (x_1 - x_2)^2 \\ &= x_1^2 - 2x_1x_2 + x_2^2 \\ &= x_1x_2 - 2x_1x_2 + 0 \\ &= -1 \cdot x_1x_2 \end{aligned}$$

We expect that  $D_2^2 = D_3^2 = 0$ , which we do since,  $x_2^2 = 0 = 0 \cdot x_1 x_2$ ,  $x_3^2 = x_2^2 = 0$ . So let us calculate  $D_1^2$ , we have that  $x_1^2 = 1 \cdot x_1 x_2$ , so  $D_1^2 = 1$ .