
Modular representation theory

1 De�nitions for the study group

De�nition 1.1. Let A be a ring and let FA be the category of all left A-modules. The Grothendieck group of FA
is the abelian group de�ned by generators and relations as follows:

1. Generators [E] for E ∈ FA.

2. Relations: for E,E′, E′′ ∈ FA if 0→ E → E′ → E′′ → 0, then [E′] = [E] + [E′′].

De�nition 1.2. A left A-module P is called projective if any of the following hold:

1. There exists a free A-module F such that F = P ⊕Q for Q ∈ FA

2.
P

��
∃!

~~
E // E′ // 0

3. The functor HomA(P,−) is exact.

De�nition 1.3. An A-module homomorphism f : M →M ′ is called essential if f(M) = M ′ and f(M ′′) 6= M ′ for
any proper submodule M ′′ ⊆M .

De�nition 1.4. The projective envelope of a module M is a projective module P and an essential homomorphism
f : P →M .

Setup

Let G be a �nite group, K be a complete �eld of characteristic 0 with a discrete valuation v, with residue �eld
k of characteristic > 0. Let A be the ring of integers of K. We are going to look at K[G], k[G]and A[G].

De�nition 1.5. Let L be a �eld, denote by RL(G) the Grothendieck group of �nitely generated L[G]-modules.
We make it into a ring by setting [E] · [E′] = [E ⊗L E′].

Let SL be the set of isomorphism classes of simple L[G]-modules.

Proposition 1.6. The element of SL form a basis for RL[G].

De�nition 1.7. Let Pk[G] be the Grothendieck ring of the category of left k[G]-modules which are projective.
Let PA[G] be the Grothendieck ring of the category of the left A[G]-modules which are projective.

Fact. Any k[G]-module has a projective envelope
If E,P are k[G]-modules and P is projective, then E ⊗k P is also projective ⇒ we have an action of Rk[G] on

Pk[G].

Proposition 1.8. Each projective k[G]-module can be written uniquely as a direct sum of indecomposable projective
k[G]-modules

Let P and P ′ be projective k[G]-modules, then they are isomorphic if and only if [P ] = [P ′].
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Dualities: Let E,F be K[G]-modules. Set 〈E,F 〉 = dim HomG(E,F ) (i.e, 〈 , 〉 : RK [G]×RK [G]→ Z). This is
bilinear with respect to short exact sequences.

Proposition 1.9. If E,E′ ∈ SK then 〈E,E′〉 =

{
0 E 6∼= E′

dE = dim EndG(E) E ∼= E′
.

De�nition 1.10. Say E is absolutely simple if dE = 1.

We de�ne 〈 , 〉 : Pk[G] × Rk[G] → Z by (E,F ) 7→ 〈E,F 〉 = dim HomG(E,F ). Since E is projective, 〈 , 〉 is
bilinear.

Proposition 1.11. If E,E′ ∈ Sk then HomG(PE , E
′) = HomG(E,E′).

If E,E′ ∈ Sk then 〈PE , E′〉 =

{
0 E 6∼= E′

dE E ∼= E′

Proposition 1.12. Let K be su�ciently large such that k contains all m-th roots of unity (m = lcm(|g|)g∈G).
Then dE = 1 for E ∈ Sk and hence 〈 , 〉 is non-degenerate and the base [E] , [PE ] are dual to each other.

2 The cde Triangle

We will want to de�ne three maps for the following triangle to commute

Pk(G)
c //

e
$$

Rk(G)

RK(G)

d

OO

De�nition 2.1. Cartan Homomorphism. To each k[G]-module P , we associate the class of P , [P ] in Rk(G). We
get a homomorphism c : Pk(G) → Rk(G). We express c in terms of the canonical basis [PS ], [S] for S ∈ Sk (basis
for Pk(G) and Rk(G) respectively). We obtain a square matrix C, of type Sk × Sk, the Cartan Matrix of G with
respect to k. The (S, T ) coe�cient, CST of C is the number of times that S appears in a composition series of the
projective envelope PT of T .

[PT ] =
∑
S∈Sk

CST [S] inRk(G)

De�nition 2.2. Decomposition Homomorphism. Let E be a K[G]-module. Choose a lattice E1 in E (�nitely
generated A-module which generates E as a K-module). We may assume that E1 is G-stable (replace E1 by the
sum of its images under G). Denote the reduction E1 = E1/mE1, a k[G]-module.

Theorem 2.3. The image E1 in Rk(G) is independent of the choice of E1. (Warning! You can have that E1 6∼= E2

but with the same composition factors)

Proof. Let E2 be another G-stable lattice, we want to show
[
E1

]
=
[
E2

]
in Rk(G). Replace E2 by a scalar multiple,

we may assume E2 ⊂ E1. There exists n ≥ 0 such that mnE1 ⊂ E2 ⊂ E1.
If n = 1, we have mE1 ⊂ E2 ⊂ E1. We have

0→ E2/mE1 → E1/mE1 → E1/E2 → 0

implies [E1/mE1] = [E2/mE1] + [E1/E2]. And

0→ mE1/mE2 → E2/mE2 → E1/mE1 → 0

implies [E2/mE2] = [mE1/mE2] + [E2/mE1]. But [mE1/mE2] = [E1/E2] hence [E1] = [E2]. This covers our base
case.

For general n, let E3 = mn−1m + E2. We have mn−1E1 ⊂ E3 ⊂ E1, mE3 ⊂ E2 ⊂ E3 ⇒ [E2] = [E3]⇒
[
E1

]
=[

E2

]
=
[
E3

]
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The map E →
[
E1

]
extends to a ring homomorphism d : RK(G) → Rk(G). The corresponding matrix is

denoted D, type Sk × SK . For F ∈ Sk, E ∈ SK , DFE is the number of times that F appears in the reduction mod
m of E1 [

E1

]
=
∑
F

DFE [F ] inRk(G).

De�nition 2.4. e.

There exists a canonical isomorphism PA(G)
∼→ Pk(G), i.e.,

• Let E be an A[G]-module, for E to be a projective A[G]-module then (only then) E is a to be free on A and
E is a projective k[G]-module

• If F is a projective k[G]-module, then there exists a unique (up to isomorphism) projective A[G]-module
whose reduction modulo m is isomorphic to F .

The functor �tensor product with K� de�nes a homomorphism from PA(G) into RK(G). Combining both, we get
a map e : Pk(G)→ RK(G) and an associated matrix E of type SK × Sk.

2.1 Basic properties of cde triangle

1. Commutativity: c = d ◦ e, i.e., C = DE

2. d and e are adjoint of one another with respect to bilinear forms on Rk(G), Pk(G). I.e., pick x ∈ Pk(G) and
y ∈ RK(G) then 〈x, d(y)〉k = 〈e(x), y〉K .
Assume x =

[
X
]
where X is a projective A[G]-module, y = [K ⊗A Y ] where Y is an A[G]-module which

is free. Then the A-module HG(X,Y ) is free. Let r be its rank: we have the canonical isomorphism K ⊗
HomG(X,Y ) = HomG(K ⊗X,K ⊗Y ) and k⊗HomG(X,Y ) = HomG(k⊗X, k⊗Y ). These both implies that
〈e(x), y〉K = t = 〈x, d(y)〉k.

3. Assume that K is su�ciently large. The canonical bases of Pk(G) and Rk(G) are dual to each other with
respect to 〈 , 〉k. (Similarly RK(G), RK(G) and 〈 , 〉K) Hence e can be identi�ed with the transpose of d.
E = tD, C = DE ⇒ C is symmetric.

3 Examples

Notation.

• K is a complete �eld

• A is the valuation ring of K, m its maximal ideal

• k the residue �eld of K, with characteristic p

• K is su�ciently large, that is µn ⊆ K with n = lcmg∈G(o(g))

We have the cde triangle

Pk(G)
c //

e
$$

Rk(G)

RK(G)

d

OO

• c : P → [P ]

• d : E → E1 = E1/mE1 where E1 is a stable lattice in E under G

• e: is the inverse of the canonical isomorphism PA(G)→ Pk(G) tensor with K

De�nition 3.1. A projective envelope P of a L[G] module M is a projective module P with an essential homo-
morphism.
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3.1 Example, p′-groups

Proposition 3.2. Assume that the order of G is coprime to p. Then

1. Each k[G]-module (respectively each A-free A[G]-module) is projective

2. The operation of reduction mod m de�nes a bijection between SK and Sk

3. If we identify SK with Sk, then C,D,E are all identity matrices.

Proof.

1. Let E be an A-free A[G]-module, then there is a free A[G]-module L such that E is L/R. Since E is A-free
there exists a A-linear projection π of L onto R. If g = #G, we know gcd(g, p) = 1, hence we can replace
π with 1

g

∑
s∈G sπs

−1 and we get an A[G]-projection. By the fact A[G]-linear projection and the fact that

L/R ∼= E, we get that E is projective. Moreover C = Id

2. and 3. Let E ∈ Sk, the projective envelope E1 of E relative to A[G] is a projective A[G]-module, whose
reduction E1 = E1/mE1 is E. If F = K ⊗ E1, then d([F ]) = [E]. Since E is simple, that implies that F is
simple, thus F ∈ SK . So, we obtain a map E → F of Sk to SK which is the inverse of d.

3.2 Example, p-groups

Let G be a p-group with order pn. Then

Proposition 3.3. Let V be a vector space over k and ρ : G → GL(V ) a linear representation. There exists a
non-zero element in V which is �xed by ρ(s), for all s ∈ G.

Corollary 3.4. The only irreducible representation of a p-group in characteristic p is the trivial one.

The Artinian ring k[G] is a local ring with restriction �eld k.
The projective envelope of the simple k[G]-module k is k[G].
The groups Rk(G) and Pk(G) can be identi�ed with Z and C is multiplication by pn. The map d : RK(G)→ Z

corresponds to the K-ranks, e : Z→ RK(G) maps an integer n onto n times the class of the regular representation
of G.

3.3 (p′-groups)× (p-groups)

Let G = S × P where S is a p′-group and P is a a p-groups. We have that k[G] = k[S]⊗ k[P ].

Proposition 3.5. A k[G]-module E is if and only if P acts trivially on E.

Proof. ⇐) That follows from the fact every k[S]-module is semisimple.
⇒) Assume E to be simple. From the above the subspace E′ of E consisting of elements �xed by P is not zero.

Since P is normal, E′ is stable under G, hence as E is simple, E′ = E.

Proposition 3.6. A k[G]-module E is projective if and only if it is isomorphic to F⊗k[P ] where F is a k[S]-module.

Proof. Since F is a projective k[S]-module, then F ⊗ k[P ] is projective k[G]-module. We can see that F is the
largest quotient of F ⊗ k[P ] on which P acts trivially. By the previous lectures F ⊗ k[P ] is the projective envelope
of F . However, every projective module is the projective envelope of its largest semisimple quotient. Thus we see
that every projective module has the form F ⊗ k[P ].

Proposition 3.7. An A[G]-module Ẽ is projective if and only if it is isomorphic to F̃ ⊗A[P ] where F̃ is an A-free
A[G]-module.
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4 More properties of the cde triangle

Notation.

• K is a complete �eld

• A is the valuation ring of K, m its maximal ideal

• k the residue �eld of K, with characteristic p

•
Pk(G)

c //

e
$$

Rk(G)

RK(G)

d

OO

• We say K is su�ciently large to mean that µn ⊆ K with n = lcmg∈G(o(g))

4.1 Brauer's Theorem (in the modular case)

Let H ≤ G be groups, we want to de�ne homomorphism RK(G) → RK(H) and RK(H) → RK(G) (respectively
Rk and Pk). Any K[G]-module is de�nes as a K[H]-module through restriction, and since it is projective if the
module is projective, we have a restriction map ResGH : RK(G)→ RK(H) (respectively Rk and Pk)

Let E be a K[H]-module, then K[G]⊗k[H] E is a K[G]-module, and is projective if E is projective. Hence we

have an induction map IndGH : RK(H)→ RK(G) (respectively Rk and Pk).

Fact. IndGH(x · ResGHy) = IndGH(x) · y.
c, d and e commute with ResGH and IndGH .

Theorem 4.1. Let X be the set of all elementary subgroups of G. The homomorphisms

Ind :
⊕
H∈X

RK(H)→ RK(G)

Ind :
⊕
H∈X

Rk(H)→ Rk(G)

Ind :
⊕
H∈X

Pk(H)→ Pk(G)

de�ned by the IndGH are all surjective.

Note. A similar theorem is also true if we don't assume K to be su�ciently large, but we will not use this.

Corollary 4.2. Each element of RK(G) (respectively Rk(G), Pk(G)) is a sum of elements of the form IndH(γH),
where H is an elementary subgroup of G and γH ∈ RK(H) (respectively Rk(H), Pk(H)).

4.2 Surjectivity of d

Theorem 4.3. The homomorphism d : RK(G)→ Rk(G) is surjective.

Note. This is true for all K, but we will prove it only in the case K is su�ciently large.
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Proof. Rk(G) can be express as a sum of IndGH with H elementary, and d commutes with IndGH . Hence we just need
to show Rk(H) = d(RK(H)), i.e., we can assume that G is elementary.

Let G = P ×H where P is a p-group and H has order coprime to p. As Sk(G) forms a basis of Rk(G), we just
need to show that given E a simple k[G]-module it lies in the image of d. Let

E′ = {v ∈ E : gv = v∀g ∈ P}

which as P is a p-group using Theorem 3.3. As P is normal in G, we have that E′ is stable under G, hence is
a k[G]-submodule of E. But E is simple, hence E = E′, i.e. P acts trivially on E, i.e., the action of k[G] on E
factors through the projection map k[G]→ k[H], i.e., E comes from F ∈ Rk(H). But H as order prime to p, so by
Proposition 3.2, we can �nd the lift of F and view it as a K[G]-module through the projection map K[G]→ K[H].
This is the lift of E.

Theorem 4.4. The homomorphism e : Pk(G) → RK(G) is a split injection (i.e., there exist r : RK(G) → Pk(G)
such that r ◦ e = 1, or equivalently, e is injective and e(Pk(G)) is a direct factor of RK(G))

Proof. As we are assuming that K is large enough, we know E = Dt hence e is injective follows from the fact that
d is surjective.

Corollary 4.5. Let P and P ′ be projective A[G]-modules. If the K[G]-modules K ⊗P and K ⊗P ′ are isomorphic,
then P ∼= P ′ as A[G]-modules.

Proof. e is injective.

4.3 Characterisation of the image of c

Theorem 4.6. Let ordp(|G|) = n. Then every element of Rk(G) divisible by pn belongs to the image of c : Pk(G)→
Rk(G).

Note. This is true for all K, but we will prove it only in the case K is su�ciently large.

Proof. As in Theorem Theorem 4.3, as K is su�ciently large we can assume G is elementary, i.e., G = P ×H. The
theorem is equivalent to showing that the cokernel c : Pk(G)→ Rk(G) is killed by pn. But as seen in the example
3.2 (�rst two theorems), the matrix C is the scalar matrix pn. Hence we see that the cokernel c must be killed by
pn.

Corollary 4.7. The cokernel c is a �nite p-group and c is injective.

Proof. The fact that the cokernel is a �nite p-group is clear. Then since the cokernel is �nite and Pk(G) and Rk(G)
are free Z-modules of the same rank, as imc must have the same rank as Rk(G) we get c is injective.

Corollary 4.8. If two projective k(G)-modules have the same composition factors (with multiplication), they are
isomorphic

Corollary 4.9. Let K be su�ciently large. The matrix C is symmetric, and the corresponding quadratic form is
positive de�nite. The determinant of C is a power of p.

4.4 Characterisation of the image of e

De�nition 4.10. An element g ∈ G is said to be p-singular if p|ord(g).

Theorem 4.11. Let K ′ be a �nite extension of K. An element of RK′(G) is in the image e of PA(G) = Pk(G) if
and only if its character take values in K, and is zero on the p-singular element of G.
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5 Characterisation of Projective A[G]-modules by their characters

Recall:

• Let K be a �eld, complete with a discrete valuation char(K) = 0

• A a valuation ring, with unique maximal ideal m, k = A/m its residue �eld with char(k) = p > 0

• G a �nite group, g ∈ G is �p-singular� if p|ord(g)

• SF [G] = {s : s a simple F [G]-module}, F ∈ {K, k,A}

Technical

• By the character of an A[G]-module E, we mean the character of K ⊗ E

• A K[G]-module �comes from� the A[G]-module E if V = K ⊗ E

Fact.

1. Let F be a �eld, V an F [G]-module, S a simple F [G]-module, denoted by V(S) for the sum of all submodules
of V ∼= S. So if V is semisimple, then V = ⊕s∈SF [G]

V(S)

2. If I C G, and an F [I]-module V , with rep ρ : I → Aut(V ), then for g ∈ G then gρ : I → Aut(V ),
x ∈ I 7→ ρ(g−1xg) corresponding module gS

3. If K is su�ciently large, then each simple K[G]-module is absolutely simple (i.e., simple as a C[G]-module)

4. If S is a simple F [G]-module (F ∈ {K,A}), then EndG(S) = F ∗. (Schur's lemma)

5. E a semi-simple F [G]-module, I CG, then E ↓I is semisimple (Cli�ord)

6. p - |G|, then every representation of G over k can be lifted to a representation of G/A.

7. All simple k[P ]-modules are trivial, where P is a p-group

8. Since A/m = k has characteristic p, A∗ can't contain any elements of order p

9. p - |G| implies that reduction mod m contains a bijection Sk[G] → SA[G].

Aim: A K[G]-modules comes from a projective A[G]-modules if and only if its character has some properties.

De�nition 5.1. If G has a series 1 = L0 C L1 C · · ·C Ln = G where each Li CG, and Li/Li−1 is either a p-group
or a p′-group. Then G is p-soluble of height n.

Example. All soluble groups are p-soluble
All subgroups and quotient groups of a p-soluble group are p-soluble.

Theorem (Fang-Swan). Let G be p-soluble and K su�ciently large. Then every simple k[G]-module is the reduction
mod m of an A[G]-module (necessarily simple)

Corollary 5.2. Let G be a p-soluble, K su�ciently large, then a representation V of G over K comes from a
projective A[G]-module if and only if its character χV is 0 on the p-singular elements of G

Proof. Follow from Fran-Swan and Theorem 4.11

Proof. (Of Fang-Swan) We do it by induction on the p-soluble height of G, and on |G| for p-soluble groups of height
h

The case h = 0 is trivial, so assume h ≤ 1, so G has a series 1 = L0 C L1 C · · ·C Ln = G. Let I = L1, so I is a
p-group or a p′-group and height of G/I ≤ h− 1. Let E be a simple k[G]-module
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Step 1 We may assume I is a p'-group

By 5), E ↓I is semisimple and hence by 7), I acts trivially on E so we can view E as a k[G/I]-module
and then the result follows from induction

Step 2 We may assume that E ↓I is isotopic
Write E ↓I= ⊕s∈SK[I]

E ↓I(S)
and let G(s) = StabG(E ↓I(s)). Since E is simple, G acts transitively on

{E ↓I(s) : s ∈ Sk[I]}. Then E ↓I(s) is a k[G(s)]-module, and E = (E ↓I(s)) ↑GG(s)
. If E(s) ( E ↓I , then G(s)

is a proper subgroup of G, so by induction, E(s) can be lifted. But since E is the induced module and
the operations of induction and reduction modm commute, E can be lifted.

We assume for the rest of the proof that I is a p′-group and E ↓I= E(s) for a simple k[I]-module s. By 6) s
can be lifted to an A[I]-module s. Let ρ : I → Aut(s) be the associated representation. By 3), K ⊗ s is absolutely
simple. So dim(s) = dim(K ⊗ s) divides |I|. So p - dim(s) (†).

Step 3 There exists a �nite group G2 such that

• there exists N CG2 such that N is cyclic of p′-order and G/N ∼= G.

• I can be embedded in a normal subgroup of G2 with I ∩N = 1

• There exists a representation ρ2 : G2 → Aut(S) extending

Since E = E(s),
gs = s for all g ∈ G so gs = s for all g ∈ G. Thus for all g ∈ G there exists t ∈ Aut(s)

such that tρ(x)t−1 = ρ(g−1xg) for all x ∈ I. Let Ug = {t ∈ Aut(s), tρ(x)t−1 = ρ(g−1xg)∀x ∈ I}. So
Ug 6= ∅ for all g ∈ G. Set G1 = {(g, t) : g ∈ G, t ∈ Ug}, it is easy so see that G2 is a group. Also
ker(G → G) = A∗. By (†) if d = dim(s), then {det(t) : t ∈ Ug} is a coset of A∗d in A∗ for any g ∈ G.
By enlarging K (which is ok, since it doesn't change RK(G)) we may assume that all of these cosets are
trivial. So for all g ∈ G, there exists t ∈ Ug such that det(t) = 1. Let C = {det ρ(x) : x ∈ I} ≤ A∗, G2 =
{(g, t) ∈ G1 : det(t) ∈ C} ≤ G1. By the above G2 � G and ker(G2 � G) := N ∼= {α ∈ A∗ : αd ∈ C}.
Also I ↪→ G2 by x 7→ (x, ρ(x)). Finally, the last point holds by de�ning ρ2 : G2 → Aut(s), (s, t) 7→ t.

Step 4 Let F = HomI(s, E). Then s⊗ F is a k[G2]-module, and s⊗ F ∼=G2
E

G2 acts on s by reduction of ρ2 and on E since G2/N ∼= G. Hence G2 acts s⊗F . u : s⊗F → E de�ned
by a⊗ b 7→ b(a). This is easy to see is an isomorphism.

Step 5 F can be lifted to an A[G2]-module F̃

Skip

Now, we've already shown that s can be lifted (to s). By step 5, Ẽ = s⊗ F̃ is an A[G2]-module which reduces

to E. But since N acts trivially on E, and E is a simple k[G2]-module, by 9) N acts trivially on Ẽ. Hence Ẽ is a
A[G2/N ]-module.

6 Modular/Brauer Character

Fix K su�ciently large, i.e., contains µn where n = lcmg∈G(ord(g))
Call this µL reduction mod p gives an isomorphism onto µR

De�nition 6.1. Brauer Character of a R[G]-module. Let E be an n-dimensional R[G]-module, let s ∈ Greg, let sE
be the associated automorphism of E. We may diagonalise SE with eigenvalues in µR call these λi and their lifts
to µK , λ̃i. Let φE(s) =

∑n
i=1 λ̃i. Then φE : Greg → A is the Brauer character of E.

Properties

1. φE(e) = n
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2. φE(tst−1) = φE(s) for all t ∈ G, s ∈ Greg

3. 0→ E → E′ → E′′ → 0, φE′ = φE + φE′

4. φE1⊗E2
= φE1

× φE2
.

�New Properties�

5. Let t ∈ G with p-regular component s ∈ Greg, tE its associated endomorphism. Tr(tE) = φE(s).

6. F a K[G]-module with K-character χ, E its associated k[G]-module with Brauer character φE . Then φE = χ
on Greg.

7. F a projective k[G]-module, F̃ a lift of F to a projective A[G]-module. Let ΦF be the K character of k ⊗ F̃ ,

let E be any k[G]-module. E ⊗ F is projective ΦE⊗F (s) =

{
φE(s)ΦF (s) s ∈ Greg

0 else

8. dim Hom(F,E) = 〈F,E〉k = 1
|G|
∑
g∈Greg

ΦF (s−1)φ(s) = 〈φE ,Φ〉

Note. dimF = 〈I,ΦF 〉 := 1
|G|
∑
g∈Greg

ΦF (g).

Theorem. The irreducible modular character φE (E ∈ δk) forms a basis of the K-vector space of class functions
on Greg with values in K.

Corollary. If F and F ′ are two k[G]-module and φF = φF ′ then [F ] = [F ′] in Rk(G).

Corollary. ker d : RK(G)→ Rk(G) consists of the elements whose characters are 0 on Greg.

Corollary. The number of isomorphism class of simple R[G]-module = the number of p-regular conjugacy class of
G

Example. S4

e (12) (12)(34) (123) (1234)

χ1 1 1 1 1 1
χ2 1 -1 1 -1 1
χ3 2 0 2 -1 0
χ4 3 1 -1 0 -1
χ5 3 -1 -1 0 -1

p = 2: p-regular conjugates are e and (123).

e (123)

φ1 1 1
φ2 2 -1

. Then D =

(
1 1 0 1 1
0 0 1 1 1

)
. Φ1 = χ1 + χ2 +

χ4 + χ5 and Φ2 = χ3 + χ4 + χ5 . Finally C =

(
4 2
2 3

)
, Φ1 = 4φ1 + 2φ2 on Gregand Φ2 = 2φ1 + 3φ2 on Greg.

We see that C,D and E gives us relations between χi,Φi and φi. To see this, we note that after tensoring with
K, the cde triangle becomes

K ⊗ Pk(G)

K⊗e ''

K⊗c // K ⊗Rk(G)

K ⊗RK(G)

K⊗d

OO

this gives:

• χF =
∑
e∈Sk

DEFφE on Greg

• ΦE =
∑
F∈SK

DEFχF on G

• ΦE =
∑
E′∈SK

CE′EφE′ on Greg

we now have the following orthogonality 〈ΦE , φE′〉 = δEE′
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7 Brauer Character II

Let K,A, k as previously.

Example. A5 has character table (in char 0)
e (12)(34) (123) (12345) (13524)

χ1 1 1 1 1 1

χ2 3 −1 0 1+
√
5

2
1−
√
5

2

χ3 3 −1 0 1−
√
5

2
1+
√
5

2

χ4 4 0 1 -1 -1
χ5 5 1 -1 0 0

p = 2 We have 4 2-regular conjugacy classes

e (123) (12345) (13524)

φ1 1 1 1 1

φ2 2 −1 1+
√
5

2 − 1 1−
√
5

2 − 1

φ3 2 −1 1−
√
5

2 − 1 1+
√
5

2 − 1
φ4 4 1 −1 −1

χ3 + χ2 = χ1 + χ5 on Greg, hence χ3|Greg
and χ2|Greg

are not irreducible. We have χ3 − χ2 is a Brauer
character of an simple R[G]-module and so is χ3 − χ1.

Hence D =


1 1 1 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 0

, C =


4 2 2 0
2 2 1 0
2 1 2 0
0 0 0 1


7.1 Cool stu�

Theorem 7.1. Orthogonality Relations for Brauer Characters
Let φi denote the Brauer character of a simple k[G]-module and let ηj denote the Brauer character of an

indecomposable projective k[G]-module. C = (cij), C
−1(γij)

1.
∑
g∈Greg

φi(g)ηj(g
−1) = |G| δij

2.
∑
g∈Greg

φi(g)φj(g
−1) = |G| γij

3.
∑
g∈Greg

ηi(g)ηj(g
−1) = |G| cij

Proof. C is invertible (it is injective and its cokernel is a �nite p-group). Let Z be a matrix given by the characteristic
0 character table, let W be the matrix given by the characteristic p character table, H the matrix given by
the projective Invertible module character table mod p. Using the CDE triangle, Z = DW and H = CW .

tZZ = |G|h−1K δK`∗ where hi is the size of the ith conjugacy class and δij∗ =

{
1 if g ∈ Ci ⇒ g−1 ∈ Cj
0

. Rewire i)

as a sum over conjugacy classes

r∑
k=1

hkφi(ck)η∗j (ck) =
∑∑

hkδk`∗φ(Ck)η∗j (C`)

=
1

|G|
W ( tZZ)−1 tH = Id

Similarly:
ii) W ( tZZ)−1W = C−1

iii) H( tZZ)−1 tH = C
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De�nition 7.2. Let χ ∈ Irr(G), its p-defect is ordp(|G| /χ(1))

Proposition 7.3. Let χ ∈ Irr(G) with p-defect 0. Then χ is in fact a character of K ⊗ P where P is a PIM over
A[G]. Moreover P is a simple and projective as a R[G]-module

Proof. LetM be the simple K[G]-module with character χ, its corresponding idempotent e = χ(1)
|G|

∑
x∈G χ(x−1)x ∈

K[G] is in fact de�ned over A. Let Pi be a PIM over A[G] then the map emaps this to a k[G]-module. 〈k ⊗ Pi, χ〉K =
〈ηi, d(χ)〉R = 〈ηi, dijφi〉 = dki. So in particular χ is a summand of one such, say K ⊗ P . So eP 6= 0, either eP = P
or we have a decomposition P = eP ⊕ (1 − P )P . This is not possible as P is indecomposable, so eP = P . Hence
e(K ⊗ P ) = K ⊗ P , so K ⊗ P = αχ. So χ must vanish on all P irregular/singular classes. It follows (K ⊗ Pi form
a basis of such class function). So χ =

∑
ni(K ⊗ Pi) but χ = α−1(K ⊗ P ) so α = 1 and χ = K ⊗ P . Why is P

simple? Because exactly one dij 6= 0 and is in fact to 1 but C = tDD, hence P is simple.

Steinburg character of SLn(q). B is the subgroup of upper triangular matrices, G = B ∪BxB for some x /∈ B.〈
IB ↑G, IB ↑G

〉
=

〈
I ↑GB↓B , I

〉
= #B\G/B = 2

So IB ↑G −I = χ. χ is irreducible with degree |G/B| − 1 = q. But |G| = q(q1 − 1) so χ is q-defect 0.

8 Introduction to Block Theory

Let p be a �xed rational primes, K,A, k as before. π : OK → k = OK/P quotient map where P is a prime of OK
above p. K1 =

∑
g class sum for any class Ci. Irr(G) = character 0 irreducible class, Br(G)=irreducible Brauer

class for prime p.

De�nition 8.1. Let χ ∈ Irr(G) a�orded by ρ. Then for all z ∈ Z(K[G]), ρ(z) = εzI. De�ne ωx : Z(K[G]) → K
de�ned by z 7→ εz

Let χ, ψ ∈ Irr(G), say χ ∼ ψ if π(ωχ(Ki)) = π(ωχ(Ki)) for all i.

De�nition 8.2. A subset B ⊂ Irr(G) ∪ Br(G) is a p-block if

1. B ∩ Irr(G) is an equivalence class under ∼

2. B ∩ Br(G) = {φ ∈ Br|dχφ 6= 0 for some χ ∈ B ∩ Irr(G)}

Notation. We set Bl(G) = {set of p blocks} We call the block containing IG to be the principal block.

Theorem 8.3. χ, ψ ∈ Irr(G) are in the same p-block if and only if ωχ(Ki) − ωφ(Ki) ∈ P for all i and all primes
P ∈ OK above p.

Theorem 8.4. Let φ ∈ Br(G), then φ lies in a unique p-block.

De�ne a graph G = (V,E) by V = Irr(G) and (χ, φ) ∈ E if there exists ψ ∈ Br(G) such that dχψ 6= 0 6= dφψ.
We call this the Brauer Graph.

Example. A5 from last week, p = 2.

χ1

χ2 χ3

χ4 χ5
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Fact. B ∩ Irr(G) is a single connected component, so B1 = χ1, χ2, χ3, χ5 and φ1, φ2, φ3 and B2 = χ4and φ4

Theorem 8.5. Let B be a p-block. Then |B ∩ Irr(G)| ≥ |B ∩ Br(G)|. Let χ ∈ Irr(G) then the following are
equivalent

1. |B ∩ Irr(G)| = |B ∩ Br(G)|

2. p - |G|χ(1)

3. B ∩ Irr(G) = {χ} (in this case B ∩ Br(G) = {χ̂}}

Corollary 8.6. If p - |G|, then |B ∩ Br(G)| = |B ∩ Irr(G)| = 1

De�nition 8.7. Let χ ∈ Irr(G). Then eχ := χ(1)
|G|

∑
g∈G χ(g)g ∈ Z(K[G]) is the idempotent for χ.

Note that if χ 6= ψ ∈ Irr(G) then eχeψ = 0, hence eχ + eψ is an idempotent.

De�nition 8.8. Let B ∈ Bl(G). Then fB :=
∑
χ∈B∩Irr(G) eχ ∈ Z(Op[G]). This is called the Osima idempotent.

Let eB := π(fB). De�ne λB = π(ωχ) for some χ ∈ B ∩ Irr(G).

Note that if φ is a�orded by the k-representation η, then η(z) = λB(z)I for all z ∈ Z(k[G]).

Theorem 8.9.

1. λBi
(eBj

) = δij

2. eB are orthogonal idempotents

3. eB is a k-linear combination of class sum of p-regular classes

4.
∑
eB = 1

5. If λB(z) = 0 for all B ∈ Bl(G). Then z is nilpotent.

6. {λB} = Hom(Z(k[G], k)

7. Every idempotent of Z(k[G]) is a sum of the eB.

Proof.

1. Let χ ∈ Irr(G), then ωχ(fB) = 1 if χ ∈ B, 0 else. If χ ∈ B, then π(ωχ) = λB ⇒ λB(eB) = 1.

2. First note fBfB′ = δBB′fB . So eBeB′ = δBB′eB . Since λB(eB) = 1⇒ eB 6= 0.

3. Exercise

4.
∑
fB =

∑
eχ = 1, hence

∑
eB =

∑
π(fB) = π (

∑
fB) = π(1) = 1
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