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1 Foundations

Absolute Values

Let K be a �eld.

De�nition 1.1. An absolute value on K is a map | · | : K → R>0

1. |x| = 0 ⇐⇒ x = 0

2. |xy| = |x| · |y|∀x, y ∈ K

3. |x+ y| ≤ |x|+ |y| (the 4 inequality)

De�nition. An absolute value on K is called non-archimedean if also

1. |x+ y| ≤ max{|x|, |y|} (the ultrametric inequality)

Otherwise we say the absolute value is archimedean

Example.

1. K = Q and | · | to be the usual absolute value given by inclusion Q ↪→ R. This is an archimedean
absolute value.

2. Take |x| =

{
1 x 6= 0

0 x = 0
. This is non-archimedean absolute value. �The trivial absolute value�

3. K = Q and p a prime. For x ∈ Q∗ the p-adic valuation is νp(x) = r if x = pr uv for u, v ∈ Z, r ∈ Z
and p - uv. We extend to all of Q by setting νp(0) = +∞
Check: νp(xy) = νp(x) + νp(y) and νp(x+ y) ≥ min{νp(x), νp(y)} (∗)

De�ne the p-adic absolute value on Q to be | · |p : Q→ R≥0 by |x|p =

{
pνp(x) x 6= 0

0 x = 0
. This satis�es

the axioms of being a non-archimedean absolute value (using (∗))
Note. |pn|p = p−n so pn → 0 as n→∞.

4. Let K be any �eld. Put F = K(T ) =
{
P (T )
Q(T ) : P,Q ∈ K[T ], Q 6= 0

}
. De�ne the valuation

ν∞

(
P (T )

Q(T )

)
=

{
degQ− degP P

Q 6= 0

+∞ P
Q = 0

Check this satis�es (∗). If c > 1, then we get a non-archimedean absolute value on F given by
|F (T )|∞ := c−ν∞(f(T )).

Note. If K = Fq then convenient to take c = q.

Lemma 1.2. Let | · | be an absolute value on a �eld K. Then

1. |1| = 1

2. x ∈ K such that xn = 1, then |x| = 1.
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3. x ∈ K, then | − x| = |x|

4. K is a �nite �eld then the absolute value has to be the trivial absolute value

Proof.

1. Note that x 6= 0⇒ x > 0. We have |1| = |12| = |1| · |1|. So 1. holds.

2. Note that 1 = |1| = |xn| = |x|n ⇒ |x| = 1

3. Note that −x = −1 · x

4. Follows from 2. since any non-zero element x of a �nite �eld satis�es xn = 1 for some n.

The following result gives a criterion for checking whether an absolute value is non-archimedean.

Lemma 1.3. Let | · | be an absolute value on a �eld K. Then | · | is non-archimedean if and only if |e| ≤ 1
for all e in the additive ring generated by 1.

Proof. �⇒� Since |n| = | − n| we may as well assume that n ≥ 1. Then |n| = |1 + · · ·+ 1︸ ︷︷ ︸ |
n times

≤ |1| = 1

�⇐� Suppose |e| ≤ 1 for all elements e in the additive ring generated by 1. Let x, y ∈ K, then

|x+ y|m =

∣∣∣∣∣∣
m∑
j=0

(
m

j

)
xjym−j

∣∣∣∣∣∣
≤

m∑
j=0

∣∣∣∣(mj
)∣∣∣∣ |x|j |y|m−j

≤
m∑
j=0

|x|j |y|m−j by assumption

∣∣∣∣(mj
)∣∣∣∣ ≤ 1

≤ max({|x|, |y|}m

Take mth root and let m→∞ (since (m+ 1)1/m → 1 as m→∞)

Corollary 1.4. If char(K) 6= 0 then all absolute values are non-archimedean

Proof. The ring in Lemma 1.3 is a �nite �eld. Then apply Lemma 1.2 part 4.

Corollary 1.5. Suppose F ⊂ K is a sub�eld of K and | · | is an absolute value on K. Then | · | is
non-archimedean on K if and only if | · | is non-archimedean on F

Topology

Let K be a �eld with absolute value | · | on K. Then we get a metric on K induced by | · |. Call it
d : K ×K → R≥0 de�ned by d(x, y) 7→ |x− y|.

Exercise. Check this is a metric.

The notion of distance on �elds with non-archimedean values is weird.
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Lemma 1.6. Let K be a �eld with non-archimedean absolute value. If x, y ∈ K with |x| 6= |y|, then

|x+ y| = max{|x|, |y|}

Proof. Without loss of generality assume |x| > |y|. Then |x+y| ≤ max{|x|, |y|} = |x| and |x| = |x+y−y| ≤
max{|x+ y|, |y|}. Hence |x| ≤ |x+ y| ≤ |x|.

De�nition 1.7. Let K be a �eld with absolute value | · |. Let a ∈ K and r ∈ R≥0. The open ball of
radius r and centre a is B(a, r) = {x ∈ K : |x − a| < r}. The closed ball of radius r and centre a is
B(a, r) = {x ∈ K : |x− a| ≤ r}.

A set U ⊂ K is open if and only if ∀x ∈ U there exists an open ball around x contained in U . A set is
closed if and only if its complement in K is open

Lemma 1.8. Let K be a �eld with non-archimedean absolute value | · |. Then

1. b ∈ B(a, r)⇒ B(a, r) = B(b, r)

2. b ∈ B(a, r)⇒ B(a, r) = B(b, r)

3. B(a, r) ∩B(a′, r′) 6= 0 ⇐⇒ B(a, r) ⊂ B(a′, r′) or B(a, r) ⊃ B(a′, r′)

4. B(a, r) ∩B(a′, r′) 6= 0 ⇐⇒ B(a, r) ⊂ B(a′, r′) or B(a, r) ⊃ B(a′, r′)

5. B(a, r) is both open and closed

6. B(a, r) is both open and closed.

Proof. We prove 1. 3. 5. only.
1. b ∈ B(a, r) and c ∈ B(b, r). |c − a| ≤ max{|c − b|, |b − a|} < r, i.e., B(b, r) ⊂ B(a, r). Reverse

inclusion follows from symmetry since a ∈ B(b, r).
3. Follows form 1.
5. b ∈ B(a, r) implies B(b, r) ⊂ B(a, r), so any open ball is open. To show that it is closed, note

that b /∈ B(a, r) ⇒ a /∈ B(b, r). So neither ball is contained in the other and they are disjoint. Hence
B(b, r) ⊂ K \B(a, r) and the complement of B(a, r) in K is open.

Remark. Recall that a set S is said to be disconnected if there exists open sets U, V such that

• U ∩ V = ∅,

• S ⊂ U ∪ V

• S ∩ U 6= ∅ and S ∩ V 6= ∅

Otherwise S is connected. If x ∈ K then the connected component of x is the union of all connected sets
containing it.

Example. K = R with usual absolute value, then connected component of any x ∈ R is R.

Exercise. If | · | is a non-archimedean absolute value on a �led K, then the connected component of any
x ∈ K is {x}, i.e., K is totally disconnected topological space.
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Equivalence

De�nition 1.9. Two absolute values | · |1 and | · |2 on a �eld K are equivalent if they induce the same
topology on K. (i.e., every set which is open with respect to | · |1 is open with respect to | · |2)

Given an absolute value | · | on a �eld K, a sequence {an}n in K converges to a in the induced topology
if and only if ∀ε > 0∃N ∈ N such that for n > N , |an−a| < ε. Equivalently, for all open sets U containing
a, there exists N such that an ∈ U for n > N

Thus the notion of convergence depends on the topology induced by the absolute value.

Lemma 1.10. Let | · |1, | · |2 be absolute values on �eld K, with | · |1 non-trivial. Then the following are

equivalent

1. | · |1 , | · |2 are equivalent

2. ∀x ∈ K, |x|1 < 1 ⇐⇒ |x|2 < 1

3. ∃α > 0 such that ∀x ∈ K, |x|1 = |x|α2 .

Proof.

3. ⇒ 1. Then |x−a|2 < r ⇐⇒ |x−a|1 < rα. So any open ball with respect to | · |2 is an open ball with
respect to | · |1. Hence the topology must be the same and the absolute value are equivalent.

1. ⇒ 2. |x|1 < 1 ⇐⇒ xn → 0 as n → ∞ with respect to | · |1
1.⇐⇒ xn → 0 as n → ∞ with respect

| · |2 ⇐⇒ |x|2 < 1

2. ⇒ 3. Now |x|1 > 1 ⇐⇒ |x−1| < 1 ⇐⇒ |x−1|2 < 1 ⇐⇒ |x|2 > 1. Also |x|1 = 1 ⇐⇒ |x|2 = 1.
Now pick (and �x) a ∈ K∗ such that |a|1 < 1 (which is possible since | · |1 is non-trivial). Then

also |a|2 < 1. Let α = log |a|1
log |a|2 > 0. Choose b ∈ k∗

1. |b|1 = 1 then |b|2 = 1 and 1 = 1α

2. |b|1 < 1 by assumption |b|2 < 1. De�ne βi =
log|a|i
log|b|i

for o = 1, 2. We show that β1 = β2

which implies
log|b|1
log|b|2

=
log|a|1
log|a|2

= α.

Suppose that β1 > β2, then ∃mn ∈ Q such that β2 ≤ m
n < β1. Set x = anb−m ∈ k, then

log |x|i = n log |a|i−m log |b|i = n log |b|i︸ ︷︷ ︸
<0

(
βi −

m

n

)
︸ ︷︷ ︸> 0 i = 1

< 0 i = 2

, hence we have a contradiction with

|x|1 < 1 and |x|2 > 1. Similarly if β2 > β1. Hence β1 = β2

3. If |b|1 > 1, |b|2 > 1, replace b by b−1 and get
∣∣b−1

∣∣
1
< 1 and

∣∣b−1
∣∣
2
< 1

How independent inequivalent absolute value are

Lemma 1.11. Let | |1 , . . . , | |J be non trivial inequivalent absolute values on K. Then there exists x ∈ K
such that |x|1 > 1 and |x|j < 1 for 2 ≤ j ≤ J .
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Proof. By induction on J .

J = 2 Since | |1 , | | are non-trivial and non-equivalent, by the previous lemma there exists y ∈ K such
that |y|1 < 1 and |y|2 ≥ 1, and z ∈ K such that |z|1 ≥ 1 and |z|2 < 1. Let x = zy−1, then
|x|1 = |z|1 |y|

−1
1 > 1 and |x|2 = |z|2 |y|

−1
2 < 1

J > 2 By induction, there exists y, z ∈ K such that |y|1 > 1, |y|j < 1 for 2 ≤ j < J and |z|1 < 1,
|z|j > 1 for 2 ≤ j < J . Consider |y|J and we have di�erent cases:

1. |y|J < 1 so take x = y

2. |y|J = 1 so take x = ynz for large enough n

3. |y|J > 1, then
∣∣∣ yn

1+yn

∣∣∣
j

=
∣∣∣ 1

1+y−n

∣∣∣
j
→

n→∞

{
1 j = 2, . . . , J

0 else
. So Let x =

(
yn

1+yn

)
z for large

enough n

Theorem 1.12 (Weak Approximation). Let | |1 , . . . , | |J be non trivial inequivalent absolute values on K.

Let bj ∈ K for j = 1, . . . , J and let ε > 0. Then there exists x ∈ K such that |x− bj |j < ε for all

j = 1, . . . , J .

Proof. By Lemma 1.11, there exists xj ∈ K such that |xj |j > 1 but |xj |i < 1 for i 6= j. Consider∣∣∣ xnj
1+xnj

∣∣∣
j
→

n→∞

{
1 i = j

0 else
. Take wn =

∑J
j=1 bj

(
xnj

1+xnj

)
→

n→∞
bj , so take x = wn for n large enough.

Remark. This is clearly related to the Chinese Remainder Theorem. Let p1, . . . , pj be distinct primes
and mj ∈ N, bj ∈ Z. Then there exists x ∈ Z such that x ≡ bj mod p

mj

j . Using the Theorem above,

|x− bj |j < p
−mj

j with pj-adic absolute value

1.1 Completion

De�nition 1.13.

1. A sequence {xn} is a �eld K is called Cauchy if ∀ε > 0, ∃N > 0 such that ∀m,n > N , |xm − xn| < ε

2. (K, |·|) is complete if every Cauchy sequence is convergent

3. A subset S ⊂ K is dense if ∀x ∈ K, ∀ε > 0, B(x, ε)∩S 6= 0. That is, ∀x ∈ K, there exists a sequence
{xn} ∈ S such that {xn} → x.

4. A �eld
(
K̂, || ||

)
is a completion of (K, | |) if

(a) There exists an embedding ι : K → K̂ which respect absolute values

(b) im(K) is dense in K̂

(c)
(
K̂, || ||

)
is complete
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Theorem 1.14. Let (K, | |) be a �eld. Then there exists a completion (K̂, || ||) of K and it is unique

as any two completions are canonically isomorphic. That is if (K̂j , || ||j) for j = 1, 2 then there exists a

unique isomorphism of K̂1
∼= K̂j which is the identity of K and preserves || ||1 = || ||2

Proof.

Existence of Completion Let K be the set of all Cauchy Sequences in K. This is a ring as {an}+ {bn} =
{an + bn}, {an} × {bn} = {anbn} and id = {1}. De�ne || || : K → R>0 by {an} → limn→∞ |an|
(R is complete). LetN ⊂ K be the subset of all null sequences (||an|| = 0). ThenN is a maximal
ideal (Exercise). Hence K/N is a �eld K̂. We have || || (not an absolute value since ||an|| = 0
for non zero elements) only depends on K/N . We get a well de�ned functions || || : K̂ → R>0.
This is an absolute value. De�ne ι : K → K̂ by a 7→ {a} mod N . Then ι(K) is dense and
(K̂, || ||) is complete.

Uniqueness Suppose (K̂ ′, || ||′) is complete and is a completion, ι′ : K → K̂ ′ satisfy the embedding
properties above.

Claim. ι′ extends uniquely to an embedding λ : K̂ → K̂ ′ such that

K
ι′ //

ι

��

K̂ ′

K̂

λ

OO

Let x ∈ K̂ and {xn} is a sequence in K such that {ι(xn)} converges to x (dense). De�ne
λ(x) = limn→∞{ι′(xn)}. Construct λ′ : K̂ ′ → K̂ in the same way

Corollary 1.15. Let K be a �eld and | |j (j ≤ J) be non-trivial and inequivalent absolute values on K.

Let K̂j be the respective completions, let ∆ : K ↪→
∏
j K̂j de�ned by x 7→ (ιj(x)). Then ∆(K) is dense,

i.e., its closure ∆(K) is
∏
jKj.

Remark. We have Q ↪→ R but Q ↪→ R× R is not dense.

Proof. Let αj ∈ K̂j , for 1 ≤ j ≤ J , then ∀ε > 0 there exists aj ∈ K such that |aj − αj | < ε for 1 ≤ j ≤ J .
By Theorem 1.12 there exists b ∈ K such that |b− aj |j < ε. Then |b−αj |j < 2ε so arbitrary closed to αj ,
hence dense.
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2 The p-adic

Theorem 2.1 (Ostrowski ). Every non trivial absolute value on Q is equivalent to | |v where v = p a

prime or v =∞.

Proof. Let | | be an absolute value on Q and a > 1, b > 0 be integers. Let t = max{|0| , |1|, . . . , |a− 1|},
b = bma

m + · · · + b1a + b0 with bi ∈ {0, . . . , a − 1}, bm 6= 0 and m ≤ log b
log a . Then |b| ≤

∑m
j=0

∣∣bjaj∣∣ ≤
(m+ 1)tmax{1, |a|m} ≤ (log b/ log a+ 1)tmax{1, |a|m}. Replace b by bn and take nth root,

|b| ≤
(
n

log b

log a
+ 1

)1/n

︸ ︷︷ ︸
→

n→∞
1

t1/n max{1, |a|}log b/ log a

Take the limit as n→∞, then |b| ≤ max{1, |a|}log b/ log a (∗). We have two cases

1. | | is archimedean, then there exists |b| > 1 for some b by Lemma 1.3. So apply (∗), then |a| > 1 for

all a > 1, so |b| ≤ |a|log b/ log b. Reversing a and b we get |a| ≤ |b|log a/ log b . Hence |a|1/ log a = |b|log b ,so
log|a|
log a = log|b|

log b = α > 0, and it is independent of a and b. Hence |a| = aα = |a|α∞ for all a ∈ N. But
| ± 1| = 1, hence |a| = |a|α∞ for all a ∈ Z. Let q = a

b , hence true for all q ∈ Q

2. | | is non-archimedean. Then there exists a ∈ N such that |a| < 1. Let b be the such least integer.

Claim. b = p a prime number

We prove this by contradiction. Suppose b is not a prime, b = uv. Now |uv| < 1, but as b is the
least such number, we have |u| = |v| = 1, hence |b| = 1 a contradiction.

So b is a prime, let b = p.

Claim. p|a if and only if |a| < 1.

⇒: Let a = up, then |a| = |u||p|, hence |u| < 1 and |p| < 1.

⇐: Suppose that if p - a then a = up+ r where r < p. By minimality of p, |r| = 1, |up| < 1,
hence |a| = max{|up|, |r|} = 1

So let α == log|p|
log p , |p| = |p|αp . For all a ∈ Z we have a = pra′ where p - a′, hence |a′| = |a′|p = 1.

Therefore, |a| = |pra′| = |p|rαp = |a|αp . And |q| = |q|αp for all q ∈ Q

De�nition 2.2.

1. The �eld of p-adic numbers Qp is the completion of Q with respect to | |p. (Qp, | |) is a non
archimedean complete �eld.

2. The ring of p-adic integers Zp is Zp = {x ∈ Qp||x|p ≤ 1} = B(0, 1) (check it is a ring, by using non
archimedean properties)

Lemma 2.3. Z is dense in Zp
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Proof. Q is dense in Qp, Zp is open in Qp so Q ∩ Zp is dense in Zp. Now Q ∩ Zp =
{
a
b ∈ Q|p - b

}
. Let

a
b ∈ Q be such that p - b for n ≥ 1 pick yn ∈ Z such that byn ≡ 1 mod pn (b is a unit in Zp). Then
byn → 1 as n→∞. Hence Z is dense in Q ∩ Zp, hence dense in Zp

What do elements of Qp look like?
Let x ∈ Zp, let n ∈ N, then by density there exists q = a

b ∈ Q such that
∣∣x− a

b

∣∣
p
≤ p−n. But

then
∣∣a
b

∣∣
p
≤ max{|x|p ,

∣∣x− a
b

∣∣
p
}. Hence p - b and there exists b′ ∈ Z such that bb′ ≡ 1 mod pn. But

then
∣∣a
b − ab

′∣∣
p

=
∣∣a
b (1− bb′)

∣∣
p
≤ p−n. Hence |x− ab′|p ≤ max

{∣∣x− a
b

∣∣
p
,
∣∣a
b − ab

′∣∣
p

}
≤ p−n. Now let

α ∈ {0, . . . , pn − 1} be the unique integer such that ab′ ≡ α mod pn.
Conclusion: ∀x ∈ Zp, ∀n ∈ N, ∃α ∈ {0, . . . , pn − 1} such that x ≡ α mod pn

Lemma 2.4. For all n ∈ N there exists an exact sequence of rings 0→ Zp
pn→ Zp

φn→ Z/(pnZ)→ 0

Proof. Note that ker pn = {z ∈ Zp|pnz = 0} = {0} (take absolute value on both side). We have that φn
is surjective since {0, . . . , pn − 1} ⊂ Zp.

We show that im(pn) = ker(φn). Suppose that x ∈ im(pn), then x = pny for some y ∈ Zp, then
|pny − 0|p ≤ p−n. Thence φn(x) = 0 and x ∈ kerφn.

Conversely, let x ∈ ker(φn). Then |x|p = |x−0|p ≤ p−n, hence |p−nx| ≤ 1 so x = pnp−nx︸ ︷︷ ︸
∈Zp

∈ im(pn)

Hence Zp/(pnZp) ∼= Z/(pnZ). We will see in a more general context that elements of Qp can be
uniquely written as a Laurent series expansion in p. Later we will consider the extensions of Qp.

In a Global setting: [k : Q] <∞, OK is the integral closure of Z in k. In a local setting: [k : Qp] <∞,
Ok is the integral closure of Zp in k. But in the global setting Ok is not necessarily a Unique Factorisation
Domain while in a local setting it always is.
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3 Non-archimedean Local Fields

We will examine a general theory of �elds which are complete with respect to a non archimedean absolute
value.

Theorem 3.1 (Ostrowski ). Let K be a �eld complete with respect to a archimedean absolute value. Then

K ∼= R or K ∼= C and the absolute value are equivalent to the usual absolute value.

Proof. See Chapter 3 of Cassels Local Fields

Basics Let K be a �eld with a non-trivial non-archimedean absolute value | |.

• OK = {x ∈ K| |x| ≤ 1}, the ring of integers of K

• PK = {x ∈ K| |x| < 1}

Check that OK is an integral domain and that PK is maximal. (If J ) PK is an ideal of OK then there
exists x ∈ J such that |x| = 1. Then |x−1| = 1 and |1 = xx−1| ∈ J)

• UK = {x ∈ K| |x| = 1}, the group of units in K

• kK = OK/PK , the residue �eld of K

The characteristic of kK is the residual characteristic.

Note. In general charkK 6= charK.

• ΓK = {|x| |x ∈ K∗}, the value group of | | on K.

This is a multiplicative subgroup of R>0.

De�nition 3.2. A non-archimedean absolute value is discrete if ΓK is discrete. (i.e., ΓK ∼= Z)

Lemma 3.3. A non-archimedean absolute value is discrete if and only if the maximal ideal is principal.

Proof. By problem A.6 ΓK is discrete if and only if ΓK is cyclic.

⇐: Suppose that PK is principal, say 〈π〉. Let γ = |π| < 1. Hence for all x ∈ PK , we have
|x| ≤ γ (since x = πy with y ∈ OK). So for all x ∈ K, there exists n ∈ Z such that
γn ≤ |x| < γn−1. Dividing through by γn−1 we get that γ ≤

∣∣xπ1−n∣∣ < 1, whence xπ1−n ∈ PK .
So γ ≤

∣∣xπ1−n∣∣ ≤ γ, thus ∣∣xπ1−n∣∣ = γ. So |x| = γn, hence ΓK is cyclic generated by γ.

⇒: Suppose that ΓK is cyclic with generator γ < 1 say. Let π ∈ K be such that |π| = γ. Clearly
〈π〉 ⊂ PK . Conversely, for x ∈ PK , then |x| = γn for some n ≥ 1 since ΓK is cyclic. So
|xπ−1| = γn−1 ≤ 1, i.e. xπ−1 ∈ OK and x ∈ 〈π〉

From now on | | is a discrete non-archimedean absolute value on a �eld K. So by the previous lemma
PK = 〈π〉 .We call π the uniformiser for the absolute value. Any x ∈ K∗ can be written as

x = πnε

with n ∈ Z and ε ∈ UK . We write VK(x) = n ∈ Z for the order of x. This gives a valuation VK : K →
Z ∪ {∞} by setting VK(0) =∞.
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Lemma 3.4. Let 0 6= I ⊂ OK be an integral ideal. Then I = PnK := {x1 . . . xn|xi ∈ PK} for some n ∈ N.

Proof. The subset {|x| |x ∈ I} ⊂ ΓK is bounded and so it attains its maximal at x0 = πnε,say (ΓK is
discrete). Then I = 〈x0〉 = PnK

This implies that PK is the unique non-zero prime ideal in OK . Furthermore, OK is a PID and a local
ring (with a unique maximal ideal)

Let K be the completion of K with respect to the absolute value | |. Let OK ,PK be the ring of integers
and the maximal ideal of K respectively. then OK = OK ∩K and PK = PK ∩K. There is an inclusion
map OK ↪→ OK and so a map OK → kK := OK/PK de�ned by x 7→ x + PK . The kernel of this map is

PK , so it induces a natural map kK
∼→ kK .

Claim. This map is an isomorphism. It su�ces to show that it is surjective

Proof. Let x ∈ OK . By density of K in K, there exists x ∈ K such that |x− x| < 1. Then x − x ∈ PK

and |x| ≤ max

{
|x− x|
<1

, |x|
≤1

}
≤ 1. Thus x ∈ K ∩ OK = OK

De�nition 3.5. A non-archimedean local �eld is a �eld which is complete with respect to a non-trivial
discrete non-archimedean absolute value such that the residue class kK is �nite.

Example.

K Qp Fq ((T ))

Completion of Q Fq(T )

OK Zp Fq [[T ]]

PK pZp (T )

kK ∼= Fp Fq

From now on, K is a non-archimedean local �eld.
Say that an in�nite sum

∑∞
n=0 xn, xn ∈ K, converges to s if s = limN→∞

∑N
n=0 xn

Lemma 3.6.
∑∞

n=0 xn converges if and only if xn →∞ as n→∞

Proof. Exercise

Lemma 3.7. Let π be a uniformiser of K and let A ⊂ OK be set of representative of OK/PK . Then

OK = {
∑∞

n=0 xnπ
n : xn ∈ A}

Proof. By Lemma 3.6 we have
∑∞

n=0 converges and lies in OK . Conversely, if x ∈ OK , then there exists a
unique x0 ∈ A such that |x− x0| < 1. Hence x = x0 + πy1 for some y1 ∈ OK . Continue inductively with
y1 etc

Suppose x ∈ K∗, Then π−Nx ∈ OK for someN ∈ Z. Apply Lemma 3.7 to getK∗ = {
∑∞

n=N xnπ
n : xn ∈ A, N ∈ Z, xN 6= 0}

Let us return topology. A subset V ⊂ K is said to be compact if whenever we have a family Uλ (λ ∈ Λ)
of open sets of K such that V ⊂ ∪λ∈ΛUλ, then there exists a �nite subset Λ0 ⊂ Λ such that V ⊂ ∪λ∈Λ0Uλ.
We say that K locally compact if every point of K has a compact neighbourhood. (i.e., ∀x ∈ K there
exists Vx ⊂ K which is compact and contains B(x, r) for some r > 0)

Lemma 3.8. Let K be a non-archimedean local �eld. Then OK is compact, and hence K is locally

compact.

11



Proof. First we prove that OK is compact. Let Uλ (λ ∈ Λ) be open sets covering OK . Suppose that
there does not exists a �nite subcovering. Now OK = ∪x∈A(x + πOK) where A is set of representation
for (�nite �eld) OK/PK . Then there exists x0 ∈ A such that x0 + πOK is not covered by �nitely many
Uλ. Similarly there exists x1 ∈ A such that x0 + x1π + π2OK is not �nitely covered and so on. Let
x = x0 + x1π+ x2π

2 + · · · ∈ OK . There exists λ0 ∈ Λ such that x ∈ Uλ0 . Since Uλ0 is open it follows that
x+ πnOK ∈ Uλ0 for some N , which is a contradiction.

Next we prove that K is locally compact. Put Vx = B(x, 1) = x+OK .

Remark. In fact: F locally compact with respect non-archimedean absolute value ⇐⇒ F non-archimedean
local �eld.

3.1 Hensel's Lemma

Theorem 3.9. Let K be a non-archimedean local �eld and f ∈ OK [X]. Suppose x0 ∈ OK satis�es

|f(x0)| < |f ′(x0)|2. Then there exists a unique x ∈ OK such that f(x) = 0, |x− x0| ≤ |f(x0)|
|f ′(x0)| .

Proof. De�ne fj ∈ OK [X] via

f(X + Y ) = f(X) + f1(X)Y + f2(X)Y 2 + . . . (3.1)

In particular f1(X) + f ′(X). De�ned y0 ∈ OK by f(x0) + y0f
′(x0) = 0. Then

|f(x0 + y0)| ≤ max
j≥2

∣∣∣fj(x0)yj0

∣∣∣ By (3.1)

≤ max
j≥2

∣∣∣yj0∣∣∣
≤ |y0|2

=

∣∣∣∣ f(x0)

f ′(x0)

∣∣∣∣2
< |f(x0)|

Similarly |f1(x0 + y0)− f1(x0)| ≤ |y0| < |f1(x0)|. Then |f1(x0 + y0)| = |f1(x0)|. Put x1 = x0 + y0. Then

|f(x1)| ≤ |f(x0)|2

|f1(x0)|2 , |f1(x1)| = |f1(x0)| and |x1−x0| = |f(x0)|
|f ′(x0)| . So repeat the process and obtain a sequence

of xn+1 = xn + yn such that |f1(xn)| = |f1(x0)| and |f(xn+1)| ≤ |f(xn)|2

|f1(xn)|2 = |f(xn)|2

|f1(x0)|2 . So f(xn) → 0 as

n → ∞. Finally |xn+1 − xn| = |yn| = |f(xn)|
|f1(xn)| → 0 as n → ∞. So {xn} is Cauchy and it has a limit as

required.
Now suppose that we have another solution x + z with z 6= 0 and |z| ≤ |f(x0)|

|f1(x0)| < |f1(x0)| = |f1(x)|.
Then, putting X = x and Y = z in equation (3.1), we get 0 = f(x+ z)− f(x) = xf1(x) + z2f2(x) + . . . .
But |zf1(x)| >

∣∣zj∣∣ ≥ ∣∣zjfj(x)
∣∣ for all j ≥ 2. Which gives a contradiction.

Example.

1. Squares in Qp.

• p 6= 2. Suppose that y ∈ Z∗p. If there exists x0 ∈ Zp such that
∣∣x2

0 − y
∣∣ < 1 then there exists

x ∈ Zp such that x2 = y . (Take f(X) = X2 − y, so |f(x0)| < 1 but |f ′(x0)| = |2x0| = 1).

12



Theorem. Any z ∈ Z with p - z, is a square in Zp ⇐⇒
(
z
p

)
= +1

Claim. Q∗p/(Q∗p)2 has 4 elements represented by 1, c, p, cp where c ∈ {1, . . . , p−1} is a quadratic
non-residue.

Corollary. It follows that Qp has exactly 3 quadratic extensions.

Proof of the claim. Suppose x ∈ Q∗p. We may assume x = u or pu for u ∈ Zp (on multiplying
x by a power of p2 ∈ Q∗2). Let α ∈ {1, . . . , p− 1} be such that u ≡ α mod pZp (i.e. u = α+ v
for some v ∈ pZp). Then u = α(1 +α−1v) and 1 +α−1v ≡ 1 mod pZp which is a square. Thus

we may assume u = α. But
(
u
p

)
= 1⇒ u ∈ Q∗2p , otherwise uc is in Q∗2p .

• p = 2. See exercise B.1

2. Since residue �eld kK is �nite, it follows that k
∗
K is cyclic group of order q − 1 where q = pr for

some prime p. Now show there exists an alternative set of representative for kK = OK/PK , besides
{0, . . . , q − 1}.
Note p · 1 ∈ OK and so q − 1 ∈ O∗K . For each α ∈ k∗K , let x0 ∈ O∗K such that x0 ≡ α mod p and
consider f(x) = xq−1 − 1. Then |f(x0)| < 1, |f ′(x0)| = |q − 1| · |x0|q−2 = 1. Hence by Theorem
(3.9), there exists a unique Teichmuller representative α̂ ∈ O∗K of α such that f(α̂) = 0 and α̂ ≡ α
mod p. We can take {0} ∪ {α̂ : α ∈ k∗K} as a set of representative for kK .

De�ne principal congruence subgroup UnK = {u ∈ UK = O∗K : u− 1 ∈ PnK} = 1 + PnK . Then UK and
UnK are open and closed and compact in K∗ (with induced topology).

We have isomorphism of topological groups:

• K∗/UK → Z de�ned by xUK 7→ VK(x).

• UK/U1
K → k∗K de�ned by ξvU1

K 7→ gv where ξ is a primitive (q − 1)th root of unity in K and g
is a generator for k∗K .

Hence any x ∈ K∗ can be uniquely written as πuξvε for ε ∈ U1
K , i.e., K

∗ ∼= Z× Z/(q − 1)Z× U1
K .
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4 Extensions of local �elds

We consider �eld extensions of non-archimedean local �elds. We would like to show that these extension
are non-archimedean local �elds.

4.1 Normed vector spaces

Let K be a non-archimedean local �eld

De�nition 4.1. Let V be a vector space over K. A function ‖ ‖ : V → R≥0 is a norm if

1. ‖x‖ = 0 if and only if x = 0

2. ‖x+ y‖ ≤ ‖x‖+ ‖y‖

3. ‖λx‖ = |λ| · ‖x‖ for all λ ∈ K

Note. The norm induces a metric d(x, y) = ‖x− y‖ on V , which gives a topology.

De�nition 4.2. Two norms ‖ ‖1 and ‖ ‖2 one a vector V are equivalent if ∃c1,c2 > 0 such that c1‖x‖2 ≤
‖x‖1 ≤ c2‖x‖2 ∀x ∈ V

Exercise. Show that ‖ ‖1, ‖ ‖2 are equivalent if and only if they induce the same topology on V .

Lemma 4.3. Let V be a �nite dimensional vector space over K. Then any 2 norms on V are equivalent.

Moreover, V is complete with respect to the induced metric.

Proof. We proof by induction on n = dimK V

n = 1 Trivial

n > 1 Let e1, . . . , en be a basis for V over K. Put a = a1e1 + · · · + anen (aj ∈ K) and de�ne
‖a‖0 := maxj |aj |. Check that ‖ ‖0 is a norm and that V is complete with respect to it. It will
su�ce to show any norm ‖ ‖ on V is equivalent to ‖ ‖0. Firstly ‖a‖ ≤

∑
j |aj | · ‖ej‖ ≤ c2‖a‖0

with c2 =
∑
‖ej‖.

We now need to show ∃c > 0 such that ‖a‖0 ≤ c‖a‖ for all a ∈ V (∗). If not, ∀ε > 0, there
exists b = bε ∈ V such that ‖b‖ ≤ ε‖b‖0. Assume without loss of generality that ‖b‖0 = |bn|.
Replacing b by b−1

n b we have b = c+ en where c ∈ 〈e1, . . . , en−1〉K .
Summary: (∗) false, implies we can �nd a sequence c(m) ∈ W = 〈e1, . . . , en−1〉K such that
‖c(m) + en‖ → 0 as m → ∞. But then ‖c(m) − c(l)‖ → 0. So now use induction hypothesis.
Since dimW = n−1, it is complete under ‖ ‖. Thus there exists c∗ ∈W such that ‖c(m)−c‖ = 0.
Hence ‖c∗ + en‖ = limm→∞ ‖c(m) + en‖ = 0. Therefore c∗ + en = 0, which is impossible. Hence
(∗) hold and so ‖ ‖ and ‖ ‖0 are equivalent.

Corollary 4.4. V �nite dimensional normed vector space over K. Then V is locally compact. (i.e., v ∈ V
has a compact neighbourhood)

Proof. By Lemma 4.3 we can assume ‖ ‖ is ‖ ‖0, with respect to some �xed basis e1, . . . , en. Now imitate
the proof of Lemma 3.8 to show that {v ∈ V : ‖v‖0 ≤ 1} is compact.
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4.2 Extension of Absolute Values

Let K be a non-archimedean local �eld and L ⊃ K an extension. We say that an absolute value ‖ ‖ L
extends to the absolute value | | on K if ‖λ‖ = |λ| for all λ ∈ K

Theorem 4.5. Let L ⊃ K be a �nite extension. Then there exists a unique extension ‖ ‖ of | | to L.
Moreover, L, ‖ ‖ is a non-archimedean local �eld.

Proof.

Uniqueness: Suppose ‖ ‖1, ‖ ‖2 extend | | to L. Then, regarding L as a �nite dimensional vector space over
K, Lemma 4.3implies ‖ ‖1 and ‖ ‖2 are equivalent and some de�ne the same topology on L.
But then they are equivalent as absolute values and so by Lemma 1.10, there exists α such that
‖x‖1 = ‖x‖α2∀x ∈ L. But the two absolute values are equal on K, so that α = 1.

Second_part Apply 4.4 and converse of Lemma 3.8

Existence We will show that the extension of ‖ ‖ of | | to L is given by ‖x‖ = |NL/K(x)|1/n for x ∈ L,
where n = [L : K]. Here NL/K : L → K is the norm map. (Recall: Thinking of L as a
vector space over K, multiplication by α ∈ L gives a linear map mα : K → L, with matrix
Aα ∈ Mn(K). Put NL/K(α) := detAα). For x ∈ K, ‖x‖ = |xn|1/n = |x|. So ‖ ‖ does extend
| |.
For x ∈ L∗, the linear map mx : L→ L is invertible with inverse mx−1 . Thus the matrix Ax is
invertible, and detAx 6= 0. Hence ‖x‖ 6= 0. Multiplicativity follows from the multiplicativity of
the norm map.

Remains to prove the ultrametric inequality. Su�ces to show ‖x‖ ≤ 1, then ‖1+x‖ ≤ 1. (Then,
assuming ‖x‖ ≤ ‖y‖ then ‖x + y‖ = ‖y‖ · ‖xy + 1‖ ≤ ‖y‖). Suppose ‖x‖ ≤ 1. Let χ(x) be the

characteristic polynomial of the linear map mx : L→ L. Let f(X) = Xr + fr−1X
r−1 + · · ·+ f0

be the minimal polynomial of x. Here r is the degree of x over K. Then χ(X) = f(X)n/r

(where n/r is the degree of L over K(x), a proof of this can be found in Cassels book Lemma
B.3). Then |fpower

0 | = |NL/K(x)| ≤ 1, hence |f0| ≤ 1. Since f is irreducible and monic it follows
from consideration of Newton polygon associated to it that |fi| ≤ 1 (See Cassels chapter 4).
Hence f ∈ OK [X] and also χ ∈ OK [X]. Now NL/K(1 + x) = det(In + Ax) = (−1)nχ(−1). So

‖1 + x‖ = |χ(−1)|1/n ≤ 1. This completes the proof

Since the absolute value on L is unique, we will usually write it as | | instead of ‖ ‖.

Corollary 4.6. | |p on Qp extends uniquely to an absolute value on algebraic closure Qp.

Proof. x ∈ Qp then x ∈ K for some �nite extension K/Qp. Let | | = | |K where | | is the unique absolute
value on K extending | |p. This is independent of choice of K by Theorem 4.5

4.3 Rami�cation

Suppose L/K is a �nite extension of non-archimedean local �elds of degree n = [L : K].

Lemma 4.7. There exists a natural injection kK → kL such that kL is an extension of kK of degree

f = f(L/K) := [kL : kK ] ≤ n.
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Proof. There is certainly an inclusion OK ↪→ OL. But PK = OK∩PL, this induces the injection kK → kL.
Let α1, . . . , αn+1 ∈ kL. Show that there are linearly dependent over kK . Then we will have shown that

f = dimkK kL ≤ n. Let α̂1, . . . , α̂n+1 ∈ OL such that αi = α̂i + PL for 1 ≤ i ≤ n+ 1. Since dimK L = n,
there are linearly dependent over K, i.e., there exists λi ∈ K not all zeroes such that

∑n+1
i=1 λiα̂i = 0.

Without loss of generality, we assume that λn+1 6= 0. Let µi ∈ kK be the reduction of λiλ
−1
n+1 modulo PL.

Then
∑n

i=1 µiαi + αn+1 = 0, as required.

De�nition 4.8. If f = f(L/K) = n, we say L/K is unrami�ed.
If f = f(L/K) = 1, we say L/K is totally rami�ed.
If f = f(L/K) < n, we say L/K is rami�ed.

Remark. If K ⊂ L ⊂ E is a tower of extensions then f(E/K) = f(E/L) · f(L/K).

We shall see that unrami�ed extensions are easy to characterise.

Theorem 4.9. Let α ∈ kL = OL/PL. Then there exists α̂ ∈ OL such that α̂+ PL = α and [K(α̂) : K] =
[kK(α) : kK ].

Furthermore, the �eld K(α̂) depends on α.

Remark. The extension K(α̂)/K is unrami�ed.

Proof. Let φ ∈ kx[x] be the minimal polynomial of α. Let Φ ∈ K[X] be any lift of φ (i.e., deg φ = deg Φ
and φ = Φ, meaning coe�cients of Φ are reduced modulo PK). Let α̂0 ∈ OL be an element of the

residue class of α. Then Φ(α̂0) = φ(α) = 0 and Φ
′
(α̂0) = φ′(α) 6= 0 (since kK is a �nite �eld so it is

perfect). Thus |Φ(α̂0)| < 1 and |Φ′(α̂0)| = 1. Hence by Hensel's lemma, with K(α̂0) as the ground �eld,
implies there exists α̂ ∈ K(α̂0) ⊂ L such that Φ(α̂) = 0, |α̂− α̂0| < 1. Hence α̂ in residue class of α and
[K(α̂) : K] = [kK(α) : kK ] since Φ is irreducible.

Now suppose that α̂′ is also in the residue class of α and satis�es [K(α̂′) : K] = [kK(α) : kK ]. Then the
above argument implies α̂ ∈ K(α̂′) and so K(α̂) = K(α̂′). But we must have equality since the degrees
are the same.

Corollary 4.10. There exists a bijection between intermediate �elds E (with K ⊂ E ⊂ L) which are

unrami�ed and the �elds k with kK ⊂ k ⊂ kL, given by E → kE = E ∩ OL/E ∩ PL

Proof. The previous theorem gives one direction.
Let k be an intermediate �eld kK ⊂ k ⊂ kL. Let q = #k. Then k = kK(α) for some (q − 1)th root of

unity α. Then apply Theorem 4.9

Corollary 4.11. Let K be a non-archimedean local �eld. For all n ∈ N there exists a unique (up to

isomorphism) unrami�ed extension of degree n. It is the splitting �eld over K of Xq −X where q = qnK ,
with qK = #kK

Proof. Let L/K be unrami�ed extension of degree n. Then kL has q = qnK elements. Then L contains a
full set of (q − 1)th roots of unity (By example 2 after Hensel's lemma). In particular Xq −X splits in L
and so L contains its splitting �eld, say F . However qL = qF = q and so by Corollary 4.10 we must have
F = L

Corollary 4.12. Let f ∈ OK [X] be monic of degree n and reduction f mod PK is irreducible. Then

1. if L = K(α) and α has minimal polynomial f , then L/K is unrami�ed
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2. The splitting �eld of f over K is unrami�ed and has degree n.

Proof.

1. Note that kL ⊃ kK(α), where α is the reduction of α mod PL. Moreover, kK(α) has degree n over
kK . Hence f(L/K) ≥ n. But we also have f(L/K) ≤ n = [L : K] by Lemma 4.7.

2. Let L be the splitting �eld of f over K and let α, β be roots of f in L. Then part 1. implies that
K(α) and K(β) are both unrami�ed extensions of degree n. Then Corollary 4.10 implies they are
equal, therefore L = K(α).

Summary. Unrami�ed extensions of K are obtained by adjoining a root of unity of order coprime to
residual characteristic of K.

Now let us look at rami�ed extensions.
Suppose L/K is a �nite extension of non-archimedean local �elds. Consider the relationship between

value groups ΓL = {|x| : x ∈ L∗} is a discrete (cyclic) subgroup of R>0.

De�nition 4.13. The rami�cation index of L/K is e = e(L/K) = [ΓL : ΓK ].

If πL, πK are uniformisers for L and K respectively. Recall |πK | < 1 is a generator for ΓK and similarly
πL for ΓL. Then |πK | = |πL|e. This implies e(E/K) = e(E/L)e(L/K) for any tower K ⊂ L ⊂ E.

Theorem 4.14. L/K be a �nite extensions of non-archimedean local �elds of degree n. Then n = ef .

It follows from this that L/K is unrami�ed if and only if e(L/K) = 1
L/K is totally rami�ed if and only if e(L/K) = n
It is rami�ed if and only if e(L/K) > 1

Proof. Let πL be a uniformiser of L and let α̂1, . . . , α̂f be any lift to OL of a basis for kL/kK . (As in

Theorem 4.9) We will prove that B =
{
α̂iπ

j
L : 1 ≤ i ≤ f, 0 ≤ j ≤ e− 1

}
is a basis for L/K. (In fact we

will prove that it is an OK basis for OL.)
Firs suppose that B is not linearly independent over K. Then there exists aij ∈ K, not all zeroes, such

that ∑
i,j

aijα̂iπ
j
L = 0 (∗)

Without loss of generality, assume that maxi,j |aij | = 1. Hence, there exists integers, I, J such that
|aij | ≤ |πK | for 1 ≤ i ≤ f, j < J , |aIJ | = 1. If we reduce

∑
i aiJ α̂i module PL, then we get a non-zero

coe�cient aIJ . Since α̂i mod PL are linearly independent over kK , this reduction is non-zero. Thus
|
∑

i aiJ α̂i| = 1. We now get ∣∣∣∣∣∑
i

aijα̂iπ
j
L

∣∣∣∣∣

≤ |πK | = |πL|e j < J

= |πL|J j = J

≤ |πL|J+1 j > J

Recalling J ≤ e− 1, one term in (∗) has to be bigger than all the others. Contradiction
Now let x ∈ L. We claim that x is in theK-span of B. Multiplying by a suitable power of πK , we reduce

to the case x ∈ OL. (If πnKx =
∑

ij aijα̂iπ
j
L with aij ∈ K, then putting bij = π−nk aij gives x =

∑
bijα̂iπ

j
L).
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Since αi ≡ α̂i mod PL form a basis for kL/kK , there exists ci0 ∈ kK such that x =
∑

i ci0αi. Choose any
lifts ĉi0 ∈ OK , we have x −

∑
i ĉi0α̂i = πLx1 ∈ PL for some x1 ∈ OL. Now repeat process on x1, and so

on, until we have obtained ĉij ∈ OK such that

x−
e−1∑
j=0

∑
i

ĉijα̂iπ
j
L = πeLxe

for some xe ∈ OL. Now |πL|e = |πK | and so πeLxe = πKx
(1) for some x(1) ∈ OL. Now we start again with

x(1) instead of x. Carrying on in this way, we �nd a succession of linear combinations

cr =

e−1∑
j=0

∑
i

ĉ
(r)
ij α̂iπ

j
L

of elements of B with coe�cients in OK such that x− c0 − c1πK − · · · − csπsK ∈ π
s+1
K OL, ∀s ≥ 0. Now let

s→∞ and, using completeness, put

aij =

∞∑
r=0

ĉ
(r)
ij π

r
K

Then x =
∑

i,j aijα̂iπ
j
L as required.

A polynomial f(X) = fnX
n + fn−1X

n−1 + · · ·+ f0 ∈ OK [X] is said to be Eisenstein if

|fn| = 1, |fj | < 1 ∀0 ≤ j < n, |f0| = |πK | (†)

Aside on irreducibility: Let f = f0 + f1X + · · · + fnX
n ∈ K[X] with f0 6= 0, fn 6= 0. The Newton

polygon of f is the convex hull in R2 of the points p(j) = (j, log |fj |) for fj 6= 0. It consist of line segments
σs for 1 ≤ s ≤ r, where σs joins P (ms−1) to P (ms) and 0 = m0 < m1 < · · · < mr = n. The slope of σs is
γs =

(
log |fms | − log

∣∣fms−1

∣∣) /(ms −ms−1). We say f is of type (l1, γ1, . . . , lr, γr) where ls = ms −ms−1.
If r = 1 then f is said to be pure.

Fact. (Cassels Local Field pg 100): f of type (l1, γ1, . . . , lr, γr) then f(X) = g1(X) . . . gr(X) where gs is

pure of type (ls, γs).

Totally rami�ed extensions are quite easy to classify.

Theorem 4.15. Let L/K be a �nite extension of non-archimedean local �elds. Then L/K is totally

rami�ed if and only if L = K(β), where β is the root of an Eisenstein polynomial.

Proof.

⇒ L/K totally rami�ed of degree n, let β = πL be a uniformiser for L. Then 1, πL, . . . , π
n−1
L are

linearly independent over K (as in the proof of Theorem 4.14). Hence there exists an equation
βn + fn−1β

n−1 + · · ·+ f0 = 0 with fj ∈ K. Two of the summands must have the same absolute
value and this must be the �rst and the last. (Suppose |fkβk| = |flβl| for some n ≥ k > l ≥ 0,

then there exists ak, al ∈ Z such that
∣∣∣πk−lL

∣∣∣ = |β|k−l = |πK |ak−al = |πL|n(ak−al), hence l = 0

and k = n). Therefore |f0| = |πL|n = |πK | and |fj | < 1 for all j. Hence a polynomial in the
equation is Eisenstein.
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⇐ Suppose fnβ
n + · · · + f0 = 0, where fj ∈ K such that |fn| = 1, |fj | < 1 and |f0| = |πK | .Then

|βn| < 1 and so |β| < 1. Hence the last term in the sum is bigger than all the others. except
possibly for the �rst. Since the sum is zero, they must be equal (in absolute value) and so |β|n =
|f0| = |πK |. Hence β = πgLy for some unit y, then |πL|gn = |πK |, whence e(L/K) = gn ≥ n.
But we must have equality by Theorem 4.14, since n = [L : K]. Hence L/K is totally rami�ed.

Example. Let f(X) = X4 − 2X3 + 17X2 + 22X + 66. We are going to look at the splitting �eld E over
Qp for various prime p. In each case, we want to calculate:

• The degree [E : Qp]?

• Residue class degree f(E/Qp)?

• Rami�cation index e(E/Qp)?

• (If possible) maximal unrami�ed subextension L? i.e., E ⊃ L ⊃ Qp with L/Qp unrami�ed and hence
E/L totally rami�ed.

p = 2 Newton polygon. Note log |2ab|2 = log 2−1

•
0

•
0

•
− log 2

•
− log 2

•
− log 2

|
0

|
1

|
2

|
3

|
4

l1 = 2− 0 = 2, γ1 = log 2/2, l2 = 4− 2 = 2, γ2 = 0. So the type is (2, 1
2 log 2, 2, 0) and factorises

as a product of 2 quadratic. Trial an error over Z gives f(X) = (X2 − 2X + 6)︸ ︷︷ ︸
:=g(X)

· (X2 − 11)︸ ︷︷ ︸
:=h(X)

and

g, h irreducible over Q2 (Eisenstein criterion for g and 11 6≡ 1 mod 8 so apply Exercise B.1).
Let αbe a root of g and β a root of h in E. Then by Theorem 4.15, we have that Q2(α)/Q2

is totally rami�ed. Since β − 1 satis�es 0 = h(X + 1) = X2 + 2X − 10 which is Eisenstein, we
also have Q2(β)/Q2 is totally rami�ed. Note that [Q2(α) : Q2] = [Q2(β) : Q2] = 2.

Next γ = α − 1 satis�es 0 = g(X + 1) = X2 − 7, so γ2 = 7. Let δ = βγ, then δ2 = 7 · 11. We
claim that Q2(δ)/Q2 is unrami�ed of degree 2. Then [E : Q2] = 4, e(E/Q2) = f(E/Q2) = 2
and L = Q2(δ). To show that Q2(δ)/Q2 is unrami�ed, we need to show (by Corollary 4.11)
that Q2(δ) is obtained from Q2 by adjoining a root of X2 +X + 1 (i.e., a primitive (22 − 1)th
root of unity). Do this by applying Hensel to (δ − 1)/2.

p odd Use the fact that E = Qp(γ, β) where γ and β are as above (γ2 = 7, β2 = 11)

p = 3 Since
(

7
3

)
= 1, then γ ∈ Q3, while

(
11
3

)
= −1, so X2 − 11 is irreducible in F3[X].

Hence it follows that E = Q3(β) and it is unrami�ed of degree 2 over Q3 (by Corollary
4.12)

p = 19 Since
(

7
19

)
=
(

11
19

)
= 1 so E = Q19

(all primes behave like 3, 5, 11, 13 or 19)
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5 Algebraic Closure

Recall that a �eld K is called algebraically closed if every polynomial with coe�cients in K has a root in
K.

De�nition 5.1. An extension K ⊃ K is the algebraic closure of K if

1. K is algebraically closes

2. Any α ∈ K is algebraic over K.

For example, C is the algebraic closure of R, [C : R] = 2. If Qp is the closure of Qp then [Qp : Qp] =∞.
(Note Qp must contain roots of Xn − p for all n ∈ N)

Theorem 5.2. Let K be a �eld. Then there exists an algebraic closure K of K and it is unique up to

isomorphism.

Proof. (Sketch) Let Λ be the set of all irreducible polynomials over K of degree ≥ 2. Let Ξ = {Xf : f ∈ Λ}
be a family of indeterminate indexed by Λ. Put R = K[Ξ]. Consider the ideal I = {f(Xf ) : f ∈ Λ}. This
is a proper ideal: if not we would have an equation 1 = u1f1(Xf1) + · · · + unfn(Xfn) for some uj ∈ R.
Let E/K formed by adjoining roots α1, . . . , αn of f1, . . . , fn respectively. Then we deduce that 1 = 0 a
contradiction.

Since I is proper, it is contained in a maximal ideal m of R. Then K = R/m is a �eld and the
homomorphism K → K[Ξ] � K is an embedding of K → K. We claim K is an algebraic closure of K.
If f is an irreducible polynomial in K[X], then α = Xf +m is an root of f in K (since f(Xf ) ∈ I ⊂ m).
Moreover, each Xf +m is algebraic over K and K is generated by them.

Uniqueness: Essentially follows form uniqueness of splitting �elds of polynomials over K.

From now on K is a non-archimedean local �eld with algebraic closure K. Recall that the absolute
value on K extends uniquely to K. (∀α ∈ K,there exists K ⊂ L ⊂ K such that L = K(α), then

|α| =
∣∣NL/K(α)

∣∣1/[L:K]
).

We want to know if it is possible for K to be a non-archimedean local �eld:

ΓK Let us ask is the value group ΓK is discrete? Suppose ΓK = {|x| : x ∈ K} is generated by g < 1.
Suppose r ∈ ΓK . Then r = |α| for some α ∈ K. Let L/K of degree n such that α ∈ L. Then
|α| = gm/n for some m ∈ Z. Hence ΓK ⊂

{
gm/n : mn ∈ Q

}
. In fact we have equality. Let L ⊂ K

be an extension obtained by adjoining a root α of the Eisenstein polynomial Xn − πKX − πK .
Then α is the uniformiser for L and L/K is totally rami�ed of degree n. Hence |α| = g1/n and
so |αm| = gm/n. This shows that ΓK is not discrete.

kK Consider the residue �eld kK . Let α ∈ kK = OK/PK and let α̂ be a lift of α to OK . Then
α̂ ∈ K and so there exists a minimal polynomial Φ ∈ OK [X] of α̂ over K. Let φ ∈ kK [X]
denote the reduction modulo PK of Φ. Then it follows φ(α) = 0 and so α is algebraic over kK .
Thus kk ⊂ kK . In fact we have equality here. Suppose φ ∈ kK [X] is irreducible and let Φ be a
lift of φ. Then Φ has a root α ∈ OK (since K is algebraic closed). Then α = α+ PK is a root
of φ in kK . Hence kK = kK .

Suppose L/K is Galois.

Exercise. If | | is an absolute value on L which extends the absolute value on K, then so ‖x‖ = |σ(x)|
for all σ ∈ Gal(L/K). By uniqueness, we have |x| = |σ(x)| for all x ∈ L∀σ ∈ Gal(L/K).
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Theorem 5.3 (Krasner's Lemma ). K �eld of characteristic 0, which is complete with respect to a non-

archimedean absolute value | |. Let a, b ∈ K and suppose that |b− a| < |a− ai|for all 2 ≤ i ≤ n where

a1 = a, a2, . . . , an are roots of the minimal polynomial of a in K[X]. Then K(a) ⊂ K(b).

Proof. Put L = K(b). Suppose for contradiction that a /∈ L. Let f ∈ L[X] be minimal polynomial of a over
L. Let E be the splitting �eld f over L. Then E/L is Galois and since a /∈ L, there exists σ ∈ Gal(E/L)
which does not �x a. Then σ(a) = ai for some i > 1. |a− ai| ≤ max{|a− b| , |b− ai|︸ ︷︷ ︸

=|σ(b−a)|=|b−a|

} = |a− b|,

which is a contradiction.

Incompleteness

K = Qp

Theorem 5.4. Qp is not complete with respect to | |p

Proof. We need to �nd a Cauchy sequence {αn} in Qp which does not converge. For i ≥ 0, let ζi be a root

of unity of order p(i+1)! − 1. Put Fi = Qp(ζi), then

• Fi is the splitting �eld of Xp(1+i)! −X over Qp. Thus it is an unrami�ed extension of Qp of degree
(i+ 1)! and it is Galois (Corollary 4.11)

• ζi−1 ⊂ Fi since [Fi : Fi−1] = i+ 1 and moreover pi! − 1|p(i+1)! − 1.

Consider the sequence αn =
∑n

i=1 ζip
i. Since |αm − αn|p =

(
1
p

)min{m,n}
, so this is certainly Cauchy.

We claim it does not have a limit in Qp. Suppose that it does have a limit, α =
∑∞

n=0 ζip
i ∈ Qp. Let

d be the degree of the minimal polynomial mα of α over Qp. Now Fd/Fd−1 is Galois of degree d + 1.
Hence there exists σ1, . . . , σd+1 ∈ Gal(Fd/Fd−1) such that the images of ζd are all distinct. Note that
|σi(α− αd)|p = |α− αd|p ≤ p−(d+1). Also for i 6= j, we have

σi(αd)− σj(αd) =
d−1∑
k=0

ζkp
k + σi(ζd)p

d −

(
d−1∑
k=0

ζkp
k + σj(ζd)p

d

)
= pd(σi(ζd)− σj(ζd)).

Hence for i 6= j, we have |σi(αd)− σj(αd)|p = p−d (since σi(ζd) and σj(ζd) are distinct and (p(d+1)! − 1)th
root of unity). We conclude that

|σi(α)− σj(α)|p = |σi(α− αd) + σi(αd)− σj(αd)− σj(α− αd)|p
= p−d

This implies that σi(α) 6= σj(α) for all i 6= j. But then σ1(α), . . . , σd+1(α) are distinct conjugates of α.
This is a contradiction to the fact that the degree of mα is d.

Note. Our sequence {αn} was actually in Qun
p := Qp

(
∪(n,p)=1µn

)
, which we've shown is not complete.

We let Cp denote the completion of Qp (as in Theorem 1.14)

Theorem 5.5. Cp is algebraic closed.
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Proof. The proof is based on the

Lemma. Let char(K) = 0 and K complete with respect to a non-archimedean value. Let f = Xn +
an−1X

n−1 + · · · + a0 ∈ K[X]. Assume f is irreducible over K. Then there exists δ > 0 such that for all

g = Xn + bn−1X
n−1 + · · ·+ b0 ∈ K[X] with |ai − bi| < δ (0 ≤ i ≤ n− 1), g is irreducible.

Proof. Let λ1, . . . , λn be the roots of f in K and similarly let µ1, . . . , µn be the roots of g in K. Put
C = max{1, |ai|}. De�ne r = mini 6=j |λi − λj |, R(f, g) =

∏
i,,j(λi−µj) =

∏
i g(λi) =

∏
j f(µj) · (−1)n (the

resultant).

Step 1 If 0 < δ < C then for all g with |ai − bi| < δ, every root µj over g has |µj | ≤ C.
Suppose for contradiction, we have |µ| > C. Then for 0 ≤ i ≤ n− 1,

∣∣biµi∣∣ ≤ C |µ|i < |µ|i+1 ≤
|µ|n. This is a contradiction.

Step 2 For all ε > 0, there exists δ > 0 such that if |ai − bi| < δ for all i then |R(f, g)| < ε

If |ai − bi| < δ < C for all i then

|f(µj)| = |f(µj)− g(µj)|

=

∣∣∣∣∣
n−1∑
i=0

(ai − bi)µij

∣∣∣∣∣
≤ max

i
|ai − bi| ·max{1, |µj |n}

< δCn

by step 1. Thus for all δ < min{C, ε1/nC−n}, we have |R(f, g)| =
∏
j |f(µj)| < δnCn

2
< ε.

Step 3 If |R(f, g)| < rn
2
then g is irreducible over K.

The condition means at least one of the factors |λI − µJ | < r = mini 6=j |λi − λj |. Then by
Krasner's lemma (Theorem 5.3) , we have K(λI) ⊂ K(µJ), hence K(µJ) has degree n and so g
is irreducible.

We apply the sublemma with K = Cp. Let f ∈ Cp[X] be irreducible, which is monic. Let δ > 0 be
as in the sublemma. Since Qp is dense in Cp, there exists a monic polynomial g ∈ Qp[X] satisfying the

hypothesis of the sublemma. Thus g is irreducible of degree n in Cp[X], so also in Qp[X]. But since Qp

is algebraic closed, so deg g = 1

6 Algebraic Number Fields

Let K/Q be a number �eld. A place is an equivalence class of non-trivial absolute values on k, denote the
completion of k at P by kp. If P is non-archimedean, then absolute values in Q ⊂ K are equivalent to
p-adic absolute value | |p, we write p|p. Then kpis an extension of Qp (and so is a non-archimedean local
�eld). Let qp be the cardinality of residue �eld of kp

De�nition 6.1. The renormalised absolute value | |p on kp is determined by |πp|p = q−1
p where πp is a

uniformiser. By problem C.1, we have |α|p = |α|[kp:Qp]
p for all α ∈ kp
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If r is an archimedean place, the relevant completion kr is either R (r is a real place) or C (r is a
complex place) The renormalised absolute value is

| |r =

{
| |∞ r real

| |2∞ r complex

An archimedean place r is an extension of an archimedean place ∞ on Q, write r|∞

Lemma 6.2. Let α ∈ k∗. Then |α|p = 1 for all but �nitely many places p

Proof. Let f = Xn + an−1X
n−1 + · · · + a0 ∈ Q[X] be a minimal polynomial of α over Q. Then aj ∈ Zp

(0 ≤ j ≤ n− 1) for almost all primes p. Hence |α|p ≤ 1 for almost all p (not aj ∈ Zp implies |α|p ≤ 1∀p|p)
Similarly

∣∣α−1
∣∣
p
≤ 1 for almost all p

Theorem 6.3 (Product Formula). Let α ∈ k∗. Then∏
p archimedean & non−archimedean

|α|p = 1

Proof. By standard �eld theory we have k ⊗Q Qp = ⊕p|pkp and
∑

p|p[kp : Qp] = [k : Q]
Similarly k ⊗Q R = ⊕r|∞kr and

∑
r|∞[kr : R] = [k : Q]

Hence for all w ∈ {p,∞} (with Q∞ := R)

∏
p|w

|α|p =
∏
p|w

|α|[kp:Qw]
w

=
∣∣Nk/Q(α)

∣∣
w

since Nk/Q =
∏

p|wNkp/Qw
(c.f. Theorem 4.5). This reduces the statement to of the theorem to the case

k = Q. Apply Problem A.2

Theorem 6.4 (Strong Approximation). Let S be a �nite set of non-archimedean places of a number �eld

k. Let ε > 0. Let αp ∈ kp for p ∈ S. Then there exists α ∈ k such that

1. |α− αp|p < ε for all p ∈ S

2. |α|p ≤ 1, p /∈ S, p non-archimedean

Note: If αP ∈ OP (for p ∈ S), then 2. can be replaces by α ∈ O.

Proof. Let S0 be the set of rational primes p such that p|p for some p ∈ S. Without loss of generality we
assume S contains all p extending p ∈ S0 (put αp = 0 for p not in original S). By the Weak Approximation
Theorem (Theorem 1.12) there exists β ∈ k such that |β − αp|p < ε (for p ∈ S) . Lemma 6.2 implies the
set R of non-archimedean places p /∈ S for |β|p > 1 is �nite. Let R0 be the set of rational primes p such
that p|p for some p ∈ R. Then R0 ∩ S0 = ∅.

Let η > 0. By the Chinese Remainder Theorem we can �nd l ∈ Z such that |l − 1|p < η for p ∈ S0

and |l|p < η for p ∈ R0. Check that α = lβ satis�es the conclusion of the theorem.
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7 Diaphantine Equations

7.1 Quadratic forms

Let K be a �eld of characteristic not 2, Q =
∑
aijxixj ∈ K[x1, . . . , xn] is a quadratic form of rank n, We

say Q is soluble if there exists x ∈ Kn \ {0} such that Q(x) = 0

Lemma 7.1. Suppose [K : Qp] <∞, p 6= 2. Assume without loss of generality that Q =
∑
aix

2
i , then Q

is soluble if either

1. n ≥ 3 and ai ∈ O∗K for all i

2. n ≥ 5

Proof. 1. Without loss of generality, assume Q = ax2 + by2− z2 for a, b ∈ O∗K . Let k = kK and assume
q = #k. The maps x→ ax2 and y → 1− by2 have images of size q+1

2 in k. Thus the images overlap
and there exists x, y ∈ OK such that ax2 + by2 ≡ 1 mod πK . By Hensel's lemma, Q is soluble

2. On multiplying by the square of the uniformiser we may assume vK(ai) ∈ {0, 1}. As n ≥ 5, without
loss of generality, vK(a1) = vK(a2) = vK(a3). If vK(a1) = vK(a2) = vK(a3) = 0, then apply part
1. .Otherwise if vK(a1) = vK(a2) = vK(a3) = 1, then divide through by uniformiser and apply
part 1.

Note. Part 2. is still true when p = 2: quinary quadratic forms are isotropic over any p-adic �eld.

On the arXiv, there is a recent paper by Bhargava, Cremona, Fisher which looks at the density of
isotropic quadratic forms in 4 variables (roughly 97%).

Theorem 7.2 (Hasse-Minkowski Theorem). Q is a quadratic form over a number �eld k. Then Q is

soluble over k if and only if Q is soluble over kp for every place p.

Proof. Omitted

Remark. 1. Lemma 7.1 implies if n ≥ 3, then local solubility is automatic for all but �nitely many
primes.

2. When n = 2 and k = Q this is very easy: a ∈ Q∗2p , if and only if vp(a) is even. a ∈ R∗2, if and only
if a > 0. Both of these implies a ∈ Q∗2.

3. Using Rimenan-Roch one can show that any smooth and projective curve of genus 0 is over a
number �eld k is k-birationally equivalent to a conic over k. Thus Theorem 7.2 implies that the
�Hasse principle� holds for smooth and projective curves of genus 0.

7.2 Cubic forms

Natural question: Is there an analogue of Lemma 7.1 for a cubic forms?

Theorem 7.3 (Demyanov (p 6= 3), Lewis, 1950's). Suppose [K : Qp] <∞. Assume F =
∑

i≤j≤k xixjxk ∈
K[x1, . . . , xn]. Then F is soluble if n ≥ 10.
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Proof. Treat case k = Qp. Let ∆ = ∆(F ) be the discriminant of F (this is the resultant of ∂F
∂x1

, . . . ∂F∂xn ).

Then ∆ is a non-zero form of degree n2n−1 in the coe�cients of F . Moreover if M ∈ GLn(Qp) such that

x = My, (F (x) = F (My) = F ∗(y)) then F ∗(y) = aF (y), then ∆(F ∗) = an2n−1
(detM)3·2n−1

∆.
Since ∆ is a non-zero form it can not vanish on any neighbourhood of a point. Hence if ∆(F ) = 0 then

∀N ∈ N there exists c
(N)
ijk ∈ Qp such that ∆(F (N)) 6= 0 and

∣∣∣cijk − c(N)
ijk

∣∣∣
p
< 1/N . Suppose a(N) is zero at

F (N) in Znp . By compactness, these points have an accumulation point in Zp and since F is continuous,
this point is a zero of F . Hence without loss of generality ∆(F ) 6= 0.

Note if F and F ∗ are equivalent over Qp, then ∆(F ) = 0 ⇐⇒ ∆(F ∗) = 0. F is equivalent over Qp to
a form with coe�cients in Zp. Then δ(F ) = vp(∆(F )) ≥ 0. We say that F is reduced if it has coe�cients
in Zp and ∆(F ) 6= 0 and δ(F ) ≤ δ(F ∗) for all F ∗ over Zp equivalent to F over Zp.

It su�ces to work with reduced F . Let r ∈ N minimal such that F (x) ≡ F1(L!, . . . , Lr) mod p where
F1 ∈ Zp[y1, . . . , yr] and the Li are linear forms with coe�cients in Zp, and are linearly independent.
Clearly r ≤ n and make unimodular transformation yi = Li for 1 ≤ i ≤ r, to obtain an equivalent
form F ∗, where F ∗(y1, . . . , yn) ≡ F1(y1, . . . , yr). If F is reduced then so is F ∗. Let F ′(z1, . . . , zn) =
p−1F ∗(pz1, . . . , pzr, zr+1, . . . , zn). Then F ′ has coe�cients in Zp and δ(F ′) = δ(F ∗) + 2n−1(3r−n). Hence
r ≥ n/3 since F is reduced. Now n ≥ 10 implies r ≥ 4, hence there exists (b1, . . . , br) ∈ F4

p \ {0} such
that F1(b) = 0 (by Chevaley-Warning: �Over Fp any form of n variables of degree d is soluble if n > d�).
Assume without loss of generality b1 = 1. Then F ∗(z1, b2z1+z2, . . . , brz1+zr, zr+1, . . . , zn) ≡ z2

1L+z1Q+C
mod p where L,Q,C are forms in z2, . . . , zn. Since r is minimal, L and Q are not both identically zero
modulo p.

Case 1. L not identically zero modulo p: Then (1, 0, . . . , 0) is a solution of F ∗ ≡ 0 mod p and some
partial derivative of F ∗ does not vanish modulo p at (1, 0, . . . , 0)

Case 2. L is identically zero modulo p: There exists d = (d2, . . . , dn) ∈ Zn−1 such that p - (d2, . . . , dn)
and such that Q(d2, . . . , dn) 6≡ 0 mod p. Then (−C(d), d2Q(d), . . . , dnQ(d)) is a solution of
F ∗ ≡ 0 mod p with ∂F ∗

∂x1
6= 0 mod p.

In either case Hensel's lemma yields the result

Remark.

1. n ≥ 10 is best possible in Theorem 7.3. See problem C.3

2. Artin's conjecture: Qp is a C2 �eld, i.e, any form over Qp in n variables and degree d is soluble over
Qp if n > d2. This is FALSE.

3. What about an analogue of Theorem 7.2? Let k be a number �eld and F a cubic form over k. Then
F is soluble over k if

n Conditions Notes

n ≥ 16 None Pleasants (1975)

n ≥ 10 F non-singular Brawning and Vishe (2013)

However the Hasse principle can fail for cubic forms in fewer variables.

For n = 4, the �rst example was produced by Swinnerton-Dyer in 1962: Let K = Q(θ) where
θ3 − 7θ2 + 14θ − 7 = 0. Abelian cubic �eld of discriminant 49 and OK = Z[θ]. Here (7) = P 3 and
vP (θ) = 1. Consider

F (x1, . . . , x4) = NK/Q(x1 + θx2 + θ3x3) + x4(x4 + x1)(2x4 + x1)

25



Check: non-singular, soluble over Qp for all p. But it is not soluble over Q!

Proof. Note that if N( ) = 0 then x1 = x2 = x3 = 0, hence x4 = 0. Contradiction as we want a
non-zero solution. May assume that x1, x4 are coprime integers and x2, x3 ∈ Q. Now 7|N( ) implies
P divides N( ), hence 7|x1 and 7 - x4. Hence 7 - x4(x1 + x4)(2x4 + x1) which is a contradiction.
Hence 7 - N( ).

Since x4, x4 +x1 and 2x4 +x1 are all coprime, and their product is a norm in K, each of them must
separately be a norm of an ideal. Now p 6= 7 splits in K if and only p = ±1 mod 7. Hence each of
the factors above is congruent to ±1 modulo 7. This contradicts x4 + (x4 + x1) = 2x4 + x1.

c.f. Elsenhans-Jahnel. (Recent paper on the arXiv, they show there is a Zariski dense set of counter
examples).
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