Intersection Theory

1 Introduction (Simon Hampe)

1.1 Some motivational examples: What should intersection theory be?

Example. What is the "intersection" of $C:=\left\{y=x^{3}\right\}$ and $l=\{y=0\}$?
Naive answer: The point $(0,0)$.
Problem: It's not "continuous". Replace $l_{t}=\{y=t\}$, then $l_{t} \cap C=2$ points. This should somehow be reflected in the "limit" $t \rightarrow 0$.

Algebraic approach: Intersection scheme: $X=\operatorname{Spec} K[x, y] /\left\langle y-x^{2}, y\right\rangle=\operatorname{Spec} K[x] /\left\langle x^{2}\right\rangle, \operatorname{dim}_{K}=\mathcal{O}_{X,(0,0)}=$ 2. So we get somewhat more informal answer, twice the point $(0,0)$.

Example. What is the intersection of a line L in \mathbb{P}^{2} with itself?
Naive: L
Better answer: The equivalence class (?) of a point in \mathbb{P}^{2}.
Example. Numerative geometry
Question: How many lines in \mathbb{P}^{3} intersect four general lines? (Why four? and why General? should not depend on the choice of lines)

Usual approach: via moduli spaces.

1. Find a suitable parameter space M for the objects we want to count. (Here: lines in $\mathbb{P}^{3} \cong G\left(1, \mathbb{P}^{3}\right)=G(2,4)$)
2. Find subscheme (or equivalence classes thereof) that correspond to object fulfilling certain geometric conditions. (Here: $[Z] \cong$ lines meeting a given line)
3. Compute the "intersection product" of these classes. In particular, the product should be 0-dimensional, if we want a finite answer. (Here: $\operatorname{dim} M=4, \operatorname{dim} Z=3$ therefore $[Z]^{4}$ is 0 -dimensional and $\operatorname{deg}[Z]^{4}=2$)

Insight: We need some equivalence
Definition 1.1. $Z(\lambda)=$ free abelian group on subvarieties on $X=\oplus Z_{k}(X)$ (where Z_{K} is k-dimensional). We say $A \sim B$ if and only if there exists a subvariety $X \subseteq \mathbb{P}^{1} \times X$ such that A is the fibre over 0 and B is the fibre over 1 . $A(X)=Z(X) / \sim$ is the Chow group of X.

Theorem 1.2 (Hartshorne, pg 427). There is a unique intersection theory on the Chow groups of smooth (quasiprojective) varieties over $k(=\bar{k})$ fulfilling:

1. It makes $A(X)$ into a commutative ring with 1 , graded by codimension
2.
3. \vdots
4.
5.
6. If Y, Z intersect properly, then $Y \cdot Z=\sum m_{j} w_{j}$ where w_{j} are components of $Y \cap Z, m_{j}$ depends only on a neighbourhood of w_{j}.

1.2 An approach we will not take: Chow's moving lemma

Definition 1.3.

1. Two subvarieties A, B of C are dimensionally transverse, if $A \cap B$ only have components of $\operatorname{codim} A+\operatorname{codim} B$
2. A and B are transverse at p, if X, A, B are smooth at p and $T_{p} A+T_{p} B=T_{p} X$
3. A and B are generically transverse, if every components of $A \cap B$ contains a point p, at which A, B are transverse.

Theorem 1.4 (Strong Chow's Moving Lemma [Chevakey '58, Roberts '70, Eischenbud-Harris, Chapter 5.2]). Let X be smooth, quasi-projective over $k=\bar{k}$.

1. If $\alpha \in A(X), B \in Z(X)$, there exists $A \in Z(x)$ such that $[A]=\alpha$ and A, B are generically transverse.
2. If $A, B \in Z(X)$ are generically transverse, then $[A \cap B]$ depends only on $[A]$ and $[B]$.

Corollary 1.5. For X smooth, quasi-projvective, we can define the intersection product on $A(X)$ by $\alpha \cdot \beta=[A \cap B]$, where $[A]=\alpha,[B]=\beta$ and A, B are generically transverse.

Remark. This is not generalisable! Not really constructive.

Intersection multiplicity

If A, B are only dimensionally transverse, can we write $[A] \cdot[B]=\sum m_{i}\left[C_{i}\right]$ where C_{i} are components of $A \cap B$ and m_{i} to be determined?

Easy case: Plane curves. If F, G are plane curves in $\mathbb{A}^{2}, p \in \mathbb{A}^{2}$,

$$
i(p: F \cdot G)=\operatorname{dim}_{K} \mathcal{O}_{F \cap G, p}= \begin{cases}0 & \text { if } p \neq F \cap G \\ \infty & \text { if } F, G \text { have a common component through } p \\ \text { finite } & \text { otherwise }\end{cases}
$$

This works!
Generalisation 1: Module length. If M is a finitely generated A-module, then there exists a chain $M=M_{0} \supsetneq$ $\cdots \supsetneq M_{r}=0$ such that $M_{i-1} / M_{i}=A / P_{i}$ where P_{i} is prime. If all P_{i} are maximal, then r is independent of our choice and we call the length of $M l_{A}(M):=r$.

Lemma 1.6. If A, B are Cohen-Macauly and dimensionally transverse, Z a component of $A \cap B$, then $i(Z, A \cdot B)=$ $l_{\mathcal{O}_{A \cap B, Z}}\left(\mathcal{O}_{A \cap B, Z}\right)$

Generalisation 2: Serre's multiplicity formula.
Theorem 1.7 (Serre '57). On a smooth variety X, the multiplicity of a component Z of a dimensionally transverse intersection $A \cap B$ is

$$
\sum_{i=0}^{\operatorname{dim} X}(-1)^{i} \operatorname{length}_{\mathcal{O}_{A \cap B, Z}}\left(\operatorname{Tor}_{i}^{\mathcal{O}_{X, Z}}\left(\mathcal{O}_{A, Z}, \mathcal{O}_{B, Z}\right)\right)
$$

1.3 Our approach: Following Fulton's book

The standard construction
Given the fibre square

where f is any morphism, i is closed, regular embedding.
$X \cdot V=S^{*}([C])$ where $S \cdot W \rightarrow g^{*} N_{X} Y=: N$ is the zero section, $C=C_{W} V$ embedded in $N\left(N_{X}\right.$ is the normal bundle, C_{W} the normal cone)

Example. Let \mathcal{X} be smooth, then $X=\mathcal{X}, T=X \times X, i=\delta: x \mapsto(x, x)$ regular. For A, B subvareties, set $V=A \times B, f$ the inclusion then $W=A \cap B$ and $[A] \cdot[B]=X \cdot V$

Example. Let H_{1}, \ldots, H_{d} be effective Cartier divisors on some variety \mathcal{X}, let $\mathcal{V} \subseteq \mathcal{X}$ be a subvariety. Let $X=H_{1} \times \cdots \times H_{d}, Y=\mathcal{X} \times \cdots \times \mathcal{X}, i$ be the product embedding and $V=\mathcal{V}$. Then $W=H_{1} \cap \cdots \cap H_{d} \cap V$ and $X \cdot V$ is a class of this.

Fact. Can write this in terms of Chern and Segre classes. Then $X \cdot V=\{c(N) \cap s(W, V)\}_{\text {expeted dimension }}$.

2 Divisors and Rational Equivalence (Paulo)

2.1 Length of a module

Let R be a commutative ring, M a module. Consider chains $M=M_{0} \supsetneq M_{1} \supsetneq \cdots \supsetneq M_{m}=(0)$.
Definition 2.1. We say the length $l_{R}(M)=$ maximal among all length of such chains.
Fact (EIS,Thm 2.15). $M=M_{0} \supsetneq M_{1} \supsetneq \cdots \supsetneq M_{m}=(0)$, then $l_{R}(M)=m$ if and only if M_{i} / M_{i+1} is simple for all i.

Example. Let $R=K$ a field, $M=V$ a vector space. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of V. Then we have the chain $M_{0}=V \supsetneq\left\langle e_{1}, \ldots, e_{n-1}\right\rangle \supsetneq \cdots \supsetneq\left\langle e_{1}\right\rangle \supsetneq(0)$. Hence $l_{K}(V)=\operatorname{dim}_{K}(V)$.

Example. Let $R=\mathbb{Z}$ and $M=\mathbb{Z}$, we show that $l_{\mathbb{Z}}(\mathbb{Z})=\infty$ as $\mathbb{Z} \supsetneq 2 \mathbb{Z} \supsetneq 2 \cdot 13 \mathbb{Z} \supsetneq \cdots$
Example. Let $R=\mathbb{Z}$ and $M=\mathbb{Z} / m \mathbb{Z}$ where $m=p_{1} \cdots p_{r}$, then $l_{\mathbb{Z}}(\mathbb{Z} / m \mathbb{Z})=r$.
Let X be a scheme of pure dimension n. Let $V \subseteq X$ be a subvariety. Let $f \in R(X)^{*}$. We want to define $\operatorname{ord}(f, V)$. To do this, let $f=a / b$ where $a, b \in \mathcal{O}_{X}$. Then

$$
\operatorname{ord}(f, V)=l_{\mathcal{O}_{V, X}}\left(\mathcal{O}_{V, X} /(a)\right)-l_{\mathcal{O}_{V, X}}\left(\mathcal{O}_{V, Z} /(b)\right)
$$

Where by $O_{V, X}$ we mean the localisation of \mathcal{O}_{X} at $I(V)$, i.e., let S be the complement of $I(V)$, then $\mathcal{O}_{V, X}=\mathcal{O}_{X} S^{-1}$.
Example. Consider $\mathbb{C}_{(x, y)}^{2}$, let $V=\{x=0\}, f=(x)^{2}$. Then ord $(f, V)=l_{\mathcal{O}_{V, X}}\left(\mathcal{O}_{V, X} /(x)^{2}\right)=2$ as $\mathcal{O}_{V, X} /(x)^{2} \supsetneq$ $\mathcal{O}_{V, X} /(x) \supsetneq(0)$. (For this example, $\mathcal{O}_{X}=\mathbb{C}[x, y]$ and $S=\mathbb{C}[x, y] \backslash(x)$, so $\mathcal{O}_{V, X}=\mathbb{C}[x, y] S^{-1} \ni\{f / g \mid x \nmid g\}$)

2.2 Divisors

Let X be a variety over K of dimension n. Let $Z_{n-1}=\left\{\sum_{\text {finite }} a_{i}\left[V_{i}\right] \mid a_{i} \in \mathbb{Z}, V_{i}\right.$ subvariety of X of $\left.\operatorname{dim}=n-1\right\}$. We call an element $D \in Z_{n-1}$ a Weil Divisor and an element [V_{i}] a prime divisor.

Definition 2.2. Let $f \in R(X)$, we define a divisor associated to f as $\operatorname{div}(f)=\sum_{V} \operatorname{ord}(f, V)[V]$. We call then principal divisors.

Definition 2.3. The class group of X is $\mathrm{Cl}(C)=Z_{n-1}$ /principal divisors.
Definition 2.4. Let $D \in Z_{n-1}$ is effective if $a_{i} \geq 0$ for all i.
Definition 2.5. A Cartier Divisor is a collection $\left\{\left(U_{i}, f_{i}\right)\right\}_{i \in I}$ such that:

- $\left\{U_{i}\right\}$ is an open cover of X
- $f_{i} \in R\left(U_{i}\right)$
- For all $i, j, f_{i} / f_{j} \in \mathcal{O}^{*}\left(U_{i} \cap U_{j}\right)$.

Let $D\left\{\left(U_{i}, f_{i}\right)\right\}$, we can associate to it a Weil divisor: $[D]=\sum \operatorname{ord}(D, V)[V]$ where $\operatorname{ord}(D, V)=\operatorname{ord}\left(f_{i}, V\right)$ for any i such that $U_{i} \cap V \neq \emptyset$.

We can also associate to it a line bundle: $\mathcal{O}(D)$ with transition data $\left\{\left(U_{i}, f_{i}\right)\right\}$ (so a section of it is a collection $r=\left\{r_{i}\right\}$ where $r_{i} \in \mathcal{O}\left(U_{i}\right)$ and $\left.r_{i}=f_{i} / f_{j} r_{j}\right)$
$\operatorname{Pic}(X):=$ Cartier Div/Principal Div \cong Line Bundle/Isom.
Let X be a scheme over K of dimension n. Define $Z_{k}=\left\{\sum a_{i}\left[V_{i}\right] \mid V_{i} \subseteq X\right.$ subvariety of dimension $\left.k\right\}$. We call $C \in Z_{k}$ a k-cycle.

Example. Let Y be a scheme of pure dimension m, Y_{1}, \ldots, Y_{l} its irreducible components. We have $Z_{m}(Y) \ni[Y]=$ $\sum m_{i}\left[Y_{i}\right]$ where $m_{i}=l_{\mathcal{O}_{Y_{i}, Y}}\left(\mathcal{O}_{Y_{i}, Y}\right)$.

If $Y \subseteq X$ subscheme then $[Y] \in Z_{m}(X)$.

2.3 Rational equivalence

We want to consider $A_{k}:=Z_{k} / \sim$ (where \sim is to be determined), which we will call this the Chow group. There are two equivalent way to define the equivalence

1. Let $W \subseteq X$ be a subvariety of dimension $k+1, r \in R(W)$. Then $0 \sim \operatorname{div}(r)=\sum \operatorname{ord}(r, V)[V] \in Z_{k}(W)$ but we can also think of $\operatorname{div}(r) \in Z_{k}(X)$

Definition 2.6. $D_{1}, D_{2} \in Z_{k}(X)$ are equivalent, $D_{1} \sim D_{2}$, if $D_{1}-D_{2}=\sum \operatorname{div}\left(r_{i}\right)$ for some $r_{i} \in R\left(W_{i}\right)$.
2. Consider

Let $Y \subseteq X \times \mathbb{P}^{1}$ variety of dimension $k+1, f=\left.q\right|_{Y}$ is dominant. $p_{*}\left[f^{-1}(0)\right]-p_{*}\left[f^{-1}(\infty)\right] \sim 0$
To see why they are equivalent see [Ful,Prop 1.6]
Remark.

1. $Z_{k}(X) \cong Z_{k}\left(X_{\text {red }}\right)$
2. If $k=m$, then $A_{m}(X)=Z_{m}(X)$

2.4 Pushforward

Let $f: X \rightarrow Y$ be a proper morphism. Let $V \subseteq X$ be a subvariety, this gives $f(V)=W$ a variety in Y. We can define $f_{*}: Z_{k} X \rightarrow Z_{k} Y$ by $[V] \mapsto\left\{\begin{array}{ll}0 & \operatorname{dim} W<\operatorname{dim} V \\ \operatorname{deg}(V, W) \cdot[W] & \text { otherwise }\end{array}\right.$ (where $\operatorname{deg}(V, W):=[R(V): R(W)]$.
Theorem 2.7 (Ful, Thm 1.4). If $\alpha \sim 0$ then $f_{*} \alpha \sim 0$, hence we have well defined $f_{*}: A_{k}(X) \rightarrow A_{k}(Y)$.

2.5 Pullback

Let $f: X \rightarrow Y$ be a flat morphism of relative dimension m. (Relative dimension means: if $V \subseteq Y$ a subvariety, then $f^{-1}(V)$ has every component of dimension $\left.m+\operatorname{dim}(V)\right)$

We can to define $f^{*}[V]=\left[f^{-1}(V)\right]$. This extend by linearity to a map $f^{*}: Z_{k}(Y) \rightarrow Z_{k+m}(X)$.
Theorem 2.8 (Ful, Thm 1.7). If $\alpha \sim 0$ then $f^{*} \alpha \sim 0$, hence we have well defined $f^{*}: A_{k}(Y) \rightarrow A_{k+m}(X)$.
Example.

1. Consider the open embedding $i: Y \hookrightarrow X$. Then i^{*} is just the restriction map, that is $[V] \mapsto[V \cap Y]$.
2. Let Z be a scheme of pure dimension m, consider $f: X \times Z \rightarrow X$. Then f^{*} is defined by $[V] \mapsto[V \times Z]$.
3. Consider $p: E \rightarrow X$ an affine (projective) bundle, then we still have p^{*}.

Proposition 2.9. If $p: E \rightarrow X$ is an affine bundle, $p^{*}: A_{k} X \rightarrow A_{k+m} E$ is surjective.

2.6 Intersection with divisors

Consider $\alpha \in Z_{k}(X)$ and let D be a Cartier divisor on X. Then we want to define $D \cdot \alpha \in A_{k-1}(V)$. By linearity, we can assume $\alpha=[V]$. Two cases:

1. $V \nsubseteq \operatorname{supp}(D)$. Then D intersects with V, let $D=\sum a_{i}\left[W_{i}\right]$, then $D \cdot V=\sum a_{i}\left[W_{i} \cap V\right]$.
2. $V \subseteq \operatorname{supp}(D)$. We can not simply intersect. Let $i: V \hookrightarrow X$. From D consider the line bundle $\mathcal{O}(D)$. Consider the line bundle on $V, i^{*} \mathcal{O}(D)$. There is a Cartier divisors C on V such that $i^{*} \mathcal{O}(D) \cong \mathcal{O}(C)$. Then $[C]=V \cdot D \in A_{k-1}(V)$.

3 Chern Classes (Ian Vincent)

3.1 Motivation

(Following Eisenbud)
Let $\pi: E \rightarrow X$ of rank n be a vector bundle and there exists sections s_{1}, \ldots, s_{n} of π such that for every $p \in X$, $s_{1}(p), \ldots, s_{n}(p)$ are linearly independent (in each fibre). Make some changes of coordinates so that $s_{1}(p), \ldots, s_{n}(p)$ is a basis for each fibre.

Idea: If we have enough global sections finding their forced linear dependence measures the non-triviality (twisting) of $\pi: E \rightarrow X$.

3.2 Chern classes of line bundles

Let L be a line bundle over a scheme X. We define a function $c_{1}(L) \cap-: A_{k}(X) \rightarrow A_{k-1}(X)$ in the following way. If $[V] \in A_{k}(X)$ then choose a Cartier divisor C on V such that $\left.L\right|_{V} \cong \mathcal{O}_{V}(C)$ then $c_{1}(L) \cap[V]:=[C]$. We extend linearly to get a homomorphism $A_{k}(X) \rightarrow A_{k-1}(X)$
Remark. This is well defined. If $L=\mathcal{O}_{X}(D)$ then if $\alpha=[V]$ we have $c_{1}(L) \cap[V]=D \cdot \alpha$ as defined last time.
Properties (Fulton Prop 3.1)

1. Commutativity: Let L, L^{\prime} be line bundles on X then $c_{1}(L) \cap\left(c_{1}\left(L^{\prime}\right) \cap \alpha\right)=c_{1}\left(L^{\prime}\right) \cap\left(c_{1}(L) \cap \alpha\right) \in A_{k-2}(X)$
2. Projection formula: Let $f: X^{\prime} \rightarrow X$ be a proper morphism, L a line bundle on X and $\alpha \in A_{k}\left(X^{\prime}\right)$. Then $f_{*}\left(c_{1}\left(f^{*} L\right) \cap \alpha\right)=c_{1}(L) \cap f_{*}(\alpha)$
3. Pullback: Let $f: X^{\prime} \rightarrow X$ be a flat morphism of relative dimension n, L a line bundle on X and $\alpha \in A_{k}(X)$. Then $c_{1}\left(f^{*} L\right) \cap f^{*} \alpha=f^{*}\left(c_{1}(L) \cap \alpha\right)$
4. Additivity: Let L, L^{\prime} be line bundles on $X, \alpha \in A_{n}(X)$ then $c_{1}\left(L \otimes L^{\prime}\right) \cap \alpha=c_{1}(L) \cap \alpha+c_{1}\left(L^{\prime}\right) \cap \alpha$. In particular, $c_{1}\left(L^{-1}\right) \cap \alpha=-c_{1}(L) \cap \alpha$.
Example. Consider $X=\mathbb{P}^{n}$ and let L^{k} be a linear subspace of \mathbb{P}^{n} with dimension k. Then $\mathcal{O}_{\mathbb{P} n}(1) \leftrightarrow H$ hyperplane section of \mathbb{P}^{n}. Then $c_{1}\left(\mathcal{O}_{\mathbb{P}}(1)\right) \cap\left[L^{k}\right]=\left[L^{k-1}\right]$. More generally, if $X \subseteq \mathbb{P}^{n}$ is a subvariety, then $c_{1}\left(\mathcal{O}_{\mathbb{P}}(1)\right) \cap[X]=[X \cap H]$.

3.3 Segre classes

Let $\pi: E \rightarrow X$ be a vector bundle of rank $e+1$ on X. Let $P=P(E)$ (turn E into projective space), $\mathcal{O}_{P}(1)$ is the "canonical line bundle on P ". Define homomorphism $s_{i}: A_{k}(X) \rightarrow A_{k-i}(X)$ by $s_{i}(E) \cap \alpha=\pi_{*}\left(c_{1}\left(\mathcal{O}_{p}(1)\right)^{e+1} \cap \pi^{*} \alpha\right)$ where π^{*} is a flat pullback from $A_{n}(X) \rightarrow A_{k+e}(P)$. The product $c_{1}\left(\mathcal{O}_{P}(1)\right)^{e+i}$ is just composition. This is called the i th Segre class.

Properties (Fulton 3.1)

1. Similarly we have commutativity
2. Projection
3. Pullback
4. For $\alpha \in A_{k}(X), s_{i}(E) \cap \alpha$ if $i<0$ and $s_{0}(E) \cap \alpha=\alpha$.

3.4 General Chern class

Let $\pi: E \rightarrow X$ be a vector bundle of rank $n=e+1$. We define $s_{t}(E)=1+s_{1}(E) t+s_{2}(E) t^{2}+\ldots$. Then the Chern class $c_{t}(E)$ is the coefficient of the inverse power series, i.e., $c_{t}(E)=\sum c_{i}(E) t^{i}=s_{t}(E)^{-1}$.

Explicitly, $c_{0}(E)=1$ (i.e., $\left.c_{0}(E) \cap \alpha=\alpha\right), c_{1}(t)=-s_{1}(E)$. In general we have

$$
c_{i}(E)=(-1)^{i} \operatorname{det}\left(\begin{array}{cccccc}
s_{1}(E) & 1 & 0 & \ldots & \cdots & 0 \\
s_{2}(E) & s_{1}(E) & 1 & 0 & & 0 \\
\vdots & & \ddots & \ddots & \ddots & \\
\vdots & & & \ddots & \ddots & 0 \\
\vdots & & & & \ddots & 1 \\
s_{i}(t) & \cdots & \cdots & & s_{2}(E) & s_{1}(E)
\end{array}\right)
$$

Remember $s_{i}(E)$ are endomorphism of $A_{*}(X)$ hence products here means compositions of functions.
Definition 3.1. The total Chern class is $c(E)=1+c_{1}(E)+\cdots+c_{e+1}(E)$
Properties (Fulton, Thm 3.2)

1. Commutativity
2. Projection
3. Pullback
4. Vanishing: $c_{i}(E)=0$ for $i>\operatorname{rk} E$
5. Whitney sum: For any short exact sequences of Vector bundle on $X: 0 \rightarrow E^{\prime} \rightarrow E \rightarrow E^{\prime \prime} \rightarrow 0$, then $c_{t}(E)=c_{t}\left(E^{\prime}\right) c_{t}\left(E^{\prime \prime}\right)$.
An important ingredients for this proof is the splitting construction: Let \mathcal{S} be a finite collection of vector bundles on X. There is a scheme X and a flat morphism $f: X^{\prime} \rightarrow X$ such that $f^{*} A_{*} X \rightarrow A_{*} X^{\prime}$ is injective and furthermore for each vector bundle $E \in \mathcal{S}, f E$ has a filtration of subbundles $E=E_{r}>\cdots>E_{0}=0$ such that $E_{i} / E_{i+1}=L_{i}$ a line bundle. Then $c_{t}(t)=\Pi\left(1+c_{1}\left(L_{i}\right) t\right)$.

3.5 Examples

- Consider $T_{\mathbb{P}^{n}}$ (the tangent bundles of \mathbb{P}^{n}), we have an exact sequence $0 \rightarrow \mathcal{O}_{\mathbb{P}^{n}} \rightarrow \mathcal{O}_{\mathbb{P}^{n-1}}(1)^{\oplus(n+1)} \rightarrow T_{\mathbb{P}^{n}} \rightarrow 0$ (which is the dual of $0 \rightarrow \Omega_{\mathbb{P}^{n}} \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(1)^{\oplus(n+1)} \rightarrow \mathcal{O}_{\mathbb{P}^{n}} \rightarrow 0$). If $H=c_{1}\left(\mathcal{O}_{\mathbb{P}^{n}}(1)\right.$), by the splitting principle then $c_{t}\left(\mathcal{O}_{\mathbb{P}^{n}}(1)^{\oplus(n+1)}\right)=(1+H t)^{n+1}$. Now $\mathcal{O}_{\mathbb{P}^{n}}$ is a trivial bundle on \mathbb{P}^{n} so by Whitney formula $c_{t}\left(T_{\mathbb{P}^{n}}\right)=$ $(1+\mathrm{id} t)^{n+1}$
- Let $X \subseteq \mathbb{P}^{n}$ be a smooth hypersurface in \mathbb{P}^{n} of degree d. Let $i: X \hookrightarrow \mathbb{P}^{n}$ be a closed embedding. Then we have the sequence $0 \rightarrow T_{X} \rightarrow i^{*} T_{\mathbb{P}^{n}} \rightarrow \mathcal{N} \rightarrow 0$. We have $c_{t}\left(i^{*} T_{\mathbb{P}^{n} n}\right)$ is the restriction of $(1+H t)^{n+1}$ to X. Now $c_{1}(\mathcal{N})=c_{1}\left(i^{*} \mathcal{O}_{\mathbb{P}^{n}}(X)\right)=c_{1}\left(i^{*} \mathcal{O}_{\mathbb{P}}(d)\right)=d H$ by surjectivity of Chern classes of line bundles. So by Whitney formula, $c_{t}\left(T_{X}\right)=\frac{(1+H t)^{n+1}}{(1+d H t)}$.
Theorem 3.2 (Fulton Thm 3.3). Let $\pi: E \rightarrow X$ be a vector bundle of rank r. The flat pullback $\pi^{r}: A_{k-r}(X) \rightarrow$ $A_{k}(P(E))$ is an isomorphism for every $k \geq r$. In particular, each element $\beta \in A_{k}(P(E))$ is uniquely expressible in the form $\beta=\sum_{i=1}^{r} c_{1}\left(\mathcal{O}_{P(E)}(1)\right)^{i} \cap \pi^{r} \alpha_{i}$ for some $\alpha_{i} \in A_{k-r+i}(X)$

4 Segre Classes (Tom Ducat)

In the previous section we learned about Segre and Chern classes for line bundles.
Notation. $h_{X}=c_{1}\left(\mathcal{O}_{X}(1)\right)$.
Brief recap of last section: Let $\pi: E \rightarrow X$ be a vector bundle over a scheme X of rank $e+1$, consider $\mathbb{P}(E), \mathcal{O}_{\mathbb{P}(E)}(1)$ then the Segre class $s_{i}(E)$ is given by the formula: $A_{k} X \rightarrow A_{k-i} X$ defined by $\alpha \mapsto \alpha \cap s_{i}(E)=$ $\pi_{*}\left(h_{\mathbb{P}(E)}^{i+e} \cap \pi^{*} \alpha\right)$. The Chern classes $c_{i}(E)$ are defined by $\sum_{i \geq 0} c_{i}(E) t^{i}=\left(\sum_{i \geq 0} s_{i}(E) t^{i}\right)^{-1}$

In this section, we want to generalised Chern classes to more general objects than vector bundles.

4.1 Cones

Consider $\mathcal{F}^{\bullet}=\oplus_{i \geq 0} \mathcal{F}^{i}$ to be a graded sheaf of \mathcal{O}_{X}-algebras over a scheme X. (Caveats: $\mathcal{O}_{X} \rightarrow \mathcal{F}_{0}$ surjective, \mathcal{F}_{1} coherent and generate \mathcal{F}^{\bullet}). Then the cone of X is $C=\operatorname{Spec} \mathcal{F}^{\bullet} \xrightarrow{\pi} X$. There are two ways of getting a projective cone over X :

1. Projectivised cone $\mathbb{P}(C) . \mathbb{P}(C)=\operatorname{Proj}_{X} \mathcal{F}^{\bullet}$.
2. Projective closure $\bar{C} \cdot \bar{C}=\operatorname{Proj}\left(\oplus_{0 \leq i \leq d} \mathcal{F}^{i} z^{d-i}\right) \xrightarrow{\bar{\pi}} X$

Remark. $C \subseteq \bar{C}$ is a dense affine open subset and $\bar{C} \backslash C \cong \mathbb{P}(C)$.
The hyperplane section $h_{\bar{C}} \cap[\bar{C}]=[\mathbb{P}(C)]$.
For an arbitrary coherent sheaf \mathcal{F} we can do this construction using Sym $\mathcal{F}=\oplus_{i \geq 0} \mathcal{F} \otimes i /$ sym perm.
Definition 4.1. The Segre class $s(C)$ is defined to be $s(C)=\bar{\pi}_{*}\left(\sum_{i \geq 0} h_{\bar{C}}^{i} \cap[\bar{C}]\right) \in A_{*} X$.

Proposition 4.2.

1. If E is a vector bundle over X then $s(E)=c(E)^{-1} \cap[X]$ (where $c(E)=1+c_{1}(E)+\cdots+c_{r}(E)$ the total Chern class as defined in the previous section)
2. If C has irreducible components c_{1}, \ldots, c_{k} with geometric multiplicities m_{1}, \ldots, m_{k} then $s(C)=\sum_{i} m_{i} s\left(C_{i}\right)$. Proof.
3. The only issue that needs to be checked is $\bar{E}=\operatorname{ProjSym}\left(E \oplus \mathcal{O}_{X}\right)$. Now the short exact sequence $0 \rightarrow \mathcal{O}_{X} \rightarrow$ $\bar{E} \rightarrow E \rightarrow 0$ gives rise to $c(\bar{E})=c(E) c\left(\mathcal{O}_{X}\right)=c(E)$
4. This follows from $[\bar{C}]=\sum m_{i}\left[\bar{C}_{i}\right]$

Remark. If we have a short exact sequence $0 \rightarrow \mathcal{F} \rightarrow \mathcal{G} \rightarrow \mathcal{E} \rightarrow 0$ where \mathcal{E} is locally free, then $s(\mathcal{F})=s(\mathcal{G}) \cap c(E)$.

4.2 Normal Cones

Take a closed subscheme $X \subset Y$ with ideal sheaf $\mathcal{I}=\mathcal{I}_{X / Y}$. The normal cone of X in Y is $C_{X} Y:=\operatorname{Spec} \oplus_{n \geq 0}$ $\mathcal{I}^{n} / \mathcal{I}^{n+1}$. The Segre class of X in Y is $s(X, Y):=s\left(C_{X} Y\right) \in A_{*} X$.

Recall: The blow-up of X in Y is $\mathrm{Bl}_{X} Y:=\operatorname{Proj}_{Y} \oplus_{n \geq 0} \mathcal{I}^{n} \xrightarrow{\sigma} Y$ and $E=\sigma^{-1}(X)$ the exceptional divisor, has ideal sheaf $\mathcal{O}(1) . E=\operatorname{Proj}\left(\oplus \mathcal{I}^{n} \otimes_{\mathcal{O}_{Y}} \mathcal{O}_{X}\right)=\operatorname{Proj}\left(\oplus \mathcal{I}^{n} / \mathcal{I}^{n+1}\right)=\mathbb{P}\left(C_{X} Y\right)$.

Trick: $X \subset Y$, consider $\mathbb{A}^{1} \times Y \supset\{0\} \times X$, define $M_{X} Y:=\mathrm{Bl}_{X \times\{0\}} Y \times \mathbb{A}^{1} \rightarrow Y$. The exceptional divisor is isomorphic to $\overline{C_{X} Y}$.

Example. $X \subset Y$ is embedded regularly, i.e., the normal cone is a vector bundle then $s(X, Y)=c\left(C_{X} Y\right)^{-1} \cap[X]$.
Lemma 4.3. Let $X \subset Y, Y$ pure dimensional with irreducible components Y_{1}, \ldots, Y_{k} and multiplicities m_{1}, \ldots, m_{k} then $s(X, Y)=\sum m_{i} s\left(X_{i}, Y_{i}\right)$ where $X_{i}=X \cap Y_{i}$.

Proof. Consider $M_{X} Y$ has irreducible components $M_{X_{i}} Y_{i},\left[M_{X} Y\right]=\sum m_{i}\left[M_{X_{i}} Y_{i}\right] \in A_{*} M_{X} Y$. So we get $\left.C_{X} Y\right]=$ $\sum m_{i}\left[\overline{C_{X_{i}} Y_{i}}\right]$.
Proposition 4.4. Iff : $Y^{\prime} \rightarrow Y$ is a morphism of pure dimensional schemes, $X^{\prime} \subset Y^{\prime}, X \subset Y$ are closed subschemes such that $X^{\prime}=f^{-1}(X)$ is the scheme theoretic pull-back. Then

1. Push-forward: If f is proper, Y irreducible, each components of Y^{\prime} maps onto Y then $f_{*} S\left(X^{\prime}, Y^{\prime}\right)=$ $\operatorname{deg}\left(Y^{\prime} / Y\right) s(X, Y) \in A_{*} X$.
2. Pull-back: If f is flat then $f^{*} s(X, Y)=s\left(X^{\prime}, Y^{\prime}\right) \in A_{*} X^{\prime}$

Note that $\operatorname{deg}\left(Y^{\prime} / Y\right)=\sum m_{i} \operatorname{deg}\left(Y_{i}^{\prime} / Y\right)$
Proof.

1. Reduce to Y^{\prime} irreducible,

2.

$$
\begin{aligned}
f^{*} s(X, Y) & =f^{*} \pi_{*}\left(\sum_{i \geq 0} h_{\bar{C}}^{i} \cap[C]\right) \\
& =\pi_{*}^{\prime} \bar{f}^{*}\left(\sum_{i \geq 0} h_{\bar{C}}^{i} \cap[\bar{C}]\right) \\
& =\pi_{*}^{\prime}\left(\sum h_{\bar{C}}^{i} \cap[\bar{C}]\right) \\
& =s\left(X^{\prime}, Y^{\prime}\right)
\end{aligned}
$$

Corollary 4.5. Consider $\sigma: \tilde{Y}: \mathrm{Bl}_{X} Y \rightarrow Y$ with exceptional divisor E then $s(X, Y)=\sum_{i \geq 1}(-1)^{i-1} \sigma_{*}\left(E^{i}\right)$.

Example. Let Y be a surface, and let A, B, D be effective Cartier Divisors. Let A, B intersect transversely at smooth points $p \in \underset{\sim}{Y}$. Let X be the scheme theoretic intersection $(A+D) \cap(B+D)$. Then $s(X, Y)=[D]-\left[D^{2}\right]+[p]$. To see this, let $\sigma: \widetilde{Y}=\mathrm{Bl}_{p} Y \rightarrow Y, \widetilde{X}=\sigma^{*} D+E$ (where E is the exceptional divisor). Then

$$
\begin{aligned}
S(X, Y) & =\sigma_{*} s(\tilde{X}, \tilde{Y}) \\
& =\sigma_{*}((1-\widetilde{X})[\widetilde{X}]) \\
& =\sigma_{*} \widetilde{X}-\sigma_{*}\left(\sigma^{*} D^{2}+2 \sigma^{*} D E+E^{2}\right) \\
& =[D]-\left[D^{2}\right]+[p]
\end{aligned}
$$

5 The basic construction (Simon)

5.1 The basic construction

The basic set up is the following: A fibre square is

where

- $i: X \hookrightarrow Y$ is a regular embedding of dimension d
- V is purely k-dimensional, $f: V \rightarrow Y$ morphism
- $W=f^{-1}(X)$ is the inverse image scheme

Some preliminary definitions and facts:

- $N:=g^{*} N_{X} Y$ a bundle of W (Recall $N_{X} Y=C_{X} Y=\operatorname{Spec}\left(\oplus_{n \geq 0} \mathcal{I}^{n} / \mathcal{I}^{n+1}\right.$ where \mathcal{I} is the ideal sheaf of X in Y), with $\pi: N \rightarrow W$ the projection and $s: W \rightarrow N$ the zero section

Fact 5.1. Recall that $\pi^{*}: A_{k-d}(W) \rightarrow A_{k}(N)$ is an isomorphism. We define $s^{*}=\left(\pi^{*}\right)^{-1}: A_{k}(N) \rightarrow A_{k-d}(W)$

- $C=C_{W} V$ the normal cone

Fact 5.2. If \mathcal{I} is the ideal sheaf of X in Y, \mathcal{J} the ideal sheaf of W in V, then there is a surjective morphism $\oplus_{n} f^{*}\left(\mathcal{I}^{n} / \mathcal{I}^{n+1}\right) \rightarrow \oplus_{n} \mathcal{J}^{n} / \mathcal{J}^{n+1}$. This gives a closed embedding $C \hookrightarrow N$

So we now have

Fact 5.3. C is purely k-dimensional, so $[X] \in A_{k}(N)$. (This can be seen by: the blow up of $V \times \mathbb{A}^{1}$ in $W \times\{0\}$ is purely $(k+1)$-dimensional. So the exceptional divisor $P(C \oplus 1)$ is Cartier. Hence $P(C \oplus 1)$ is purely k-dimensional and contains C as a dense open subset)

Definition 5.4. The intersection product of V by X in Y is $X \cdot V=X \cdot{ }_{Y} C:=s^{*}[C] \in A_{k-d}(W)$ (i.e., the unique class $[Z]$ such that $\left.\pi^{*}[Z]=[C]\right)$

Proposition 5.5.

1. $X \cdot V=\{c(N) \cap s(W, V)\}_{k-d}$ (where $s(W, V)=s(C)=q_{*}\left(\sum_{i \geq 0} c_{1}(O(1))^{i} \cap P(C \oplus 1)\right)$ with $\left.q: P(C \oplus 1) \rightarrow W\right)$
2. If $d=1$ (so X is a Cartier divisor), V a variety and f a closed embedding, then $X \cdot V$ is the same as intersection with a divisor (as defined before)
3. If Y is pure dimensional, f a regular embedding, then $X \cdot V=V \cdot X=(V \times X) \cdot \Delta_{Y}$. ie., setup:

4. If $W \hookrightarrow V$ is a regular embedding of codimension d^{\prime} with normal bundle $N^{\prime}=C_{W} V$. Then $X \cdot V=$ $c_{d-d^{\prime}}\left(W / N^{\prime}\right) \cap[w]$.
5. If $X \times \mathbb{P}^{1} \hookrightarrow \mathcal{Y}$ is a family of regular embeddings, \mathcal{V} a subvariety of \mathcal{Y}, \mathcal{V} and \mathcal{Y} are flat over \mathbb{P}^{1}. Then $X \cdot Y_{t} \cdot V_{t}$ are equal for all t.

5.2 Distinguished components and canonical decomposition

Assume $[C]=\sum m_{i}\left[C_{i}\right]$ with C_{i} the irreducible components of $C . W \geq Z_{i}:=\prod\left(C_{i}\right)$ are the distinguished components of $X \cdot V$. For $N_{i}:=\left.N\right|_{Z_{i}}, s_{i}$ its zero section, $\alpha_{i}:=s_{i}^{*}\left[C_{i}\right]$. Then $X \cdot V=\sum m_{i} \alpha_{i}$ is the canonical decomposition of $X \cdot V$.

Example. Let $Y=\mathbb{P}_{[x, y, z]}^{2}, X_{1}=\{x y=0\}, X_{2}=\{x=0\}$ and $P=\{x=y=0\}$. We have to possibilities to intersect X_{1} and X_{2}.
1.

Hence $C=C_{W} V=X_{2}$. In particular, X_{2} is the only distinguished components
2.

Then let $I=\langle\bar{x}\rangle$ in $k[x, y] /\langle x y\rangle$. We have $\oplus_{n \geq 0} I^{n} / I^{n+1} \cong k[x, y, T] /\langle x, y T\rangle$. So we can see that C has two components, namely $\{x=y=0\}$ and $\{x=T=0\}$. Now $N=\operatorname{Spec}(k[x, y, T] /\langle x\rangle)$. So the distinguished components are X_{2} and P.

5.3 Refined intersection

Given our fibred square

we have a homomorphism $i^{!}: Z_{k}(V) \rightarrow A_{k-d}(W)$ defined by $\sum n_{i}\left[V_{i}\right] \mapsto \sum n_{i}\left(X \cdot V_{i}\right)$ (note that $X \cdot V_{i}$ are actually lies in $\left.A_{k-d}\left(X \cap V_{i}\right)\right)$.

Fact (Non-trivial). This passes to rational equivalence!
We have refined Gysin homomorphism $i^{!}: A_{k} V \rightarrow A_{k-d} W$.
Notation. If $V=Y$ and $f=$ id we write $i^{!}=i^{*}: A_{k} Y \rightarrow A_{k-d} X$. In this case the map is $[Z] \mapsto s_{N}^{*}\left[C_{Z \cap X} V\right]$.
Remark. For any purely k-dimensional cycle $[Z], i^{!}[Z]=X \cdot Z$.
Theorem 5.6. Given the fibre diagram

where $i: X \rightarrow Y$ is a regular embedding of codimension d.

1. (Push-forward) If p is proper, $a \in A_{k} Y^{\prime \prime}$, then $i^{!} p_{*}(\alpha)=q_{*}\left(i^{!} \alpha\right)$ (note that the first $i^{!}$is with respect to

Merit: e.g., we can compute $X \cdot Y^{\prime}$ by calculating $X \cdot\left(\right.$ some blowup of $\left.Y^{\prime \prime}\right)$. Therefore we see the advantage of allowing arbitrary morphism to Y.
2. (Pull-back) If p is flat of regular dimension $n, \alpha \in A_{k} Y^{\prime}$ then $i^{!} p^{*}(\alpha)=q^{*} i^{!} \alpha$

Merit: we can compute (part of) intersections products of locally by restricting to open subschemes

5.4 The intersection ring

Assumption: Y is smooth which implies $\delta: Y \rightarrow Y \times Y$ (defined by $y \mapsto(y, y)$) is a regular embedding
Setup: For $x \in A_{k}(Y), y \in A_{l}(Y)$

we define $x \cdot y:=\delta^{*}(x \times y) \in A_{k+l-n}(Y)$
Theorem 5.7. This makes $A_{*}(Y)$ into a graded (by codimension), commutative ring with unit $\left.p Y\right]$.
The assignment Y to $\left(A_{*}(Y)\right.$,) is a contravariant function form smooth varieties to rings.

6 Schubert Calculus (Aurelio Carlucci)

6.1 Recap on $G(k, n)$

Let V be a complex vector space of dimension n, let $G(k, V)=\{k-$ subspace of $V\}, G(k, n)=G\left(k, \mathbb{C}^{n}\right)$.
Let $\Lambda \in G(K, n)$

$$
\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{K}
\end{array}\right)=\left(\begin{array}{ccc}
v_{1,1} & \cdots & v_{1 k} \\
\vdots & & \\
v_{k 1} & & v_{k k}
\end{array}\right)
$$

where $\operatorname{rk} K=k$. Let $I=\left\{i_{1}, \ldots, i_{k}\right\} \subset\{1, \ldots k\}, V_{I}=\operatorname{Span}\left\{e_{i} \mid i \notin I\right\}, U_{i}=\left\{\Lambda: \Lambda \cap V_{I}=\emptyset\right\}, I^{t h}$ matrix non-singular

We have a map $\phi_{I}: U_{I} \rightarrow \mathbb{C}^{k(n-k)}$. We have that $\phi_{I}\left(U_{I} \cap U_{I^{\prime}}\right)$ is open. Let $\Lambda_{I^{\prime}}^{I}$ be the I^{\prime}-th minor of Λ^{I}, we have $\Lambda^{I}=\left(\Lambda_{I^{\prime}}^{I}\right)^{-1} \cdot \Lambda^{I^{\prime}}$ 。

6.2 Cell decomposition

Let \mathcal{V} be a flag, that is $\mathcal{V}=\left\{V_{1} \subsetneq V_{2} \subsetneq \ldots \subsetneq V_{n}=\mathbb{C}^{n}\right\}$. Let $\mathbb{P}^{n}=G(1, n+1)$, we can consider $W_{i} \cong \mathbb{C}^{i-1}=\{l \subsetneq$ $\left.\mathbb{C}^{n+1}: l \subset V_{i}, l \nsubseteq V_{i-1}\right\}$, we have $\mathbb{P}^{n}=\mathbb{C}^{0} \cup \cdots \cup \mathbb{C}^{n}$.

Let \mathcal{V} be a generic flag. Let $\Lambda \in G(K, n)$, we have $\Lambda \cap V_{i}=\left\{\begin{array}{ll}\text { zero } \operatorname{dim} & i \leq n-k \\ (1+k-n) \operatorname{dim} & \text { otherwise }\end{array}\right.$. Let $\left(a_{1}, \ldots, a_{k}\right)=a$ be a cycle, let $\sum_{a}(\mathcal{V})=\left\{\Lambda \in G(K, n) \mid \operatorname{dim}\left(V_{n-k+i-a_{i}} \cap \Lambda\right) \geq i\right\}$
Remark. If $a_{i}>n-k$, then $\operatorname{dim} V_{n-k+1-a_{i}}<a_{i}$ and $\sum_{a}=\emptyset$.
Let $\sigma_{a}=\left[\Sigma_{a}\right]$, this construction is independent of the choice of flag. This is called a Schubert class.
Remark. We have that $\sigma_{a} \subset \sigma_{b}$ if and only if $a \geq b$ (i.e., $a_{i} \geq b_{i}$ for all i)
Example. Consider $G(2,4)$

- $\square(1,0): \sigma_{1,0}=\left\{\Lambda: \operatorname{dim}\left(\Lambda \cap V_{n-k+i-a_{i}}\right) \geq i\right\}$, i.e, $\operatorname{dim}\left(\Lambda \cap V_{2}\right) \geq 1$ and $\operatorname{dim}\left(V \cap V_{4}\right) \geq 2$ which is trivial. So $\sigma_{1,0}=\left\{\Lambda \mid \operatorname{dim}\left(\Lambda \cap V_{2}\right) \geq 1\right\}$.
- $\square(1,1), \sigma_{1,1}:$ we need $\operatorname{dim}\left(\Lambda \cap V_{2}\right) \geq 1$ and $\operatorname{dim}\left(\Lambda \cap V_{3}\right) \geq 2$, but as the second implies the first, we have $\sigma_{1,1}=\left\{\Lambda: \Lambda \subset V_{3}\right\}$
- $\quad \square(2,0), \sigma_{2,0}:$ we need $\operatorname{dim}\left(\Lambda \cap V_{1}\right) \geq 1$, so $V_{1} \subset \Lambda$ and $\operatorname{dim}\left(\Lambda \cap V_{4}\right) \geq 2$ which is trivial, so $\sigma_{2,0}=\{\Lambda$:
$\left.V_{1} \subset \Lambda\right\}$
- $\quad \square(2,1), \sigma_{2,1}:$ we need $\operatorname{dim}\left(\Lambda \cap V_{1}\right) \geq 1$, so $V_{1} \subset \Lambda$ and $\operatorname{dim}\left(\Lambda \cap V_{3}\right) \geq 2$ so $\Lambda \subset V_{3}$. Hence $\sigma_{2,1}=\{\Lambda$:
$\left.V_{1} \subset \Lambda \subset V_{3}\right\}$.

So we have $V_{1} \subset V_{2} \subset V_{3} \subset \mathbb{C}$, so take the flag $\{P\} \subset l_{0} \subset H$ (a point, line and hyperplane). So translating we have

- $\sigma_{1,0}=\left\{l \cap l_{0} \neq \emptyset\right\}$
- $\sigma_{1,1}=\{l \subset H\}$
- $\sigma_{2,0}=\{P \in l\}$
- $\sigma_{2,1}=\{p \in l \subset h\}$

Choose bases e_{i} of V and let $V_{i}=\operatorname{span}\left\{e_{1}, \ldots, e_{i}\right\}$. Let $\Lambda \subset \sum_{a_{1} \ldots a_{k}}$, then we can find v_{1} with $\Lambda \cap V_{n-k+1-a_{1}} \supset$ $\left\langle v_{1}\right\rangle$, and we can normalise v_{1} so that $\left\langle v_{1}, e_{n-k+1-a_{1}}\right\rangle=1$. We can find v_{2} with $\left\langle v_{1}, v_{2}\right\rangle \subseteq \Lambda \cap V_{n-k+2-a_{2}}$ such that $\left\langle v_{2}, e_{n-k+1-a_{1}}\right\rangle=0$ and $\left\langle v_{2}, e_{n-k+1-a_{2}}\right\rangle=1$. We can continue this process to find more v_{i}. Basically, we are just apply Gaussian elimination. So we end up with $\sum_{j=1}^{n}\left(n-k+j-a_{j}-1\right)-\sum_{j=1}^{k}(k-j)=k(n-k)-\sum_{j} a_{j}$.

Fact. The Schubert classes are a free basis for $A_{*}(G(K, n))$.

6.3 Complementary codimension

Proposition 6.1. Let \mathcal{V} and \mathcal{W} be general flags. Consider $\Sigma_{a}(V), \Sigma_{b}(W)$ with $|a|+|b|=k(n-k)$, then

- they intersect in a unique point if $a_{i}+b_{k-1-i}=n-k \forall i$
- They are disjoint otherwise.

Proposition 6.2. $A_{*}(G(K, n)) \cong \mathbb{Z}^{\binom{n}{k}}$.
If $[\Gamma] \in A^{m}(G(k, n))$ with $[\Gamma]=\sum_{|a|=m} \gamma_{a} \sigma_{a}$ where $\gamma_{a}=\operatorname{deg}\left([\Gamma] \cdot \sigma_{a^{*}}\right)=\#\left(\Gamma \cap \Sigma_{a^{*}}(\mathcal{V})\right)$ where \mathcal{V} is a generic flag.

We have the multiplication of Schubert classes: $\sigma_{a} \sigma_{b}=\sum_{|c|=|a|+|b|} \gamma_{a, b, c} \sigma_{c}$. There is a formula for Special Schubert classes, i.e., the one of the forms $\sigma_{\alpha}=\sigma_{\alpha, 0, \ldots, 0}$

Proposition 6.3. Let $\sigma_{\alpha} \in A(G(K, n)), \beta \in \mathbb{N}$. Then $\sigma_{\beta} \cdot \sigma_{a}=\sum_{|e|=|a|+\beta, a_{i} \leq e_{i} \leq e_{i-1}} \sigma_{e}$
For example

- $\sigma_{1} \cdot \sigma_{e}=$ sum of all Young diagram obtained from a.

- $\left(\sigma_{\square}\right)^{2}=2 \cdot \square($ which in $2 \cdot\{\mathrm{pt}\}$ in $G(2,4))$

6.4 Giambelli's formula

Consider $\sigma_{a_{1} \ldots a_{k}}$. This is equal to

$$
\operatorname{det}\left(\begin{array}{ccccc}
\sigma_{a_{1}} & \sigma_{a_{1}+1} & \sigma_{a_{1}+2} & \cdots & \sigma_{a_{1}+k-1} \\
\sigma_{a_{2}-1} & \sigma_{a_{2}} & & & \\
\sigma_{a_{3}-2} & & & & \\
\vdots & & & & \\
& & & \\
\sigma_{a_{k}-k+1} & & & & \sigma_{a_{k}}
\end{array}\right)
$$

Example. We have $\sigma_{2,1}=\left(\begin{array}{cc}\sigma_{2} & \sigma_{3} \\ \sigma_{0} & \sigma_{1}\end{array}\right)=\sigma_{2} \sigma_{1}-\sigma_{3}$

- $\sigma_{11}=\sigma_{1}^{2}-\sigma_{2}$, so $\sigma_{1}^{2}=\sigma_{2}+\sigma_{11}$ (which we had calculated above)
- $\sigma_{1}^{2} \sigma_{2}=\sigma_{2}^{2}$
- $\sigma_{1} \sigma_{21}=\sigma_{22}$

So we find that $A_{*}\left(\mathbb{G}\left(1, \mathbb{P}^{3}\right)\right)=\mathbb{Z}\left[\sigma_{1}, \sigma_{2}\right] /\left(\sigma_{1}^{3}-2 \sigma_{1} \sigma_{2}, \sigma_{1}^{2} \sigma_{2}-\sigma_{2}^{2}\right)$
Suppose we have four lines in $\mathbb{P}^{3}, l_{1}, l_{2}, l_{3}, l_{4}$. We want to know how many general lines intersect l_{i}. We can use Schubert calculus. We calculate $\sigma_{1}\left(l_{i}\right)$ (i.e., choosing a flag consisting of one component l_{i}). Since $\sigma_{1}^{4}=2 \cdot \square \square=2$

7 Riemann Roche (Miles Reid)

NB: This section needs some reworking, which will be done at a later stage
The statement of Riemann Roche is the following. Let X be smooth projective, we have $f: X \rightarrow Y$ defined by $\mathcal{F} \mapsto \sum(-1)^{i} R^{i} f_{*} \mathcal{F}$, gives rise to $f_{!}: K_{0}(X) \rightarrow K_{0}(Y)$. If Y is a point, $h^{i}(\mathcal{F}) \in K_{0}(\mathrm{pt})=$ dimension of finite dimensional vector space over k, so $\sum(-1)^{i} R^{i} f_{*} \mathcal{F}$ becomes $\chi(\mathcal{F})$.

This diagram only commutes after multiplying by Td_{f}. That is

$$
\operatorname{ch}\left(f_{!} \mathcal{F}\right)=\operatorname{Td}_{X / Y} f_{*}(\operatorname{ch}(\mathcal{F}))
$$

, where $\operatorname{Td}_{X / Y}=\operatorname{Td}_{X} \cdot\left(\operatorname{Td}_{Y}\right)^{-1}$. Let us define Td_{X}.
We have both $K_{0} X$ and $K^{0} X$.

- $K_{0} X$ is K_{0} (coherent sheave)
- $K^{0} X$ is contravariant and is vector bundles over X divided by exact sequences.

If X is smooth then $K_{0} X=K^{0} X$. As we can take \oplus and \otimes we have that K_{0} is a ring. We have $c(E \oplus F)=c(E) \cdot c(F)$. The Chern character of a line bundle by definition is $\operatorname{ch}\left(\mathcal{O}_{X}(D)\right):=1+D+\frac{D^{2}}{2}+\cdots=\exp (D)$. So we are turning addition to multiplication.

Let E be a general coherent sheaf, and write is as a sum of line bundles: $E=\sum \mathcal{O}_{X}\left(\alpha_{i}\right)$ (this is not true, but we can pretend that it is). Then by definition $\operatorname{ch}(E):=\sum \exp \left(\alpha_{i}\right)$.

Consider T_{X}, we are again going to pretend $T_{X}=\sum \mathcal{O}_{X}\left(x_{i}\right)$. We "have" $c\left(T_{X}\right)=\prod\left(1+x_{i}\right)$. We define $\operatorname{Td}_{X}:=\prod \frac{x_{i}}{1-e^{-x_{i}}}$. If we substitute $x_{1}+x_{2}=c_{1}, x_{1} x_{2}=c_{2}$ etc, we find that:

$$
\mathrm{Td}_{X}=1+\frac{1}{2} c_{1}+\frac{1}{12}\left(c_{1}^{2}+c_{2}\right)+\frac{1}{24} c_{1} c_{2}+\frac{1}{720}\left(-c_{1}^{4}+4 c_{1}^{2} c_{2}+c_{1} c_{3}+3 c_{2}^{2}-c_{4}\right)+\frac{1}{1440}\left(-c_{1}^{5}+\ldots\right)
$$

So we get $\chi(\mathcal{F})=\left[\operatorname{ch}(\mathcal{F}) \cdot \operatorname{Td}_{X}\right]_{n}$. From this we deduce $\chi\left(\mathcal{O}_{X}\right)=\operatorname{Td}_{X}[X]$.
Exercise. Let X be a smooth 3-fold, D a divisor on it and calculate $\operatorname{ch}\left(\mathcal{O}_{X}(D)\right)=\left(1+D+\frac{D^{2}}{2}+\frac{D^{3}}{6}\right)\left(1+\frac{1}{2} c_{1}+\ldots\right)$ evaluated at degree 3 terms. We should get $\chi\left(\mathcal{O}_{X}\right)+\frac{1}{12} D c_{2}+\frac{1}{12} D(D-K)(2 D-K)\left(\right.$ note $\left.\chi\left(\mathcal{O}_{X}\right)=\frac{1}{24} c_{1} c_{2}\right)$.

The advantage of this diagram is that it gives a stronger theorem for Riemann Roche while having a much simpler proof.

If $f=g \circ h(g: Y \rightarrow Z, h: X \rightarrow Y$ and $f: X \rightarrow Z)$, it is enough to prove this diagram commutes for g and h separately, i.e., show that $(g h)_{!}=g_{!} h_{!}$and $\mathrm{Td}_{g} \cdot \mathrm{Td}_{h}=\mathrm{Td}_{f}$. Now for

we can do i and p separately. Now p is just straightforward calculation. What about i ? we do this as the inclusion of divisors followed by blowup. We can reduce the case to only looking at divisors.

Question: Why does $\frac{x}{1-e^{-x}}$ appear in Td_{X}. Think of $X \subset V$ a divisor, with the dimension of X and V being n and $n+1$ respectively.

$$
0 \longrightarrow T_{X} \longrightarrow T_{\left.V\right|_{X}} \longrightarrow N_{\left.V\right|_{X}} \longrightarrow 0
$$

Recall that $N_{\left.V\right|_{X}}=\left(\mathcal{I}_{X} / \mathcal{I}_{X}^{2}\right)^{*}$.

$$
0 \longrightarrow \mathcal{O}_{V}(-X) \longrightarrow \mathcal{O}_{V} \longrightarrow \mathcal{O}_{X} \longrightarrow 0
$$

$$
\chi\left(\mathcal{O}_{X}\right)=\chi\left(\mathcal{O}_{V}\right)-\chi\left(\mathcal{O}_{V}(-X)\right)=\operatorname{Td}_{V}-\operatorname{Td}_{V} \cdot e^{-x}
$$

8 Miss multiplicities (Diane)

Definition 8.1. A sequence a_{1}, a_{2}, \ldots is \log-concave if $a_{i}^{2} \geq a_{i-1} a_{i+1}$. I.e., $i \mapsto \log a_{i}$ is a concave function
This implies unimodal, i.e., one local maximal.
Question: Let X be a smooth projective variety of dimension d. Consider $Z \in A_{k}(X)$ for some k. Is $Z=[V]$ for some (reduced irreducible) $V \subseteq X$?

Example.

- $X=\mathbb{P}^{d}$, then $A_{k}\left(\mathbb{P}^{d}\right)=\mathbb{Z}$ (i.e., keeping track of degree). So the question is: is there an irreducible subvariety of \mathbb{P}^{d} of dimension k and degree m ? Here we know the answer is yes if $m>0$
- $X=\mathbb{P}^{2} \times \mathbb{P}^{2} A_{2}(X)=\operatorname{span}\left(\left[\mathbb{P}^{2} \times \mathrm{pt}\right],\left[\mathbb{P}^{1} \times \mathbb{P}^{1}\right],\left[\mathrm{pt} \times \mathbb{P}^{2}\right]\right)$. Let $\zeta=a\left[\mathbb{P}^{2} \times \mathrm{pt}\right]+b\left[\mathbb{P}^{1} \times \mathbb{P}^{1}\right]+c\left[\mathrm{pt} \times \mathbb{P}^{2}\right]$ Is $\zeta=[v]$? The necessary conditions are $a, b, c \geq 0$ and $b^{2} \geq a c$ (and they are sufficient for $\mathbb{P}^{2} \times \mathbb{P}^{2}$). Note that (a, b, c) are log-concave.

Theorem 8.2 (Huh). If $\zeta=\sum e_{i}\left[\mathbb{P}^{i} \times \mathbb{P}^{k-i}\right] \in A_{k}\left(\mathbb{P}^{n} \times \mathbb{P}^{m}\right)$, then there exists $l>0$ with $l \zeta=[V]$ if and only if $\left(e_{0}, \ldots, e_{p}\right)$ is log-concave with no internal zeroes, or $\zeta=\left[\mathbb{P}^{n} \times \mathrm{pt}\right],\left[\mathrm{pt} \times \mathbb{P}^{m}\right],\left[\mathbb{P}^{n} \times \mathbb{P}^{m}\right]$ or $[\mathrm{pt} \times \mathrm{pt}]$.

8.1 Chromatic polynomials

Let G be a finite graph. A colouring of G with q colours is a function $f: \operatorname{Vert}(G) \rightarrow\{1, \ldots, g\}$ for which $f^{-1}(i)$ is an independent set (i.e., no two vertices are adjacent)

Example 8.3.

Let $X_{G}(q)$ to be the number of ways to colour G with q colours. For example above $X_{G}(1)=X_{G}(2)=0$ and $X_{G}(3)=6$.

Theorem 8.4. $X_{G}(q)$ is a polynomial in q with integer coefficients
In our case $X_{G}(q)=q(q-1)(q-2)^{2}=q^{4}-5 q^{3}+8 q^{2}-4 q$.
Conjecture (1968). Write $X_{G}(q)=a_{n} q^{n}-a_{n-1} q^{n-1}+\cdots+(-1)^{n} a_{0}$, then a_{0}, \ldots, a_{n} is log-concave
This is now a theorem by Huh in 2012. The proof involves realising the a_{i} as intersection numbers.

8.2 Hodge index theorem

Theorem 8.5 (Hodge index theorem). Let X be a smooth projective surface and let H be an ample divisor on X, and suppose that D is a divisor with $D \cdot H=0, D \not \equiv 0$ (there exists C such that $D \cdot C \neq 0$). Then $D^{2}<0$.

This implies intersection pairing has signature $(1,-1, \ldots,-1)$.
Corollary 8.6. If $D_{1}=a D+b H$ and $D_{2}=c D+d H$ where H is ample, $H \cdot D=0$ and $D \not \equiv 0$ then $\left(D_{1} \cdot D_{2}\right)^{2} \geq$ $\left(D_{1}^{2}\right)\left(D_{2}^{2}\right)$

Proof. $D_{1} \cdot D_{2}=a c D^{2}+b d H^{2}, D_{1}^{2}=a^{2} D^{2}+b^{2} H^{2}, D_{2}^{2}=c^{2} D^{2}+d^{2} H^{2}$ so check $\left(D_{1} \cdot D_{2}\right)^{2}-D_{1}^{2} D_{2}^{2}=2 a b c d\left(D^{2}\right)\left(H^{2}\right)-$ $\left(a^{2} d^{2}+b^{2} c^{2}\right) D^{2} H^{2}=2\left(D^{2}\right)\left(H^{2}\right)\left(a b c d-\frac{a^{2} d^{2}+b^{2} c^{2}}{2}\right) \geq 0$

So we are going to refer to the corollary when we talk about Hodge index theorem. Let $\zeta=a\left[\mathbb{P}^{2} \times \mathrm{pt}\right]+b\left[\mathbb{P}^{1} \times\right.$ $\left.\mathbb{P}^{1}\right]+c\left[\mathrm{pt} \times \mathbb{P}^{2}\right]$ and suppose that $\zeta=[V]$ where V is an irreducible surface in $\mathbb{P}^{2} \times \mathbb{P}^{2}$. Let $D_{1}=\left[\right.$ general line $\left.\times \mathbb{P}^{2}\right]$ and $D_{2}=\left[\mathbb{P}^{2} \times\right.$ general line $]$ both in $\mathbb{P}^{2} \times \mathbb{P}^{2}$. Then $D_{1} \cdot D_{2}=\left[\mathbb{P}^{1} \times \mathbb{P}^{1}\right], D_{1}^{2}=\left[\mathrm{pt} \times \mathbb{P}^{2}\right]$ and $D_{2}^{2}=\left[\mathbb{P}^{2} \times \mathrm{pt}\right]$. So let $D_{1}^{\prime}=i\left(D_{1}\right), D_{2}^{\prime}=i\left(D_{2}\right)$ as divisors in V. So $D_{1}^{\prime} \cdot D_{2}^{\prime}=\left[\mathbb{P}^{1} \times \mathbb{P}^{2}\right] \cdot[V]=b, D_{1}^{\prime 2}=\left[\mathrm{pt} \times \mathbb{P}^{2}\right] \cdot[V]=a$ and $D_{2}^{\prime 2}=\left[\mathrm{pt} \times \mathbb{P}^{2}\right] \cdot[V]=c$. Therefore the Hodge index theorem implies that $b^{2} \geq a c$.

8.3 Generalisations

Theorem 8.7. Let X be an irreducible complete variety (scheme) of dimension n, and let $\delta_{1}, \ldots, \delta_{n} \in N^{1}(X)_{\mathbb{R}}$ (divisors up to numerical equivalence) be nef classes. Then $\left(\delta_{1} \ldots \delta_{n}\right)^{n} \geq\left(\delta_{1}\right)^{n} \cdots\left(\delta_{n}\right)^{n}$.

For a proof, see e.g., Lazarfeld "positivity bock" theorem 1.6.1.
A variant of this as follow:
Theorem. $\left(\alpha_{1} \cdots \alpha_{p} \cdot \beta_{1} \cdots \beta_{n-p}\right)^{p} \geq\left(\alpha_{1}^{p} \beta_{1} \cdots \beta_{n-p}\right) \cdots\left(\alpha_{p}^{p} \beta_{1} \cdots \beta_{n-p}\right)$.
Corollary 8.8 (Khovanskii, Teissier). Let X be an irreducible complete variety (scheme) of dimension n, let α, β be nef divisors. Set $s_{i}=\alpha^{i} \beta^{n-i}$. Then for $1 \leq i \leq n-1, s_{i}^{2} \geq s_{i-1} s_{i+1}$.

Proof. Apply the variant to the case $p=2, \alpha_{1}=\alpha, \alpha_{2}=\beta$ and $\beta_{1} \cdots \beta_{n-2}=\alpha^{1 i-1} \beta^{n-i-1}$.
Approach to chromatic polynomials: From the graph (say with $n+1$ edges and $r+1$ vertices), we get a $(n+1) \times(r+1)$ matrix of edges and vertices. Let $V^{0}=\operatorname{row}(A) \cap\left(K^{\bullet}\right)^{n}$ (the Torus $\left.\left(K^{\bullet}\right)^{n+1} / K^{\bullet}\right)$, let \widetilde{V} be the closure of graph of the Cremona transformation restricted to V (recall that the Cremona transformation is $\left.\left[x_{0}: \cdots: x_{n}\right] \mapsto\left[\frac{1}{x_{0}}: \cdots: \frac{1}{x_{n}}\right]\right)$ Note that $\widetilde{V} \subset \mathbb{P}^{n} \times \mathbb{P}^{n}$. Let $[\widetilde{V}]=\sum \mu^{i}\left[\mathbb{P}^{r-i} \times \mathbb{P}^{i}\right] \in A_{r}\left(\mathbb{P}^{n} \times \mathbb{P}^{n}\right)$. The claim is that the μ^{i} are the coefficients (up to sign) of $X_{\widetilde{G}}(q):=X_{q}(q) /(q-1)$ (Note $X_{\widetilde{G}}(q)$ is a polynomial since $\left.X_{q}(1)=0\right)$. Easy exercise: μ^{i} is log-concave implies that the a_{i} are log-concave. Take $D_{1}=\left[H \times \mathbb{P}^{n}\right], D_{2}=\left[\mathbb{P}^{n} \times H\right]$ then $\mu^{i}=D_{1}^{i} D_{2}^{r-i}[\widetilde{V}]$ (or maybe $\mu^{i}=D_{1}^{r-i} D_{2}^{i}[\widetilde{V}]$). Hence μ^{i} is log-concave.

9 Toric Intersection Theory (Magda)

Definition 9.1. A Toric variety is an irreducible variety X containing a torus $T_{N}\left(\mathbb{C}^{*}\right)^{n}$. This is a Zariski open subset such that the action of T_{N} on itself extends to an algebraic action of T_{N} on X.

Example 9.2. $X=\mathbb{C}^{2}, T_{N}=\left(\mathbb{C}^{*}\right)^{2}$. Then the action is $(s, t)(x, y)=(s x, t y)$.
$X=\mathbb{P}_{[x, y, z]}^{2}, T_{N}=\left(\mathbb{C}^{*}\right)^{2}$ consisting of points $x y z \neq 0$. The action is $\left[t_{1}: t_{2}: t_{3}\right][x: y: z]=\left[t_{1} x: t_{2} y: t_{3} z\right]$ where $t_{1} t_{2} t_{3} \neq 0$. We look at orbits not, consider $\left[t_{1}: t_{2}: t_{3}\right][1: 0: 0]=\left[t_{1}: 0: 0\right]=[1: 0: 0]$, so $[1: 0: 0],[0: 1: 0]$ and $[0: 0: 1]$ are fixed points. The orbit of $[x: y: 0]$ is $[1: a: 0]$, of $[x: 0: y]$ it's $[1: 0: a]$ and for $[0: x: y]$ it's $[0: 1: a]$ for $a \neq 0$. As for $[x: y: z]$ it is $[a: b: c]$ where $a b c \neq 0$ (under the assumption that $x y z \neq 0$).

We have a correspondence between the orbit and the cones of a picture. Let $V(\sigma)$ denote the orbit corresponding to $\sigma, \Sigma(k)$ the set of k dimensional cone.

Let X be a n-dimensional variety. Recall that the Chow ring of X is $A^{*}(X)=\oplus_{k=0}^{n} A^{k}(X)$ where $A^{k}(X)=$ $Z^{k}(X) / \sim$. Recall that for smooth variety we had a product $A^{k}(X) \times A^{k}(X) \rightarrow A^{k+1}(X)$ which agreed with intersection of transversal objects.

Let X_{Σ} be a complete smooth Toric variety.
Fact. $[V(\sigma)]$ for σ of dimension k generates $A^{k}\left(X_{\Sigma}\right)$.
Example. For $A^{1}\left(X_{\Sigma}\right)=\operatorname{Pic}\left(X_{\Sigma}\right)=\{T-$ inv divisors $\} /\{T$-inv principal divisors $\}=\mathbb{Z}^{|\Sigma(1)|} /\left\langle\operatorname{div}\left(X^{m}\right) ; m \in \mathbb{Z}^{n}\right\rangle$, where $\operatorname{div}\left(X^{m}\right)=\sum_{p}\left\langle m, u_{p}\right\rangle D_{p}, m \in \mathbb{Z}^{n}$, where u_{p} is the "generator" of the rays in $\Sigma(1)$.
Example 9.3. $\operatorname{Pic}\left(\mathbb{P}^{2}\right)=\mathbb{Z}^{3} /\left\langle D_{1}-D_{3}, D_{2}\right.$ " $\left.-D_{3}\right\rangle \cong \mathbb{Z}$ (since $m_{1}=(1,0), m_{2}=(0,1)$)
$\operatorname{Pic}\left(\operatorname{Bl}\left(\mathbb{P}^{2}\right)\right)=\mathbb{Z}^{4} /\left\langle D_{1}-D_{0}-D_{3}, D_{2}-D_{3}\right\rangle \cong \mathbb{Z}^{2}$.
We know that:

- $D_{\sigma_{1}} \cdots D_{\sigma_{k}}=\left\{\begin{array}{ll}V(\sigma) & \sigma=\left\langle\sigma_{1}, \ldots, \sigma_{k}\right\rangle \\ \emptyset & \text { else }\end{array}\right.$.
- $\sum_{p}\left\langle m, u_{p}\right\rangle D_{p}=0$

So being given a fan of a Toric variety, we can construct the following ring:

- With each $\rho_{i} \in \Sigma(1)$ associate a variable x_{i} and let $\mathbb{Z}\left[x_{1}, \ldots, x_{k}\right]$ where $k=|\Sigma(1)|$ be a polynomial ring.
- Let $I \subset \mathbb{Z}\left[x_{1}, \ldots, x_{k}\right]$ be the ideal generated by the monomials $x_{i_{1}}, \ldots, x_{i_{j}}$ such that $\left\langle\rho_{i_{1}}, \ldots, \rho_{i_{j}}\right\rangle \notin \Sigma$.
- Let $J \subset \mathbb{Z}\left[x_{1}, \ldots, x_{k}\right]$ be generated by the linear forms $\sum_{p}\left\langle m, u_{p}\right\rangle D_{p}, m \in \mathbb{Z}^{n}, n=\operatorname{dim} V$.

Then $R(\Sigma):=\mathbb{Z}\left[x_{1}, \ldots, x_{k}\right] /(I+J)$ is generated by the monomials $x_{\rho_{1}}, \ldots, x_{\rho_{j}}$ where all ρ_{i}^{\prime} s are distinct.
Theorem 9.4. If X_{Σ} is complete and smooth then $R(\Sigma) \cong A^{*}\left(X_{\Sigma}\right)$
Proof. See Fulton, Introduction to Toric varieties
By the construction and from the definition of rational equivalence, we can see that if $\left\langle\rho_{1}, \ldots, \rho_{l}\right\rangle \in E(k)$, if we assign the monomial $x_{\rho_{1}}, \ldots, x_{\rho_{l}}$ to the cycle $\left[V\left(\left\langle\rho_{1}, \ldots, \rho_{l}\right\rangle\right)\right]$, then we have a surjection $R(\Sigma) \rightarrow A^{*}\left(X_{\Sigma}\right)$. $X_{\rho_{i}} \mapsto\left[D_{\rho_{i}}\right]$ this gives an isomorphism.
Example. $A^{*}\left(\operatorname{Bl}\left(\mathbb{P}^{2}\right)\right) \cong \mathbb{Z}\left[x_{0}, x_{1}, x_{2}, x_{3}\right] /(I+J), I=\left\langle x_{0} x_{1}, x_{2} x_{3}\right\rangle, J\left\langle x_{1}-x_{0}-x_{3}, x_{2}-x_{3}\right\rangle$. So $A^{*}\left(\operatorname{Bl}\left(\mathbb{P}^{2}\right)\right) \cong$ $\mathbb{Z}\left[x_{1}, x_{2}\right] /\left\langle\left(x_{1}-x_{2}\right) x_{1}, x_{2}^{2}\right\rangle$.

- $A^{0}(X) \cong \mathbb{Z}$ so $\operatorname{rk}\left(A^{0}(X)\right)=1$
- $A^{1}(X)=\operatorname{Pic}(X)=\left\langle x_{1}, x_{2}\right\rangle$ so $\operatorname{rk}\left(A^{2}(X)\right)=2$
- $A^{2}(X)=\left\langle x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right\rangle=\left\langle x_{1}^{2}\right\rangle$ (from the relations) so $\operatorname{rk}\left(A^{2}(X)\right)=1$
- $A^{n}(X)=0$ for $n>2$ since the relations cancel everything down.

From this we can get that $D_{0}^{2}=-1$ as follows: Note that $D_{1} \cdot D_{2}=1 \cdot V\left(\left\langle\rho_{1}, \rho_{2}\right\rangle\right)$.

$$
\begin{aligned}
x_{0}^{2} & =\left(x_{1}-x_{2}\right)^{2} \\
& =x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2} \\
& =x_{1} x_{2}-2 x_{1} x_{2}+0 \\
& =-1 \cdot x_{1} x_{2}
\end{aligned}
$$

We expect that $D_{2}^{2}=D_{3}^{2}=0$, which we do since, $x_{2}^{2}=0=0 \cdot x_{1} x_{2}, x_{3}^{2}=x_{2}^{2}=0$. So let us calculate D_{1}^{2}, we have that $x_{1}^{2}=1 \cdot x_{1} x_{2}$, so $D_{1}^{2}=1$.

