Modular representation theory

1 Definitions for the study group

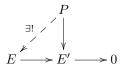
Definition 1.1. Let A be a ring and let F_A be the category of all left A-modules. The *Grothendieck group* of F_A is the abelian group defined by generators and relations as follows:

- 1. Generators [E] for $E \in F_A$.
- 2. Relations: for $E, E', E'' \in F_A$ if $0 \to E \to E' \to E'' \to 0$, then [E'] = [E] + [E''].

Definition 1.2. A left A-module P is called *projective* if any of the following hold:

1. There exists a free A-module F such that $F = P \oplus Q$ for $Q \in F_A$

2.



3. The functor $\operatorname{Hom}_A(P, -)$ is exact.

Definition 1.3. An A-module homomorphism $f: M \to M'$ is called *essential* if f(M) = M' and $f(M'') \neq M'$ for any proper submodule $M'' \subseteq M$.

Definition 1.4. The projective envelope of a module M is a projective module P and an essential homomorphism $f: P \to M$.

Setup

Let G be a finite group, K be a complete field of characteristic 0 with a discrete valuation v, with residue field k of characteristic > 0. Let A be the ring of integers of K. We are going to look at K[G], k[G] and A[G].

Definition 1.5. Let *L* be a field, denote by $R_L(G)$ the Grothendieck group of finitely generated L[G]-modules. We make it into a ring by setting $[E] \cdot [E'] = [E \otimes_L E']$.

Let S_L be the set of isomorphism classes of simple L[G]-modules.

Proposition 1.6. The element of S_L form a basis for $R_L[G]$.

Definition 1.7. Let $P_k[G]$ be the Grothendieck ring of the category of left k[G]-modules which are projective. Let $P_A[G]$ be the Grothendieck ring of the category of the left A[G]-modules which are projective.

Fact. Any k[G]-module has a projective envelope

If E, P are k[G]-modules and P is projective, then $E \otimes_k P$ is also projective \Rightarrow we have an action of $R_k[G]$ on $P_k[G]$.

Proposition 1.8. Each projective k[G]-module can be written uniquely as a direct sum of indecomposable projective k[G]-modules

Let P and P' be projective k[G]-modules, then they are isomorphic if and only if [P] = [P'].

Dualities: Let E, F be K[G]-modules. Set $\langle E, F \rangle = \dim \operatorname{Hom}_G(E, F)$ (i.e, $\langle , \rangle : R_K[G] \times R_K[G] \to \mathbb{Z}$). This is bilinear with respect to short exact sequences.

Proposition 1.9. If $E, E' \in S_K$ then $\langle E, E' \rangle = \begin{cases} 0 & E \not\cong E' \\ d_E = \dim \operatorname{End}_G(E) & E \cong E' \end{cases}$.

Definition 1.10. Say *E* is absolutely simple if $d_E = 1$.

We define $\langle , \rangle : P_k[G] \times R_k[G] \to \mathbb{Z}$ by $(E, F) \mapsto \langle E, F \rangle = \dim \operatorname{Hom}_G(E, F)$. Since E is projective, \langle , \rangle is bilinear.

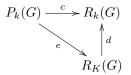
Proposition 1.11. If $E, E' \in S_k$ then $\operatorname{Hom}_G(P_E, E') = \operatorname{Hom}_G(E, E')$.

If
$$E, E' \in S_k$$
 then $\langle P_E, E' \rangle = \begin{cases} 0 & E \not\cong E' \\ d_E & E \cong E' \end{cases}$

Proposition 1.12. Let K be sufficiently large such that k contains all m-th roots of unity $(m = \operatorname{lcm}(|g|)_{g \in G})$. Then $d_E = 1$ for $E \in S_k$ and hence \langle , \rangle is non-degenerate and the base $[E], [P_E]$ are dual to each other.

2 The cde Triangle

We will want to define three maps for the following triangle to commute



Definition 2.1. Cartan Homomorphism. To each k[G]-module P, we associate the class of P, [P] in $R_k(G)$. We get a homomorphism $c: P_k(G) \to R_k(G)$. We express c in terms of the canonical basis $[P_S], [S]$ for $S \in S_k$ (basis for $P_k(G)$ and $R_k(G)$ respectively). We obtain a square matrix C, of type $S_k \times S_k$, the Cartan Matrix of G with respect to k. The (S,T) coefficient, C_{ST} of C is the number of times that S appears in a composition series of the projective envelope P_T of T.

$$[P_T] = \sum_{S \in S_k} C_{ST}[S] \text{ in } R_k(G)$$

Definition 2.2. Decomposition Homomorphism. Let E be a K[G]-module. Choose a lattice E_1 in E (finitely generated A-module which generates E as a K-module). We may assume that E_1 is G-stable (replace E_1 by the sum of its images under G). Denote the reduction $\overline{E}_1 = E_1/\mathfrak{m}E_1$, a k[G]-module.

Theorem 2.3. The image \overline{E}_1 in $R_k(G)$ is independent of the choice of E_1 . (Warning! You can have that $\overline{E}_1 \ncong \overline{E}_2$ but with the same composition factors)

Proof. Let E_2 be another *G*-stable lattice, we want to show $[\overline{E}_1] = [\overline{E}_2]$ in $R_k(G)$. Replace E_2 by a scalar multiple, we may assume $E_2 \subset E_1$. There exists $n \ge 0$ such that $\mathfrak{m}^n E_1 \subset E_2 \subset E_1$.

If n = 1, we have $\mathfrak{m}E_1 \subset E_2 \subset E_1$. We have

 $0 \to E_2/\mathfrak{m}E_1 \to E_1/\mathfrak{m}E_1 \to E_1/E_2 \to 0$

implies $[E_1/\mathfrak{m}E_1] = [E_2/\mathfrak{m}E_1] + [E_1/E_2]$. And

 $0 \to \mathfrak{m} E_1/\mathfrak{m} E_2 \to E_2/\mathfrak{m} E_2 \to E_1/\mathfrak{m} E_1 \to 0$

implies $[E_2/\mathfrak{m}E_2] = [\mathfrak{m}E_1/\mathfrak{m}E_2] + [E_2/\mathfrak{m}E_1]$. But $[\mathfrak{m}E_1/\mathfrak{m}E_2] = [E_1/E_2]$ hence $[\overline{E}_1] = [\overline{E}_2]$. This covers our base case.

For general *n*, let $E_3 = \mathfrak{m}^{n-1}\mathfrak{m} + E_2$. We have $\mathfrak{m}^{n-1}E_1 \subset E_3 \subset E_1$, $\mathfrak{m}E_3 \subset E_2 \subset E_3 \Rightarrow [\overline{E}_2] = [\overline{E}_3] \Rightarrow [\overline{E}_1] = [\overline{E}_2] = [\overline{E}_3]$

The map $E \to [\overline{E}_1]$ extends to a ring homomorphism $d : R_K(G) \to R_k(G)$. The corresponding matrix is denoted D, type $S_k \times S_K$. For $F \in S_k$, $E \in S_K$, D_{FE} is the number of times that F appears in the reduction mod \mathfrak{m} of E_1

$$\left[\overline{E}_{1}\right] = \sum_{F} D_{FE}[F] \text{ in } R_{k}(G)$$

Definition 2.4. e.

There exists a canonical isomorphism $P_A(G) \xrightarrow{\sim} P_k(G)$, i.e.,

- Let E be an A[G]-module, for E to be a projective A[G]-module then (only then) E is a to be free on A and \overline{E} is a projective k[G]-module
- If F is a projective k[G]-module, then there exists a unique (up to isomorphism) projective A[G]-module whose reduction modulo \mathfrak{m} is isomorphic to F.

The functor "tensor product with K" defines a homomorphism from $P_A(G)$ into $R_K(G)$. Combining both, we get a map $e: P_k(G) \to R_K(G)$ and an associated matrix E of type $S_K \times S_k$.

2.1 Basic properties of cde triangle

- 1. Commutativity: $c = d \circ e$, i.e., C = DE
- 2. d and e are adjoint of one another with respect to bilinear forms on $R_k(G)$, $P_k(G)$. I.e., pick $x \in P_k(G)$ and $y \in R_K(G)$ then $\langle x, d(y) \rangle_k = \langle e(x), y \rangle_K$.

Assume $x = [\overline{X}]$ where X is a projective A[G]-module, $y = [K \otimes_A Y]$ where Y is an A[G]-module which is free. Then the A-module $H_G(X,Y)$ is free. Let r be its rank: we have the canonical isomorphism $K \otimes$ $\operatorname{Hom}_G(X,Y) = \operatorname{Hom}_G(K \otimes X, K \otimes Y)$ and $k \otimes \operatorname{Hom}_G(X,Y) = \operatorname{Hom}_G(k \otimes X, k \otimes Y)$. These both implies that $\langle e(x), y \rangle_K = t = \langle x, d(y) \rangle_k$.

3. Assume that K is sufficiently large. The canonical bases of $P_k(G)$ and $R_k(G)$ are dual to each other with respect to \langle , \rangle_k . (Similarly $R_K(G), R_K(G)$ and \langle , \rangle_K) Hence e can be identified with the transpose of d. $E = {}^tD, C = DE \Rightarrow C$ is symmetric.

3 Examples

Notation.

- K is a complete field
- A is the valuation ring of K, \mathfrak{m} its maximal ideal
- k the residue field of K, with characteristic p
- K is sufficiently large, that is $\mu_n \subseteq K$ with $n = \operatorname{lcm}_{g \in G}(o(g))$

We have the cde triangle

$$P_k(G) \xrightarrow{c} R_k(G)$$

$$\downarrow^e \qquad \uparrow^d$$

$$R_K(G)$$

- $\bullet \ c: P \to [P]$
- $d: E \to \overline{E}_1 = E_1/\mathfrak{m}E_1$ where E_1 is a stable lattice in E under G
- e: is the inverse of the canonical isomorphism $P_A(G) \to P_k(G)$ tensor with K

Definition 3.1. A projective envelope P of a L[G] module M is a projective module P with an essential homomorphism.

3.1 Example, p'-groups

Proposition 3.2. Assume that the order of G is coprime to p. Then

- 1. Each k[G]-module (respectively each A-free A[G]-module) is projective
- 2. The operation of reduction $\mod \mathfrak{m}$ defines a bijection between S_K and S_k
- 3. If we identify S_K with S_k , then C, D, E are all identity matrices.

Proof.

- 1. Let *E* be an *A*-free A[G]-module, then there is a free A[G]-module *L* such that *E* is L/R. Since *E* is *A*-free there exists a *A*-linear projection π of *L* onto *R*. If g = #G, we know gcd(g, p) = 1, hence we can replace π with $\frac{1}{g} \sum_{s \in G} s\pi s^{-1}$ and we get an A[G]-projection. By the fact A[G]-linear projection and the fact that $L/R \cong E$, we get that *E* is projective. Moreover C = Id
- 2. and 3. Let $E \in S_k$, the projective envelope E_1 of E relative to A[G] is a projective A[G]-module, whose reduction $\overline{E}_1 = E_1/\mathfrak{m}E_1$ is E. If $F = K \otimes E_1$, then d([F]) = [E]. Since E is simple, that implies that F is simple, thus $F \in S_K$. So, we obtain a map $E \to F$ of S_k to S_K which is the inverse of d.

3.2 Example, *p*-groups

Let G be a p-group with order p^n . Then

Proposition 3.3. Let V be a vector space over k and $\rho : G \to GL(V)$ a linear representation. There exists a non-zero element in V which is fixed by $\rho(s)$, for all $s \in G$.

Corollary 3.4. The only irreducible representation of a p-group in characteristic p is the trivial one.

The Artinian ring k[G] is a local ring with restriction field k.

The projective envelope of the simple k[G]-module k is k[G].

The groups $R_k(G)$ and $P_k(G)$ can be identified with \mathbb{Z} and C is multiplication by p^n . The map $d: R_K(G) \to \mathbb{Z}$ corresponds to the K-ranks, $e: \mathbb{Z} \to R_K(G)$ maps an integer n onto n times the class of the regular representation of G.

3.3 $(p'-\text{groups}) \times (p-\text{groups})$

Let $G = S \times P$ where S is a p'-group and P is a p-groups. We have that $k[G] = k[S] \otimes k[P]$.

Proposition 3.5. A k[G]-module E is if and only if P acts trivially on E.

Proof. \Leftarrow) That follows from the fact every k[S]-module is semisimple.

 \Rightarrow) Assume E to be simple. From the above the subspace E' of E consisting of elements fixed by P is not zero. Since P is normal, E' is stable under G, hence as E is simple, E' = E.

Proposition 3.6. A k[G]-module E is projective if and only if it is isomorphic to $F \otimes k[P]$ where F is a k[S]-module.

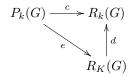
Proof. Since F is a projective k[S]-module, then $F \otimes k[P]$ is projective k[G]-module. We can see that F is the largest quotient of $F \otimes k[P]$ on which P acts trivially. By the previous lectures $F \otimes k[P]$ is the projective envelope of F. However, every projective module is the projective envelope of its largest semisimple quotient. Thus we see that every projective module has the form $F \otimes k[P]$.

Proposition 3.7. An A[G]-module \widetilde{E} is projective if and only if it is isomorphic to $\widetilde{F} \otimes A[P]$ where \widetilde{F} is an A-free A[G]-module.

4 More properties of the *cde* triangle

Notation.

- K is a complete field
- A is the valuation ring of K, \mathfrak{m} its maximal ideal
- k the residue field of K, with characteristic p
- •



• We say K is sufficiently large to mean that $\mu_n \subseteq K$ with $n = \operatorname{lcm}_{g \in G}(o(g))$

4.1 Brauer's Theorem (in the modular case)

Let $H \leq G$ be groups, we want to define homomorphism $R_K(G) \to R_K(H)$ and $R_K(H) \to R_K(G)$ (respectively R_k and P_k). Any K[G]-module is defines as a K[H]-module through restriction, and since it is projective if the module is projective, we have a *restriction map* $\operatorname{Res}_H^G : R_K(G) \to R_K(H)$ (respectively R_k and P_k) Let E be a K[H]-module, then $K[G] \otimes_{k[H]} E$ is a K[G]-module, and is projective if E is projective. Hence we

Let E be a K[H]-module, then $K[G] \otimes_{k[H]} E$ is a K[G]-module, and is projective if E is projective. Hence we have an *induction map* $\operatorname{Ind}_{H}^{G} : R_{K}(H) \to R_{K}(G)$ (respectively R_{k} and P_{k}).

Fact. $\operatorname{Ind}_{H}^{G}(x \cdot \operatorname{Res}_{H}^{G} y) = \operatorname{Ind}_{H}^{G}(x) \cdot y.$ c, d and e commute with $\operatorname{Res}_{H}^{G}$ and $\operatorname{Ind}_{H}^{G}$.

Theorem 4.1. Let X be the set of all elementary subgroups of G. The homomorphisms

Ind :
$$\bigoplus_{H \in X} R_K(H) \to R_K(G)$$

Ind : $\bigoplus_{H \in X} R_k(H) \to R_k(G)$
Ind : $\bigoplus_{H \in X} P_k(H) \to P_k(G)$

defined by the $\operatorname{Ind}_{H}^{G}$ are all surjective.

Note. A similar theorem is also true if we don't assume K to be sufficiently large, but we will not use this.

Corollary 4.2. Each element of $R_K(G)$ (respectively $R_k(G)$, $P_k(G)$) is a sum of elements of the form $\operatorname{Ind}_H(\gamma_H)$, where H is an elementary subgroup of G and $\gamma_H \in R_K(H)$ (respectively $R_k(H)$, $P_k(H)$).

4.2 Surjectivity of d

Theorem 4.3. The homomorphism $d : R_K(G) \to R_k(G)$ is surjective.

Note. This is true for all K, but we will prove it only in the case K is sufficiently large.

Proof. $R_k(G)$ can be express as a sum of Ind_H^G with H elementary, and d commutes with Ind_H^G . Hence we just need to show $R_k(H) = d(R_K(H))$, i.e., we can assume that G is elementary.

Let $G = P \times H$ where P is a p-group and H has order coprime to p. As $S_k(G)$ forms a basis of $R_k(G)$, we just need to show that given E a simple k[G]-module it lies in the image of d. Let

$$E' = \{ v \in E : gv = v \forall g \in P \}$$

which as P is a p-group using Theorem 3.3. As P is normal in G, we have that E' is stable under G, hence is a k[G]-submodule of E. But E is simple, hence E = E', i.e. P acts trivially on E, i.e., the action of k[G] on Efactors through the projection map $k[G] \to k[H]$, i.e., E comes from $F \in R_k(H)$. But H as order prime to p, so by Proposition 3.2, we can find the lift of F and view it as a K[G]-module through the projection map $K[G] \to K[H]$. This is the lift of E.

Theorem 4.4. The homomorphism $e: P_k(G) \to R_K(G)$ is a split injection (i.e., there exist $r: R_K(G) \to P_k(G)$ such that $r \circ e = 1$, or equivalently, e is injective and $e(P_k(G))$ is a direct factor of $R_K(G)$)

Proof. As we are assuming that K is large enough, we know $E = D^t$ hence e is injective follows from the fact that d is surjective.

Corollary 4.5. Let P and P' be projective A[G]-modules. If the K[G]-modules $K \otimes P$ and $K \otimes P'$ are isomorphic, then $P \cong P'$ as A[G]-modules.

Proof. e is injective.

4.3 Characterisation of the image of c

Theorem 4.6. Let $\operatorname{ord}_p(|G|) = n$. Then every element of $R_k(G)$ divisible by p^n belongs to the image of $c : P_k(G) \to R_k(G)$.

Note. This is true for all K, but we will prove it only in the case K is sufficiently large.

Proof. As in Theorem Theorem 4.3, as K is sufficiently large we can assume G is elementary, i.e., $G = P \times H$. The theorem is equivalent to showing that the cokernel $c : P_k(G) \to R_k(G)$ is killed by p^n . But as seen in the example 3.2 (first two theorems), the matrix C is the scalar matrix p^n . Hence we see that the cokernel c must be killed by p^n .

Corollary 4.7. The cokernel c is a finite p-group and c is injective.

Proof. The fact that the cokernel is a finite p-group is clear. Then since the cokernel is finite and $P_k(G)$ and $R_k(G)$ are free \mathbb{Z} -modules of the same rank, as imc must have the same rank as $R_k(G)$ we get c is injective.

Corollary 4.8. If two projective k(G)-modules have the same composition factors (with multiplication), they are isomorphic

Corollary 4.9. Let K be sufficiently large. The matrix C is symmetric, and the corresponding quadratic form is positive definite. The determinant of C is a power of p.

4.4 Characterisation of the image of e

Definition 4.10. An element $g \in G$ is said to be *p*-singular if $p | \operatorname{ord}(g)$.

Theorem 4.11. Let K' be a finite extension of K. An element of $R_{K'}(G)$ is in the image e of $P_A(G) = P_k(G)$ if and only if its character take values in K, and is zero on the p-singular element of G.

5 Characterisation of Projective A[G]-modules by their characters

Recall:

- Let K be a field, complete with a discrete valuation char(K) = 0
- A a valuation ring, with unique maximal ideal \mathfrak{m} , $k = A/\mathfrak{m}$ its residue field with char(k) = p > 0
- G a finite group, $g \in G$ is "p-singular" if $p | \operatorname{ord}(g)$
- $S_{F[G]} = \{s : s \text{ a simple } F[G] \text{-module}\}, F \in \{K, k, A\}$

Technical

- By the character of an A[G]-module E, we mean the character of $K \otimes E$
- A K[G]-module "comes from" the A[G]-module E if $V = K \otimes E$

Fact.

- 1. Let F be a field, V an F[G]-module, S a simple F[G]-module, denoted by $V_{(S)}$ for the sum of all submodules of $V \cong S$. So if V is semisimple, then $V = \bigoplus_{s \in S_{F[G]}} V_{(S)}$
- 2. If $I \lhd G$, and an F[I]-module V, with rep $\rho : I \rightarrow \operatorname{Aut}(V)$, then for $g \in G$ then ${}^{g}\rho : I \rightarrow \operatorname{Aut}(V)$, $x \in I \mapsto \rho(g^{-1}xg)$ corresponding module ${}^{g}S$
- 3. If K is sufficiently large, then each simple K[G]-module is absolutely simple (i.e., simple as a $\mathbb{C}[G]$ -module)
- 4. If S is a simple F[G]-module $(F \in \{K, A\})$, then $\operatorname{End}_G(S) = F^*$. (Schur's lemma)
- 5. E a semi-simple F[G]-module, $I \triangleleft G$, then $E \downarrow_I$ is semisimple (Clifford)
- 6. $p \nmid |G|$, then every representation of G over k can be lifted to a representation of G/A.
- 7. All simple k[P]-modules are trivial, where P is a p-group
- 8. Since $A/\mathfrak{m} = k$ has characteristic p, A^* can't contain any elements of order p
- 9. $p \nmid |G|$ implies that reduction mod \mathfrak{m} contains a bijection $S_{k[G]} \rightarrow S_{A[G]}$.

Aim: A K[G]-modules comes from a projective A[G]-modules if and only if its character has some properties.

Definition 5.1. If G has a series $1 = L_0 \triangleleft L_1 \triangleleft \cdots \triangleleft L_n = G$ where each $L_i \triangleleft G$, and L_i/L_{i-1} is either a p-group or a p'-group. Then G is p-soluble of height n.

Example. All soluble groups are *p*-soluble

All subgroups and quotient groups of a p-soluble group are p-soluble.

Theorem (Fang-Swan). Let G be p-soluble and K sufficiently large. Then every simple k[G]-module is the reduction mod m of an A[G]-module (necessarily simple)

Corollary 5.2. Let G be a p-soluble, K sufficiently large, then a representation V of G over K comes from a projective A[G]-module if and only if its character χ_V is 0 on the p-singular elements of G

Proof. Follow from Fran-Swan and Theorem 4.11

Proof. (Of Fang-Swan) We do it by induction on the *p*-soluble height of G, and on |G| for *p*-soluble groups of height h

The case h = 0 is trivial, so assume $h \le 1$, so G has a series $1 = L_0 \triangleleft L_1 \triangleleft \cdots \triangleleft L_n = G$. Let $I = L_1$, so I is a p-group or a p'-group and height of $G/I \le h - 1$. Let E be a simple k[G]-module

Step 1 We may assume I is a p'-group

By 5), $E \downarrow_I$ is semisimple and hence by 7), I acts trivially on E so we can view E as a k[G/I]-module and then the result follows from induction

Step 2 We may assume that $E \downarrow_I$ is isotopic

Write $E \downarrow_I = \bigoplus_{\overline{s} \in S_{K[I]}} E \downarrow_{I_{(\overline{s})}}$ and let $G_{(\overline{s})} = \operatorname{Stab}_G(E \downarrow_{I_{(\overline{s})}})$. Since E is simple, G acts transitively on $\{E \downarrow_{I_{(\overline{s})}}: \overline{s} \in S_{k[I]}\}$. Then $E \downarrow_{I_{(s)}}$ is a $k[G_{(s)}]$ -module, and $E = (E \downarrow_{I(\overline{s})}) \uparrow_{G_{(\overline{s})}}^{G}$. If $E_{(s)} \subsetneq E \downarrow_I$, then $G_{(\overline{s})}$ is a proper subgroup of G, so by induction, $E_{(\overline{s})}$ can be lifted. But since E is the induced module and the operations of induction and reduction mod**m** commute, E can be lifted.

We assume for the rest of the proof that I is a p'-group and $E \downarrow_I = E_{(\overline{s})}$ for a simple k[I]-module \overline{s} . By 6) \overline{s} can be lifted to an A[I]-module s. Let $\rho: I \to \operatorname{Aut}(s)$ be the associated representation. By 3), $K \otimes s$ is absolutely simple. So dim $(s) = \dim(K \otimes s)$ divides |I|. So $p \nmid \dim(s)$ (\dagger).

- Step 3 There exists a finite group G_2 such that
 - there exists $N \triangleleft G_2$ such that N is cyclic of p'-order and $G/N \cong G$.
 - I can be embedded in a normal subgroup of G_2 with $I \cap N = 1$
 - There exists a representation $\rho_2: G_2 \to \operatorname{Aut}(S)$ extending

Since $E = E_{(\bar{s})}$, ${}^g\bar{s} = \bar{s}$ for all $g \in G$ so ${}^gs = s$ for all $g \in G$. Thus for all $g \in G$ there exists $t \in \operatorname{Aut}(s)$ such that $t\rho(x)t^{-1} = \rho(g^{-1}xg)$ for all $x \in I$. Let $U_g = \{t \in \operatorname{Aut}(s), t\rho(x)t^{-1} = \rho(g^{-1}xg) \forall x \in I\}$. So $U_g \neq \emptyset$ for all $g \in G$. Set $G_1 = \{(g,t) : g \in G, t \in U_g\}$, it is easy so see that G_2 is a group. Also $\ker(G \to G) = A^*$. By (†) if $d = \dim(s)$, then $\{\det(t) : t \in U_g\}$ is a coset of A^{*d} in A^* for any $g \in G$. By enlarging K (which is ok, since it doesn't change $R_K(G)$) we may assume that all of these cosets are trivial. So for all $g \in G$, there exists $t \in U_g$ such that $\det(t) = 1$. Let $C = \{\det\rho(x) : x \in I\} \leq A^*, G_2 = \{(g,t) \in G_1 : \det(t) \in C\} \leq G_1$. By the above $G_2 \twoheadrightarrow G$ and $\ker(G_2 \twoheadrightarrow G) := N \cong \{\alpha \in A^* : \alpha^d \in C\}$. Also $I \hookrightarrow G_2$ by $x \mapsto (x, \rho(x))$. Finally, the last point holds by defining $\rho_2 : G_2 \to \operatorname{Aut}(s), (s, t) \mapsto t$.

Step 4 Let
$$F = \operatorname{Hom}_{I}(\overline{s}, E)$$
. Then $\overline{s} \otimes F$ is a $k[G_{2}]$ -module, and $\overline{s} \otimes F \cong_{G_{2}} E$
 G_{2} acts on \overline{s} by reduction of ρ_{2} and on E since $G_{2}/N \cong G$. Hence G_{2} acts $\overline{s} \otimes F$. $u : \overline{s} \otimes F \to E$ defined
by $a \otimes b \mapsto b(a)$. This is easy to see is an isomorphism.

Step 5 F can be lifted to an $A[G_2]$ -module \widetilde{F} Skip

Now, we've already shown that \overline{s} can be lifted (to s). By step 5, $\widetilde{E} = s \otimes \widetilde{F}$ is an $A[G_2]$ -module which reduces to E. But since N acts trivially on E, and E is a simple $k[G_2]$ -module, by 9) N acts trivially on \widetilde{E} . Hence \widetilde{E} is a $A[G_2/N]$ -module.

6 Modular/Brauer Character

Fix K sufficiently large, i.e., contains μ_n where $n = \operatorname{lcm}_{g \in G}(\operatorname{ord}(g))$ Call this μ_L reduction mod p gives an isomorphism onto μ_R

Definition 6.1. Brauer Character of a R[G]-module. Let E be an n-dimensional R[G]-module, let $s \in G_{reg}$, let s_E be the associated automorphism of E. We may diagonalise S_E with eigenvalues in μ_R call these λ_i and their lifts to μ_K , $\tilde{\lambda}_i$. Let $\phi_E(s) = \sum_{i=1}^n \tilde{\lambda}_i$. Then $\phi_E : G_{reg} \to A$ is the Brauer character of E.

Properties

1. $\phi_E(e) = n$

- 2. $\phi_E(tst^{-1}) = \phi_E(s)$ for all $t \in G$, $s \in G_{reg}$
- 3. $0 \rightarrow E \rightarrow E' \rightarrow E'' \rightarrow 0, \ \phi_{E'} = \phi_E + \phi_{E'}$
- 4. $\phi_{E_1\otimes E_2} = \phi_{E_1} \times \phi_{E_2}$.

"New Properties"

- 5. Let $t \in G$ with p-regular component $s \in G_{reg}$, t_E its associated endomorphism. $Tr(t_E) = \phi_E(s)$.
- 6. F a K[G]-module with K-character χ , E its associated k[G]-module with Brauer character ϕ_E . Then $\phi_E = \chi$ on G_{reg} .
- 7. F a projective k[G]-module, \widetilde{F} a lift of F to a projective A[G]-module. Let Φ_F be the K character of $k \otimes \widetilde{F}$, let E be any k[G]-module. $E \otimes F$ is projective $\Phi_{E \otimes F}(s) = \begin{cases} \phi_E(s)\Phi_F(s) & s \in G_{\text{reg}} \\ 0 & \text{else} \end{cases}$
- 8. dim Hom $(F, E) = \langle F, E \rangle_k = \frac{1}{|G|} \sum_{g \in G_{\text{reg}}} \Phi_F(s^{-1})\phi(s) = \langle \phi_E, \Phi \rangle$

Note. dim $F = \langle \mathbb{I}, \Phi_F \rangle := \frac{1}{|G|} \sum_{g \in G_{reg}} \Phi_F(g)$

Theorem. The irreducible modular character ϕ_E ($E \in \delta_k$) forms a basis of the K-vector space of class functions on G_{reg} with values in K.

Corollary. If F and F' are two k[G]-module and $\phi_F = \phi_{F'}$ then [F] = [F'] in $R_k(G)$.

Corollary. ker $d: R_K(G) \to R_k(G)$ consists of the elements whose characters are 0 on G_{reg}

Corollary. The number of isomorphism class of simple R[G]-module = the number of p-regular conjugacy class of G

Example. S_4

	e	(12)	(12)(34)	(123)	(1234)
χ_1	1	1	1	1	1
χ_2	1	-1	1	-1	1
χ_3	2	0	2	-1	0
χ_4	3	1	-1	0	-1
χ_5	3	-1	-1	0	-1

p = 2: p -regular conjugates are e and (123). $\boxed{\begin{array}{c|c} e & (123) \\ \hline \phi_1 & 1 & 1 \\ \hline \phi_2 & 2 & -1 \end{array}} \quad \text{Then } D = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}. \quad \Phi_1 = \chi_1 + \chi_2 +$

 $\chi_4 + \chi_5$ and $\Phi_2 = \chi_3 + \chi_4 + \chi_5$. Finally $C = \begin{pmatrix} 4 & 2 \\ 2 & 3 \end{pmatrix}$, $\Phi_1 = 4\phi_1 + 2\phi_2$ on G_{reg} and $\Phi_2 = 2\phi_1 + 3\phi_2$ on G_{reg} .

We see that C, D and E gives us relations between χ_i, Φ_i and ϕ_i . To see this, we note that after tensoring with K, the cde triangle becomes

$$K \otimes P_k(G) \xrightarrow{K \otimes c} K \otimes R_k(G)$$

$$K \otimes e \xrightarrow{K \otimes d}$$

$$K \otimes R_K(G)$$

this gives:

- $\chi_F = \sum_{e \in S_k} D_{EF} \phi_E$ on G_{reg}
- $\Phi_E = \sum_{F \in S_K} D_{EF} \chi_F$ on G
- $\Phi_E = \sum_{E' \in S_K} C_{E'E} \phi_{E'}$ on G_{reg}

we now have the following orthogonality $\langle \Phi_E, \phi_{E'} \rangle = \delta_{EE'}$

7 Brauer Character II

Let K, A, k as previously.

^	Cample: <i>M</i> ₅ has character table (in that 0)							
		e	(12)(34)	(123)	(12345)	(13524)		
	χ_1	1	1	1	1	1		
	χ_2	3	-1	0	$\frac{1+\sqrt{5}}{2}$	$\frac{1-\sqrt{5}}{2}$		
	χ_3	3	-1	0	$\frac{1-\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$		
	χ_4	4	0	1	-1	-1		
	χ_5	5	1	-1	0	0		

Example. A_5 has character table (in char 0)

p = 2 We have 4 2-regular conjugacy classes

	e	(123)	(12345)	(13524)
ϕ_1	1	1	1	1
ϕ_2	2	-1	$\frac{1+\sqrt{5}}{2} - 1$	$\frac{1-\sqrt{5}}{2}-1$
ϕ_3	2	-1	$\frac{1-\sqrt{5}}{2} - 1$	$\frac{1+\sqrt{5}}{2} - 1$
ϕ_4	4	1	-1	-1

 $\chi_3 + \chi_2 = \chi_1 + \chi_5$ on G_{reg} , hence $\chi_3|_{G_{\text{reg}}}$ and $\chi_2|_{G_{\text{reg}}}$ are not irreducible. We have $\chi_3 - \chi_2$ is a Brauer character of an simple R[G]-module and so is $\chi_3 - \chi_1$.

Hence
$$D = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}, C = \begin{pmatrix} 4 & 2 & 2 & 0 \\ 2 & 2 & 1 & 0 \\ 2 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

7.1 Cool stuff

Theorem 7.1. Orthogonality Relations for Brauer Characters

Let ϕ_i denote the Brauer character of a simple k[G]-module and let η_j denote the Brauer character of an indecomposable projective k[G]-module. $C = (c_{ij}), C^{-1}(\gamma_{ij})$

- 1. $\sum_{g \in G_{\text{reg}}} \phi_i(g) \eta_j(g^{-1}) = |G| \, \delta_{ij}$ 2. $\sum_{g \in G_{\text{reg}}} \phi_i(g) \phi_j(g^{-1}) = |G| \, \gamma_{ij}$
- 3. $\sum_{g \in G_{\text{reg}}} \eta_i(g) \eta_j(g^{-1}) = |G| c_{ij}$

Proof. C is invertible (it is injective and its cokernel is a finite p-group). Let Z be a matrix given by the characteristic 0 character table, let W be the matrix given by the characteristic p character table, H the matrix given by the projective Invertible module character table mod p. Using the CDE triangle, Z = DW and H = CW.

 ${}^{t}ZZ = |G| h_{K}^{-1} \delta_{K\ell^{*}} \text{ where } h_{i} \text{ is the size of the } i\text{th conjugacy class and } \delta_{ij^{*}} = \begin{cases} 1 & \text{if } g \in C_{i} \Rightarrow g^{-1} \in C_{j} \\ 0 & 0 \end{cases}$ Rewire i)

as a sum over conjugacy classes

$$\sum_{k=1}^{\prime} h_k \phi_i(c_k) \eta_j^*(c_k) = \sum \sum h_k \delta_{k\ell^*} \phi(C_k) \eta_j^*(C_\ell)$$
$$= \frac{1}{|G|} W({}^t Z Z)^{-1} {}^t H = \mathrm{Id}$$

Similarly:

ii) $W({}^{t}ZZ)^{-1}W = C^{-1}$ iii) $H({}^{t}ZZ)^{-1}{}^{t}H = C$

Definition 7.2. Let $\chi \in Irr(G)$, its *p*-defect is $ord_p(|G|/\chi(1))$

Proposition 7.3. Let $\chi \in Irr(G)$ with p-defect 0. Then χ is in fact a character of $K \otimes P$ where P is a PIM over A[G]. Moreover \overline{P} is a simple and projective as a R[G]-module

Proof. Let M be the simple K[G]-module with character χ , its corresponding idempotent $e = \frac{\chi(1)}{|G|} \sum_{x \in G} \chi(x^{-1})x \in K[G]$ is in fact defined over A. Let P_i be a PIM over A[G] then the map e maps this to a k[G]-module. $\langle k \otimes P_i, \chi \rangle_K = \langle \eta_i, d_{ij}\phi_i \rangle = d_{ki}$. So in particular χ is a summand of one such, say $K \otimes P$. So $eP \neq 0$, either eP = P or we have a decomposition $P = eP \oplus (1 - P)P$. This is not possible as P is indecomposable, so eP = P. Hence $e(K \otimes P) = K \otimes P$, so $K \otimes P = \alpha \chi$. So χ must vanish on all P irregular/singular classes. It follows $(K \otimes P_i \text{ form a basis of such class function})$. So $\chi = \sum n_i(K \otimes \overline{P_i})$ but $\chi = \alpha^{-1}(K \otimes P)$ so $\alpha = 1$ and $\chi = K \otimes P$. Why is \overline{P} simple? Because exactly one $d_{ij} \neq 0$ and is in fact to 1 but $C = {}^tDD$, hence \overline{P} is simple.

Steinburg character of $SL_n(q)$. B is the subgroup of upper triangular matrices, $G = B \cup BxB$ for some $x \notin B$.

So $\mathbb{I}_B \uparrow^G -\mathbb{I} = \chi$. χ is irreducible with degree |G/B| - 1 = q. But $|G| = q(q^1 - 1)$ so χ is q-defect 0.

8 Introduction to Block Theory

Let p be a fixed rational primes, K, A, k as before. $\pi : \mathcal{O}_K \to k = \mathcal{O}_K/P$ quotient map where P is a prime of \mathcal{O}_K above p. $K_1 = \sum g$ class sum for any class C_i . Irr(G) = character 0 irreducible class, Br(G)=irreducible Brauer class for prime p.

Definition 8.1. Let $\chi \in Irr(G)$ afforded by ρ . Then for all $z \in Z(K[G])$, $\rho(z) = \epsilon_z I$. Define $\omega_x : Z(K[G]) \to K$ defined by $z \mapsto \epsilon_z$

Let $\chi, \psi \in \operatorname{Irr}(G)$, say $\chi \sim \psi$ if $\pi(\omega_{\chi}(K_i)) = \pi(\omega_{\chi}(K_i))$ for all *i*.

Definition 8.2. A subset $B \subset Irr(G) \cup Br(G)$ is a *p*-block if

- 1. $B \cap \operatorname{Irr}(G)$ is an equivalence class under ~
- 2. $B \cap Br(G) = \{ \phi \in Br | d_{\chi\phi} \neq 0 \text{ for some } \chi \in B \cap Irr(G) \}$

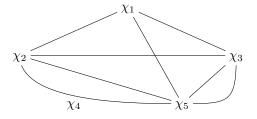
Notation. We set $Bl(G) = \{\text{set of } p \text{ blocks}\}$ We call the block containing \mathbb{I}_G to be the principal block.

Theorem 8.3. $\chi, \psi \in \operatorname{Irr}(G)$ are in the same p-block if and only if $\omega_{\chi}(K_i) - \omega_{\phi}(K_i) \in \mathcal{P}$ for all *i* and all primes $\mathcal{P} \in \mathcal{O}_K$ above *p*.

Theorem 8.4. Let $\phi \in Br(G)$, then ϕ lies in a unique p-block.

Define a graph G = (V, E) by V = Irr(G) and $(\chi, \phi) \in E$ if there exists $\psi \in Br(G)$ such that $d_{\chi\psi} \neq 0 \neq d_{\phi\psi}$. We call this the *Brauer Graph*.

Example. A_5 from last week, p = 2.



Fact. $B \cap Irr(G)$ is a single connected component, so $B_1 = \chi_1, \chi_2, \chi_3, \chi_5$ and ϕ_1, ϕ_2, ϕ_3 and $B_2 = \chi_4$ and ϕ_4

Theorem 8.5. Let B be a p-block. Then $|B \cap \operatorname{Irr}(G)| \ge |B \cap \operatorname{Br}(G)|$. Let $\chi \in \operatorname{Irr}(G)$ then the following are equivalent

1. $|B \cap \operatorname{Irr}(G)| = |B \cap \operatorname{Br}(G)|$

2. $p \nmid \frac{|G|}{\chi(1)}$

3. $B \cap \operatorname{Irr}(G) = \{\chi\}$ (in this case $B \cap \operatorname{Br}(G) = \{\widehat{\chi}\}\}$

Corollary 8.6. If $p \nmid |G|$, then $|B \cap Br(G)| = |B \cap Irr(G)| = 1$

Definition 8.7. Let $\chi \in \operatorname{Irr}(G)$. Then $e_{\chi} := \frac{\chi(1)}{|G|} \sum_{g \in G} \overline{\chi(g)}g \in Z(K[G])$ is the idempotent for χ .

Note that if $\chi \neq \psi \in \operatorname{Irr}(G)$ then $e_{\chi}e_{\psi} = 0$, hence $e_{\chi} + e_{\psi}$ is an idempotent.

Definition 8.8. Let $B \in Bl(G)$. Then $f_B := \sum_{\chi \in B \cap \operatorname{Irr}(G)} e_{\chi} \in Z(\mathcal{O}_p[G])$. This is called the Osima idempotent. Let $e_B := \pi(f_B)$. Define $\lambda_B = \pi(\omega_{\chi})$ for some $\chi \in B \cap \operatorname{Irr}(G)$.

Note that if ϕ is afforded by the k-representation η , then $\eta(z) = \lambda_B(z)I$ for all $z \in Z(k[G])$.

Theorem 8.9.

- 1. $\lambda_{B_i}(e_{B_i}) = \delta_{ij}$
- 2. e_B are orthogonal idempotents
- 3. e_B is a k-linear combination of class sum of p-regular classes
- 4. $\sum e_B = 1$
- 5. If $\lambda_B(z) = 0$ for all $B \in Bl(G)$. Then z is nilpotent.

6.
$$\{\lambda_B\} = \operatorname{Hom}(Z(k[G], k))$$

7. Every idempotent of Z(k[G]) is a sum of the e_B .

Proof.

- 1. Let $\chi \in \operatorname{Irr}(G)$, then $\omega_{\chi}(f_B) = 1$ if $\chi \in B$, 0 else. If $\chi \in B$, then $\pi(\omega_{\chi}) = \lambda_B \Rightarrow \lambda_B(e_B) = 1$.
- 2. First note $f_B f_{B'} = \delta_{BB'} f_B$. So $e_B e_{B'} = \delta_{BB'} e_B$. Since $\lambda_B(e_B) = 1 \Rightarrow e_B \neq 0$.
- 3. Exercise
- 4. $\sum f_B = \sum e_{\chi} = 1$, hence $\sum e_B = \sum \pi(f_B) = \pi(\sum f_B) = \pi(1) = 1$