Modular representation theory

1 Definitions for the study group

Definition 1.1. Let A be a ring and let F_{A} be the category of all left A-modules. The Grothendieck group of F_{A} is the abelian group defined by generators and relations as follows:

1. Generators $[E]$ for $E \in F_{A}$.
2. Relations: for $E, E^{\prime}, E^{\prime \prime} \in F_{A}$ if $0 \rightarrow E \rightarrow E^{\prime} \rightarrow E^{\prime \prime} \rightarrow 0$, then $\left[E^{\prime}\right]=[E]+\left[E^{\prime \prime}\right]$.

Definition 1.2. A left A-module P is called projective if any of the following hold:

1. There exists a free A-module F such that $F=P \oplus Q$ for $Q \in F_{A}$
2.

3. The functor $\operatorname{Hom}_{A}(P,-)$ is exact.

Definition 1.3. An A-module homomorphism $f: M \rightarrow M^{\prime}$ is called essential if $f(M)=M^{\prime}$ and $f\left(M^{\prime \prime}\right) \neq M^{\prime}$ for any proper submodule $M^{\prime \prime} \subseteq M$.

Definition 1.4. The projective envelope of a module M is a projective module P and an essential homomorphism $f: P \rightarrow M$.

Setup

Let G be a finite group, K be a complete field of characteristic 0 with a discrete valuation v, with residue field k of characteristic >0. Let A be the ring of integers of K. We are going to look at $K[G], k[G]$ and $A[G]$.

Definition 1.5. Let L be a field, denote by $R_{L}(G)$ the Grothendieck group of finitely generated $L[G]$-modules. We make it into a ring by setting $[E] \cdot\left[E^{\prime}\right]=\left[E \otimes_{L} E^{\prime}\right]$.

Let S_{L} be the set of isomorphism classes of simple $L[G]$-modules.
Proposition 1.6. The element of S_{L} form a basis for $R_{L}[G]$.
Definition 1.7. Let $P_{k}[G]$ be the Grothendieck ring of the category of left $k[G]$-modules which are projective.
Let $P_{A}[G]$ be the Grothendieck ring of the category of the left $A[G]$-modules which are projective.
Fact. Any $k[G]$-module has a projective envelope
If E, P are $k[G]$-modules and P is projective, then $E \otimes_{k} P$ is also projective \Rightarrow we have an action of $R_{k}[G]$ on $P_{k}[G]$.

Proposition 1.8. Each projective $k[G]$-module can be written uniquely as a direct sum of indecomposable projective $k[G]$-modules

Let P and P^{\prime} be projective $k[G]$-modules, then they are isomorphic if and only if $[P]=\left[P^{\prime}\right]$.

Dualities: Let E, F be $K[G]$-modules. Set $\langle E, F\rangle=\operatorname{dim} \operatorname{Hom}_{G}(E, F)$ (i.e, $\langle\rangle:, R_{K}[G] \times R_{K}[G] \rightarrow \mathbb{Z}$). This is bilinear with respect to short exact sequences.
Proposition 1.9. If $E, E^{\prime} \in S_{K}$ then $\left\langle E, E^{\prime}\right\rangle=\left\{\begin{array}{ll}0 & E \not \approx E^{\prime} \\ d_{E}=\operatorname{dim} \operatorname{End}_{G}(E) & E \cong E^{\prime}\end{array}\right.$.
Definition 1.10. Say E is absolutely simple if $d_{E}=1$.
We define $\langle\rangle:, P_{k}[G] \times R_{k}[G] \rightarrow \mathbb{Z}$ by $(E, F) \mapsto\langle E, F\rangle=\operatorname{dim} \operatorname{Hom}_{G}(E, F)$. Since E is projective, \langle,$\rangle is$ bilinear.

Proposition 1.11. If $E, E^{\prime} \in S_{k}$ then $\operatorname{Hom}_{G}\left(P_{E}, E^{\prime}\right)=\operatorname{Hom}_{G}\left(E, E^{\prime}\right)$.
If $E, E^{\prime} \in S_{k}$ then $\left\langle P_{E}, E^{\prime}\right\rangle= \begin{cases}0 & E \not \approx E^{\prime} \\ d_{E} & E \cong E^{\prime}\end{cases}$
Proposition 1.12. Let K be sufficiently large such that k contains all m-th roots of unity $\left(m=\operatorname{lcm}(|g|)_{g \in G}\right)$. Then $d_{E}=1$ for $E \in S_{k}$ and hence \langle,$\rangle is non-degenerate and the base [E],\left[P_{E}\right]$ are dual to each other.

2 The cde Triangle

We will want to define three maps for the following triangle to commute

Definition 2.1. Cartan Homomorphism. To each $k[G]$-module P, we associate the class of $P,[P]$ in $R_{k}(G)$. We get a homomorphism $c: P_{k}(G) \rightarrow R_{k}(G)$. We express c in terms of the canonical basis [$\left.P_{S}\right]$, $[S]$ for $S \in S_{k}$ (basis for $P_{k}(G)$ and $R_{k}(G)$ respectively). We obtain a square matrix C, of type $S_{k} \times S_{k}$, the Cartan Matrix of G with respect to k. The (S, T) coefficient, $C_{S T}$ of C is the number of times that S appears in a composition series of the projective envelope P_{T} of T.

$$
\left[P_{T}\right]=\sum_{S \in S_{k}} C_{S T}[S] \text { in } R_{k}(G)
$$

Definition 2.2. Decomposition Homomorphism. Let E be a $K[G]$-module. Choose a lattice E_{1} in E (finitely generated A-module which generates E as a K-module). We may assume that E_{1} is G-stable (replace E_{1} by the sum of its images under G). Denote the reduction $\bar{E}_{1}=E_{1} / \mathfrak{m} E_{1}$, a $k[G]$-module.

Theorem 2.3. The image \bar{E}_{1} in $R_{k}(G)$ is independent of the choice of E_{1}. (Warning! You can have that $\bar{E}_{1} \neq \bar{E}_{2}$ but with the same composition factors)
Proof. Let E_{2} be another G-stable lattice, we want to show $\left[\bar{E}_{1}\right]=\left[\bar{E}_{2}\right]$ in $R_{k}(G)$. Replace E_{2} by a scalar multiple, we may assume $E_{2} \subset E_{1}$. There exists $n \geq 0$ such that $\mathfrak{m}^{n} E_{1} \subset E_{2} \subset E_{1}$.

If $n=1$, we have $\mathfrak{m} E_{1} \subset E_{2} \subset E_{1}$. We have

$$
0 \rightarrow E_{2} / \mathfrak{m} E_{1} \rightarrow E_{1} / \mathfrak{m} E_{1} \rightarrow E_{1} / E_{2} \rightarrow 0
$$

implies $\left[E_{1} / \mathfrak{m} E_{1}\right]=\left[E_{2} / \mathfrak{m} E_{1}\right]+\left[E_{1} / E_{2}\right]$. And

$$
0 \rightarrow \mathfrak{m} E_{1} / \mathfrak{m} E_{2} \rightarrow E_{2} / \mathfrak{m} E_{2} \rightarrow E_{1} / \mathfrak{m} E_{1} \rightarrow 0
$$

implies $\left[E_{2} / \mathfrak{m} E_{2}\right]=\left[\mathfrak{m} E_{1} / \mathfrak{m} E_{2}\right]+\left[E_{2} / \mathfrak{m} E_{1}\right]$. But $\left[\mathfrak{m} E_{1} / \mathfrak{m} E_{2}\right]=\left[E_{1} / E_{2}\right]$ hence $\left[\bar{E}_{1}\right]=\left[\bar{E}_{2}\right]$. This covers our base case.

For general n, let $E_{3}=\mathfrak{m}^{n-1} \mathfrak{m}+E_{2}$. We have $\mathfrak{m}^{n-1} E_{1} \subset E_{3} \subset E_{1}, \mathfrak{m} E_{3} \subset E_{2} \subset E_{3} \Rightarrow\left[\bar{E}_{2}\right]=\left[\bar{E}_{3}\right] \Rightarrow\left[\bar{E}_{1}\right]=$ $\left[\bar{E}_{2}\right]=\left[\bar{E}_{3}\right]$

The map $E \rightarrow\left[\bar{E}_{1}\right]$ extends to a ring homomorphism $d: R_{K}(G) \rightarrow R_{k}(G)$. The corresponding matrix is denoted D, type $S_{k} \times S_{K}$. For $F \in S_{k}, E \in S_{K}, D_{F E}$ is the number of times that F appears in the reduction mod \mathfrak{m} of E_{1}

$$
\left[\bar{E}_{1}\right]=\sum_{F} D_{F E}[F] \text { in } R_{k}(G) .
$$

Definition 2.4. e.

There exists a canonical isomorphism $P_{A}(G) \xrightarrow{\sim} P_{k}(G)$, i.e.,

- Let E be an $A[G]$-module, for E to be a projective $A[G]$-module then (only then) E is a to be free on A and \bar{E} is a projective $k[G]$-module
- If F is a projective $k[G]$-module, then there exists a unique (up to isomorphism) projective $A[G]$-module whose reduction modulo \mathfrak{m} is isomorphic to F.
The functor "tensor product with K " defines a homomorphism from $P_{A}(G)$ into $R_{K}(G)$. Combining both, we get a map $e: P_{k}(G) \rightarrow R_{K}(G)$ and an associated matrix E of type $S_{K} \times S_{k}$.

2.1 Basic properties of cde triangle

1. Commutativity: $c=d \circ e$, i.e., $C=D E$
2. d and e are adjoint of one another with respect to bilinear forms on $R_{k}(G), P_{k}(G)$. I.e., pick $x \in P_{k}(G)$ and $y \in R_{K}(G)$ then $\langle x, d(y)\rangle_{k}=\langle e(x), y\rangle_{K}$.
Assume $x=[\bar{X}]$ where X is a projective $A[G]$-module, $y=\left[K \otimes_{A} Y\right]$ where Y is an $A[G]$-module which is free. Then the A-module $H_{G}(X, Y)$ is free. Let r be its rank: we have the canonical isomorphism $K \otimes$ $\operatorname{Hom}_{G}(X, Y)=\operatorname{Hom}_{G}(K \otimes X, K \otimes Y)$ and $k \otimes \operatorname{Hom}_{G}(X, Y)=\operatorname{Hom}_{G}(k \otimes X, k \otimes Y)$. These both implies that $\langle e(x), y\rangle_{K}=t=\langle x, d(y)\rangle_{k}$.
3. Assume that K is sufficiently large. The canonical bases of $P_{k}(G)$ and $R_{k}(G)$ are dual to each other with respect to \langle,\rangle_{k}. (Similarly $R_{K}(G), R_{K}(G)$ and \langle,\rangle_{K}) Hence e can be identified with the transpose of d. $E={ }^{t} D, C=D E \Rightarrow C$ is symmetric.

3 Examples

Notation.

- K is a complete field
- A is the valuation ring of K, \mathfrak{m} its maximal ideal
- k the residue field of K, with characteristic p
- K is sufficiently large, that is $\mu_{n} \subseteq K$ with $n=\operatorname{lcm}_{g \in G}(o(g))$

We have the cde triangle

- $c: P \rightarrow[P]$
- d:E $\rightarrow \bar{E}_{1}=E_{1} / \mathfrak{m} E_{1}$ where E_{1} is a stable lattice in E under G
- e : is the inverse of the canonical isomorphism $P_{A}(G) \rightarrow P_{k}(G)$ tensor with K

Definition 3.1. A projective envelope P of a $L[\mathrm{G}]$ module M is a projective module P with an essential homomorphism.

3.1 Example, p^{\prime}-groups

Proposition 3.2. Assume that the order of G is coprime to p. Then

1. Each $k[G]$-module (respectively each A-free $A[G]$-module) is projective
2. The operation of reduction $\bmod \mathfrak{m}$ defines a bijection between S_{K} and S_{k}
3. If we identify S_{K} with S_{k}, then C, D, E are all identity matrices.

Proof.

1. Let E be an A-free $A[G]$-module, then there is a free $A[G]$-module L such that E is L / R. Since E is A-free there exists a A-linear projection π of L onto R. If $g=\# G$, we know $\operatorname{gcd}(g, p)=1$, hence we can replace π with $\frac{1}{g} \sum_{s \in G} s \pi s^{-1}$ and we get an $A[G]$-projection. By the fact $A[G]$-linear projection and the fact that $L / R \cong E$, we get that E is projective. Moreover $C=\mathrm{Id}$
2. and 3. Let $E \in S_{k}$, the projective envelope E_{1} of E relative to $A[G]$ is a projective $A[G]$-module, whose reduction $\bar{E}_{1}=E_{1} / \mathfrak{m} E_{1}$ is E. If $F=K \otimes E_{1}$, then $d([F])=[E]$. Since E is simple, that implies that F is simple, thus $F \in S_{K}$. So, we obtain a map $E \rightarrow F$ of S_{k} to S_{K} which is the inverse of d.

3.2 Example, p-groups

Let G be a p-group with order p^{n}. Then
Proposition 3.3. Let V be a vector space over k and $\rho: G \rightarrow \operatorname{GL}(V)$ a linear representation. There exists a non-zero element in V which is fixed by $\rho(s)$, for all $s \in G$.

Corollary 3.4. The only irreducible representation of a p-group in characteristic p is the trivial one.
The Artinian ring $k[G]$ is a local ring with restriction field k.
The projective envelope of the simple $k[G]$-module k is $k[G]$.
The groups $R_{k}(G)$ and $P_{k}(G)$ can be identified with \mathbb{Z} and C is multiplication by p^{n}. The map $d: R_{K}(G) \rightarrow \mathbb{Z}$ corresponds to the K-ranks, $e: \mathbb{Z} \rightarrow R_{K}(G)$ maps an integer n onto n times the class of the regular representation of G.

$3.3 \quad\left(p^{\prime}\right.$-groups $) \times(p$-groups $)$

Let $G=S \times P$ where S is a p^{\prime}-group and P is a a p-groups. We have that $k[G]=k[S] \otimes k[P]$.
Proposition 3.5. A $k[G]$-module E is if and only if P acts trivially on E.
Proof. $\Leftarrow)$ That follows from the fact every $k[S]$-module is semisimple.
$\Rightarrow)$ Assume E to be simple. From the above the subspace E^{\prime} of E consisting of elements fixed by P is not zero. Since P is normal, E^{\prime} is stable under G, hence as E is simple, $E^{\prime}=E$.

Proposition 3.6. A $k[G]$-module E is projective if and only if it is isomorphic to $F \otimes k[P]$ where F is a $k[S]$-module.
Proof. Since F is a projective $k[S]$-module, then $F \otimes k[P]$ is projective $k[G]$-module. We can see that F is the largest quotient of $F \otimes k[P]$ on which P acts trivially. By the previous lectures $F \otimes k[P]$ is the projective envelope of F. However, every projective module is the projective envelope of its largest semisimple quotient. Thus we see that every projective module has the form $F \otimes k[P]$.

Proposition 3.7. An $A[G]$-module \widetilde{E} is projective if and only if it is isomorphic to $\widetilde{F} \otimes A[P]$ where \widetilde{F} is an A-free $A[G]$-module.

4 More properties of the cde triangle

Notation.

- K is a complete field
- A is the valuation ring of K, \mathfrak{m} its maximal ideal
- k the residue field of K, with characteristic p
-

- We say K is sufficiently large to mean that $\mu_{n} \subseteq K$ with $n=\operatorname{lcm}_{g \in G}(o(g))$

4.1 Brauer's Theorem (in the modular case)

Let $H \leq G$ be groups, we want to define homomorphism $R_{K}(G) \rightarrow R_{K}(H)$ and $R_{K}(H) \rightarrow R_{K}(G)$ (respectively R_{k} and P_{k}). Any $K[G]$-module is defines as a $K[H]$-module through restriction, and since it is projective if the module is projective, we have a restriction map $\operatorname{Res}_{H}^{G}: R_{K}(G) \rightarrow R_{K}(H)$ (respectively R_{k} and P_{k})

Let E be a $K[H]$-module, then $K[G] \otimes_{k[H]} E$ is a $K[G]$-module, and is projective if E is projective. Hence we have an induction map $\operatorname{Ind}_{H}^{G}: R_{K}(H) \rightarrow R_{K}(G)$ (respectively R_{k} and P_{k}).
Fact. $\operatorname{Ind}_{H}^{G}\left(x \cdot \operatorname{Res}_{H}^{G} y\right)=\operatorname{Ind}_{H}^{G}(x) \cdot y$.
c, d and e commute with $\operatorname{Res}_{H}^{G}$ and $\operatorname{Ind}_{H}^{G}$.
Theorem 4.1. Let X be the set of all elementary subgroups of G. The homomorphisms

$$
\begin{aligned}
& \text { Ind : } \bigoplus_{H \in X} R_{K}(H) \rightarrow R_{K}(G) \\
& \text { Ind : } \bigoplus_{H \in X} R_{k}(H) \rightarrow R_{k}(G) \\
& \text { Ind : } \bigoplus_{H \in X} P_{k}(H) \rightarrow P_{k}(G)
\end{aligned}
$$

defined by the $\operatorname{Ind}_{H}^{G}$ are all surjective.
Note. A similar theorem is also true if we don't assume K to be sufficiently large, but we will not use this.
Corollary 4.2. Each element of $R_{K}(G)$ (respectively $R_{k}(G), P_{k}(G)$) is a sum of elements of the form $\operatorname{Ind}_{H}\left(\gamma_{H}\right)$, where H is an elementary subgroup of G and $\gamma_{H} \in R_{K}(H)$ (respectively $R_{k}(H), P_{k}(H)$).

4.2 Surjectivity of d

Theorem 4.3. The homomorphism $d: R_{K}(G) \rightarrow R_{k}(G)$ is surjective.
Note. This is true for all K, but we will prove it only in the case K is sufficiently large.

Proof. $R_{k}(G)$ can be express as a sum of $\operatorname{Ind}_{H}^{G}$ with H elementary, and d commutes with $\operatorname{Ind}_{H}^{G}$. Hence we just need to show $R_{k}(H)=d\left(R_{K}(H)\right)$, i.e., we can assume that G is elementary.

Let $G=P \times H$ where P is a p-group and H has order coprime to p. As $S_{k}(G)$ forms a basis of $R_{k}(G)$, we just need to show that given E a simple $k[G]$-module it lies in the image of d. Let

$$
E^{\prime}=\{v \in E: g v=v \forall g \in P\}
$$

which as P is a p-group using Theorem 3.3. As P is normal in G, we have that E^{\prime} is stable under G, hence is a $k[G]$-submodule of E. But E is simple, hence $E=E^{\prime}$, i.e. P acts trivially on E, i.e., the action of $k[G]$ on E factors through the projection map $k[G] \rightarrow k[H]$, i.e., E comes from $F \in R_{k}(H)$. But H as order prime to p, so by Proposition 3.2, we can find the lift of F and view it as a $K[G]$-module through the projection map $K[G] \rightarrow K[H]$. This is the lift of E.

Theorem 4.4. The homomorphism $e: P_{k}(G) \rightarrow R_{K}(G)$ is a split injection (i.e., there exist $r: R_{K}(G) \rightarrow P_{k}(G)$ such that $r \circ e=1$, or equivalently, e is injective and $e\left(P_{k}(G)\right)$ is a direct factor of $\left.R_{K}(G)\right)$

Proof. As we are assuming that K is large enough, we know $E=D^{t}$ hence e is injective follows from the fact that d is surjective.

Corollary 4.5. Let P and P^{\prime} be projective $A[G]$-modules. If the $K[G]$-modules $K \otimes P$ and $K \otimes P^{\prime}$ are isomorphic, then $P \cong P^{\prime}$ as $A[G]$-modules.

Proof. e is injective.

4.3 Characterisation of the image of c

Theorem 4.6. Let $\operatorname{ord}_{p}(|G|)=n$. Then every element of $R_{k}(G)$ divisible by p^{n} belongs to the image of $c: P_{k}(G) \rightarrow$ $R_{k}(G)$.

Note. This is true for all K, but we will prove it only in the case K is sufficiently large.
Proof. As in Theorem Theorem 4.3, as K is sufficiently large we can assume G is elementary, i.e., $G=P \times H$. The theorem is equivalent to showing that the cokernel $c: P_{k}(G) \rightarrow R_{k}(G)$ is killed by p^{n}. But as seen in the example 3.2 (first two theorems), the matrix C is the scalar matrix p^{n}. Hence we see that the cokernel c must be killed by p^{n}.

Corollary 4.7. The cokernel c is a finite p-group and c is injective.
Proof. The fact that the cokernel is a finite p-group is clear. Then since the cokernel is finite and $P_{k}(G)$ and $R_{k}(G)$ are free \mathbb{Z}-modules of the same rank, as imc must have the same rank as $R_{k}(G)$ we get c is injective.

Corollary 4.8. If two projective $k(G)$-modules have the same composition factors (with multiplication), they are isomorphic

Corollary 4.9. Let K be sufficiently large. The matrix C is symmetric, and the corresponding quadratic form is positive definite. The determinant of C is a power of p.

4.4 Characterisation of the image of e

Definition 4.10. An element $g \in G$ is said to be p-singular if $p \mid \operatorname{ord}(g)$.
Theorem 4.11. Let K^{\prime} be a finite extension of K. An element of $R_{K^{\prime}}(G)$ is in the image e of $P_{A}(G)=P_{k}(G)$ if and only if its character take values in K, and is zero on the p-singular element of G.

5 Characterisation of Projective $A[G]$-modules by their characters

Recall:

- Let K be a field, complete with a discrete valuation $\operatorname{char}(K)=0$
- A a valuation ring, with unique maximal ideal $\mathfrak{m}, k=A / \mathfrak{m}$ its residue field with $\operatorname{char}(k)=p>0$
- G a finite group, $g \in G$ is " p-singular" if $p \mid \operatorname{ord}(g)$
- $S_{F[G]}=\{s: s$ a simple $F[G]$-module $\}, F \in\{K, k, A\}$

Technical

- By the character of an $A[G]$-module E, we mean the character of $K \otimes E$
- A $K[G]$-module "comes from" the $A[G]$-module E if $V=K \otimes E$

Fact.

1. Let F be a field, V an $F[G]$-module, S a simple $F[G]$-module, denoted by $V_{(S)}$ for the sum of all submodules of $V \cong S$. So if V is semisimple, then $V=\oplus_{s \in S_{F[G]}} V_{(S)}$
2. If $I \triangleleft G$, and an $F[I]$-module V, with rep $\rho: I \rightarrow \operatorname{Aut}(V)$, then for $g \in G$ then ${ }^{g} \rho: I \rightarrow \operatorname{Aut}(V)$, $x \in I \mapsto \rho\left(g^{-1} x g\right)$ corresponding module ${ }^{g} S$
3. If K is sufficiently large, then each simple $K[G]$-module is absolutely simple (i.e., simple as a $\mathbb{C}[G]$-module)
4. If S is a simple $F[G]$-module $(F \in\{K, A\})$, then $\operatorname{End}_{G}(S)=F^{*}$. (Schur's lemma)
5. E a semi-simple $F[G]$-module, $I \triangleleft G$, then $E \downarrow_{I}$ is semisimple (Clifford)
6. $p \nmid|G|$, then every representation of G over k can be lifted to a representation of G / A.
7. All simple $k[P]$-modules are trivial, where P is a p-group
8. Since $A / \mathfrak{m}=k$ has characteristic p, A^{*} can't contain any elements of order p
9. $p \nmid G \mid$ implies that reduction mod \mathfrak{m} contains a bijection $S_{k[G]} \rightarrow S_{A[G]}$.

Aim: A $K[G]$-modules comes from a projective $A[G]$-modules if and only if its character has some properties.
Definition 5.1. If G has a series $1=L_{0} \triangleleft L_{1} \triangleleft \cdots \triangleleft L_{n}=G$ where each $L_{i} \triangleleft G$, and L_{i} / L_{i-1} is either a p-group or a p^{\prime}-group. Then G is p-soluble of height n.

Example. All soluble groups are p-soluble
All subgroups and quotient groups of a p-soluble group are p-soluble.
Theorem (Fang-Swan). Let G be p-soluble and K sufficiently large. Then every simple $k[G]$-module is the reduction mod m of an $A[G]$-module (necessarily simple)

Corollary 5.2. Let G be a p-soluble, K sufficiently large, then a representation V of G over K comes from a projective $A[G]$-module if and only if its character χ_{V} is 0 on the p-singular elements of G

Proof. Follow from Fran-Swan and Theorem 4.11
Proof. (Of Fang-Swan) We do it by induction on the p-soluble height of G, and on $|G|$ for p-soluble groups of height h

The case $h=0$ is trivial, so assume $h \leq 1$, so G has a series $1=L_{0} \triangleleft L_{1} \triangleleft \cdots \triangleleft L_{n}=G$. Let $I=L_{1}$, so I is a p-group or a p^{\prime}-group and height of $G / I \leq h-1$. Let E be a simple $k[G]$-module

Step 1 We may assume I is a p-group
By 5), $E \downarrow_{I}$ is semisimple and hence by 7), I acts trivially on E so we can view E as a $k[G / I]$-module and then the result follows from induction

Step 2 We may assume that $E \downarrow_{I}$ is isotopic
Write $E \downarrow_{I}=\oplus_{\bar{s} \in S_{K[I]}} E \downarrow_{I_{(\bar{S})}}$ and let $G_{(\bar{s})}=\operatorname{Stab}_{G}\left(E \downarrow_{I_{(\bar{s})}}\right)$. Since E is simple, G acts transitively on $\left\{E \downarrow_{I_{(\bar{s})}}: \bar{s} \in S_{k[I]}\right\}$. Then $E \downarrow_{I_{(s)}}$ is a $k\left[G_{(s)}\right]$-module, and $E=\left(E \downarrow_{I(\bar{s})}\right) \uparrow_{G_{(\bar{s})}}^{G}$. If $E_{(s)} \subsetneq E \downarrow_{I}$, then $G_{(\bar{s})}$ is a proper subgroup of G, so by induction, $E_{(\bar{s})}$ can be lifted. But since E is the induced module and the operations of induction and reduction modm commute, E can be lifted.

We assume for the rest of the proof that I is a p^{\prime}-group and $E \downarrow_{I}=E_{(\bar{s})}$ for a simple $k[I]$-module \bar{s}. By 6) \bar{s} can be lifted to an $A[I]$-module s. Let $\rho: I \rightarrow \operatorname{Aut}(s)$ be the associated representation. By 3), $K \otimes s$ is absolutely simple. So $\operatorname{dim}(s)=\operatorname{dim}(K \otimes s)$ divides $|I|$. So $p \nmid \operatorname{dim}(s)(\dagger)$.

Step 3 There exists a finite group G_{2} such that

- there exists $N \triangleleft G_{2}$ such that N is cyclic of p^{\prime}-order and $G / N \cong G$.
- I can be embedded in a normal subgroup of G_{2} with $I \cap N=1$
- There exists a representation $\rho_{2}: G_{2} \rightarrow \operatorname{Aut}(S)$ extending

Since $E=E_{(\bar{s})},{ }^{g} \bar{s}=\bar{s}$ for all $g \in G$ so ${ }^{g} s=s$ for all $g \in G$. Thus for all $g \in G$ there exists $t \in$ Aut (s) such that $t \rho(x) t^{-1}=\rho\left(g^{-1} x g\right)$ for all $x \in I$. Let $U_{g}=\left\{t \in \operatorname{Aut}(s), t \rho(x) t^{-1}=\rho\left(g^{-1} x g\right) \forall x \in I\right\}$. So $U_{g} \neq \emptyset$ for all $g \in G$. Set $G_{1}=\left\{(g, t): g \in G, t \in U_{g}\right\}$, it is easy so see that G_{2} is a group. Also $\operatorname{ker}(G \rightarrow G)=A^{*}$. By (\dagger) if $d=\operatorname{dim}(s)$, then $\left\{\operatorname{det}(t): t \in U_{g}\right\}$ is a coset of $A^{* d}$ in A^{*} for any $g \in G$. By enlarging K (which is ok, since it doesn't change $R_{K}(G)$) we may assume that all of these cosets are trivial. So for all $g \in G$, there exists $t \in U_{g}$ such that $\operatorname{det}(t)=1$. Let $C=\{\operatorname{det} \rho(x): x \in I\} \leq A^{*}, G_{2}=$ $\left\{(g, t) \in G_{1}: \operatorname{det}(t) \in C\right\} \leq G_{1}$. By the above $G_{2} \rightarrow G$ and $\operatorname{ker}\left(G_{2} \rightarrow G\right):=N \cong\left\{\alpha \in A^{*}: \alpha^{d} \in C\right\}$. Also $I \hookrightarrow G_{2}$ by $x \mapsto(x, \rho(x))$. Finally, the last point holds by defining $\rho_{2}: G_{2} \rightarrow \operatorname{Aut}(s),(s, t) \mapsto t$.

Step $4 \quad$ Let $F=\operatorname{Hom}_{I}(\bar{s}, E)$. Then $\bar{s} \otimes F$ is a $k\left[G_{2}\right]$-module, and $\bar{s} \otimes F \cong G_{G_{2}} E$
G_{2} acts on \bar{s} by reduction of ρ_{2} and on E since $G_{2} / N \cong G$. Hence G_{2} acts $\bar{s} \otimes F . u: \bar{s} \otimes F \rightarrow E$ defined by $a \otimes b \mapsto b(a)$. This is easy to see is an isomorphism.

Step $5 \quad F$ can be lifted to an $A\left[G_{2}\right]$-module \widetilde{F}
Skip
Now, we've already shown that \bar{s} can be lifted (to s). By step $5, \widetilde{E}=s \otimes \widetilde{F}$ is an $A\left[G_{2}\right]$-module which reduces to E. But since N acts trivially on E, and E is a simple $k\left[G_{2}\right]$-module, by 9$) N$ acts trivially on \widetilde{E}. Hence \widetilde{E} is a $A\left[G_{2} / N\right]$-module.

6 Modular/Brauer Character

Fix K sufficiently large, i.e., contains μ_{n} where $n=\operatorname{lcm}_{g \in G}(\operatorname{ord}(g))$
Call this μ_{L} reduction mod p gives an isomorphism onto μ_{R}
Definition 6.1. Brauer Character of a $R[G]$-module. Let E be an n-dimensional $R[G]$-module, let $s \in G_{\text {reg }}$, let s_{E} be the associated automorphism of E. We may diagonalise S_{E} with eigenvalues in μ_{R} call these λ_{i} and their lifts to $\mu_{K}, \widetilde{\lambda}_{i}$. Let $\phi_{E}(s)=\sum_{i=1}^{n} \tilde{\lambda}_{i}$. Then $\phi_{E}: G_{\text {reg }} \rightarrow A$ is the Brauer character of E.

Properties

1. $\phi_{E}(e)=n$
2. $\phi_{E}\left(t s t^{-1}\right)=\phi_{E}(s)$ for all $t \in G, s \in G_{\mathrm{reg}}$
3. $0 \rightarrow E \rightarrow E^{\prime} \rightarrow E^{\prime \prime} \rightarrow 0, \phi_{E^{\prime}}=\phi_{E}+\phi_{E^{\prime}}$
4. $\phi_{E_{1} \otimes E_{2}}=\phi_{E_{1}} \times \phi_{E_{2}}$.
"New Properties"
5. Let $t \in G$ with p-regular component $s \in G_{\text {reg }}, t_{E}$ its associated endomorphism. $\operatorname{Tr}\left(t_{E}\right)=\overline{\phi_{E}(s)}$.
6. F a $K[G]$-module with K-character χ, E its associated $k[G]$-module with Brauer character ϕ_{E}. Then $\phi_{E}=\chi$ on $G_{\text {reg }}$.
7. F a projective $k[G]$-module, \widetilde{F} a lift of F to a projective $A[G]$-module. Let Φ_{F} be the K character of $k \otimes \widetilde{F}$, let E be any $k[G]$-module. $E \otimes F$ is projective $\Phi_{E \otimes F}(s)= \begin{cases}\phi_{E}(s) \Phi_{F}(s) & s \in G_{\mathrm{reg}} \\ 0 & \text { else }\end{cases}$
8. $\operatorname{dim} \operatorname{Hom}(F, E)=\langle F, E\rangle_{k}=\frac{1}{|G|} \sum_{g \in G_{\mathrm{reg}}} \Phi_{F}\left(s^{-1}\right) \phi(s)=\left\langle\phi_{E}, \Phi\right\rangle$

Note. $\operatorname{dim} F=\left\langle\mathbb{I}, \Phi_{F}\right\rangle:=\frac{1}{|G|} \sum_{g \in G_{\mathrm{reg}}} \Phi_{F}(g)$.
Theorem. The irreducible modular character $\phi_{E}\left(E \in \delta_{k}\right)$ forms a basis of the K-vector space of class functions on $G_{\text {reg }}$ with values in K.
Corollary. If F and F^{\prime} are two $k[G]$-module and $\phi_{F}=\phi_{F^{\prime}}$ then $[F]=\left[F^{\prime}\right]$ in $R_{k}(G)$.
Corollary. ker $d: R_{K}(G) \rightarrow R_{k}(G)$ consists of the elements whose characters are 0 on G_{reg}.
Corollary. The number of isomorphism class of simple $R[G]$-module $=$ the number of p-regular conjugacy class of G
Example. S_{4}

	e	(12)	$(12)(34)$	(123)	(1234)
χ_{1}	1	1	1	1	1
χ_{2}	1	-1	1	-1	1
χ_{3}	2	0	2	-1	0
χ_{4}	3	1	-1	0	-1
χ_{5}	3	-1	-1	0	-1

$p=2$: p-regular conjugates are e and (123). | | e | (123) |
| :---: | :---: | :---: |
| ϕ_{1} | 1 | 1 |
| ϕ_{2} | 2 | -1 | . Then \(D=\left(\begin{array}{lllll}1 \& 1 \& 0 \& 1 \& 1

0 \& 0 \& 1 \& 1 \& 1\end{array}\right) . \Phi_{1}=\chi_{1}+\chi_{2}+\) $\chi_{4}+\chi_{5}$ and $\Phi_{2}=\chi_{3}+\chi_{4}+\chi_{5}$. Finally $C=\left(\begin{array}{ll}4 & 2 \\ 2 & 3\end{array}\right), \Phi_{1}=4 \phi_{1}+2 \phi_{2}$ on G_{reg} and $\Phi_{2}=2 \phi_{1}+3 \phi_{2}$ on G_{reg}.

We see that C, D and E gives us relations between χ_{i}, Φ_{i} and ϕ_{i}. To see this, we note that after tensoring with K, the cde triangle becomes

this gives:

- $\chi_{F}=\sum_{e \in S_{k}} D_{E F} \phi_{E}$ on G_{reg}
- $\Phi_{E}=\sum_{F \in S_{K}} D_{E F} \chi_{F}$ on G
- $\Phi_{E}=\sum_{E^{\prime} \in S_{K}} C_{E^{\prime} E} \phi_{E^{\prime}}$ on G_{reg}
we now have the following orthogonality $\left\langle\Phi_{E}, \phi_{E^{\prime}}\right\rangle=\delta_{E E^{\prime}}$

7 Brauer Character II

Let K, A, k as previously.
Example. A_{5} has character table (in char 0)

	e	$(12)(34)$	(123)	(12345)	(13524)
χ_{1}	1	1	1	1	1
χ_{2}	3	-1	0	$\frac{1+\sqrt{5}}{2}$	$\frac{1-\sqrt{5}}{2}$
χ_{3}	3	-1	0	$\frac{1-\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$
χ_{4}	4	0	1	-1	-1
χ_{5}	5	1	-1	0	0

$p=2 \quad$ We have 4 2-regular conjugacy classes

	e	(123)	(12345)	(13524)
ϕ_{1}	1	1	1	1
ϕ_{2}	2	-1	$\frac{1+\sqrt{5}}{2}-1$	$\frac{1-\sqrt{5}}{2}-1$
ϕ_{3}	2	-1	$\frac{1-\sqrt{5}}{2}-1$	$\frac{1+\sqrt{5}}{2}-1$
ϕ_{4}	4	1	-1	-1

$\chi_{3}+\chi_{2}=\chi_{1}+\chi_{5}$ on $G_{\text {reg }}$, hence $\left.\chi_{3}\right|_{G_{\text {reg }}}$ and $\left.\chi_{2}\right|_{G_{\text {reg }}}$ are not irreducible. We have $\chi_{3}-\chi_{2}$ is a Brauer character of an simple $R[G]$-module and so is $\chi_{3}-\chi_{1}$.
Hence $D=\left(\begin{array}{lllll}1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0\end{array}\right), C=\left(\begin{array}{llll}4 & 2 & 2 & 0 \\ 2 & 2 & 1 & 0 \\ 2 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

7.1 Cool stuff

Theorem 7.1. Orthogonality Relations for Brauer Characters
Let ϕ_{i} denote the Brauer character of a simple $k[G]$-module and let η_{j} denote the Brauer character of an indecomposable projective $k[G]$-module. $C=\left(c_{i j}\right), C^{-1}\left(\gamma_{i j}\right)$

1. $\sum_{g \in G_{\mathrm{reg}}} \phi_{i}(g) \eta_{j}\left(g^{-1}\right)=|G| \delta_{i j}$
2. $\sum_{g \in G_{\mathrm{reg}}} \phi_{i}(g) \phi_{j}\left(g^{-1}\right)=|G| \gamma_{i j}$
3. $\sum_{g \in G_{\mathrm{reg}}} \eta_{i}(g) \eta_{j}\left(g^{-1}\right)=|G| c_{i j}$

Proof. C is invertible (it is injective and its cokernel is a finite p-group). Let Z be a matrix given by the characteristic 0 character table, let W be the matrix given by the characteristic p character table, H the matrix given by the projective Invertible module character table mod p. Using the CDE triangle, $Z=D W$ and $H=C W$. ${ }^{t} Z Z=|G| h_{K}^{-1} \delta_{K \ell^{*}}$ where h_{i} is the size of the i th conjugacy class and $\delta_{i j^{*}}=\left\{\begin{array}{l}1 \\ 0\end{array}\right.$ if $g \in C_{i} \Rightarrow g^{-1} \in C_{j}$. Rewire i) as a sum over conjugacy classes

$$
\begin{aligned}
\sum_{k=1}^{r} h_{k} \phi_{i}\left(c_{k}\right) \eta_{j}^{*}\left(c_{k}\right) & =\sum \sum h_{k} \delta_{k \ell^{*}} \phi\left(C_{k}\right) \eta_{j}^{*}\left(C_{\ell}\right) \\
& =\frac{1}{|G|} W\left({ }^{t} Z Z\right)^{-1 t} H=\mathrm{Id}
\end{aligned}
$$

Similarly:
ii) $W\left({ }^{t} Z Z\right)^{-1} W=C^{-1}$
iii) $H\left({ }^{t} Z Z\right)^{-1} t H=C$

Definition 7.2. Let $\chi \in \operatorname{Irr}(G)$, its p-defect is $\operatorname{ord}_{p}(|G| / \chi(1))$
Proposition 7.3. Let $\chi \in \operatorname{Irr}(G)$ with p-defect 0 . Then χ is in fact a character of $K \otimes P$ where P is a PIM over $A[G]$. Moreover \bar{P} is a simple and projective as a $R[G]$-module

Proof. Let M be the simple $K[G]$-module with character χ, its corresponding idempotent $e=\frac{\chi(1)}{|G|} \sum_{x \in G} \chi\left(x^{-1}\right) x \in$ $K[G]$ is in fact defined over A. Let P_{i} be a PIM over $A[G]$ then the map e maps this to a $k[G]$-module. $\left\langle k \otimes P_{i}, \chi\right\rangle_{K}=$ $\left\langle\eta_{i}, d(\chi)\right\rangle_{R}=\left\langle\eta_{i}, d_{i j} \phi_{i}\right\rangle=d_{k i}$. So in particular χ is a summand of one such, say $K \otimes P$. So $e P \neq 0$, either $e P=P$ or we have a decomposition $P=e P \oplus(1-P) P$. This is not possible as P is indecomposable, so $e P=P$. Hence $e(K \otimes P)=K \otimes P$, so $K \otimes P=\alpha \chi$. So χ must vanish on all P irregular/singular classes. It follows $\left(K \otimes P_{i}\right.$ form a basis of such class function). So $\chi=\sum n_{i}\left(K \otimes P_{i}\right)$ but $\chi=\alpha^{-1}(K \otimes P)$ so $\alpha=1$ and $\chi=K \otimes P$. Why is \bar{P} simple? Because exactly one $d_{i j} \neq 0$ and is in fact to 1 but $C={ }^{t} D D$, hence \bar{P} is simple.

Steinburg character of $\mathrm{SL}_{n}(q) . B$ is the subgroup of upper triangular matrices, $G=B \cup B x B$ for some $x \notin B$.

$$
\begin{aligned}
\left\langle\mathbb{I}_{B} \uparrow^{G}, \mathbb{I}_{B} \uparrow^{G}\right\rangle & =\left\langle\mathbb{I} \uparrow_{B}^{G} \downarrow_{B}, \mathbb{I}\right\rangle \\
& =\#{ }_{B} \backslash G / B=2
\end{aligned}
$$

So $\mathbb{I}_{B} \uparrow^{G}-\mathbb{I}=\chi \cdot \chi$ is irreducible with degree $|G / B|-1=q$. But $|G|=q\left(q^{1}-1\right)$ so χ is q-defect 0 .

8 Introduction to Block Theory

Let p be a fixed rational primes, K, A, k as before. $\pi: \mathcal{O}_{K} \rightarrow k=\mathcal{O}_{K} / P$ quotient map where P is a prime of \mathcal{O}_{K} above $p . K_{1}=\sum g$ class sum for any class $C_{i} . \operatorname{Irr}(G)=$ character 0 irreducible class, $\operatorname{Br}(G)=$ irreducible Brauer class for prime p.
Definition 8.1. Let $\chi \in \operatorname{Irr}(G)$ afforded by ρ. Then for all $z \in Z(K[G]), \rho(z)=\epsilon_{z} I$. Define $\omega_{x}: Z(K[G]) \rightarrow K$ defined by $z \mapsto \epsilon_{z}$

Let $\chi, \psi \in \operatorname{Irr}(G)$, say $\chi \sim \psi$ if $\pi\left(\omega_{\chi}\left(K_{i}\right)\right)=\pi\left(\omega_{\chi}\left(K_{i}\right)\right)$ for all i.
Definition 8.2. A subset $B \subset \operatorname{Irr}(G) \cup \operatorname{Br}(G)$ is a p-block if

1. $B \cap \operatorname{Irr}(G)$ is an equivalence class under \sim
2. $B \cap \operatorname{Br}(G)=\left\{\phi \in \operatorname{Br} \mid d_{\chi \phi} \neq 0\right.$ for some $\left.\chi \in B \cap \operatorname{Irr}(G)\right\}$

Notation. We set $B l(G)=$ \{set of p blocks $\}$ We call the block containing \mathbb{I}_{G} to be the principal block.
Theorem 8.3. $\chi, \psi \in \operatorname{Irr}(G)$ are in the same p-block if and only if $\omega_{\chi}\left(K_{i}\right)-\omega_{\phi}\left(K_{i}\right) \in \mathcal{P}$ for all i and all primes $\mathcal{P} \in \mathcal{O}_{K}$ above p.

Theorem 8.4. Let $\phi \in \operatorname{Br}(G)$, then ϕ lies in a unique p-block.
Define a graph $G=(V, E)$ by $V=\operatorname{Irr}(G)$ and $(\chi, \phi) \in E$ if there exists $\psi \in \operatorname{Br}(G)$ such that $d_{\chi \psi} \neq 0 \neq d_{\phi \psi}$. We call this the Brauer Graph.

Example. A_{5} from last week, $p=2$.

Fact. $B \cap \operatorname{Irr}(G)$ is a single connected component, so $B_{1}=\chi_{1}, \chi_{2}, \chi_{3}, \chi_{5}$ and $\phi_{1}, \phi_{2}, \phi_{3}$ and $B_{2}=\chi_{4}$ and ϕ_{4}
Theorem 8.5. Let B be a p-block. Then $|B \cap \operatorname{Irr}(G)| \geq|B \cap \operatorname{Br}(G)|$. Let $\chi \in \operatorname{Irr}(G)$ then the following are equivalent

1. $|B \cap \operatorname{Irr}(G)|=|B \cap \operatorname{Br}(G)|$
2. $p \nmid \frac{|G|}{\chi(1)}$
3. $B \cap \operatorname{Irr}(G)=\{\chi\}$ (in this case $B \cap \operatorname{Br}(G)=\{\widehat{\chi}\}\}$

Corollary 8.6. If $p \nmid|G|$, then $|B \cap \operatorname{Br}(G)|=|B \cap \operatorname{Irr}(G)|=1$
Definition 8.7. Let $\chi \in \operatorname{Irr}(G)$. Then $e_{\chi}:=\frac{\chi(1)}{|G|} \sum_{g \in G} \overline{\chi(g)} g \in Z(K[G])$ is the idempotent for χ.
Note that if $\chi \neq \psi \in \operatorname{Irr}(G)$ then $e_{\chi} e_{\psi}=0$, hence $e_{\chi}+e_{\psi}$ is an idempotent.
Definition 8.8. Let $B \in B l(G)$. Then $f_{B}:=\sum_{\chi \in B \cap \operatorname{Irr}(G)} e_{\chi} \in Z\left(\mathcal{O}_{p}[G]\right)$. This is called the Osima idempotent. Let $e_{B}:=\pi\left(f_{B}\right)$. Define $\lambda_{B}=\pi\left(\omega_{\chi}\right)$ for some $\chi \in B \cap \operatorname{Irr}(G)$.

Note that if ϕ is afforded by the k-representation η, then $\eta(z)=\lambda_{B}(z) I$ for all $z \in Z(k[G])$.

Theorem 8.9.

1. $\lambda_{B_{i}}\left(e_{B_{j}}\right)=\delta_{i j}$
2. e_{B} are orthogonal idempotents
3. e_{B} is a k-linear combination of class sum of p-regular classes
4. $\sum e_{B}=1$
5. If $\lambda_{B}(z)=0$ for all $B \in B l(G)$. Then z is nilpotent.
6. $\left\{\lambda_{B}\right\}=\operatorname{Hom}(Z(k[G], k)$
7. Every idempotent of $Z(k[G])$ is a sum of the e_{B}.

Proof.

1. Let $\chi \in \operatorname{Irr}(G)$, then $\omega_{\chi}\left(f_{B}\right)=1$ if $\chi \in B, 0$ else. If $\chi \in B$, then $\pi\left(\omega_{\chi}\right)=\lambda_{B} \Rightarrow \lambda_{B}\left(e_{B}\right)=1$.
2. First note $f_{B} f_{B^{\prime}}=\delta_{B B^{\prime}} f_{B}$. So $e_{B} e_{B^{\prime}}=\delta_{B B^{\prime}} e_{B}$. Since $\lambda_{B}\left(e_{B}\right)=1 \Rightarrow e_{B} \neq 0$.
3. Exercise
4. $\sum f_{B}=\sum e_{\chi}=1$, hence $\sum e_{B}=\sum \pi\left(f_{B}\right)=\pi\left(\sum f_{B}\right)=\pi(1)=1$
