Local Fields

Tim Browning Notes by Florian Bouyer

Copyright (C) Bouyer 2013.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license can be found at http://www.gnu.org/licenses/fdl.html

Contents

1.1 Completion \ldots	6
2 The <i>p</i> -adic	8
3 Non-archimedean Local Fields	10
3.1 Hensel's Lemma	
4 Extensions of local fields	14
4.1 Normed vector spaces	
4.2 Extension of Absolute Values	
4.3 Ramification \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	
5 Algebraic Closure	20
6 Algebraic Number Fields	22
7 Diaphantine Equations	24
7.1 Quadratic forms	
7.2 Cubic forms	

1 Foundations

Absolute Values

Let K be a field.

Definition 1.1. An absolute value on K is a map $|\cdot|: K \to \mathbb{R}_{>0}$

- 1. $|x| = 0 \iff x = 0$
- 2. $|xy| = |x| \cdot |y| \forall x, y \in K$
- 3. $|x+y| \leq |x|+|y|$ (the \triangle inequality)

Definition. An absolute value on K is called *non-archimedean* if also

1. $|x+y| \le \max\{|x|, |y|\}$ (the ultrametric inequality)

Otherwise we say the absolute value is archimedean

Example.

- 1. $K = \mathbb{Q}$ and $|\cdot|$ to be the usual absolute value given by inclusion $\mathbb{Q} \hookrightarrow \mathbb{R}$. This is an archimedean absolute value.
- 2. Take $|x| = \begin{cases} 1 & x \neq 0 \\ 0 & x = 0 \end{cases}$. This is non-archimedean absolute value. "The trivial absolute value"
- 3. $K = \mathbb{Q}$ and p a prime. For $x \in \mathbb{Q}^*$ the p-adic valuation is $\nu_p(x) = r$ if $x = p^r \frac{u}{v}$ for $u, v \in \mathbb{Z}, r \in \mathbb{Z}$ and $p \nmid uv$. We extend to all of \mathbb{Q} by setting $\nu_p(0) = +\infty$

Check: $\nu_p(xy) = \nu_p(x) + \nu_p(y)$ and $\nu_p(x+y) \ge \min\{\nu_p(x), \nu_p(y)\}$ (*)

Define the *p*-adic absolute value on \mathbb{Q} to be $|\cdot|_p : \mathbb{Q} \to \mathbb{R}_{\geq 0}$ by $|x|_p = \begin{cases} p^{\nu_p(x)} & x \neq 0\\ 0 & x = 0 \end{cases}$. This satisfies the axioms of being a non-archimedean absolute value (using (*))

Note. $|p^n|_p = p^{-n}$ so $p^n \to 0$ as $n \to \infty$.

4. Let K be any field. Put $F = K(T) = \left\{ \frac{P(T)}{Q(T)} : P, Q \in K[T], Q \neq 0 \right\}$. Define the valuation

$$\nu_{\infty} \left(\frac{P(T)}{Q(T)} \right) = \begin{cases} \deg Q - \deg P & \frac{P}{Q} \neq 0 \\ +\infty & \frac{P}{Q} = 0 \end{cases}$$

Check this satisfies (*). If c > 1, then we get a non-archimedean absolute value on F given by $|F(T)|_{\infty} := c^{-\nu_{\infty}(f(T))}$.

Note. If $K = \mathbb{F}_q$ then convenient to take c = q.

Lemma 1.2. Let $|\cdot|$ be an absolute value on a field K. Then

- 1. |1| = 1
- 2. $x \in K$ such that $x^n = 1$, then |x| = 1.

3. $x \in K$, then |-x| = |x|

4. K is a finite field then the absolute value has to be the trivial absolute value

Proof.

- 1. Note that $x \neq 0 \Rightarrow x > 0$. We have $|1| = |1^2| = |1| \cdot |1|$. So 1. holds.
- 2. Note that $1 = |1| = |x^n| = |x|^n \Rightarrow |x| = 1$
- 3. Note that $-x = -1 \cdot x$
- 4. Follows from 2. since any non-zero element x of a finite field satisfies $x^n = 1$ for some n.

The following result gives a criterion for checking whether an absolute value is non-archimedean.

Lemma 1.3. Let $|\cdot|$ be an absolute value on a field K. Then $|\cdot|$ is non-archimedean if and only if $|e| \leq 1$ for all e in the additive ring generated by 1.

Proof. " \Rightarrow " Since |n| = |-n| we may as well assume that $n \ge 1$. Then $|n| = |\underbrace{1 + \cdots + 1}_{n \text{ times}}| \le |1| = 1$

" \Leftarrow " Suppose $|e| \leq 1$ for all elements e in the additive ring generated by 1. Let $x, y \in K$, then

$$|x+y|^{m} = \left| \sum_{j=0}^{m} {m \choose j} x^{j} y^{m-j} \right|$$

$$\leq \sum_{j=0}^{m} \left| {m \choose j} \right| |x|^{j} |y|^{m-j}$$

$$\leq \sum_{j=0}^{m} |x|^{j} |y|^{m-j} \quad \text{by assumption } \left| {m \choose j} \right| \leq 1$$

$$\leq \max(\{|x|, |y|\}^{m})$$

Take *m*th root and let $m \to \infty$ (since $(m+1)^{1/m} \to 1$ as $m \to \infty$)

Corollary 1.4. If $char(K) \neq 0$ then all absolute values are non-archimedean

Proof. The ring in Lemma 1.3 is a finite field. Then apply Lemma 1.2 part 4.

Corollary 1.5. Suppose $F \subset K$ is a subfield of K and $|\cdot|$ is an absolute value on K. Then $|\cdot|$ is non-archimedean on K if and only if $|\cdot|$ is non-archimedean on F

Topology

Let K be a field with absolute value $|\cdot|$ on K. Then we get a metric on K induced by $|\cdot|$. Call it $d: K \times K \to R_{\geq 0}$ defined by $d(x, y) \mapsto |x - y|$.

Exercise. Check this is a metric.

The notion of distance on fields with non-archimedean values is weird.

Lemma 1.6. Let K be a field with non-archimedean absolute value. If $x, y \in K$ with $|x| \neq |y|$, then $|x + y| = \max\{|x|, |y|\}$

Proof. Without loss of generality assume |x| > |y|. Then $|x+y| \le \max\{|x|, |y|\} = |x|$ and $|x| = |x+y-y| \le \max\{|x+y|, |y|\}$. Hence $|x| \le |x+y| \le |x|$.

Definition 1.7. Let K be a field with absolute value $|\cdot|$. Let $a \in K$ and $r \in \mathbb{R}_{\geq 0}$. The open ball of radius r and centre a is $B(a,r) = \{x \in K : |x-a| < r\}$. The closed ball of radius r and centre a is $\overline{B}(a,r) = \{x \in K : |x-a| < r\}$.

A set $U \subset K$ is open if and only if $\forall x \in U$ there exists an open ball around x contained in U. A set is closed if and only if its complement in K is open

Lemma 1.8. Let K be a field with non-archimedean absolute value $|\cdot|$. Then

- 1. $b \in B(a, r) \Rightarrow B(a, r) = B(b, r)$ 2. $b \in \overline{B}(a, r) \Rightarrow \overline{B}(a, r) = \overline{B}(b, r)$
- 3. $B(a,r) \cap B(a',r') \neq 0 \iff B(a,r) \subset B(a',r') \text{ or } B(a,r) \supset B(a',r')$
- 4. $\overline{B}(a,r) \cap \overline{B}(a',r') \neq 0 \iff \overline{B}(a,r) \subset \overline{B}(a',r') \text{ or } \overline{B}(a,r) \supset \overline{B}(a',r')$
- 5. B(a,r) is both open and closed
- 6. $\overline{B}(a,r)$ is both open and closed.

Proof. We prove 1. 3. 5. only.

1. $b \in B(a,r)$ and $c \in B(b,r)$. $|c-a| \leq \max\{|c-b|, |b-a|\} < r$, i.e., $B(b,r) \subset B(a,r)$. Reverse inclusion follows from symmetry since $a \in B(b,r)$.

3. Follows form 1.

5. $b \in B(a, r)$ implies $B(b, r) \subset B(a, r)$, so any open ball is open. To show that it is closed, note that $b \notin B(a, r) \Rightarrow a \notin B(b, r)$. So neither ball is contained in the other and they are disjoint. Hence $B(b, r) \subset K \setminus B(a, r)$ and the complement of B(a, r) in K is open.

Remark. Recall that a set S is said to be disconnected if there exists open sets U, V such that

- $U \cap V = \emptyset$,
- $\bullet \ S \subset U \cup V$
- $S \cap U \neq \emptyset$ and $S \cap V \neq \emptyset$

Otherwise S is connected. If $x \in K$ then the connected component of x is the union of all connected sets containing it.

Example. $K = \mathbb{R}$ with usual absolute value, then connected component of any $x \in \mathbb{R}$ is \mathbb{R} .

Exercise. If $|\cdot|$ is a non-archimedean absolute value on a filed K, then the connected component of any $x \in K$ is $\{x\}$, i.e., K is totally disconnected topological space.

Equivalence

Definition 1.9. Two absolute values $|\cdot|_1$ and $|\cdot|_2$ on a field K are *equivalent* if they induce the same topology on K. (i.e., every set which is open with respect to $|\cdot|_1$ is open with respect to $|\cdot|_2$)

Given an absolute value $|\cdot|$ on a field K, a sequence $\{a_n\}_n$ in K converges to a in the induced topology if and only if $\forall \epsilon > 0 \exists N \in \mathbb{N}$ such that for n > N, $|a_n - a| < \epsilon$. Equivalently, for all open sets U containing a, there exists N such that $a_n \in U$ for n > N

Thus the notion of convergence depends on the topology induced by the absolute value.

Lemma 1.10. Let $|\cdot|_1, |\cdot|_2$ be absolute values on field K, with $|\cdot|_1$ non-trivial. Then the following are equivalent

- 1. $|\cdot|_1$, $|\cdot|_2$ are equivalent
- 2. $\forall x \in K, |x|_1 < 1 \iff |x|_2 < 1$
- 3. $\exists \alpha > 0$ such that $\forall x \in K, |x|_1 = |x|_2^{\alpha}$.

Proof.

- 3. \Rightarrow 1. Then $|x-a|_2 < r \iff |x-a|_1 < r^{\alpha}$. So any open ball with respect to $|\cdot|_2$ is an open ball with respect to $|\cdot|_1$. Hence the topology must be the same and the absolute value are equivalent.
- 1. \Rightarrow 2. $|x|_1 < 1 \iff x^n \to 0$ as $n \to \infty$ with respect to $|\cdot|_1 \iff x^n \to 0$ as $n \to \infty$ with respect $|\cdot|_2 \iff |x|_2 < 1$
- 2. \Rightarrow 3. Now $|x|_1 > 1 \iff |x^{-1}| < 1 \iff |x^{-1}|_2 < 1 \iff |x|_2 > 1$. Also $|x|_1 = 1 \iff |x|_2 = 1$. Now pick (and fix) $a \in K^*$ such that $|a|_1 < 1$ (which is possible since $|\cdot|_1$ is non-trivial). Then also $|a|_2 < 1$. Let $\alpha = \frac{\log |a|_1}{\log |a|_2} > 0$. Choose $b \in k^*$
 - 1. $|b|_1 = 1$ then $|b|_2 = 1$ and $1 = 1^{\alpha}$
 - 2. $|b|_1 < 1$ by assumption $|b|_2 < 1$. Define $\beta_i = \frac{\log|a|_i}{\log|b|_i}$ for o = 1, 2. We show that $\beta_1 = \beta_2$ which implies $\frac{\log|b|_1}{\log|b|_2} = \frac{\log|a|_1}{\log|a|_2} = \alpha$. Suppose that $\beta_1 > \beta_2$, then $\exists \frac{m}{n} \in \mathbb{Q}$ such that $\beta_2 \leq \frac{m}{n} < \beta_1$. Set $x = a^n b^{-m} \in k$, then $\log |x|_i = n \log |a|_i - m \log |b|_i = \underbrace{n \log |b|_i}_{<0} \underbrace{\left(\beta_i - \frac{m}{n}\right)}_{<0}$, hence we have a contradiction with $\begin{cases} > 0 \quad i = 1 \\ < 0 \quad i = 2 \end{cases}$, $|x|_1 < 1$ and $|x|_2 > 1$. Similarly if $\beta_2 > \beta_1$. Hence $\beta_1 = \beta_2$

3. If $|b|_1 > 1$, $|b|_2 > 1$, replace b by b^{-1} and get $|b^{-1}|_1 < 1$ and $|b^{-1}|_2 < 1$

How independent inequivalent absolute value are

Lemma 1.11. Let $||_1, \ldots, ||_J$ be non trivial inequivalent absolute values on K. Then there exists $x \in K$ such that $|x|_1 > 1$ and $|x|_j < 1$ for $2 \le j \le J$.

Proof. By induction on J.

- $J = 2 \qquad \text{Since } ||_1, || \text{ are non-trivial and non-equivalent, by the previous lemma there exists } y \in K \text{ such that } |y|_1 < 1 \text{ and } |y|_2 \ge 1, \text{ and } z \in K \text{ such that } |z|_1 \ge 1 \text{ and } |z|_2 < 1. \text{ Let } x = zy^{-1}, \text{ then } |x|_1 = |z|_1 |y|_1^{-1} > 1 \text{ and } |x|_2 = |z|_2 |y|_2^{-1} < 1$
- $\begin{array}{ll} J>2 & \quad \text{By induction, there exists } y,z\in K \text{ such that } |y|_1>1, \ |y|_j<1 \text{ for } 2\leq j< J \text{ and } |z|_1<1, \\ & \quad |z|_i>1 \text{ for } 2\leq j< J. \text{ Consider } |y|_J \text{ and we have different cases:} \end{array}$
 - 1. $|y|_I < 1$ so take x = y
 - 2. $|y|_{J} = 1$ so take $x = y^{n}z$ for large enough n
 - 3. $|y|_J > 1$, then $\left|\frac{y^n}{1+y^n}\right|_j = \left|\frac{1}{1+y^{-n}}\right|_j \xrightarrow[n \to \infty]{} \begin{cases} 1 & j = 2, \dots, J \\ 0 & \text{else} \end{cases}$. So Let $x = \left(\frac{y^n}{1+y^n}\right) z$ for large enough n

Theorem 1.12 (Weak Approximation). Let $||_1, \ldots, ||_J$ be non trivial inequivalent absolute values on K. Let $b_j \in K$ for $j = 1, \ldots, J$ and let $\epsilon > 0$. Then there exists $x \in K$ such that $|x - b_j|_j < \epsilon$ for all $j = 1, \ldots, J$.

Proof. By Lemma 1.11, there exists $x_j \in K$ such that $|x_j|_j > 1$ but $|x_j|_i < 1$ for $i \neq j$. Consider $\left|\frac{x_j^n}{1+x_j^n}\right|_j \xrightarrow[n \to \infty]{} \left\{ \begin{array}{l} 1 & i=j\\ 0 & \text{else} \end{array} \right\}$. Take $w_n = \sum_{j=1}^J b_j \left(\frac{x_j^n}{1+x_j^n}\right) \xrightarrow[n \to \infty]{} b_j$, so take $x = w_n$ for n large enough. \Box

Remark. This is clearly related to the Chinese Remainder Theorem. Let p_1, \ldots, p_j be distinct primes and $m_j \in \mathbb{N}, b_j \in \mathbb{Z}$. Then there exists $x \in \mathbb{Z}$ such that $x \equiv b_j \mod p_j^{m_j}$. Using the Theorem above, $|x - b_j|_j < p_j^{-m_j}$ with p_j -adic absolute value

1.1 Completion

Definition 1.13.

- 1. A sequence $\{x_n\}$ is a field K is called Cauchy if $\forall \epsilon > 0, \exists N > 0$ such that $\forall m, n > N, |x_m x_n| < \epsilon$
- 2. $(K, |\cdot|)$ is complete if every Cauchy sequence is convergent
- 3. A subset $S \subset K$ is dense if $\forall x \in K, \forall \epsilon > 0, B(x, \epsilon) \cap S \neq 0$. That is, $\forall x \in K$, there exists a sequence $\{x_n\} \in S$ such that $\{x_n\} \to x$.
- 4. A field $(\widehat{K}, || ||)$ is a *completion* of (K, ||) if
 - (a) There exists an embedding $\iota: K \to \widehat{K}$ which respect absolute values
 - (b) $\operatorname{im}(K)$ is dense in \widehat{K}
 - (c) $(\widehat{K}, || ||)$ is complete

Theorem 1.14. Let (K, ||) be a field. Then there exists a completion $(\widehat{K}, || ||)$ of K and it is unique as any two completions are canonically isomorphic. That is if $(\widehat{K}_j, || ||_j)$ for j = 1, 2 then there exists a unique isomorphism of $\widehat{K}_1 \cong \widehat{K}_j$ which is the identity of K and preserves $|| ||_1 = || ||_2$

Proof.

Existence of Completion Let \mathcal{K} be the set of all Cauchy Sequences in K. This is a ring as $\{a_n\} + \{b_n\} = \{a_n + b_n\}, \{a_n\} \times \{b_n\} = \{a_n b_n\}$ and id = $\{1\}$. Define $|| || : \mathcal{K} \to \mathbb{R}_{>0}$ by $\{a_n\} \to \lim_{n \to \infty} |a_n|$ (\mathbb{R} is complete). Let $\mathcal{N} \subset \mathcal{K}$ be the subset of all null sequences ($||a_n|| = 0$). Then \mathcal{N} is a maximal ideal (Exercise). Hence \mathcal{K}/\mathcal{N} is a field $\hat{\mathcal{K}}$. We have || || (not an absolute value since $||a_n|| = 0$ for non zero elements) only depends on \mathcal{K}/\mathcal{N} . We get a well defined functions $|| || : \hat{\mathcal{K}} \to \mathbb{R}_{>0}$. This is an absolute value. Define $\iota : \mathcal{K} \to \hat{\mathcal{K}}$ by $a \mapsto \{a\} \mod \mathcal{N}$. Then $\iota(\mathcal{K})$ is dense and $(\hat{\mathcal{K}}, || ||)$ is complete.

Uniqueness Suppose $(\widehat{K'}, || ||')$ is complete and is a completion, $\iota' : K \to \widehat{K'}$ satisfy the embedding properties above.

Claim. ι' extends uniquely to an embedding $\lambda: \widehat{K} \to \widehat{K}'$ such that

Let $x \in \widehat{K}$ and $\{x_n\}$ is a sequence in K such that $\{\iota(x_n)\}$ converges to x (dense). Define $\lambda(x) = \lim_{n \to \infty} \{\iota'(x_n)\}$. Construct $\lambda' : \widehat{K}' \to \widehat{K}$ in the same way

Corollary 1.15. Let K be a field and $||_j$ $(j \leq J)$ be non-trivial and inequivalent absolute values on K. Let \widehat{K}_j be the respective completions, let $\Delta : K \hookrightarrow \prod_j \widehat{K}_j$ defined by $x \mapsto (\iota_j(x))$. Then $\Delta(K)$ is dense, *i.e.*, its closure $\overline{\Delta(K)}$ is $\prod_j K_j$.

Remark. We have $\mathbb{Q} \hookrightarrow \mathbb{R}$ but $\mathbb{Q} \hookrightarrow \mathbb{R} \times \mathbb{R}$ is not dense.

Proof. Let $\alpha_j \in \widehat{K}_j$, for $1 \leq j \leq J$, then $\forall \epsilon > 0$ there exists $a_j \in K$ such that $|a_j - \alpha_j| < \epsilon$ for $1 \leq j \leq J$. By Theorem 1.12 there exists $b \in K$ such that $|b - a_j|_j < \epsilon$. Then $|b - \alpha_j|_j < 2\epsilon$ so arbitrary closed to α_j , hence dense.

2 The *p*-adic

Theorem 2.1 (Ostrowski). Every non trivial absolute value on \mathbb{Q} is equivalent to $||_v$ where v = p a prime or $v = \infty$.

Proof. Let || be an absolute value on \mathbb{Q} and a > 1, b > 0 be integers. Let $t = \max\{|0|, |1|, \dots, |a-1|\},$ $b = b_m a^m + \dots + b_1 a + b_0$ with $b_i \in \{0, \dots, a-1\}, b_m \neq 0$ and $m \leq \frac{\log b}{\log a}$. Then $|b| \leq \sum_{j=0}^m |b_j a^j| \leq (m+1)t \max\{1, |a|^m\} \leq (\log b/\log a + 1)t \max\{1, |a|^m\}$. Replace b by b^n and take *n*th root,

$$|b| \leq \underbrace{\left(n\frac{\log b}{\log a} + 1\right)^{1/n}}_{\substack{n \to \infty}{n \to \infty}^{-1}} t^{1/n} \max\{1, |a|\}^{\log b/\log a}$$

Take the limit as $n \to \infty$, then $|b| \le \max\{1, |a|\}^{\log b/\log a}$ (*). We have two cases

- 1. || is archimedean, then there exists |b| > 1 for some b by Lemma 1.3. So apply (*), then |a| > 1 for all a > 1, so $|b| \le |a|^{\log b/\log b}$. Reversing a and b we get $|a| \le |b|^{\log a/\log b}$. Hence $|a|^{1/\log a} = |b|^{\log b}$, so $\frac{\log|a|}{\log a} = \frac{\log|b|}{\log b} = \alpha > 0$, and it is independent of a and b. Hence $|a| = a^{\alpha} = |a|_{\infty}^{\alpha}$ for all $a \in \mathbb{N}$. But $|\pm 1| = 1$, hence $|a| = |a|_{\infty}^{\alpha}$ for all $a \in \mathbb{Z}$. Let $q = \frac{a}{b}$, hence true for all $q \in \mathbb{Q}$
- 2. || is non-archimedean. Then there exists $a \in \mathbb{N}$ such that |a| < 1. Let b be the such least integer. Claim. b = p a prime number

We prove this by contradiction. Suppose b is not a prime, b = uv. Now |uv| < 1, but as b is the least such number, we have |u| = |v| = 1, hence |b| = 1 a contradiction.

So b is a prime, let b = p.

Claim. p|a if and only if |a| < 1.

 \Rightarrow : Let a = up, then |a| = |u||p|, hence |u| < 1 and |p| < 1.

 $\Leftarrow: \qquad \text{Suppose that if } p \nmid a \text{ then } a = up + r \text{ where } r < p. \text{ By minimality of } p, |r| = 1, |up| < 1, \text{ hence } |a| = \max\{|up|, |r|\} = 1$

So let $\alpha == \frac{\log |p|}{\log p}$, $|p| = |p|_p^{\alpha}$. For all $a \in \mathbb{Z}$ we have $a = p^r a'$ where $p \nmid a'$, hence $|a'| = |a'|_p = 1$. Therefore, $|a| = |p^r a'| = |p|_p^{r\alpha} = |a|_p^{\alpha}$. And $|q| = |q|_p^{\alpha}$ for all $q \in \mathbb{Q}$

Definition 2.2.

- 1. The field of *p*-adic numbers \mathbb{Q}_p is the completion of \mathbb{Q} with respect to $||_p$. $(\mathbb{Q}_p, ||)$ is a non archimedean complete field.
- 2. The ring of p-adic integers \mathbb{Z}_p is $\mathbb{Z}_p = \{x \in \mathbb{Q}_p | |x|_p \le 1\} = \overline{B}(0,1)$ (check it is a ring, by using non archimedean properties)

Lemma 2.3. \mathbb{Z} is dense in \mathbb{Z}_p

Proof. \mathbb{Q} is dense in \mathbb{Q}_p , \mathbb{Z}_p is open in \mathbb{Q}_p so $\mathbb{Q} \cap \mathbb{Z}_p$ is dense in \mathbb{Z}_p . Now $\mathbb{Q} \cap \mathbb{Z}_p = \left\{ \frac{a}{b} \in \mathbb{Q} | p \nmid b \right\}$. Let $\frac{a}{b} \in \mathbb{Q}$ be such that $p \nmid b$ for $n \geq 1$ pick $y_n \in \mathbb{Z}$ such that $by_n \equiv 1 \mod p^n$ (b is a unit in \mathbb{Z}_p). Then $by_n \to 1$ as $n \to \infty$. Hence \mathbb{Z} is dense in $\mathbb{Q} \cap \mathbb{Z}_p$, hence dense in \mathbb{Z}_p

What do elements of \mathbb{Q}_p look like?

Let $x \in \mathbb{Z}_p$, let $n \in \mathbb{N}$, then by density there exists $q = \frac{a}{b} \in \mathbb{Q}$ such that $|x - \frac{a}{b}|_p \leq p^{-n}$. But then $|\frac{a}{b}|_p \leq \max\{|x|_p, |x - \frac{a}{b}|_p\}$. Hence $p \nmid b$ and there exists $b' \in \mathbb{Z}$ such that $bb' \equiv 1 \mod p^n$. But then $|\frac{a}{b} - ab'|_p = |\frac{a}{b}(1 - bb')|_p \leq p^{-n}$. Hence $|x - ab'|_p \leq \max\{|x - \frac{a}{b}|_p, |\frac{a}{b} - ab'|_p\} \leq p^{-n}$. Now let $\alpha \in \{0, \ldots, p^n - 1\}$ be the unique integer such that $ab' \equiv \alpha \mod p^n$.

Conclusion: $\forall x \in \mathbb{Z}_p, \forall n \in \mathbb{N}, \exists \alpha \in \{0, \dots, p^n - 1\}$ such that $x \equiv \alpha \mod p^n$

Lemma 2.4. For all $n \in \mathbb{N}$ there exists an exact sequence of rings $0 \to \mathbb{Z}_p \xrightarrow{p^n} \mathbb{Z}_p \xrightarrow{\phi_n} \mathbb{Z}/(p^n\mathbb{Z}) \to 0$

Proof. Note that ker $p^n = \{z \in \mathbb{Z}_p | p^n z = 0\} = \{0\}$ (take absolute value on both side). We have that ϕ_n is surjective since $\{0, \ldots, p^n - 1\} \subset \mathbb{Z}_p$.

We show that $\operatorname{im}(p^n) = \operatorname{ker}(\phi_n)$. Suppose that $x \in \operatorname{im}(p^n)$, then $x = p^n y$ for some $y \in \mathbb{Z}_p$, then $|p^n y - 0|_p \leq p^{-n}$. Thence $\phi_n(x) = 0$ and $x \in \operatorname{ker} \phi_n$.

Conversely, let $x \in \ker(\phi_n)$. Then $|x|_p = |x-0|_p \le p^{-n}$, hence $|p^{-n}x| \le 1$ so $x = p^n \underbrace{p^{-n}x}_{\in \mathbb{Z}_p} \in \operatorname{im}(p^n)$ \Box

Hence $\mathbb{Z}_p/(p^n\mathbb{Z}_p) \cong \mathbb{Z}/(p^n\mathbb{Z})$. We will see in a more general context that elements of \mathbb{Q}_p can be uniquely written as a Laurent series expansion in p. Later we will consider the extensions of \mathbb{Q}_p .

In a Global setting: $[k : \mathbb{Q}] < \infty$, \mathcal{O}_K is the integral closure of \mathbb{Z} in k. In a local setting: $[k : \mathbb{Q}_p] < \infty$, \mathcal{O}_k is the integral closure of \mathbb{Z}_p in k. But in the global setting \mathcal{O}_k is not necessarily a Unique Factorisation Domain while in a local setting it always is.

3 Non-archimedean Local Fields

We will examine a general theory of fields which are complete with respect to a non archimedean absolute value.

Theorem 3.1 (Ostrowski). Let K be a field complete with respect to a archimedean absolute value. Then $K \cong \mathbb{R}$ or $K \cong \mathbb{C}$ and the absolute value are equivalent to the usual absolute value.

Proof. See Chapter 3 of Cassels Local Fields

Basics Let K be a field with a non-trivial non-archimedean absolute value ||.

- $\mathcal{O}_K = \{x \in K | |x| \le 1\}$, the ring of integers of K
- $\mathcal{P}_K = \{x \in K | |x| < 1\}$

Check that \mathcal{O}_K is an integral domain and that \mathcal{P}_K is maximal. (If $J \supseteq \mathcal{P}_K$ is an ideal of \mathcal{O}_K then there exists $x \in J$ such that |x| = 1. Then $|x^{-1}| = 1$ and $|1 = xx^{-1}| \in J$)

- $\mathcal{U}_K = \{x \in K | |x| = 1\}$, the group of units in K
- $k_K = \mathcal{O}_K / \mathcal{P}_K$, the residue field of K

The characteristic of k_K is the residual characteristic.

Note. In general char $k_K \neq$ charK.

• $\Gamma_K = \{ |x| | x \in K^* \}$, the value group of || on K.

This is a multiplicative subgroup of $\mathbb{R}_{>0}$.

Definition 3.2. A non-archimedean absolute value is *discrete* if Γ_K is discrete. (i.e., $\Gamma_K \cong \mathbb{Z}$)

Lemma 3.3. A non-archimedean absolute value is discrete if and only if the maximal ideal is principal.

Proof. By problem A.6 Γ_K is discrete if and only if Γ_K is cyclic.

- $\begin{array}{ll} \leftarrow: & \text{Suppose that } \mathcal{P}_K \text{ is principal, say } \langle \pi \rangle. \text{ Let } \gamma = |\pi| < 1. \text{ Hence for all } x \in \mathcal{P}_K, \text{ we have} \\ |x| \leq \gamma \text{ (since } x = \pi y \text{ with } y \in \mathcal{O}_K). \text{ So for all } x \in K, \text{ there exists } n \in \mathbb{Z} \text{ such that} \\ \gamma^n \leq |x| < \gamma^{n-1}. \text{ Dividing through by } \gamma^{n-1} \text{ we get that } \gamma \leq |x\pi^{1-n}| < 1, \text{ whence } x\pi^{1-n} \in \mathcal{P}_K. \\ \text{So } \gamma \leq |x\pi^{1-n}| \leq \gamma, \text{ thus } |x\pi^{1-n}| = \gamma. \text{ So } |x| = \gamma^n, \text{ hence } \Gamma_K \text{ is cyclic generated by } \gamma. \end{array}$
- ⇒: Suppose that Γ_K is cyclic with generator $\gamma < 1$ say. Let $\pi \in K$ be such that $|\pi| = \gamma$. Clearly $\langle \pi \rangle \subset \mathcal{P}_K$. Conversely, for $x \in \mathcal{P}_K$, then $|x| = \gamma^n$ for some $n \ge 1$ since Γ_K is cyclic. So $|x\pi^{-1}| = \gamma^{n-1} \le 1$, i.e. $x\pi^{-1} \in \mathcal{O}_K$ and $x \in \langle \pi \rangle$

From now on || is a discrete non-archimedean absolute value on a field K. So by the previous lemma $\mathcal{P}_K = \langle \pi \rangle$. We call π the *uniformiser* for the absolute value. Any $x \in K^*$ can be written as

$$x = \pi^n \epsilon$$

with $n \in \mathbb{Z}$ and $\epsilon \in \mathcal{U}_K$. We write $V_K(x) = n \in \mathbb{Z}$ for the order of x. This gives a valuation $V_K : K \to \mathbb{Z} \cup \{\infty\}$ by setting $V_K(0) = \infty$.

Lemma 3.4. Let $0 \neq I \subset \mathcal{O}_K$ be an integral ideal. Then $I = \mathcal{P}_K^n := \{x_1 \dots x_n | x_i \in \mathcal{P}_K\}$ for some $n \in \mathbb{N}$.

Proof. The subset $\{|x| | x \in I\} \subset \Gamma_K$ is bounded and so it attains its maximal at $x_0 = \pi^n \epsilon$, say (Γ_K is discrete). Then $I = \langle x_0 \rangle = \mathcal{P}_K^n$

This implies that \mathcal{P}_K is the unique non-zero prime ideal in \mathcal{O}_K . Furthermore, \mathcal{O}_K is a PID and a local ring (with a unique maximal ideal)

Let \overline{K} be the completion of K with respect to the absolute value $|\cdot|$. Let $\mathcal{O}_{\overline{K}}, \mathcal{P}_{\overline{K}}$ be the ring of integers and the maximal ideal of \overline{K} respectively. then $\mathcal{O}_K = \mathcal{O}_{\overline{K}} \cap K$ and $\mathcal{P}_K = \mathcal{P}_{\overline{K}} \cap K$. There is an inclusion map $\mathcal{O}_K \hookrightarrow \mathcal{O}_{\overline{K}}$ and so a map $\mathcal{O}_K \to k_{\overline{K}} := \mathcal{O}_{\overline{K}}/\mathcal{P}_{\overline{K}}$ defined by $x \mapsto x + \mathcal{P}_{\overline{K}}$. The kernel of this map is \mathcal{P}_K , so it induces a natural map $k_K \xrightarrow{\sim} k_{\overline{K}}$.

Claim. This map is an isomorphism. It suffices to show that it is surjective

Proof. Let $\overline{x} \in \mathcal{O}_{\overline{K}}$. By density of K in \overline{K} , there exists $x \in K$ such that $|x - \overline{x}| < 1$. Then $x - \overline{x} \in \mathcal{P}_{\overline{K}}$ and $|x| \le \max \left\{ \begin{aligned} |x - \overline{x}|, |\overline{x}| \\ <1 \end{aligned} \right\} \le 1$. Thus $x \in K \cap \mathcal{O}_{\overline{K}} = \mathcal{O}_K$

Definition 3.5. A non-archimedean local field is a field which is complete with respect to a non-trivial discrete non-archimedean absolute value such that the residue class k_K is finite.

	K	\mathbb{Q}_p	$\mathbb{F}_{q}\left(\left(T\right)\right)$
	Completion of	Q	$\mathbb{F}_q(T)$
Example.	\mathcal{O}_K	\mathbb{Z}_p	$\mathbb{F}_q\left[[T]\right]$
	\mathcal{P}_K	$p\mathbb{Z}_p$	(T)
	k_K	$\cong \mathbb{F}_p$	\mathbb{F}_q

From now on, K is a non-archimedean local field.

Say that an infinite sum $\sum_{n=0}^{\infty} x_n, x_n \in K$, converges to s if $s = \lim_{N \to \infty} \sum_{n=0}^{N} x_n$

Lemma 3.6. $\sum_{n=0}^{\infty} x_n$ converges if and only if $x_n \to \infty$ as $n \to \infty$

Proof. Exercise

Lemma 3.7. Let π be a uniformiser of K and let $\mathcal{A} \subset \mathcal{O}_K$ be set of representative of $\mathcal{O}_K/\mathcal{P}_K$. Then $\mathcal{O}_K = \{\sum_{n=0}^{\infty} x_n \pi^n : x_n \in \mathcal{A}\}$

Proof. By Lemma 3.6 we have $\sum_{n=0}^{\infty}$ converges and lies in \mathcal{O}_K . Conversely, if $x \in \mathcal{O}_K$, then there exists a unique $x_0 \in \mathcal{A}$ such that $|x - x_0| < 1$. Hence $x = x_0 + \pi y_1$ for some $y_1 \in \mathcal{O}_K$. Continue inductively with y_1 etc

Suppose $x \in K^*$, Then $\pi^{-N}x \in \mathcal{O}_K$ for some $N \in \mathbb{Z}$. Apply Lemma 3.7 to get $K^* = \{\sum_{n=N}^{\infty} x_n \pi^n : x_n \in \mathcal{A}, N \in \mathbb{Z},$

Let us return topology. A subset $V \subset K$ is said to be *compact* if whenever we have a family U_{λ} ($\lambda \in \Lambda$) of open sets of K such that $V \subset \bigcup_{\lambda \in \Lambda} U_{\lambda}$, then there exists a finite subset $\Lambda_0 \subset \Lambda$ such that $V \subset \bigcup_{\lambda \in \Lambda_0} U_{\lambda}$. We say that K *locally compact* if every point of K has a compact neighbourhood. (i.e., $\forall x \in K$ there exists $V_x \subset K$ which is compact and contains B(x, r) for some r > 0)

Lemma 3.8. Let K be a non-archimedean local field. Then \mathcal{O}_K is compact, and hence K is locally compact.

Proof. First we prove that \mathcal{O}_K is compact. Let U_{λ} ($\lambda \in \Lambda$) be open sets covering \mathcal{O}_K . Suppose that there does not exists a finite subcovering. Now $\mathcal{O}_K = \bigcup_{x \in \mathcal{A}} (x + \pi \mathcal{O}_K)$ where \mathcal{A} is set of representation for (finite field) $\mathcal{O}_K/\mathcal{P}_K$. Then there exists $x_0 \in \mathcal{A}$ such that $x_0 + \pi \mathcal{O}_K$ is not covered by finitely many U_{λ} . Similarly there exists $x_1 \in \mathcal{A}$ such that $x_0 + x_1\pi + \pi^2\mathcal{O}_K$ is not finitely covered and so on. Let $\overline{x} = x_0 + x_1\pi + x_2\pi^2 + \cdots \in \mathcal{O}_K$. There exists $\lambda_0 \in \Lambda$ such that $\overline{x} \in U_{\lambda_0}$. Since U_{λ_0} is open it follows that $\overline{x} + \pi^n \mathcal{O}_K \in U_{\lambda_0}$ for some N, which is a contradiction.

Next we prove that K is locally compact. Put $V_x = \overline{B}(x, 1) = x + \mathcal{O}_K$.

Remark. In fact: F locally compact with respect non-archimedean absolute value $\iff F$ non-archimedean local field.

3.1 Hensel's Lemma

Theorem 3.9. Let K be a non-archimedean local field and $f \in \mathcal{O}_K[X]$. Suppose $x_0 \in \mathcal{O}_K$ satisfies $|f(x_0)| < |f'(x_0)|^2$. Then there exists a unique $x \in \mathcal{O}_K$ such that f(x) = 0, $|x - x_0| \le \frac{|f(x_0)|}{|f'(x_0)|}$.

Proof. Define $f_j \in \mathcal{O}_K[X]$ via

$$f(X+Y) = f(X) + f_1(X)Y + f_2(X)Y^2 + \dots$$
(3.1)

In particular $f_1(X) + f'(X)$. Defined $y_0 \in \mathcal{O}_K$ by $f(x_0) + y_0 f'(x_0) = 0$. Then

$$|f(x_{0} + y_{0})| \leq \max_{j \geq 2} |f_{j}(x_{0})y_{0}^{j}| \quad \text{By (3.1)}$$

$$\leq \max_{j \geq 2} |y_{0}^{j}|$$

$$\leq |y_{0}|^{2}$$

$$= \left|\frac{f(x_{0})}{f'(x_{0})}\right|^{2}$$

$$< |f(x_{0})|$$

Similarly $|f_1(x_0 + y_0) - f_1(x_0)| \le |y_0| < |f_1(x_0)|$. Then $|f_1(x_0 + y_0)| = |f_1(x_0)|$. Put $x_1 = x_0 + y_0$. Then $|f(x_1)| \le \frac{|f(x_0)|^2}{|f_1(x_0)|^2}$, $|f_1(x_1)| = |f_1(x_0)|$ and $|x_1 - x_0| = \frac{|f(x_0)|}{|f'(x_0)|}$. So repeat the process and obtain a sequence of $x_{n+1} = x_n + y_n$ such that $|f_1(x_n)| = |f_1(x_0)|$ and $|f(x_{n+1})| \le \frac{|f(x_n)|^2}{|f_1(x_n)|^2} = \frac{|f(x_n)|^2}{|f_1(x_0)|^2}$. So $f(x_n) \to 0$ as $n \to \infty$. Finally $|x_{n+1} - x_n| = |y_n| = \frac{|f(x_n)|}{|f_1(x_n)|} \to 0$ as $n \to \infty$. So $\{x_n\}$ is Cauchy and it has a limit as required.

Now suppose that we have another solution x + z with $z \neq 0$ and $|z| \leq \frac{|f(x_0)|}{|f_1(x_0)|} < |f_1(x_0)| = |f_1(x)|$. Then, putting X = x and Y = z in equation (3.1), we get $0 = f(x + z) - f(x) = xf_1(x) + z^2f_2(x) + \dots$. But $|zf_1(x)| > |z^j| \geq |z^jf_j(x)|$ for all $j \geq 2$. Which gives a contradiction.

Example.

- 1. Squares in \mathbb{Q}_p .
 - $p \neq 2$. Suppose that $y \in \mathbb{Z}_p^*$. If there exists $x_0 \in \mathbb{Z}_p$ such that $|x_0^2 y| < 1$ then there exists $x \in \mathbb{Z}_p$ such that $x^2 = y$. (Take $f(X) = X^2 y$, so $|f(x_0)| < 1$ but $|f'(x_0)| = |2x_0| = 1$).

Theorem. Any $z \in \mathbb{Z}$ with $p \nmid z$, is a square in $\mathbb{Z}_p \iff \left(\frac{z}{p}\right) = +1$

Claim. $\mathbb{Q}_p^*/(\mathbb{Q}_p^*)^2$ has 4 elements represented by 1, c, p, cp where $c \in \{1, \ldots, p-1\}$ is a quadratic non-residue.

Corollary. It follows that \mathbb{Q}_p has exactly 3 quadratic extensions.

Proof of the claim. Suppose $x \in \mathbb{Q}_p^*$. We may assume x = u or pu for $u \in \mathbb{Z}_p$ (on multiplying x by a power of $p^2 \in \mathbb{Q}^{*2}$). Let $\alpha \in \{1, \ldots, p-1\}$ be such that $u \equiv \alpha \mod p\mathbb{Z}_p$ (i.e. $u = \alpha + v$ for some $v \in p\mathbb{Z}_p$). Then $u = \alpha(1 + \alpha^{-1}v)$ and $1 + \alpha^{-1}v \equiv 1 \mod p\mathbb{Z}_p$ which is a square. Thus we may assume $u = \alpha$. But $\left(\frac{u}{p}\right) = 1 \Rightarrow u \in \mathbb{Q}_p^{*2}$, otherwise uc is in \mathbb{Q}_p^{*2} .

- p = 2. See exercise B.1
- 2. Since residue field k_K is finite, it follows that k_K^* is cyclic group of order q-1 where $q = p^r$ for some prime p. Now show there exists an alternative set of representative for $k_K = \mathcal{O}_K/\mathcal{P}_K$, besides $\{0, \ldots, q-1\}$.

Note $p \cdot 1 \in \mathcal{O}_K$ and so $q - 1 \in \mathcal{O}_K^*$. For each $\alpha \in k_K^*$, let $x_0 \in \mathcal{O}_K^*$ such that $x_0 \equiv \alpha \mod p$ and consider $f(x) = x^{q-1} - 1$. Then $|f(x_0)| < 1$, $|f'(x_0)| = |q - 1| \cdot |x_0|^{q-2} = 1$. Hence by Theorem (3.9), there exists a unique *Teichmuller representative* $\widehat{\alpha} \in \mathcal{O}_K^*$ of α such that $f(\widehat{\alpha}) = 0$ and $\widehat{\alpha} \equiv \alpha \mod p$. We can take $\{0\} \cup \{\widehat{\alpha} : \alpha \in k_K^*\}$ as a set of representative for k_K .

Define principal congruence subgroup $\mathcal{U}_K^n = \{u \in \mathcal{U}_K = \mathcal{O}_K^* : u - 1 \in \mathcal{P}_K^n\} = 1 + \mathcal{P}_K^n$. Then \mathcal{U}_K and \mathcal{U}_K^n are open and closed and compact in K^* (with induced topology).

We have isomorphism of topological groups:

- $K^*/\mathcal{U}_K \to \mathbb{Z}$ defined by $x\mathcal{U}_K \mapsto V_K(x)$.
- $\mathcal{U}_K/\mathcal{U}_K^1 \to k_K^*$ defined by $\xi^v \mathcal{U}_K^1 \mapsto g^v$ where ξ is a primitive (q-1)th root of unity in K and g is a generator for k_K^* .

Hence any $x \in K^*$ can be uniquely written as $\pi^u \xi^v \epsilon$ for $\epsilon \in \mathcal{U}_K^1$, i.e., $K^* \cong \mathbb{Z} \times \mathbb{Z}/(q-1)\mathbb{Z} \times \mathcal{U}_K^1$.

4 Extensions of local fields

We consider field extensions of non-archimedean local fields. We would like to show that these extension are non-archimedean local fields.

4.1 Normed vector spaces

Let K be a non-archimedean local field

Definition 4.1. Let V be a vector space over K. A function $\| \| : V \to \mathbb{R}_{>0}$ is a norm if

- 1. ||x|| = 0 if and only if x = 0
- 2. $||x + y|| \le ||x|| + ||y||$
- 3. $\|\lambda x\| = |\lambda| \cdot \|x\|$ for all $\lambda \in K$

Note. The norm induces a metric d(x, y) = ||x - y|| on V, which gives a topology.

Definition 4.2. Two norms $|| ||_1$ and $|| ||_2$ one a vector V are equivalent if $\exists c_1, c_2 > 0$ such that $c_1 ||x||_2 \le ||x||_1 \le c_2 ||x||_2 \quad \forall x \in V$

Exercise. Show that $\| \|_1, \| \|_2$ are equivalent if and only if they induce the same topology on V.

Lemma 4.3. Let V be a finite dimensional vector space over K. Then any 2 norms on V are equivalent. Moreover, V is complete with respect to the induced metric.

Proof. We proof by induction on $n = \dim_K V$

- n = 1 Trivial
- n > 1 Let e_1, \ldots, e_n be a basis for V over K. Put $a = a_1e_1 + \cdots + a_ne_n$ $(a_j \in K)$ and define $||a||_0 := \max_j |a_j|$. Check that $|| ||_0$ is a norm and that V is complete with respect to it. It will suffice to show any norm || || on V is equivalent to $|| ||_0$. Firstly $||a|| \le \sum_j |a_j| \cdot ||e_j|| \le c_2 ||a||_0$ with $c_2 = \sum ||e_j||$.

We now need to show $\exists c > 0$ such that $||a||_0 \le c||a||$ for all $a \in V$ (*). If not, $\forall \epsilon > 0$, there exists $b = b_{\epsilon} \in V$ such that $||b|| \le \epsilon ||b||_0$. Assume without loss of generality that $||b||_0 = |b_n|$. Replacing b by $b_n^{-1}b$ we have $b = c + e_n$ where $c \in \langle e_1, \ldots, e_{n-1} \rangle_K$.

Summary: (*) false, implies we can find a sequence $c^{(m)} \in W = \langle e_1, \ldots, e_{n-1} \rangle_K$ such that $\|c^{(m)} + e_n\| \to 0$ as $m \to \infty$. But then $\|c^{(m)} - c^{(l)}\| \to 0$. So now use induction hypothesis. Since dim W = n-1, it is complete under $\| \|$. Thus there exists $c^* \in W$ such that $\|c^{(m)} - c\| = 0$. Hence $\|c^* + e_n\| = \lim_{m \to \infty} \|c^{(m)} + e_n\| = 0$. Therefore $c^* + e_n = 0$, which is impossible. Hence (*) hold and so $\| \|$ and $\| \|_0$ are equivalent.

Corollary 4.4. V finite dimensional normed vector space over K. Then V is locally compact. (i.e., $v \in V$ has a compact neighbourhood)

Proof. By Lemma 4.3 we can assume $\| \|$ is $\| \|_0$, with respect to some fixed basis e_1, \ldots, e_n . Now imitate the proof of Lemma 3.8 to show that $\{v \in V : \|v\|_0 \le 1\}$ is compact. \Box

4.2 Extension of Absolute Values

Let K be a non-archimedean local field and $L \supset K$ an extension. We say that an absolute value $|| \parallel L$ extends to the absolute value $|| \mid$ on K if $||\lambda|| = |\lambda|$ for all $\lambda \in K$

Theorem 4.5. Let $L \supset K$ be a finite extension. Then there exists a unique extension || || of || to L. Moreover, L, || || is a non-archimedean local field.

Proof.

Uniqueness: Suppose $\| \|_1, \| \|_2$ extend | | to L. Then, regarding L as a finite dimensional vector space over K, Lemma 4.3 implies $\| \|_1$ and $\| \|_2$ are equivalent and some define the same topology on L. But then they are equivalent as absolute values and so by Lemma 1.10, there exists α such that $\| x \|_1 = \| x \|_2^{\alpha} \forall x \in L$. But the two absolute values are equal on K, so that $\alpha = 1$.

Second_part Apply 4.4 and converse of Lemma 3.8

Existence We will show that the extension of || || of || to L is given by $||x|| = |N_{L/K}(x)|^{1/n}$ for $x \in L$, where n = [L : K]. Here $N_{L/K} : L \to K$ is the norm map. (Recall: Thinking of L as a vector space over K, multiplication by $\alpha \in L$ gives a linear map $m_{\alpha} : K \to L$, with matrix $A_{\alpha} \in M_n(K)$. Put $N_{L/K}(\alpha) := \det A_{\alpha}$). For $x \in K$, $||x|| = |x^n|^{1/n} = |x|$. So || || does extend ||.

For $x \in L^*$, the linear map $m_x : L \to L$ is invertible with inverse $m_{x^{-1}}$. Thus the matrix A_x is invertible, and det $A_x \neq 0$. Hence $||x|| \neq 0$. Multiplicativity follows from the multiplicativity of the norm map.

Remains to prove the ultrametric inequality. Suffices to show $||x|| \leq 1$, then $||1+x|| \leq 1$. (Then, assuming $||x|| \leq ||y||$ then $||x+y|| = ||y|| \cdot ||\frac{x}{y} + 1|| \leq ||y||$). Suppose $||x|| \leq 1$. Let $\chi(x)$ be the characteristic polynomial of the linear map $m_x : L \to L$. Let $f(X) = X^r + f_{r-1}X^{r-1} + \cdots + f_0$ be the minimal polynomial of x. Here r is the degree of x over K. Then $\chi(X) = f(X)^{n/r}$ (where n/r is the degree of L over K(x), a proof of this can be found in Cassels book Lemma B.3). Then $|f_0^{\text{power}}| = |N_{L/K}(x)| \leq 1$, hence $|f_0| \leq 1$. Since f is irreducible and monic it follows from consideration of Newton polygon associated to it that $|f_i| \leq 1$ (See Cassels chapter 4). Hence $f \in \mathcal{O}_K[X]$ and also $\chi \in \mathcal{O}_K[X]$. Now $N_{L/K}(1+x) = \det(I_n + A_x) = (-1)^n \chi(-1)$. So $||1+x|| = |\chi(-1)|^{1/n} \leq 1$. This completes the proof

Since the absolute value on L is unique, we will usually write it as || instead of || ||.

Corollary 4.6. $||_p$ on \mathbb{Q}_p extends uniquely to an absolute value on algebraic closure $\overline{\mathbb{Q}_p}$.

Proof. $x \in \overline{\mathbb{Q}_p}$ then $x \in K$ for some finite extension K/\mathbb{Q}_p . Let $|| = ||_K$ where || is the unique absolute value on K extending $||_p$. This is independent of choice of K by Theorem 4.5

4.3 Ramification

Suppose L/K is a finite extension of non-archimedean local fields of degree n = [L:K].

Lemma 4.7. There exists a natural injection $k_K \to k_L$ such that k_L is an extension of k_K of degree $f = f(L/K) := [k_L : k_K] \le n$.

Proof. There is certainly an inclusion $\mathcal{O}_K \hookrightarrow \mathcal{O}_L$. But $\mathcal{P}_K = \mathcal{O}_K \cap \mathcal{P}_L$, this induces the injection $k_K \to k_L$.

Let $\alpha_1, \ldots, \alpha_{n+1} \in k_L$. Show that there are linearly dependent over k_K . Then we will have shown that $f = \dim_{k_K} k_L \leq n$. Let $\widehat{\alpha_1}, \ldots, \widehat{\alpha_{n+1}} \in \mathcal{O}_L$ such that $\alpha_i = \widehat{\alpha}_i + \mathcal{P}_L$ for $1 \leq i \leq n+1$. Since $\dim_K L = n$, there are linearly dependent over K, i.e., there exists $\lambda_i \in K$ not all zeroes such that $\sum_{i=1}^{n+1} \lambda_i \widehat{\alpha}_i = 0$. Without loss of generality, we assume that $\lambda_{n+1} \neq 0$. Let $\mu_i \in k_K$ be the reduction of $\lambda_i \lambda_{n+1}^{-1}$ modulo \mathcal{P}_L . Then $\sum_{i=1}^n \mu_i \alpha_i + \alpha_{n+1} = 0$, as required.

Definition 4.8. If f = f(L/K) = n, we say L/K is unramified. If f = f(L/K) = 1, we say L/K is totally ramified. If f = f(L/K) < n, we say L/K is ramified.

Remark. If $K \subset L \subset E$ is a tower of extensions then $f(E/K) = f(E/L) \cdot f(L/K)$.

We shall see that unramified extensions are easy to characterise.

Theorem 4.9. Let $\alpha \in k_L = \mathcal{O}_L/\mathcal{P}_L$. Then there exists $\widehat{\alpha} \in \mathcal{O}_L$ such that $\widehat{\alpha} + \mathcal{P}_L = \alpha$ and $[K(\widehat{\alpha}) : K] = [k_K(\alpha) : k_K]$.

Furthermore, the field $K(\hat{\alpha})$ depends on α .

Remark. The extension $K(\hat{\alpha})/K$ is unramified.

Proof. Let $\phi \in k_x[x]$ be the minimal polynomial of α . Let $\Phi \in K[X]$ be any lift of ϕ (i.e., $\deg \phi = \deg \Phi$ and $\phi = \overline{\Phi}$, meaning coefficients of Φ are reduced modulo \mathcal{P}_K). Let $\widehat{\alpha_0} \in \mathcal{O}_L$ be an element of the residue class of α . Then $\overline{\Phi}(\widehat{\alpha_0}) = \phi(\alpha) = 0$ and $\overline{\Phi}'(\widehat{\alpha_0}) = \phi'(\alpha) \neq 0$ (since k_K is a finite field so it is perfect). Thus $|\Phi(\widehat{\alpha_0})| < 1$ and $|\Phi'(\widehat{\alpha_0})| = 1$. Hence by Hensel's lemma, with $K(\widehat{\alpha_0})$ as the ground field, implies there exists $\widehat{\alpha} \in K(\widehat{\alpha_0}) \subset L$ such that $\Phi(\widehat{\alpha}) = 0$, $|\widehat{\alpha} - \widehat{\alpha_0}| < 1$. Hence $\widehat{\alpha}$ in residue class of α and $[K(\widehat{\alpha}) : K] = [k_K(\alpha) : k_K]$ since Φ is irreducible.

Now suppose that $\hat{\alpha}'$ is also in the residue class of α and satisfies $[K(\hat{\alpha}'):K] = [k_K(\alpha):k_K]$. Then the above argument implies $\hat{\alpha} \in K(\hat{\alpha}')$ and so $K(\hat{\alpha}) = K(\hat{\alpha}')$. But we must have equality since the degrees are the same.

Corollary 4.10. There exists a bijection between intermediate fields E (with $K \subset E \subset L$) which are unramified and the fields k with $k_K \subset k \subset k_L$, given by $E \to k_E = E \cap \mathcal{O}_L / E \cap \mathcal{P}_L$

Proof. The previous theorem gives one direction.

Let k be an intermediate field $k_K \subset k \subset k_L$. Let q = #k. Then $k = k_K(\alpha)$ for some (q-1)th root of unity α . Then apply Theorem 4.9

Corollary 4.11. Let K be a non-archimedean local field. For all $n \in \mathbb{N}$ there exists a unique (up to isomorphism) unramified extension of degree n. It is the splitting field over K of $X^q - X$ where $q = q_K^n$, with $q_K = \#k_K$

Proof. Let L/K be unramified extension of degree n. Then k_L has $q = q_K^n$ elements. Then L contains a full set of (q-1)th roots of unity (By example 2 after Hensel's lemma). In particular $X^q - X$ splits in L and so L contains its splitting field, say F. However $q_L = q_F = q$ and so by Corollary 4.10 we must have F = L

Corollary 4.12. Let $f \in \mathcal{O}_K[X]$ be monic of degree n and reduction $\overline{f} \mod \mathcal{P}_K$ is irreducible. Then

1. if $L = K(\alpha)$ and α has minimal polynomial f, then L/K is unramified

2. The splitting field of f over K is unramified and has degree n.

Proof.

- 1. Note that $k_L \supset k_K(\overline{\alpha})$, where $\overline{\alpha}$ is the reduction of $\alpha \mod \mathcal{P}_L$. Moreover, $k_K(\overline{\alpha})$ has degree *n* over k_K . Hence $f(L/K) \ge n$. But we also have $f(L/K) \le n = [L:K]$ by Lemma 4.7.
- 2. Let L be the splitting field of f over K and let α, β be roots of f in L. Then part 1. implies that $K(\alpha)$ and $K(\beta)$ are both unramified extensions of degree n. Then Corollary 4.10 implies they are equal, therefore $L = K(\alpha)$.

Summary. Unramified extensions of K are obtained by adjoining a root of unity of order coprime to residual characteristic of K.

Now let us look at ramified extensions.

Suppose L/K is a finite extension of non-archimedean local fields. Consider the relationship between value groups $\Gamma_L = \{|x| : x \in L^*\}$ is a discrete (cyclic) subgroup of $\mathbb{R}_{>0}$.

Definition 4.13. The ramification index of L/K is $e = e(L/K) = [\Gamma_L : \Gamma_K]$.

If π_L , π_K are uniformisers for L and K respectively. Recall $|\pi_K| < 1$ is a generator for Γ_K and similarly π_L for Γ_L . Then $|\pi_K| = |\pi_L|^e$. This implies e(E/K) = e(E/L)e(L/K) for any tower $K \subset L \subset E$.

Theorem 4.14. L/K be a finite extensions of non-archimedean local fields of degree n. Then n = ef.

- It follows from this that L/K is unramified if and only if e(L/K) = 1
- L/K is totally ramified if and only if e(L/K) = n

It is ramified if and only if e(L/K) > 1

Proof. Let π_L be a uniformiser of L and let $\hat{\alpha}_1, \ldots, \hat{\alpha}_f$ be any lift to \mathcal{O}_L of a basis for k_L/k_K . (As in Theorem 4.9) We will prove that $\mathcal{B} = \left\{ \hat{\alpha}_i \pi_L^j : 1 \leq i \leq f, 0 \leq j \leq e-1 \right\}$ is a basis for L/K. (In fact we will prove that it is an \mathcal{O}_K basis for \mathcal{O}_L .)

Firs suppose that \mathcal{B} is not linearly independent over K. Then there exists $a_{ij} \in K$, not all zeroes, such that

$$\sum_{i,j} a_{ij} \widehat{\alpha}_i \pi_L^j = 0 \quad (*)$$

Without loss of generality, assume that $\max_{i,j} |a_{ij}| = 1$. Hence, there exists integers, I, J such that $|a_{ij}| \leq |\pi_K|$ for $1 \leq i \leq f, j < J$, $|a_{IJ}| = 1$. If we reduce $\sum_i a_{iJ} \hat{\alpha}_i$ module \mathcal{P}_L , then we get a non-zero coefficient \overline{a}_{IJ} . Since $\hat{\alpha}_i \mod \mathcal{P}_L$ are linearly independent over k_K , this reduction is non-zero. Thus $|\sum_i a_{iJ} \hat{\alpha}_i| = 1$. We now get

$$\left|\sum_{i} a_{ij} \widehat{\alpha}_{i} \pi_{L}^{j}\right| \begin{cases} \leq |\pi_{K}| = |\pi_{L}|^{e} & j < J \\ = |\pi_{L}|^{J} & j = J \\ \leq |\pi_{L}|^{J+1} & j > J \end{cases}$$

Recalling $J \leq e - 1$, one term in (*) has to be bigger than all the others. Contradiction

Now let $x \in L$. We claim that x is in the K-span of \mathcal{B} . Multiplying by a suitable power of π_K , we reduce to the case $x \in \mathcal{O}_L$. (If $\pi_K^n x = \sum_{ij} a_{ij} \widehat{\alpha}_i \pi_L^j$ with $a_{ij} \in K$, then putting $b_{ij} = \pi_k^{-n} a_{ij}$ gives $x = \sum b_{ij} \widehat{\alpha}_i \pi_L^j$).

Since $\alpha_i \equiv \widehat{\alpha}_i \mod \mathcal{P}_L$ form a basis for k_L/k_K , there exists $c_{i0} \in k_K$ such that $\overline{x} = \sum_i c_{i0}\alpha_i$. Choose any lifts $\widehat{c_{i0}} \in \mathcal{O}_K$, we have $x - \sum_i \widehat{c}_{i0}\widehat{\alpha}_i = \pi_L x_1 \in \mathcal{P}_L$ for some $x_1 \in \mathcal{O}_L$. Now repeat process on x_1 , and so on, until we have obtained $\widehat{c}_{ij} \in \mathcal{O}_K$ such that

$$x - \sum_{j=0}^{e-1} \sum_{i} \widehat{c}_{ij} \widehat{\alpha}_i \pi_L^j = \pi_L^e x_e$$

for some $x_e \in \mathcal{O}_L$. Now $|\pi_L|^e = |\pi_K|$ and so $\pi_L^e x_e = \pi_K x^{(1)}$ for some $x^{(1)} \in \mathcal{O}_L$. Now we start again with $x^{(1)}$ instead of x. Carrying on in this way, we find a succession of linear combinations

$$c_r = \sum_{j=0}^{e-1} \sum_i \widehat{c}_{ij}^{(r)} \widehat{\alpha}_i \pi_L^j$$

of elements of \mathcal{B} with coefficients in \mathcal{O}_K such that $x - c_0 - c_1 \pi_K - \cdots - c_s \pi_K^s \in \pi_K^{s+1} \mathcal{O}_L, \forall s \ge 0$. Now let $s \to \infty$ and, using completeness, put

$$a_{ij} = \sum_{r=0}^{\infty} \widehat{c}_{ij}^{(r)} \pi_K^r$$

Then $x = \sum_{i,j} a_{ij} \widehat{\alpha}_i \pi_L^j$ as required.

A polynomial $f(X) = f_n X^n + f_{n-1} X^{n-1} + \dots + f_0 \in \mathcal{O}_K[X]$ is said to be *Eisenstein* if

$$|f_n| = 1, |f_j| < 1 \,\forall 0 \le j < n, |f_0| = |\pi_K| \quad (\dagger)$$

Aside on irreducibility: Let $f = f_0 + f_1 X + \dots + f_n X^n \in K[X]$ with $f_0 \neq 0, f_n \neq 0$. The Newton polygon of f is the convex hull in \mathbb{R}^2 of the points $p(j) = (j, \log |f_j|)$ for $f_j \neq 0$. It consist of line segments σ_s for $1 \leq s \leq r$, where σ_s joins $P(m_{s-1})$ to $P(m_s)$ and $0 = m_0 < m_1 < \dots < m_r = n$. The slope of σ_s is $\gamma_s = \left(\log |f_{m_s}| - \log |f_{m_{s-1}}| \right) / (m_s - m_{s-1})$. We say f is of type $(l_1, \gamma_1, \dots, l_r, \gamma_r)$ where $l_s = m_s - m_{s-1}$. If r = 1 then f is said to be pure.

Fact. (Cassels Local Field pg 100): f of type $(l_1, \gamma_1, \ldots, l_r, \gamma_r)$ then $f(X) = g_1(X) \ldots g_r(X)$ where g_s is pure of type (l_s, γ_s) .

Totally ramified extensions are quite easy to classify.

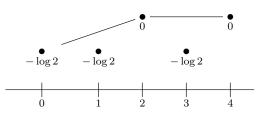
Theorem 4.15. Let L/K be a finite extension of non-archimedean local fields. Then L/K is totally ramified if and only if $L = K(\beta)$, where β is the root of an Eisenstein polynomial.

Proof.

 $\Rightarrow \qquad L/K \text{ totally ramified of degree } n, \text{ let } \beta = \pi_L \text{ be a uniformiser for } L. \text{ Then } 1, \pi_L, \dots, \pi_L^{n-1} \text{ are linearly independent over } K \text{ (as in the proof of Theorem 4.14). Hence there exists an equation } \beta^n + f_{n-1}\beta^{n-1} + \dots + f_0 = 0 \text{ with } f_j \in K. \text{ Two of the summands must have the same absolute value and this must be the first and the last. (Suppose <math>|f_k\beta^k| = |f_l\beta^l|$ for some $n \ge k > l \ge 0$, then there exists $a_k, a_l \in \mathbb{Z}$ such that $\left|\pi_L^{k-l}\right| = |\beta|^{k-l} = |\pi_K|^{a_k-a_l} = |\pi_L|^{n(a_k-a_l)}$, hence l = 0 and k = n). Therefore $|f_0| = |\pi_L|^n = |\pi_K|$ and $|f_j| < 1$ for all j. Hence a polynomial in the equation is Eisenstein.

Example. Let $f(X) = X^4 - 2X^3 + 17X^2 + 22X + 66$. We are going to look at the splitting field *E* over \mathbb{Q}_p for various prime *p*. In each case, we want to calculate:

- The degree $[E:\mathbb{Q}_p]$?
- Residue class degree $f(E/\mathbb{Q}_p)$?
- Ramification index $e(E/\mathbb{Q}_p)$?
- (If possible) maximal unramified subextension L? i.e., $E \supset L \supset \mathbb{Q}_p$ with L/\mathbb{Q}_p unramified and hence E/L totally ramified.
- p = 2 Newton polygon. Note $\log |2^a b|_2 = \log 2^{-1}$



 $l_1 = 2 - 0 = 2, \ \gamma_1 = \log 2/2, \ l_2 = 4 - 2 = 2, \ \gamma_2 = 0.$ So the type is $(2, \frac{1}{2} \log 2, 2, 0)$ and factorises as a product of 2 quadratic. Trial an error over \mathbb{Z} gives $f(X) = \underbrace{(X^2 - 2X + 6)}_{:=g(X)} \cdot \underbrace{(X^2 - 11)}_{:=h(X)}$ and

g, h irreducible over \mathbb{Q}_2 (Eisenstein criterion for g and $11 \not\equiv 1 \mod 8$ so apply Exercise B.1). Let α be a root of g and β a root of h in E. Then by Theorem 4.15, we have that $\mathbb{Q}_2(\alpha)/\mathbb{Q}_2$ is totally ramified. Since $\beta - 1$ satisfies $0 = h(X+1) = X^2 + 2X - 10$ which is Eisenstein, we also have $\mathbb{Q}_2(\beta)/\mathbb{Q}_2$ is totally ramified. Note that $[\mathbb{Q}_2(\alpha) : \mathbb{Q}_2] = [\mathbb{Q}_2(\beta) : \mathbb{Q}_2] = 2$.

Next $\gamma = \alpha - 1$ satisfies $0 = g(X + 1) = X^2 - 7$, so $\gamma^2 = 7$. Let $\delta = \beta \gamma$, then $\delta^2 = 7 \cdot 11$. We claim that $\mathbb{Q}_2(\delta)/\mathbb{Q}_2$ is unramified of degree 2. Then $[E : \mathbb{Q}_2] = 4$, $e(E/\mathbb{Q}_2) = f(E/\mathbb{Q}_2) = 2$ and $L = \mathbb{Q}_2(\delta)$. To show that $\mathbb{Q}_2(\delta)/\mathbb{Q}_2$ is unramified, we need to show (by Corollary 4.11) that $\mathbb{Q}_2(\delta)$ is obtained from \mathbb{Q}_2 by adjoining a root of $X^2 + X + 1$ (i.e., a primitive $(2^2 - 1)$ th root of unity). Do this by applying Hensel to $(\delta - 1)/2$.

p odd Use the fact that $E = \mathbb{Q}_p(\gamma, \beta)$ where γ and β are as above $(\gamma^2 = 7, \beta^2 = 11)$

p = 3 Since $\left(\frac{7}{3}\right) = 1$, then $\gamma \in \mathbb{Q}_3$, while $\left(\frac{11}{3}\right) = -1$, so $X^2 - 11$ is irreducible in $\mathbb{F}_3[X]$. Hence it follows that $E = \mathbb{Q}_3(\beta)$ and it is unramified of degree 2 over \mathbb{Q}_3 (by Corollary 4.12)

$$p = 19$$
 Since $\left(\frac{7}{19}\right) = \left(\frac{11}{19}\right) = 1$ so $E = \mathbb{Q}_{19}$

(all primes behave like 3, 5, 11, 13 or 19)

5 Algebraic Closure

Recall that a field K is called *algebraically closed* if every polynomial with coefficients in K has a root in K.

Definition 5.1. An extension $\overline{K} \supset K$ is the algebraic closure of K if

- 1. \overline{K} is algebraically closes
- 2. Any $\alpha \in \overline{K}$ is algebraic over K.

For example, \mathbb{C} is the algebraic closure of \mathbb{R} , $[\mathbb{C}:\mathbb{R}] = 2$. If $\overline{\mathbb{Q}_p}$ is the closure of \mathbb{Q}_p then $[\overline{\mathbb{Q}_p}:\mathbb{Q}_p] = \infty$. (Note $\overline{\mathbb{Q}_p}$ must contain roots of $X^n - p$ for all $n \in \mathbb{N}$)

Theorem 5.2. Let K be a field. Then there exists an algebraic closure \overline{K} of K and it is unique up to isomorphism.

Proof. (Sketch) Let Λ be the set of all irreducible polynomials over K of degree ≥ 2 . Let $\Xi = \{X_f : f \in \Lambda\}$ be a family of indeterminate indexed by Λ . Put $R = K[\Xi]$. Consider the ideal $I = \{f(X_f) : f \in \Lambda\}$. This is a proper ideal: if not we would have an equation $1 = u_1 f_1(X_{f_1}) + \cdots + u_n f_n(X_{f_n})$ for some $u_j \in R$. Let E/K formed by adjoining roots $\alpha_1, \ldots, \alpha_n$ of f_1, \ldots, f_n respectively. Then we deduce that 1 = 0 a contradiction.

Since I is proper, it is contained in a maximal ideal m of R. Then $\overline{K} = R/m$ is a field and the homomorphism $K \to K[\Xi] \twoheadrightarrow \overline{K}$ is an embedding of $K \to \overline{K}$. We claim \overline{K} is an algebraic closure of K. If f is an irreducible polynomial in K[X], then $\alpha = X_f + m$ is an root of f in \overline{K} (since $f(X_f) \in I \subset m$). Moreover, each $X_f + m$ is algebraic over \overline{K} and \overline{K} is generated by them.

Uniqueness: Essentially follows form uniqueness of splitting fields of polynomials over K.

From now on K is a non-archimedean local field with algebraic closure \overline{K} . Recall that the absolute value on K extends uniquely to \overline{K} . $(\forall \alpha \in \overline{K}, \text{there exists } K \subset L \subset \overline{K} \text{ such that } L = K(\alpha), \text{ then } |\alpha| = |N_{L/K}(\alpha)|^{1/[L:K]}).$

We want to know if it is possible for \overline{K} to be a non-archimedean local field:

- $$\begin{split} \Gamma_{\overline{K}} & \quad \text{Let us ask is the value group } \Gamma_{\overline{K}} \text{ is discrete? Suppose } \Gamma_{K} = \{|x|: x \in K\} \text{ is generated by } g < 1. \\ & \quad \text{Suppose } r \in \Gamma_{\overline{K}}. \text{ Then } r = |\alpha| \text{ for some } \alpha \in \overline{K}. \text{ Let } L/K \text{ of degree } n \text{ such that } \alpha \in L. \text{ Then } |\alpha| = g^{m/n} \text{ for some } m \in \mathbb{Z}. \text{ Hence } \Gamma_{\overline{K}} \subset \{g^{m/n}: \frac{m}{n} \in \mathbb{Q}\}. \text{ In fact we have equality. Let } L \subset \overline{K} \text{ be an extension obtained by adjoining a root } \alpha \text{ of the Eisenstein polynomial } X^n \pi_K X \pi_K. \\ & \quad \text{Then } \alpha \text{ is the uniformiser for } L \text{ and } L/K \text{ is totally ramified of degree } n. \text{ Hence } |\alpha| = g^{1/n} \text{ and } \text{ so } |\alpha^m| = g^{m/n}. \text{ This shows that } \Gamma_{\overline{K}} \text{ is <u>not</u> discrete.} \end{split}$$
- $k_{\overline{K}} \qquad \text{Consider the residue field } k_{\overline{K}}. \text{ Let } \alpha \in k_{\overline{K}} = \mathcal{O}_{\overline{K}}/\mathcal{P}_{\overline{K}} \text{ and let } \widehat{\alpha} \text{ be a lift of } \alpha \text{ to } \mathcal{O}_{\overline{K}}. \text{ Then } \widehat{\alpha} \in \overline{K} \text{ and so there exists a minimal polynomial } \Phi \in \mathcal{O}_K[X] \text{ of } \widehat{\alpha} \text{ over } K. \text{ Let } \phi \in k_K[X] \text{ denote the reduction modulo } \mathcal{P}_K \text{ of } \Phi. \text{ Then it follows } \phi(\alpha) = 0 \text{ and so } \alpha \text{ is algebraic over } k_K. \text{ Thus } k_{\overline{k}} \subset \overline{k_K}. \text{ In fact we have equality here. Suppose } \phi \in k_K[X] \text{ is irreducible and let } \Phi \text{ be a lift of } \phi. \text{ Then } \Phi \text{ has a root } \alpha \in \mathcal{O}_{\overline{K}} \text{ (since } \overline{K} \text{ is algebraic closed). Then } \overline{\alpha} = \alpha + \mathcal{P}_{\overline{K}} \text{ is a root of } \phi \text{ in } k_{\overline{K}}. \text{ Hence } k_{\overline{K}} = \overline{k_K}.$

Suppose L/K is Galois.

Exercise. If | | is an absolute value on L which extends the absolute value on K, then so $||x|| = |\sigma(x)|$ for all $\sigma \in \text{Gal}(L/K)$. By uniqueness, we have $|x| = |\sigma(x)|$ for all $x \in L \forall \sigma \in \text{Gal}(L/K)$.

Theorem 5.3 (Krasner's Lemma). K field of characteristic 0, which is complete with respect to a nonarchimedean absolute value | |. Let $a, b \in \overline{K}$ and suppose that $|b-a| < |a-a_i|$ for all $2 \le i \le n$ where $a_1 = a, a_2, \ldots, a_n$ are roots of the minimal polynomial of a in K[X]. Then $K(a) \subset K(b)$.

Proof. Put L = K(b). Suppose for contradiction that $a \notin L$. Let $f \in L[X]$ be minimal polynomial of a over L. Let E be the splitting field f over L. Then E/L is Galois and since $a \notin L$, there exists $\sigma \in \text{Gal}(E/L)$ which does not fix a. Then $\sigma(a) = a_i$ for some i > 1. $|a - a_i| \leq \max\{|a - b|, \underbrace{|b - a_i|}_{=|\sigma(b-a)|=|b-a|}\} = |a - b|,$

which is a contradiction.

Incompleteness

 $K = \mathbb{Q}_p$

Theorem 5.4. $\overline{\mathbb{Q}}_p$ is not complete with respect to $||_p$

Proof. We need to find a Cauchy sequence $\{\alpha_n\}$ in $\overline{\mathbb{Q}}_p$ which does not converge. For $i \ge 0$, let ζ_i be a root of unity of order $p^{(i+1)!} - 1$. Put $F_i = \mathbb{Q}_p(\zeta_i)$, then

- F_i is the splitting field of $X^{p^{(1+i)!}} X$ over \mathbb{Q}_p . Thus it is an unramified extension of \mathbb{Q}_p of degree (i+1)! and it is Galois (Corollary 4.11)
- $\zeta_{i-1} \subset F_i$ since $[F_i: F_{i-1}] = i+1$ and moreover $p^{i!} 1|p^{(i+1)!} 1$.

Consider the sequence $\alpha_n = \sum_{i=1}^n \zeta_i p^i$. Since $|\alpha_m - \alpha_n|_p = \left(\frac{1}{p}\right)^{\min\{m,n\}}$, so this is certainly Cauchy. We claim it does not have a limit in $\overline{\mathbb{Q}}_p$. Suppose that it does have a limit, $\alpha = \sum_{n=0}^{\infty} \zeta_i p^i \in \overline{\mathbb{Q}}_p$. Let d be the degree of the minimal polynomial m_{α} of α over \mathbb{Q}_p . Now F_d/F_{d-1} is Galois of degree d + 1. Hence there exists $\sigma_1, \ldots, \sigma_{d+1} \in \operatorname{Gal}(F_d/F_{d-1})$ such that the images of ζ_d are all distinct. Note that $|\sigma_i(\alpha - \alpha_d)|_p = |\alpha - \alpha_d|_p \leq p^{-(d+1)}$. Also for $i \neq j$, we have

$$\sigma_i(\alpha_d) - \sigma_j(\alpha_d) = \sum_{k=0}^{d-1} \zeta_k p^k + \sigma_i(\zeta_d) p^d - \left(\sum_{k=0}^{d-1} \zeta_k p^k + \sigma_j(\zeta_d) p^d\right)$$
$$= p^d(\sigma_i(\zeta_d) - \sigma_j(\zeta_d)).$$

Hence for $i \neq j$, we have $|\sigma_i(\alpha_d) - \sigma_j(\alpha_d)|_p = p^{-d}$ (since $\sigma_i(\zeta_d)$ and $\sigma_j(\zeta_d)$ are distinct and $(p^{(d+1)!} - 1)$ th root of unity). We conclude that

$$\begin{aligned} \left|\sigma_i(\alpha) - \sigma_j(\alpha)\right|_p &= \left|\sigma_i(\alpha - \alpha_d) + \sigma_i(\alpha_d) - \sigma_j(\alpha_d) - \sigma_j(\alpha - \alpha_d)\right|_p \\ &= p^{-d} \end{aligned}$$

This implies that $\sigma_i(\alpha) \neq \sigma_j(\alpha)$ for all $i \neq j$. But then $\sigma_1(\alpha), \ldots, \sigma_{d+1}(\alpha)$ are distinct conjugates of α . This is a contradiction to the fact that the degree of m_α is d.

Note. Our sequence $\{\alpha_n\}$ was actually in $\mathbb{Q}_p^{\mathrm{un}} := \mathbb{Q}_p\left(\bigcup_{(n,p)=1}\mu_n\right)$, which we've shown is not complete. We let \mathbb{C}_p denote the completion of $\overline{\mathbb{Q}}_p$ (as in Theorem 1.14)

Theorem 5.5. \mathbb{C}_p is algebraic closed.

Proof. The proof is based on the

Lemma. Let char(K) = 0 and K complete with respect to a non-archimedean value. Let $f = X^n + a_{n-1}X^{n-1} + \cdots + a_0 \in K[X]$. Assume f is irreducible over K. Then there exists $\delta > 0$ such that for all $g = X^n + b_{n-1}X^{n-1} + \cdots + b_0 \in K[X]$ with $|a_i - b_i| < \delta$ ($0 \le i \le n - 1$), g is irreducible.

Proof. Let $\lambda_1, \ldots, \lambda_n$ be the roots of f in \overline{K} and similarly let μ_1, \ldots, μ_n be the roots of g in \overline{K} . Put $C = \max\{1, |a_i|\}$. Define $r = \min_{i \neq j} |\lambda_i - \lambda_j|, R(f, g) = \prod_{i,j} (\lambda_i - \mu_j) = \prod_i g(\lambda_i) = \prod_j f(\mu_j) \cdot (-1)^n$ (the resultant).

Step 1 If $0 < \delta < C$ then for all g with $|a_i - b_i| < \delta$, every root μ_j over g has $|\mu_j| \le C$. Suppose for contradiction, we have $|\mu| > C$. Then for $0 \le i \le n - 1$, $|b_i \mu^i| \le C |\mu|^i < |\mu|^{i+1} \le |\mu|^n$. This is a contradiction.

Step 2 For all $\epsilon > 0$, there exists $\delta > 0$ such that if $|a_i - b_i| < \delta$ for all i then $|R(f,g)| < \epsilon$ If $|a_i - b_i| < \delta < C$ for all i then

$$|f(\mu_j)| = |f(\mu_j) - g(\mu_j)|$$

= $\left|\sum_{i=0}^{n-1} (a_i - b_i) \mu_j^i\right|$
 $\leq \max_i |a_i - b_i| \cdot \max\{1, |\mu_j|^n\}$
 $< \delta C^n$

by step 1. Thus for all $\delta < \min\{C, \epsilon^{1/n}C^{-n}\}$, we have $|R(f,g)| = \prod_j |f(\mu_j)| < \delta^n C^{n^2} < \epsilon$.

Step 3 If $|R(f,g)| < r^{n^2}$ then g is irreducible over K.

The condition means at least one of the factors $|\lambda_I - \mu_J| < r = \min_{i \neq j} |\lambda_i - \lambda_j|$. Then by Krasner's lemma (Theorem 5.3), we have $K(\lambda_I) \subset K(\mu_J)$, hence $K(\mu_J)$ has degree *n* and so *g* is irreducible.

We apply the sublemma with $K = \mathbb{C}_p$. Let $f \in \mathbb{C}_p[X]$ be irreducible, which is monic. Let $\delta > 0$ be as in the sublemma. Since $\overline{\mathbb{Q}}_p$ is dense in \mathbb{C}_p , there exists a monic polynomial $g \in \overline{\mathbb{Q}}_p[X]$ satisfying the hypothesis of the sublemma. Thus g is irreducible of degree n in $\mathbb{C}_p[X]$, so also in $\overline{\mathbb{Q}}_p[X]$. But since $\overline{\mathbb{Q}}_p$ is algebraic closed, so deg g = 1

6 Algebraic Number Fields

Let K/\mathbb{Q} be a number field. A *place* is an equivalence class of non-trivial absolute values on k, denote the completion of k at \mathcal{P} by $k_{\mathfrak{p}}$. If \mathcal{P} is non-archimedean, then absolute values in $\mathbb{Q} \subset K$ are equivalent to p-adic absolute value $| |_p$, we write $\mathfrak{p}|p$. Then $k_{\mathfrak{p}}$ is an extension of \mathbb{Q}_p (and so is a non-archimedean local field). Let $q_{\mathfrak{p}}$ be the cardinality of residue field of $k_{\mathfrak{p}}$

Definition 6.1. The renormalised absolute value $| |_{\mathfrak{p}}$ on $k_{\mathfrak{p}}$ is determined by $|\pi_{\mathfrak{p}}|_{\mathfrak{p}} = q_{\mathfrak{p}}^{-1}$ where $\pi_{\mathfrak{p}}$ is a uniformiser. By problem C.1, we have $|\alpha|_{\mathfrak{p}} = |\alpha|_p^{[k_{\mathfrak{p}}:\mathbb{Q}_p]}$ for all $\alpha \in k_{\mathfrak{p}}$

If \mathfrak{r} is an archimedean place, the relevant completion $k_{\mathfrak{r}}$ is either \mathbb{R} (\mathfrak{r} is a real place) or \mathbb{C} (\mathfrak{r} is a complex place) The renormalised absolute value is

$$| |_{\mathfrak{r}} = \begin{cases} | |_{\infty} & \mathfrak{r} \text{ real} \\ | |_{\infty}^2 & \mathfrak{r} \text{ complex} \end{cases}$$

An archimedean place \mathfrak{r} is an extension of an archimedean place ∞ on \mathbb{Q} , write $\mathfrak{r} \mid \infty$

Lemma 6.2. Let $\alpha \in k^*$. Then $|\alpha|_{\mathfrak{p}} = 1$ for all but finitely many places \mathfrak{p}

Proof. Let $f = X^n + a_{n-1}X^{n-1} + \dots + a_0 \in \mathbb{Q}[X]$ be a minimal polynomial of α over \mathbb{Q} . Then $a_j \in \mathbb{Z}_p$ $(0 \leq j \leq n-1)$ for almost all primes p. Hence $|\alpha|_{\mathfrak{p}} \leq 1$ for almost all \mathfrak{p} (not $a_j \in \mathbb{Z}_p$ implies $|\alpha|_{\mathfrak{p}} \leq 1 \forall \mathfrak{p}|p$) Similarly $|\alpha^{-1}|_{\mathfrak{p}} \leq 1$ for almost all \mathfrak{p}

Theorem 6.3 (Product Formula). Let $\alpha \in k^*$. Then

$$\prod_{\mathfrak{p} \text{ archimedean } \& \text{ non-archimedean}} |\alpha|_{\mathfrak{p}} = 1$$

Proof. By standard field theory we have $k \otimes_{\mathbb{Q}} \mathbb{Q}_p = \bigoplus_{\mathfrak{p}|p} k_{\mathfrak{p}}$ and $\sum_{\mathfrak{p}|p} [k_{\mathfrak{p}} : \mathbb{Q}_p] = [k : \mathbb{Q}]$ Similarly $k \otimes_{\mathbb{Q}} \mathbb{R} = \bigoplus_{\mathfrak{r}|\infty} k_{\mathfrak{r}}$ and $\sum_{\mathfrak{r}|\infty} [k_{\mathfrak{r}} : \mathbb{R}] = [k : \mathbb{Q}]$ Hence for all $w \in \{p, \infty\}$ (with $\mathbb{Q}_{\infty} := \mathbb{R}$)

$$\prod_{\mathfrak{p}|w} |\alpha|_{\mathfrak{p}} = \prod_{\mathfrak{p}|w} |\alpha|_{w}^{[k_{\mathfrak{p}}:\mathbb{Q}_{w}]}$$
$$= |N_{k/\mathbb{Q}}(\alpha)|_{w}$$

since $N_{k/\mathbb{Q}} = \prod_{\mathfrak{p}|w} N_{k\mathfrak{p}/\mathbb{Q}_w}$ (c.f. Theorem 4.5). This reduces the statement to of the theorem to the case $k = \mathbb{Q}$. Apply Problem A.2

Theorem 6.4 (Strong Approximation). Let S be a finite set of non-archimedean places of a number field k. Let $\epsilon > 0$. Let $\alpha_{\mathfrak{p}} \in k_{\mathfrak{p}}$ for $\mathfrak{p} \in S$. Then there exists $\alpha \in k$ such that

- 1. $|\alpha \alpha_{\mathfrak{p}}|_{\mathfrak{p}} < \epsilon \text{ for all } \mathfrak{p} \in S$
- 2. $|\alpha|_{\mathfrak{p}} \leq 1, \mathfrak{p} \notin S, \mathfrak{p}$ non-archimedean
- Note: If $\alpha_{\mathcal{P}} \in \mathcal{O}_{\mathcal{P}}$ (for $\mathfrak{p} \in S$), then 2. can be replaced by $\alpha \in \mathcal{O}$.

Proof. Let S_0 be the set of rational primes p such that $\mathfrak{p}|p$ for some $\mathfrak{p} \in S$. Without loss of generality we assume S contains all \mathfrak{p} extending $p \in S_0$ (put $\alpha_{\mathfrak{p}} = 0$ for \mathfrak{p} not in original S). By the Weak Approximation Theorem (Theorem 1.12) there exists $\beta \in k$ such that $|\beta - \alpha_{\mathfrak{p}}|_{\mathfrak{p}} < \epsilon$ (for $\mathfrak{p} \in S$). Lemma 6.2 implies the set R of non-archimedean places $\mathfrak{p} \notin S$ for $|\beta|_{\mathfrak{p}} > 1$ is finite. Let R_0 be the set of rational primes p such that $\mathfrak{p}|p$ for some $\mathfrak{p} \in R$. Then $R_0 \cap S_0 = \emptyset$.

Let $\eta > 0$. By the Chinese Remainder Theorem we can find $l \in \mathbb{Z}$ such that $|l-1|_p < \eta$ for $p \in S_0$ and $|l|_p < \eta$ for $p \in R_0$. Check that $\alpha = l\beta$ satisfies the conclusion of the theorem.

7 Diaphantine Equations

7.1 Quadratic forms

Let K be a field of characteristic not 2, $Q = \sum a_{ij} x_i x_j \in K[x_1, \ldots, x_n]$ is a quadratic form of rank n, We say Q is soluble if there exists $x \in K^n \setminus \{0\}$ such that Q(x) = 0

Lemma 7.1. Suppose $[K : \mathbb{Q}_p] < \infty$, $p \neq 2$. Assume without loss of generality that $Q = \sum a_i x_i^2$, then Q is soluble if either

- 1. $n \geq 3$ and $a_i \in \mathcal{O}_K^*$ for all i
- 2. $n \ge 5$
- Proof. 1. Without loss of generality, assume $Q = ax^2 + by^2 z^2$ for $a, b \in \mathcal{O}_K^*$. Let $k = k_K$ and assume q = #k. The maps $x \to \overline{a}x^2$ and $y \to 1 \overline{b}y^2$ have images of size $\frac{q+1}{2}$ in k. Thus the images overlap and there exists $x, y \in \mathcal{O}_K$ such that $ax^2 + by^2 \equiv 1 \mod \pi_K$. By Hensel's lemma, Q is soluble
 - 2. On multiplying by the square of the uniformiser we may assume $v_K(a_i) \in \{0, 1\}$. As $n \ge 5$, without loss of generality, $v_K(a_1) = v_K(a_2) = v_K(a_3)$. If $v_K(a_1) = v_K(a_2) = v_K(a_3) = 0$, then apply part 1. Otherwise if $v_K(a_1) = v_K(a_2) = v_K(a_3) = 1$, then divide through by uniformiser and apply part 1.

Note. Part 2. is still true when p = 2: quinary quadratic forms are isotropic over any p-adic field.

On the arXiv, there is a recent paper by Bhargava, Cremona, Fisher which looks at the density of isotropic quadratic forms in 4 variables (roughly 97%).

Theorem 7.2 (Hasse-Minkowski Theorem). Q is a quadratic form over a number field k. Then Q is soluble over k if and only if Q is soluble over k_p for every place p.

Proof. Omitted

- *Remark.* 1. Lemma 7.1 implies if $n \ge 3$, then local solubility is automatic for all but finitely many primes.
 - 2. When n = 2 and $k = \mathbb{Q}$ this is very easy: $a \in \mathbb{Q}_p^{*2}$, if and only if $v_p(a)$ is even. $a \in \mathbb{R}^{*2}$, if and only if a > 0. Both of these implies $a \in \mathbb{Q}^{*2}$.
 - 3. Using Rimenan-Roch one can show that any smooth and projective curve of genus 0 is over a number field k is k-birationally equivalent to a conic over k. Thus Theorem 7.2 implies that the "Hasse principle" holds for smooth and projective curves of genus 0.

7.2 Cubic forms

Natural question: Is there an analogue of Lemma 7.1 for a cubic forms?

Theorem 7.3 (Demyanov $(p \neq 3)$, Lewis, 1950's). Suppose $[K : \mathbb{Q}_p] < \infty$. Assume $F = \sum_{i \leq j \leq k} x_i x_j x_k \in K[x_1, \ldots, x_n]$. Then F is soluble if $n \geq 10$.

Proof. Treat case $k = \mathbb{Q}_p$. Let $\Delta = \Delta(F)$ be the discriminant of F (this is the resultant of $\frac{\partial F}{\partial x_1}, \ldots, \frac{\partial F}{\partial x_n}$). Then Δ is a non-zero form of degree $n2^{n-1}$ in the coefficients of F. Moreover if $M \in \operatorname{GL}_n(\mathbb{Q}_p)$ such that x = My, $(F(x) = F(My) = F^*(y))$ then $F^*(y) = aF(y)$, then $\Delta(F^*) = a^{n2^{n-1}}(\det M)^{3\cdot 2^{n-1}}\Delta$.

Since Δ is a non-zero form it can not vanish on any neighbourhood of a point. Hence if $\Delta(F) = 0$ then $\forall N \in \mathbb{N}$ there exists $c_{ijk}^{(N)} \in \mathbb{Q}_p$ such that $\Delta(F^{(N)}) \neq 0$ and $\left|c_{ijk} - c_{ijk}^{(N)}\right|_p < 1/N$. Suppose $a^{(N)}$ is zero at $F^{(N)}$ in \mathbb{Z}_p^n . By compactness, these points have an accumulation point in \mathbb{Z}_p and since F is continuous, this point is a zero of F. Hence without loss of generality $\Delta(F) \neq 0$.

Note if F and F^* are equivalent over \mathbb{Q}_p , then $\Delta(F) = 0 \iff \Delta(F^*) = 0$. F is equivalent over \mathbb{Q}_p to a form with coefficients in \mathbb{Z}_p . Then $\delta(F) = v_p(\Delta(F)) \ge 0$. We say that F is *reduced* if it has coefficients in \mathbb{Z}_p and $\Delta(F) \ne 0$ and $\delta(F) \le \delta(F^*)$ for all F^* over \mathbb{Z}_p equivalent to F over \mathbb{Z}_p .

It suffices to work with reduced F. Let $r \in \mathbb{N}$ minimal such that $F(x) \equiv F_1(L_1, \ldots, L_r) \mod p$ where $F_1 \in \mathbb{Z}_p[y_1, \ldots, y_r]$ and the L_i are linear forms with coefficients in \mathbb{Z}_p , and are linearly independent. Clearly $r \leq n$ and make unimodular transformation $y_i = L_i$ for $1 \leq i \leq r$, to obtain an equivalent form F^* , where $F^*(y_1, \ldots, y_n) \equiv F_1(y_1, \ldots, y_r)$. If F is reduced then so is F^* . Let $F'(z_1, \ldots, z_n) = p^{-1}F^*(pz_1, \ldots, pz_r, z_{r+1}, \ldots, z_n)$. Then F' has coefficients in \mathbb{Z}_p and $\delta(F') = \delta(F^*) + 2^{n-1}(3r-n)$. Hence $r \geq n/3$ since F is reduced. Now $n \geq 10$ implies $r \geq 4$, hence there exists $(b_1, \ldots, b_r) \in \mathbb{F}_p^4 \setminus \{0\}$ such that $F_1(b) = 0$ (by Chevaley-Warning: "Over \mathbb{F}_p any form of n variables of degree d is soluble if n > d"). Assume without loss of generality $b_1 = 1$. Then $F^*(z_1, b_2z_1 + z_2, \ldots, b_rz_1 + z_r, z_{r+1}, \ldots, z_n) \equiv z_1^2L + z_1Q + C$ mod p where L, Q, C are forms in z_2, \ldots, z_n . Since r is minimal, L and Q are not both identically zero modulo p.

- Case 1. L not identically zero modulo p: Then (1, 0, ..., 0) is a solution of $F^* \equiv 0 \mod p$ and some partial derivative of F^* does not vanish modulo p at (1, 0, ..., 0)
- Case 2. L is identically zero modulo p: There exists $d = (d_2, \ldots, d_n) \in \mathbb{Z}^{n-1}$ such that $p \nmid (d_2, \ldots, d_n)$ and such that $Q(d_2, \ldots, d_n) \not\equiv 0 \mod p$. Then $(-C(d), d_2Q(d), \ldots, d_nQ(d))$ is a solution of $F^* \equiv 0 \mod p$ with $\frac{\partial F^*}{\partial x_1} \neq 0 \mod p$.

In either case Hensel's lemma yields the result

Remark.

- 1. $n \ge 10$ is best possible in Theorem 7.3. See problem C.3
- 2. Artin's conjecture: \mathbb{Q}_p is a C_2 field, i.e., any form over \mathbb{Q}_p in n variables and degree d is soluble over \mathbb{Q}_p if $n > d^2$. This is FALSE.
- 3. What about an analogue of Theorem 7.2? Let k be a number field and F a cubic form over k. Then F is soluble over k if

n	Conditions	Notes
$n \ge 16$	None	Pleasants (1975)
$n \ge 10$	F non-singular	Brawning and Vishe (2013)

However the Hasse principle can fail for cubic forms in fewer variables.

For n = 4, the first example was produced by Swinnerton-Dyer in 1962: Let $K = \mathbb{Q}(\theta)$ where $\theta^3 - 7\theta^2 + 14\theta - 7 = 0$. Abelian cubic field of discriminant 49 and $\mathcal{O}_K = \mathbb{Z}[\theta]$. Here $(7) = P^3$ and $v_P(\theta) = 1$. Consider

$$F(x_1, \dots, x_4) = N_{K/\mathbb{Q}}(x_1 + \theta x_2 + \theta^3 x_3) + x_4(x_4 + x_1)(2x_4 + x_1)$$

Check: non-singular, soluble over \mathbb{Q}_p for all p. But it is <u>not</u> soluble over \mathbb{Q} !

Proof. Note that if N() = 0 then $x_1 = x_2 = x_3 = 0$, hence $x_4 = 0$. Contradiction as we want a non-zero solution. May assume that x_1, x_4 are coprime integers and $x_2, x_3 \in \mathbb{Q}$. Now 7|N() implies P divides N(), hence $7|x_1$ and $7 \nmid x_4$. Hence $7 \nmid x_4(x_1 + x_4)(2x_4 + x_1)$ which is a contradiction. Hence $7 \nmid N()$.

Since $x_4, x_4 + x_1$ and $2x_4 + x_1$ are all coprime, and their product is a norm in K, each of them must separately be a norm of an ideal. Now $p \neq 7$ splits in K if and only $p = \pm 1 \mod 7$. Hence each of the factors above is congruent to $\pm 1 \mod 7$. This contradicts $x_4 + (x_4 + x_1) = 2x_4 + x_1$.

c.f. Elsenhans-Jahnel. (Recent paper on the arXiv, they show there is a Zariski dense set of counter examples).