
Intersection Theory

1 Introduction (Simon Hampe)

1.1 Some motivational examples: What should intersection theory be?

Example. What is the �intersection� of C := {y = x3} and l = {y = 0}?
Naive answer: The point (0, 0).
Problem: It's not �continuous�. Replace lt = {y = t}, then lt ∩C = 2 points. This should somehow be re�ected

in the �limit� t→ 0.
Algebraic approach: Intersection scheme: X = SpecK[x, y]/

〈
y − x2, y

〉
= SpecK[x]/

〈
x2
〉
, dimK = OX,(0,0) =

2. So we get somewhat more informal answer, twice the point (0, 0).

Example. What is the intersection of a line L in P2 with itself?
Naive: L
Better answer: The equivalence class (?) of a point in P2 .

Example. Numerative geometry
Question: How many lines in P3 intersect four general lines? (Why four? and why General? should not depend

on the choice of lines)
Usual approach: via moduli spaces.

1. Find a suitable parameter space M for the objects we want to count. (Here: lines in P3 ∼= G(1,P3) = G(2, 4))

2. Find subscheme (or equivalence classes thereof) that correspond to object ful�lling certain geometric condi-
tions. (Here: [Z] ∼= lines meeting a given line)

3. Compute the �intersection product� of these classes. In particular, the product should be 0-dimensional, if we
want a �nite answer. (Here: dimM = 4, dimZ = 3 therefore [Z]4 is 0-dimensional and deg[Z]4 = 2)

Insight: We need some equivalence

De�nition 1.1. Z(λ) =free abelian group on subvarieties on X = ⊕Zk(X) (where ZK is k-dimensional). We say
A ∼ B if and only if there exists a subvariety X ⊆ P1 ×X such that A is the �bre over 0 and B is the �bre over 1.

A(X) = Z(X)/ ∼ is the Chow group of X.

Theorem 1.2 (Hartshorne, pg 427). There is a unique intersection theory on the Chow groups of smooth (quasi-
projective) varieties over k (= k) ful�lling:

1. It makes A(X) into a commutative ring with 1, graded by codimension

2.
...

3.
...

4.
...
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5.
...

6. If Y,Z intersect properly, then Y · Z =
∑
mjwj where wj are components of Y ∩ Z, mj depends only on a

neighbourhood of wj.

1.2 An approach we will not take: Chow's moving lemma

De�nition 1.3.

1. Two subvarieties A,B of C are dimensionally transverse, if A∩B only have components of codimA+ codimB

2. A and B are transverse at p, if X,A,B are smooth at p and TpA+ TpB = TpX

3. A and B are generically transverse, if every components of A ∩ B contains a point p, at which A,B are
transverse.

Theorem 1.4 (Strong Chow's Moving Lemma [Chevakey '58, Roberts '70, Eischenbud-Harris, Chapter 5.2]). Let
X be smooth, quasi-projective over k = k.

1. If α ∈ A(X), B ∈ Z(X), there exists A ∈ Z(x) such that [A] = α and A,B are generically transverse.

2. If A,B ∈ Z(X) are generically transverse, then [A ∩B] depends only on [A] and [B].

Corollary 1.5. For X smooth, quasi-projvective, we can de�ne the intersection product on A(X) by α ·β = [A∩B],
where [A] = α, [B] = β and A,B are generically transverse.

Remark. This is not generalisable! Not really constructive.

Intersection multiplicity

If A,B are only dimensionally transverse, can we write [A] · [B] =
∑
mi[Ci] where Ciare components of A∩B and

mi to be determined?
Easy case: Plane curves. If F,G are plane curves in A2, p ∈ A2,

i(p : F ·G) = dimK OF∩G,p =


0 if p 6= F ∩G
∞ if F,G have a common component through p

finite otherwise

This works!
Generalisation 1: Module length. If M is a �nitely generated A-module, then there exists a chain M = M0 )

· · · ) Mr = 0 such that Mi−1/Mi = A/Pi where Pi is prime. If all Pi are maximal, then r is independent of our
choice and we call the length of M lA(M) := r.

Lemma 1.6. If A,B are Cohen-Macauly and dimensionally transverse, Z a component of A∩B, then i(Z,A ·B) =
lOA∩B,Z

(OA∩B,Z)

Generalisation 2: Serre's multiplicity formula.

Theorem 1.7 (Serre '57). On a smooth variety X, the multiplicity of a component Z of a dimensionally transverse
intersection A ∩B is

dimX∑
i=0

(−1)ilengthOA∩B,Z

(
Tor
OX,Z

i (OA,Z ,OB,Z)
)

2



1.3 Our approach: Following Fulton's book

The standard construction

Given the �bre square

W = f−1(X)

g

��

j // V

f

��
X

i
// Y

where f is any morphism, i is closed, regular embedding.
X · V = S∗([C]) where S ·W → g∗NXY =: N is the zero section, C = CWV embedded in N (NX is the normal

bundle, CW the normal cone)

Example. Let X be smooth, then X = X , T = X × X, i = δ : x 7→ (x, x) regular. For A,B subvareties, set
V = A×B, f the inclusion then W = A ∩B and [A] · [B] = X · V

Example. Let H1, . . . ,Hd be e�ective Cartier divisors on some variety X , let V ⊆ X be a subvariety. Let
X = H1 × · · · ×Hd, Y = X × · · · × X , i be the product embedding and V = V. Then W = H1 ∩ · · · ∩Hd ∩ V and
X · V is a class of this.

Fact. Can write this in terms of Chern and Segre classes. Then X · V = {c(N) ∩ s(W,V )}expeted dimension.

2 Divisors and Rational Equivalence (Paulo)

2.1 Length of a module

Let R be a commutative ring, M a module. Consider chains M = M0 )M1 ) · · · )Mm = (0).

De�nition 2.1. We say the length lR(M) = maximal among all length of such chains.

Fact (EIS,Thm 2.15). M = M0 ) M1 ) · · · ) Mm = (0), then lR(M) = m if and only if Mi/Mi+1 is simple for
all i.

Example. Let R = K a �eld, M = V a vector space. Let {e1, . . . , en} be a basis of V . Then we have the chain
M0 = V ) 〈e1, . . . , en−1〉 ) · · · ) 〈e1〉 ) (0). Hence lK(V ) = dimK(V ).

Example. Let R = Z and M = Z, we show that lZ(Z) =∞ as Z ) 2Z ) 2 · 13Z ) . . .

Example. Let R = Z and M = Z/mZ where m = p1 · · · · · pr, then lZ(Z/mZ) = r.

Let X be a scheme of pure dimension n. Let V ⊆ X be a subvariety. Let f ∈ R(X)∗. We want to de�ne
ord(f, V ). To do this, let f = a/b where a, b ∈ OX . Then

ord(f, V ) = lOV,X
(OV,X/(a))− lOV,X

(OV,Z/(b))

Where by OV,X we mean the localisation of OX at I(V ), i.e., let S be the complement of I(V ), then OV,X = OXS−1.

Example. Consider C2
(x,y), let V = {x = 0}, f = (x)2. Then ord(f, V ) = lOV,X

(OV,X/(x)2) = 2 as OV,X/(x)2 )
OV,X/(x) ) (0). (For this example, OX = C[x, y] and S = C[x, y]\(x), so OV,X = C[x, y]S−1 3 {f/g|x - g})

2.2 Divisors

Let X be a variety over K of dimension n. Let Zn−1 = {
∑

finite ai[Vi]|ai ∈ Z, Vi subvariety of X of dim = n − 1}.
We call an element D ∈ Zn−1 a Weil Divisor and an element [Vi] a prime divisor.

De�nition 2.2. Let f ∈ R(X), we de�ne a divisor associated to f as div(f) =
∑
V ord(f, V )[V ]. We call then

principal divisors.
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De�nition 2.3. The class group of X is Cl(C) = Zn−1/principal divisors.

De�nition 2.4. Let D ∈ Zn−1 is e�ective if ai ≥ 0 for all i.

De�nition 2.5. A Cartier Divisor is a collection {(Ui, fi)}i∈I such that:

• {Ui} is an open cover of X

• fi ∈ R(Ui)

• For all i, j, fi/fj ∈ O∗(Ui ∩ Uj).

Let D{(Ui, fi)}, we can associate to it a Weil divisor: [D] =
∑

ord(D,V )[V ] where ord(D,V ) = ord(fi, V ) for
any i such that Ui ∩ V 6= ∅.

We can also associate to it a line bundle: O(D) with transition data {(Ui, fi)} (so a section of it is a collection
r = {ri} where ri ∈ O(Ui) and ri = fi/fjrj)

Pic(X) := Cartier Div/Principal Div ∼= Line Bundle/Isom.
Let X be a scheme over K of dimension n. De�ne Zk = {

∑
ai[Vi]|Vi ⊆ X subvariety of dimension k}. We call

C ∈ Zk a k-cycle.

Example. Let Y be a scheme of pure dimension m, Y1, . . . , Yl its irreducible components. We have Zm(Y ) 3 [Y ] =∑
mi[Yi] where mi = lOYi,Y

(OYi,Y ).
If Y ⊆ X subscheme then [Y ] ∈ Zm(X).

2.3 Rational equivalence

We want to consider Ak := Zk/ ∼ (where ∼ is to be determined), which we will call this the Chow group. There
are two equivalent way to de�ne the equivalence

1. Let W ⊆ X be a subvariety of dimension k + 1, r ∈ R(W ). Then 0 ∼ div(r) =
∑

ord(r, V )[V ] ∈ Zk(W ) but
we can also think of div(r) ∈ Zk(X)

De�nition 2.6. D1, D2 ∈ Zk(X) are equivalent, D1 ∼ D2, if D1 −D2 =
∑

div(ri) for some ri ∈ R(Wi).

2. Consider
X × P1

q

��
p

��
X P1

Let Y ⊆ X × P1 variety of dimension k + 1, f = q|Y is dominant. p∗[f
−1(0)]− p∗[f−1(∞)] ∼ 0

To see why they are equivalent see [Ful,Prop 1.6]

Remark.

1. Zk(X) ∼= Zk(Xred)

2. If k = m, then Am(X) = Zm(X)

2.4 Pushforward

Let f : X → Y be a proper morphism. Let V ⊆ X be a subvariety, this gives f(V ) = W a variety in Y . We can

de�ne f∗ : ZkX → ZkY by [V ] 7→

{
0 dimW < dimV

deg(V,W ) · [W ] otherwise
(where deg(V,W ) := [R(V ) : R(W )].

Theorem 2.7 (Ful, Thm 1.4). If α ∼ 0 then f∗α ∼ 0, hence we have well de�ned f∗ : Ak(X)→ Ak(Y ).
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2.5 Pullback

Let f : X → Y be a �at morphism of relative dimension m. (Relative dimension means: if V ⊆ Y a subvariety,
then f−1(V ) has every component of dimension m+ dim(V ))

We can to de�ne f∗[V ] = [f−1(V )]. This extend by linearity to a map f∗ : Zk(Y )→ Zk+m(X).

Theorem 2.8 (Ful, Thm 1.7). If α ∼ 0 then f∗α ∼ 0, hence we have well de�ned f∗ : Ak (Y )→ Ak+m(X).

Example.

1. Consider the open embedding i : Y ↪→ X. Then i∗ is just the restriction map, that is [V ] 7→ [V ∩ Y ].

2. Let Z be a scheme of pure dimension m, consider f : X × Z → X. Then f∗ is de�ned by [V ] 7→ [V × Z].

3. Consider p : E → X an a�ne (projective) bundle, then we still have p∗.

Proposition 2.9. If p : E → X is an a�ne bundle, p∗ : AkX → Ak+mE is surjective.

2.6 Intersection with divisors

Consider α ∈ Zk(X) and let D be a Cartier divisor on X. Then we want to de�ne D · α ∈ Ak−1(V ). By linearity,
we can assume α = [V ]. Two cases:

1. V * supp(D). Then D intersects with V , let D =
∑
ai[Wi], then D · V =

∑
ai[Wi ∩ V ].

2. V ⊆ supp(D). We can not simply intersect. Let i : V ↪→ X. From D consider the line bundle O(D).
Consider the line bundle on V , i∗O(D). There is a Cartier divisors C on V such that i∗O(D) ∼= O(C). Then
[C] = V ·D ∈ Ak−1(V ).

3 Chern Classes (Ian Vincent)

3.1 Motivation

(Following Eisenbud)
Let π : E → X of rank n be a vector bundle and there exists sections s1, . . . , sn of π such that for every p ∈ X,

s1(p), . . . , sn(p) are linearly independent (in each �bre). Make some changes of coordinates so that s1(p), . . . , sn(p)
is a basis for each �bre.

Idea: If we have enough global sections �nding their forced linear dependence measures the non-triviality
(twisting) of π : E → X.

3.2 Chern classes of line bundles

Let L be a line bundle over a scheme X. We de�ne a function c1(L)∩− : Ak(X)→ Ak−1(X) in the following way.
If [V ] ∈ Ak(X) then choose a Cartier divisor C on V such that L|V ∼= OV (C) then c1(L) ∩ [V ] := [C]. We extend
linearly to get a homomorphism Ak(X)→ Ak−1(X)

Remark. This is well de�ned. If L = OX(D) then if α = [V ] we have c1(L) ∩ [V ] = D · α as de�ned last time.

Properties (Fulton Prop 3.1)

1. Commutativity: Let L,L′ be line bundles on X then c1(L) ∩ (c1(L′) ∩ α) = c1(L′) ∩ (c1(L) ∩ α) ∈ Ak−2(X)

2. Projection formula: Let f : X ′ → X be a proper morphism, L a line bundle on X and α ∈ Ak (X ′). Then
f∗(c1(f∗L) ∩ α) = c1(L) ∩ f∗(α)

3. Pullback: Let f : X ′ → X be a �at morphism of relative dimension n, L a line bundle on X and α ∈ Ak(X).
Then c1(f∗L) ∩ f∗α = f∗(c1(L) ∩ α)
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4. Additivity: Let L,L′ be line bundles on X, α ∈ An(X) then c1(L ⊗ L′) ∩ α = c1(L) ∩ α + c1(L′) ∩ α. In
particular, c1(L−1) ∩ α = −c1(L) ∩ α.

Example. Consider X = Pn and let Lk be a linear subspace of Pn with dimension k. Then OPn(1) ↔ H
hyperplane section of Pn. Then c1(OP(1)) ∩ [Lk] = [Lk−1]. More generally, if X ⊆ Pn is a subvariety, then
c1(OP(1)) ∩ [X] = [X ∩H].

3.3 Segre classes

Let π : E → X be a vector bundle of rank e+ 1 on X. Let P = P (E) (turn E into projective space), OP (1) is the
�canonical line bundle on P �. De�ne homomorphism si : Ak(X)→ Ak−i(X) by si(E)∩α = π∗(c1(Op(1))e+1∩π∗α)
where π∗ is a �at pullback from An(X)→ Ak+e(P ). The product c1(OP (1))e+i is just composition. This is called
the ith Segre class.

Properties (Fulton 3.1)

1. Similarly we have commutativity

2. Projection

3. Pullback

4. For α ∈ Ak(X), si(E) ∩ α if i < 0 and s0(E) ∩ α = α.

3.4 General Chern class

Let π : E → X be a vector bundle of rank n = e + 1. We de�ne st(E) = 1 + s1(E)t + s2(E)t2 + . . . . Then the
Chern class ct(E) is the coe�cient of the inverse power series, i.e., ct(E) =

∑
ci(E)ti = st(E)−1.

Explicitly, c0(E) = 1 (i.e., c0(E) ∩ α = α), c1(t) = −s1(E). In general we have

ci(E) = (−1)i det



s1(E) 1 0 . . . . . . 0
s2(E) s1(E) 1 0 0

...
. . .

. . .
. . .

...
. . .

. . . 0
...

. . . 1
si(t) . . . . . . s2(E) s1(E)


Remember si(E) are endomorphism of A∗(X) hence products here means compositions of functions.

De�nition 3.1. The total Chern class is c(E) = 1 + c1(E) + · · ·+ ce+1(E)

Properties (Fulton, Thm 3.2)

1. Commutativity

2. Projection

3. Pullback

4. Vanishing: ci(E) = 0 for i > rkE

5. Whitney sum: For any short exact sequences of Vector bundle on X: 0 → E′ → E → E′′ → 0, then
ct(E) = ct(E

′)ct(E
′′).

An important ingredients for this proof is the splitting construction: Let S be a �nite collection of vector bundles
on X. There is a scheme X and a �at morphism f : X ′ → X such that f∗A∗X → A∗X

′ is injective and furthermore
for each vector bundle E ∈ S, fE has a �ltration of subbundles E = Er > · · · > E0 = 0 such that Ei/Ei+1 = Li a
line bundle. Then ct(t) =

∏
(1 + c1(Li)t).
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3.5 Examples

• Consider TPn (the tangent bundles of Pn), we have an exact sequence 0→ OPn → OPn−1(1)⊕(n+1) → TPn → 0
(which is the dual of 0 → ΩPn → OPn(1)⊕(n+1) → OPn → 0). If H = c1(OPn(1)), by the splitting principle
then ct(OPn(1)⊕(n+1)) = (1 + Ht)n+1. Now OPn is a trivial bundle on Pn so by Whitney formula ct(TPn) =
(1 + id t)n+1

• Let X ⊆ Pn be a smooth hypersurface in Pn of degree d. Let i : X ↪→ Pn be a closed embedding. Then we
have the sequence 0→ TX → i∗TPn → N → 0. We have ct(i

∗TPn) is the restriction of (1 +Ht)n+1 to X. Now
c1(N ) = c1(i∗OPn(X)) = c1(i∗OP(d)) = dH by surjectivity of Chern classes of line bundles. So by Whitney

formula, ct(TX) = (1+Ht)n+1

(1+dHt) .

Theorem 3.2 (Fulton Thm 3.3). Let π : E → X be a vector bundle of rank r. The �at pullback πr : Ak−r(X)→
Ak(P (E)) is an isomorphism for every k ≥ r. In particular, each element β ∈ Ak(P (E)) is uniquely expressible in
the form β =

∑r
i=1 c1(OP (E)(1))i ∩ πrαi for some αi ∈ Ak−r+i(X)

4 Segre Classes (Tom Ducat)

In the previous section we learned about Segre and Chern classes for line bundles.

Notation. hX = c1(OX(1)).

Brief recap of last section: Let π : E → X be a vector bundle over a scheme X of rank e + 1, consider
P(E), OP(E)(1) then the Segre class si(E) is given by the formula: AkX → Ak−iX de�ned by α 7→ α ∩ si(E) =

π∗(h
i+e
P(E) ∩ π

∗α). The Chern classes ci(E) are de�ned by
∑
i≥0 ci(E)ti =

(∑
i≥0 si(E)ti

)−1

In this section, we want to generalised Chern classes to more general objects than vector bundles.

4.1 Cones

Consider F• = ⊕i≥0F i to be a graded sheaf of OX -algebras over a scheme X. (Caveats: OX � F0 surjective, F1

coherent and generate F•). Then the cone of X is C = SpecF• π→ X. There are two ways of getting a projective
cone over X:

1. Projectivised cone P(C). P(C) = ProjXF•.

2. Projective closure C. C = Proj(⊕0≤i≤dF izd−i)
π→ X

Remark. C ⊆ C is a dense a�ne open subset and C\C ∼= P(C).
The hyperplane section hC ∩

[
C
]

= [P(C)].
For an arbitrary coherent sheaf F we can do this construction using SymF = ⊕i≥0F⊗i/sym perm.

De�nition 4.1. The Segre class s(C) is de�ned to be s(C) = π∗(
∑
i≥0 h

i
C
∩ [C]) ∈ A∗X.

Proposition 4.2.

1. If E is a vector bundle over X then s(E) = c(E)−1 ∩ [X] (where c(E) = 1 + c1(E) + · · · + cr(E) the total
Chern class as de�ned in the previous section)

2. If C has irreducible components c1, . . . , ck with geometric multiplicities m1, . . . ,mk then s(C) =
∑
imis(Ci).

Proof.

1. The only issue that needs to be checked is E = ProjSym(E⊕OX). Now the short exact sequence 0→ OX →
E → E → 0 gives rise to c(E) = c(E)c(OX) = c(E)

2. This follows from
[
C
]

=
∑
mi

[
Ci
]

Remark. If we have a short exact sequence 0→ F → G → E → 0 where E is locally free, then s(F) = s(G) ∩ c(E).
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4.2 Normal Cones

Take a closed subscheme X ⊂ Y with ideal sheaf I = IX/Y . The normal cone of X in Y is CXY := Spec ⊕n≥0

In/In+1 . The Segre class of X in Y is s(X,Y ) := s(CXY ) ∈ A∗X.

Recall: The blow-up of X in Y is BlXY := ProjY ⊕n≥0 In
σ→ Y and E = σ−1(X) the exceptional divisor, has

ideal sheaf O(1). E = Proj(⊕In ⊗OY
OX) = Proj(⊕In/In+1) = P(CXY ).

Trick: X ⊂ Y , consider A1 × Y ⊃ {0} ×X, de�ne MXY := BlX×{0}Y × A1 → Y . The exceptional divisor is

isomorphic to CXY .

Example. X ⊂ Y is embedded regularly, i.e., the normal cone is a vector bundle then s(X,Y ) = c(CXY )−1 ∩ [X].

Lemma 4.3. Let X ⊂ Y , Y pure dimensional with irreducible components Y1, . . . , Yk and multiplicities m1, . . . ,mk

then s(X,Y ) =
∑
mis(Xi, Yi) where Xi = X ∩ Yi.

Proof. ConsiderMXY has irreducible componentsMXi
Yi, [MXY ] =

∑
mi [MXi

Yi] ∈ A∗MXY . So we get
[
CXY

]
=∑

mi

[
CXi

Yi
]
.

Proposition 4.4. Iff : Y ′ → Y is a morphism of pure dimensional schemes, X ′ ⊂ Y ′, X ⊂ Y are closed
subschemes such that X ′ = f−1(X) is the scheme theoretic pull-back. Then

1. Push-forward: If f is proper, Y irreducible, each components of Y ′ maps onto Y then f∗S(X ′, Y ′) =
deg(Y ′/Y )s(X,Y ) ∈ A∗X.

2. Pull-back: If f is �at then f∗s(X,Y ) = s(X ′, Y ′) ∈ A∗X ′

Note that deg(Y ′/Y ) =
∑
mi deg(Y ′i /Y )

Proof.

1. Reduce to Y ′ irreducible,

X ′
⊂ // Y ′

f // Y X
⊃oo

MX′Y
′

OO

f

// MXY

OO

CX′Y
′ //

π′

OO

CXY = C

π

OO

2.

f∗s(X,Y ) = f∗π∗(
∑
i≥0

hi
C
∩ [C])

= π′∗f
∗
(
∑
i≥0

hi
C
∩
[
C
]
)

= π′∗(
∑

hi
C
∩ [C])

= s(X ′, Y ′)

Corollary 4.5. Consider σ : Ỹ : BlXY → Y with exceptional divisor E then s(X,Y ) =
∑
i≥1(−1)i−1σ∗(E

i).
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Example. Let Y be a surface, and let A,B,D be e�ective Cartier Divisors. Let A,B intersect transversely at
smooth points p ∈ Y . Let X be the scheme theoretic intersection (A+D)∩(B+D). Then s(X,Y ) = [D]−[D2]+[p].

To see this, let σ : Ỹ = BlpY → Y , X̃ = σ∗D + E (where E is the exceptional divisor). Then

S(X,Y ) = σ∗s(X̃, Ỹ )

= σ∗((1− X̃)[X̃])

= σ∗X̃ − σ∗(σ∗D2 + 2σ∗DE + E2)

= [D]− [D2] + [p]

5 The basic construction (Simon)

5.1 The basic construction

The basic set up is the following: A �bre square is

W
j //

g

��

V

f

��
X �
� i // Y

where

• i : X ↪→ Y is a regular embedding of dimension d

• V is purely k-dimensional, f : V → Y morphism

• W = f−1(X) is the inverse image scheme

Some preliminary de�nitions and facts:

• N := g∗NXY a bundle of W (Recall NXY = CXY = Spec(⊕n≥0In/In+1 where I is the ideal sheaf of X in
Y ), with π : N →W the projection and s : W → N the zero section

Fact 5.1. Recall that π∗ : Ak−d(W )→ Ak(N) is an isomorphism. We de�ne s∗ = (π∗)−1 : Ak(N)→ Ak−d(W )

• C = CWV the normal cone

Fact 5.2. If I is the ideal sheaf of X in Y , J the ideal sheaf of W in V , then there is a surjective morphism
⊕nf∗(In/In+1)→ ⊕nJ n/J n+1. This gives a closed embedding C �

� //

��

N

π

��
W

So we now have
C �
� //

��

N

π

��
W

j //

g

��

s

VV

V

f

��
X �
� i // Y

Fact 5.3. C is purely k-dimensional, so [X] ∈ Ak(N). (This can be seen by: the blow up of V ×A1 in W × {0} is
purely (k+ 1)-dimensional. So the exceptional divisor P (C ⊕ 1) is Cartier. Hence P (C ⊕ 1) is purely k-dimensional
and contains Cas a dense open subset)
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De�nition 5.4. The intersection product of V by X in Y is X · V = X ·Y C := s∗[C] ∈ Ak−d(W ) (i.e., the unique
class [Z] such that π∗[Z] = [C])

Proposition 5.5.

1. X ·V = {c(N)∩s(W,V )}k−d (where s(W,V ) = s(C) = q∗(
∑
i≥0 c1(O(1))i∩P (C⊕1)) with q : P (C⊕1)→W )

2. If d = 1 (so X is a Cartier divisor), V a variety and f a closed embedding, then X · V is the same as
intersection with a divisor (as de�ned before)

3. If Y is pure dimensional, f a regular embedding, then X · V = V ·X = (V ×X) ·∆Y . ie., setup:

Y

δ

��
V ×X �

� // Y × Y

4. If W ↪→ V is a regular embedding of codimension d′ with normal bundle N ′ = CWV . Then X · V =
cd−d′(W/N

′) ∩ [w].

5. If X×P1 ↪→ Y is a family of regular embeddings, V a subvariety of Y, V and Y are �at over P1. Then X ·Yt ·Vt
are equal for all t.

5.2 Distinguished components and canonical decomposition

Assume [C] =
∑
mi[Ci] with Ci the irreducible components of C. W ≥ Zi :=

∏
(Ci) are the distinguished

components of X · V . For Ni := N |Zi , si its zero section, αi := s∗i [Ci]. Then X · V =
∑
miαi is the canonical

decomposition of X · V .

Example. Let Y = P2
[x,y,z], X1 = {xy = 0}, X2 = {x = 0} and P = {x = y = 0}. We have to possibilities to

intersect X1 and X2.

1.
W = X2

//

��

V = X2

��
X = X1

// Y

Hence C = CWV = X2. In particular, X2 is the only distinguished components

2.
W = X2

� � //

��

V = X1

��
X = X2

// Y

Then let I = 〈x〉 in k[x, y]/ 〈xy〉. We have ⊕n≥0I
n/In+1 ∼= k[x, y, T ]/ 〈x, yT 〉. So we can see that C has two

components, namely {x = y = 0} and {x = T = 0}. Now N = Spec(k[x, y, T ]/ 〈x〉). So the distinguished
components are X2 and P .

10



5.3 Re�ned intersection

Given our �bred square

W
j //

g

��

V

f

��
X �
� i // Y

we have a homomorphism i! : Zk(V )→ Ak−d(W ) de�ned by
∑
ni[Vi] 7→

∑
ni(X ·Vi) (note that X ·Vi are actually

lies in Ak−d(X ∩ Vi)).

Fact (Non-trivial). This passes to rational equivalence!

We have re�ned Gysin homomorphism i! : AkV → Ak−dW .

Notation. If V = Y and f = id we write i! = i∗ : AkY → Ak−dX. In this case the map is [Z] 7→ s∗N [CZ∩XV ].

Remark. For any purely k-dimensional cycle [Z], i![Z] = X · Z.

Theorem 5.6. Given the �bre diagram

X ′′ //

q

��

Y ′′

p

��
X ′ //

��

Y ′

��
X

i // Y

where i : X → Y is a regular embedding of codimension d.

1. (Push-forward) If p is proper, a ∈ AkY
′′, then i!p∗(α) = q∗(i

!α) (note that the �rst i! is with respect to

X ′ //

��

Y ′

��
X // Y

, while the second i! is with respect to X ′′ //

��

Y ′′

��
X // Y

Merit: e.g., we can compute X ·Y ′ by calculating X · (some blowup of Y ′′). Therefore we see the advantage of
allowing arbitrary morphism to Y .

2. (Pull-back) If p is �at of regular dimension n, α ∈ AkY ′ then i!p∗(α) = q∗i!α

Merit: we can compute (part of) intersections products of locally by restricting to open subschemes

5.4 The intersection ring

Assumption: Y is smooth which implies δ : Y → Y × Y (de�ned by y 7→ (y, y)) is a regular embedding
Setup: For x ∈ Ak(Y ), y ∈ Al(Y )

Y
δ //

��

Y × Y

id

��
Y

δ
// Y × Y

we de�ne x · y := δ∗(x× y) ∈ Ak+l−n(Y )

Theorem 5.7. This makes A∗(Y ) into a graded (by codimension), commutative ring with unit pY ].
The assignment Y to (A∗(Y ), ) is a contravariant function form smooth varieties to rings.
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6 Schubert Calculus (Aurelio Carlucci)

6.1 Recap on G(k, n)

Let V be a complex vector space of dimension n, let G(k, V ) = {k − subspace of V }, G(k, n) = G(k,Cn).
Let Λ ∈ G(K,n) 

v1

...
vK

 =


v1,1 . . . v1k

...
vk1 vkk


where rkK = k. Let I = {i1, . . . , ik} ⊂ {1, . . . k}, VI = Span{ei|i /∈ I}, Ui = {Λ : Λ ∩ VI = ∅}, Ith matrix
non-singular

We have a map φI : UI → Ck(n−k). We have that φI(UI ∩ UI′) is open. Let ΛII′ be the I
′-th minor of ΛI , we

have ΛI = (ΛII′)
−1 · ΛI′ .

6.2 Cell decomposition

Let V be a �ag, that is V = {V1 ( V2 ( · · · ( Vn = Cn}. Let Pn = G(1, n+ 1), we can consider Wi
∼= Ci−1 = {l (

Cn+1 : l ⊂ Vi, l * Vi−1}, we have Pn = C0 ∪ · · · ∪ Cn.

Let V be a generic �ag. Let Λ ∈ G(K,n), we have Λ ∩ Vi =

{
zero dim i ≤ n− k
(1 + k − n) dim otherwise

. Let (a1, . . . , ak) = a

be a cycle, let
∑
a(V) = {Λ ∈ G(K,n)|dim(Vn−k+i−ai ∩ Λ) ≥ i}

Remark. If ai > n− k, then dimVn−k+1−ai < ai and
∑
a = ∅.

Let σa = [Σa], this construction is independent of the choice of �ag. This is called a Schubert class.

Remark. We have that σa ⊂ σb if and only if a ≥ b (i.e., ai ≥ bi for all i)

Example. Consider G(2, 4)

• (1, 0): σ1,0 = {Λ : dim(Λ∩ Vn−k+i−ai) ≥ i}, i.e, dim(Λ∩ V2) ≥ 1 and dim(V ∩ V4) ≥ 2 which is trivial. So
σ1,0 = {Λ|dim(Λ ∩ V2) ≥ 1}.

• (1, 1), σ1,1 : we need dim(Λ ∩ V2) ≥ 1 and dim(Λ ∩ V3) ≥ 2, but as the second implies the �rst, we have

σ1,1 = {Λ : Λ ⊂ V3}

• (2, 0), σ2,0 : we need dim(Λ ∩ V1) ≥ 1, so V1 ⊂ Λ and dim(Λ ∩ V4) ≥ 2 which is trivial, so σ2,0 = {Λ :
V1 ⊂ Λ}

• (2, 1), σ2,1 : we need dim(Λ ∩ V1) ≥ 1, so V1 ⊂ Λ and dim(Λ ∩ V3) ≥ 2 so Λ ⊂ V3. Hence σ2,1 = {Λ :

V1 ⊂ Λ ⊂ V3}.

So we have V1 ⊂ V2 ⊂ V3 ⊂ C, so take the �ag {P} ⊂ l0 ⊂ H (a point, line and hyperplane). So translating we
have

• σ1,0 = {l ∩ l0 6= ∅}

• σ1,1 = {l ⊂ H}

• σ2,0 = {P ∈ l}

• σ2,1 = {p ∈ l ⊂ h}

12



��� o

��
∅ �
� // �

0�

AA

 m

��

�
�
� �
� // �

�
�
�

�
�

0�

AA

Choose bases ei of V and let Vi = span{e1, . . . , ei}. Let Λ ⊂
∑
a1...ak

, then we can �nd v1 with Λ∩Vn−k+1−a1 ⊃
〈v1〉, and we can normalise v1 so that 〈v1, en−k+1−a1〉 = 1. We can �nd v2 with 〈v1, v2〉 ⊆ Λ∩ Vn−k+2−a2 such that
〈v2, en−k+1−a1〉 = 0 and 〈v2, en−k+1−a2〉 = 1. We can continue this process to �nd more vi. Basically, we are just

apply Gaussian elimination. So we end up with
∑n
j=1(n− k + j − aj − 1)−

∑k
j=1(k − j) = k(n− k)−

∑
j aj .

Fact. The Schubert classes are a free basis for A∗(G(K,n)).

6.3 Complementary codimension

Proposition 6.1. Let V and W be general �ags. Consider Σa(V ),Σb(W ) with |a|+ |b| = k(n− k), then

• they intersect in a unique point if ai + bk−1−i = n− k∀i

• They are disjoint otherwise.

Proposition 6.2. A∗(G(K,n)) ∼= Z(n
k).

If [Γ] ∈ Am(G(k, n)) with [Γ] =
∑
|a|=m γaσa where γa = deg([Γ] · σa∗) = # (Γ ∩ Σa∗(V)) where V is a generic

�ag.
We have the multiplication of Schubert classes: σaσb =

∑
|c|=|a|+|b| γa,b,cσc. There is a formula for Special

Schubert classes, i.e., the one of the forms σα = σα,0,...,0

Proposition 6.3. Let σα ∈ A(G(K,n)), β ∈ N. Then σβ · σa =
∑
|e|=|a|+β,ai≤ei≤ei−1

σe

For example

• σ1 · σe = sum of all Young diagram obtained from a.

• ·σ2 = + + +

• (σ�)2 = 2· (which in 2 · {pt} in G(2, 4))

6.4 Giambelli's formula

Consider σa1...ak . This is equal to

det



σa1 σa1+1 σa1+2 . . . σa1+k−1

σa2−1 σa2
σa3−2

...

σak−k+1 σak
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Example. We have σ2,1 =

(
σ2 σ3

σ0 σ1

)
= σ2σ1 − σ3

• σ11 = σ2
1 − σ2, so σ

2
1 = σ2 + σ11 (which we had calculated above)

• σ2
1σ2 = σ2

2

• σ1σ21 = σ22

So we �nd that A∗(G(1,P3)) = Z[σ1, σ2]/(σ3
1 − 2σ1σ2, σ

2
1σ2 − σ2

2)
Suppose we have four lines in P3, l1, l2, l3, l4. We want to know how many general lines intersect li. We can use

Schubert calculus. We calculate σ1(li) (i.e., choosing a �ag consisting of one component li). Since σ
4
1 = 2 ·�

�
�
�

= 2

7 Riemann Roche (Miles Reid)

NB: This section needs some reworking, which will be done at a later stage
The statement of Riemann Roche is the following. Let X be smooth projective, we have f : X → Y de�ned

by F 7→
∑

(−1)iRif∗F , gives rise to f! : K0(X) → K0(Y ). If Y is a point, hi(F) ∈ K0(pt) =dimension of �nite
dimensional vector space over k, so

∑
(−1)iRif∗F becomes χ(F).

K0(X)

f!

��

ch // A∗(X)⊗Q

f∗

��
K0(Y )

ch // A∗(Y )⊗Q

This diagram only commutes after multiplying by Tdf . That is

ch(f!F) = TdX/Y f∗(ch(F))

, where TdX/Y = TdX · (TdY )−1. Let us de�ne TdX .
We have both K0X and K0X.

• K0X is K0(coherent sheave)

• K0X is contravariant and is vector bundles over X divided by exact sequences.

IfX is smooth thenK0X = K0X. As we can take⊕ and⊗ we have thatK0 is a ring. We have c(E⊕F ) = c(E)·c(F ).

The Chern character of a line bundle by de�nition is ch(OX(D)) := 1 +D+ D2

2 + · · · = exp(D). So we are turning
addition to multiplication.

Let E be a general coherent sheaf, and write is as a sum of line bundles:E =
∑
OX(αi) (this is not true, but

we can pretend that it is). Then by de�nition ch(E) :=
∑

exp(αi).
Consider TX , we are again going to pretend TX =

∑
OX(xi). We �have� c(TX) =

∏
(1 + xi). We de�ne

TdX :=
∏ xi

1−e−xi
. If we substitute x1 + x2 = c1, x1x2 = c2 etc, we �nd that:

TdX = 1 +
1

2
c1 +

1

12
(c21 + c2) +

1

24
c1c2 +

1

720
(−c41 + 4c21c2 + c1c3 + 3c22 − c4) +

1

1440

(
−c51 + . . .

)
So we get χ(F) = [ch(F) · TdX ]n. From this we deduce χ(OX) = TdX [X].

Exercise. LetX be a smooth 3-fold,D a divisor on it and calculate ch(OX(D)) =
(

1 +D + D2

2 + D3

6

) (
1 + 1

2c1 + . . .
)

evaluated at degree 3 terms. We should get χ(OX) + 1
12Dc2 + 1

12D(D −K)(2D −K) (note χ(OX) = 1
24c1c2).
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The advantage of this diagram is that it gives a stronger theorem for Riemann Roche while having a much
simpler proof.

If f = g ◦ h (g : Y → Z, h : X → Y and f : X → Z), it is enough to prove this diagram commutes for g and h
separately, i.e., show that (gh)! = g!h! and Tdg · Tdh = Tdf . Now for

X
� � i //

f

��

Y × Pn
p

||
Y

we can do i and p separately. Now p is just straightforward calculation. What about i? we do this as the inclusion
of divisors followed by blowup. We can reduce the case to only looking at divisors.

Question: Why does x
1−e−x appear in TdX . Think of X ⊂ V a divisor, with the dimension of X and V being n

and n+ 1 respectively.
0 // TX // TV |X // NV |X // 0

Recall that NV |X =
(
IX/I2

X

)∗
.

0 // OV (−X) // OV // OX // 0

χ(OX) = χ(OV )− χ(OV (−X)) = TdV − TdV · e−x.

8 Miss multiplicities (Diane)

De�nition 8.1. A sequence a1, a2, . . . is log-concave if a2
i ≥ ai−1ai+1. I.e., i 7→ log ai is a concave function

This implies unimodal, i.e., one local maximal.
Question: Let X be a smooth projective variety of dimension d. Consider Z ∈ Ak(X) for some k. Is Z = [V ]

for some (reduced irreducible) V ⊆ X?

Example.

• X = Pd, then Ak(Pd) = Z (i.e., keeping track of degree). So the question is: is there an irreducible subvariety
of Pd of dimension k and degree m? Here we know the answer is yes if m > 0

• X = P2 × P2 A2(X) = span([P2 × pt], [P1 × P1], [pt × P2]). Let ζ = a[P2 × pt] + b[P1 × P1] + c[pt × P2] Is
ζ = [v]? The necessary conditions are a, b, c ≥ 0 and b2 ≥ ac (and they are su�cient for P2 × P2). Note that
(a, b, c) are log-concave.

Theorem 8.2 (Huh). If ζ =
∑
ei[Pi × Pk−i] ∈ Ak(Pn × Pm), then there exists l > 0 with lζ = [V ] if and only if

(e0, . . . , ep) is log-concave with no internal zeroes, or ζ = [Pn × pt], [pt× Pm], [Pn × Pm] or [pt× pt].

8.1 Chromatic polynomials

Let G be a �nite graph. A colouring of G with q colours is a function f : Vert(G)→ {1, . . . , g} for which f−1(i) is
an independent set (i.e., no two vertices are adjacent)

Example 8.3.

1 2

3 1

Let XG(q) to be the number of ways to colour G with q colours. For example above XG(1) = XG(2) = 0 and
XG(3) = 6.
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Theorem 8.4. XG(q) is a polynomial in q with integer coe�cients

In our case XG(q) = q(q − 1)(q − 2)2 = q4 − 5q3 + 8q2 − 4q.

Conjecture (1968). Write XG(q) = anq
n − an−1q

n−1 + · · ·+ (−1)na0, then a0, . . . , an is log-concave

This is now a theorem by Huh in 2012. The proof involves realising the ai as intersection numbers.

8.2 Hodge index theorem

Theorem 8.5 (Hodge index theorem). Let X be a smooth projective surface and let H be an ample divisor on X,
and suppose that D is a divisor with D ·H = 0, D 6≡ 0 (there exists C such that D · C 6= 0). Then D2 < 0.

This implies intersection pairing has signature (1,−1, . . . ,−1).

Corollary 8.6. If D1 = aD + bH and D2 = cD + dH where H is ample, H ·D = 0 and D 6≡ 0 then (D1 ·D2)
2 ≥

(D2
1)(D2

2)

Proof. D1·D2 = acD2+bdH2, D2
1 = a2D2+b2H2, D2

2 = c2D2+d2H2 so check (D1·D2)2−D2
1D

2
2 = 2abcd(D2)(H2)−

(a2d2 + b2c2)D2H2 = 2(D2)(H2)(abcd− a2d2+b2c2

2 ) ≥ 0

So we are going to refer to the corollary when we talk about Hodge index theorem. Let ζ = a[P2 × pt] + b[P1 ×
P1] + c[pt×P2] and suppose that ζ = [V ] where V is an irreducible surface in P2×P2. Let D1 = [general line ×P2]
and D2 = [P2 × general line] both in P2 × P2. Then D1 ·D2 = [P1 × P1], D2

1 = [pt × P2] and D2
2 = [P2 × pt]. So

let D′1 = i(D1), D′2 = i(D2) as divisors in V . So D′1 · D′2 =
[
P1 × P2

]
· [V ] = b, D′21 = [pt × P2] · [V ] = a and

D′22 = [pt× P2] · [V ] = c. Therefore the Hodge index theorem implies that b2 ≥ ac.

8.3 Generalisations

Theorem 8.7. Let X be an irreducible complete variety (scheme) of dimension n, and let δ1, . . . , δn ∈ N1(X)R
(divisors up to numerical equivalence) be nef classes. Then (δ1 . . . δn)n ≥ (δ1)n · · · (δn)n.

For a proof, see e.g., Lazarfeld �positivity bock� theorem 1.6.1.
A variant of this as follow:

Theorem. (α1 · · ·αp · β1 · · ·βn−p)p ≥ (αp1β1 · · ·βn−p) · · · (αppβ1 · · ·βn−p).

Corollary 8.8 (Khovanskii, Teissier). Let X be an irreducible complete variety (scheme) of dimension n, let α, β
be nef divisors. Set si = αiβn−i. Then for 1 ≤ i ≤ n− 1, s2

i ≥ si−1si+1.

Proof. Apply the variant to the case p = 2, α1 = α, α2 = β and β1 · · ·βn−2 = α1i−1βn−i−1.

Approach to chromatic polynomials: From the graph (say with n + 1 edges and r + 1 vertices), we get a

(n + 1) × (r + 1) matrix of edges and vertices. Let V 0 = row(A) ∩ (K•)n (the Torus (K•)n+1/K•), let Ṽ be
the closure of graph of the Cremona transformation restricted to V (recall that the Cremona transformation is

[x0 : · · · : xn] 7→ [ 1
x0

: · · · : 1
xn

]) Note that Ṽ ⊂ Pn×Pn. Let [Ṽ ] =
∑
µi[Pr−i×Pi] ∈ Ar(Pn×Pn). The claim is that

the µi are the coe�cients (up to sign) of XG̃(q) := Xq(q)/(q − 1) (Note XG̃(q) is a polynomial since Xq(1) = 0).
Easy exercise: µi is log-concave implies that the ai are log-concave. Take D1 = [H × Pn], D2 = [Pn × H] then

µi = Di
1D

r−i
2 [Ṽ ] (or maybe µi = Dr−i

1 Di
2[Ṽ ]). Hence µi is log-concave.
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9 Toric Intersection Theory (Magda)

De�nition 9.1. A Toric variety is an irreducible variety X containing a torus TN (C∗)n. This is a Zariski open
subset such that the action of TN on itself extends to an algebraic action of TN on X.

Example 9.2. X = C2, TN = (C∗)2
. Then the action is (s, t)(x, y) = (sx, ty).

X = P2
[x,y,z], TN = (C∗)2 consisting of points xyz 6= 0. The action is [t1 : t2 : t3][x : y : z] = [t1x : t2y : t3z]

where t1t2t3 6= 0. We look at orbits not, consider [t1 : t2 : t3][1 : 0 : 0] = [t1 : 0 : 0] = [1 : 0 : 0], so [1 : 0 : 0], [0 : 1 : 0]
and [0 : 0 : 1] are �xed points. The orbit of [x : y : 0] is [1 : a : 0], of [x : 0 : y] it's [1 : 0 : a] and for [0 : x : y] it's
[0 : 1 : a] for a 6= 0. As for [x : y : z] it is [a : b : c] where abc 6= 0 (under the assumption that xyz 6= 0).

We have a correspondence between the orbit and the cones of a picture. Let V (σ) denote the orbit corresponding
to σ, Σ(k) the set of k dimensional cone.

Let X be a n-dimensional variety. Recall that the Chow ring of X is A∗(X) = ⊕nk=0A
k(X) where Ak(X) =

Zk(X)/ ∼. Recall that for smooth variety we had a product Ak(X) × Ak(X) → Ak+1(X) which agreed with
intersection of transversal objects.

Let XΣ be a complete smooth Toric variety.

Fact. [V (σ)] for σ of dimension k generates Ak(XΣ).

Example. For A1(XΣ) = Pic(XΣ) = {T − inv divisors}/{T−inv principal divisors} = Z|Σ(1)|/ 〈div(Xm);m ∈ Zn〉,
where div(Xm) =

∑
p 〈m,up〉Dp,m ∈ Zn, where up is the �generator� of the rays in Σ(1).

Example 9.3. Pic(P2) = Z3/ 〈D1 −D3, D2” −D3〉 ∼= Z (since m1 = (1, 0), m2 = (0, 1))
Pic(Bl(P2)) = Z4/ 〈D1 −D0 −D3, D2 −D3〉 ∼= Z2.

We know that:

• Dσ1 · · ·Dσk
=

{
V (σ) σ = 〈σ1, . . . , σk〉
∅ else

.

•
∑
p 〈m,up〉Dp = 0

So being given a fan of a Toric variety, we can construct the following ring:

• With each ρi ∈ Σ(1) associate a variable xi and let Z[x1, . . . , xk] where k = |Σ(1)| be a polynomial ring.

• Let I ⊂ Z[x1, . . . , xk] be the ideal generated by the monomials xi! , . . . , xij such that
〈
ρi1 , . . . , ρij

〉
/∈ Σ.

• Let J ⊂ Z[x1, . . . , xk] be generated by the linear forms
∑
p 〈m,up〉Dp, m ∈ Zn, n = dimV .

Then R(Σ) := Z[x1, . . . , xk]/(I + J) is generated by the monomials xρ1 , . . . , xρj where all ρ′is are distinct.

Theorem 9.4. If XΣ is complete and smooth then R(Σ) ∼= A∗(XΣ)

Proof. See Fulton, Introduction to Toric varieties

By the construction and from the de�nition of rational equivalence, we can see that if 〈ρ1, . . . , ρl〉 ∈ E(k), if
we assign the monomial xρ1 , . . . , xρl to the cycle [V (〈ρ1, . . . , ρl〉)], then we have a surjection R(Σ) → A∗(XΣ).
Xρi 7→ [Dρi ] this gives an isomorphism.

Example. A∗(Bl(P2)) ∼= Z[x0, x1, x2, x3]/(I + J), I = 〈x0x1, x2x3〉, J 〈x1 − x0 − x3, x2 − x3〉. So A∗(Bl(P2)) ∼=
Z[x1, x2]/

〈
(x1 − x2)x1, x

2
2

〉
.

• A0(X) ∼= Z so rk(A0(X)) = 1

• A1(X) = Pic(X) = 〈x1, x2〉 so rk(A2(X)) = 2

• A2(X) =
〈
x2

1, x1x2, x
2
2

〉
=
〈
x2

1

〉
(from the relations) so rk(A2(X)) = 1
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• An(X) = 0 for n > 2 since the relations cancel everything down.

From this we can get that D2
0 = −1 as follows: Note that D1 ·D2 = 1 · V (〈ρ1, ρ2〉).

x2
0 = (x1 − x2)2

= x2
1 − 2x1x2 + x2

2

= x1x2 − 2x1x2 + 0

= −1 · x1x2

We expect that D2
2 = D2

3 = 0, which we do since, x2
2 = 0 = 0 · x1x2, x

2
3 = x2

2 = 0. So let us calculate D2
1, we have

that x2
1 = 1 · x1x2, so D

2
1 = 1.
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