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In this course every ring is commutative with unit. Every module is a left module.

Definition 0.1. Let R be a (commutative) ring and M a (left) R-module. Then a bilinear form on
M isamap §: M x M — R which is R-linear in both variables. i.e. f(azx+by, z) = af(z,z)+bp(y, 2)
and B(z,by + cz) = bB(x,y) + ¢B(x, 2) Vr,y,2 € M,a,b,c € R

Example. Standard Euclidean scalar product on R™. R™ xR™ — R is a bilinear form on the R-module
Rn

Definition 0.2. A bilinear form 8 : M x M — R is called symmetric if 5(z,y) = B(y,x) Ve, y € M. It
is called skewed symmetric if f(x,y) = —f(y, x) Yo,y € M. It is called symplectic if 5(x,2) = 0V € M

Example. Standard scalar product on R" is symmetric.
On R? the bilinear form (z1,y1) X (z2,y2) — T1y2 — T2y; is symplectic and skew-symmetric

Remark. Any symplectic bilinear form is also skew-symmetric because 8 symplectic = 0 = S(z+y, z+

y) = B(z,2) + Bz,y) + B(y,z) + B(y,y) = B(z,y) + By, z) hence it is skew-symmetric.

If 2 € R is a non-zero divisor (i.e. 2a =0 = a = 0Va € R) then any skew-symmetric form is also
symplectic because 8 skew-symmetric = B(z,z) = —f(x,z) = 20(x,z) = 0 and 2 a non-zero divisors
we can divide by 2 hence f(x,z) = 0Vx € M = 3 symplectic

Example. For R = F5, the form Fy x Fy — Fs defined by x,y — xy is skewed-symmetric but not
symplectic because 5(1,1) =1 # 0 € Fy

Definition 0.3. A bilinear form §: M x M — R is called regular or non-degenerate or non-singular
if

1. Vf: M — R a R-linear map Jxg, yo € M such that f(x) = B(zo,z) and f(x) = B(z,yo)

2. B(z,y) =0Vz € M = y =0, similarly g(z,y) =0Vy e M =2 =0

Remark. vl : M — MY = Homr(M,R) = {f : M — R : fis R-linear} defined by z — r(z) =
Blx,—): M — R:t+— B(z,t) and y = l(y) =B(y,—) : M = R:t— B(t,y). Then

1. says r,[ are surjective
2. says r,l are injective

In particular, if M = V a finite dimensional vector space over a field R = F then 2. = 1. (as
dimV = dim V* and thus 1. injectivitiy= 2. surjectivity)

Definition 0.4. Let (M, ), (M’,8’) be bilinear forms. An isometry from M to M’ is an R-linear
isomorphism f : M — M’ such that 8(z,y) = 8'(f(x), f(y))Vz,y € M
Two bilinear forms (M, 38), (M’, ') are isometric if there exists an isometry between them

Exercise. Check that isometry is an equivalence relation
Check if (M, 8) and (M’, 3’) are isometric then (M, ) is symmetric (skew-symmetric, symplectic,
regular) if and only if (M, 8’) is.

Definition 0.5. Let M be an R-module. A quadratic form on M is a function g : M — R such that
1. q(ax) = a’q(z)Va € R,x € M
2. The form S, : M x M — R defined by 5,(z,y) = q(z + y) — q(z) — q(y) is bilinear

Bq is called the associated symmetric bilinear form.

The quadratic form ¢ : M — R is called regular if g, is regular.

Let (M,q),(M’,q’") be two quadratic forms modules. An isometry from M to M’ is an R-linear
isomorphism f : M — M’ such that ¢(z) = ¢'(f(X)) Va € M.

Remark. If B is a (symmetric) bilinear form then gg(x) = S(z, ) is a quadratic form because gg(az) =
Blax, ax) = a®B(x, z) = aqp(x) and By, (x,y) = qs(x +y) —qs(x) —qp(y) = e +y,x+y) — Bz, ) —
B(y,y) = B(z,y) + B(y,z) is bilinear.

If 8 is symmetric then §,, = 23



Corollary 0.6. If 3 € R (i.e. 2 € R is a unit) and M is an R-module then { quadratic forms on M} —
{symetric bilinear forms on M} by q — B, is a bijection with inverse { symetric bilinear forms on M} —
{quadratic forms on M} defined by 5 — 3qs

Proof. Exercise O

Remark. If % € R then the theory of quadratic forms is the same as the theory of symmetric bilinear
forms.
But if 3 ¢ R then the two theories may differ:

Ezample. The symmetric bilinear form Z x Z — 7Z defined by x, y — xy does not come from a quadratic
forms on Z because if ¢ : Z — Z is a quadratic form then g(a) = q(a - 1) = a?q(1) and B4(z,y) =
a(z +y) —a(z) — aly) = (x +y)*q(1) — 2?q(1) — y?q(1) = 22yq(1) # 2y

Objective of this course: Understand classification of quadratic forms (or symmetric bilinear forms)
up to isometry:
How many quadratic forms exists (up to isometry)?
Given two quadratic forms how can I decide when they are isometric

A few applications of quadratic forms:

e Algebra (quaternion algebras)

e Manifold theory (as products pairing)

Number theory

e Lattice theory (sphere packing)

1 Quadratic forms and homogeneous polynomial of degree 2

Definition 1.1. A polynomial f = S ai,. i, il € Rlxy, ..., x,] is called homogenous of degree

m if all occurring monomials x{'...x% (a4, 4, 7 0) has degree i1 + ... + i, =m

Example. 23 + 22y + 23 is homogeneous of degree 3

23 + 22 + zy? is not homogeneous.

Every homogeneous degree 2 polynomial f € R[z1, ..., z,] has the form f = Y7 | aix?+zi<j bi;TiT;.
To every polynomial f € R[zy,...,z,] one can associate a (polynomial) function f : R* — R by
(r1y ey mn) = fre, ey )
Remark. In general R[zy,...,r,] — Funtions (R", R) which maps to f + f is not injective. (find

examples!)
But homogenous polynomials in n-variables of degree m — Functions (R"™, R) is injective

Claim. If f € R[xy,...,2,] is homogeneous of degree 2 then f: R" — R is a quadratic from

Proof. Note: If g1, g2 are quadratic forms on M then ¢ + g2 and ag; are all quadratic forms Va € R.
Thus can assume f = z;x;. Then f(ry,...,r,) = 75 S0

1. f(ar)=a?f(r)Va € Ry,r € R"

2. f(r+s)— f(r)— f(s) = (ri +si)(rj + s;) — rirj — 8;8; = 1;8; + s;7; is bilinear in r, s € R"

O
Lemma 1.2. For any (commutative!) ring R, the map
homoegenous polynomials of degree
{ 2 in n variables } — {quadratic forms R"}
defined by f — f is bijective
Proof. Exercise O



If R”Z—> R™ is an R-linear map given by a matrix A = (a,;;) € M, (R) we can define a ring ho-
€ ?=1 a;ijeq

momorphism A, : Rlx1,...,z,] = Rlz1,...,x,] by z; — Ay(z;) = Z?Zl

polynomials of degree m to homogenous polynomials of the degree m.

ai;z; which sends homogenous

Definition 1.3. Two homogenous polynomials of degree 2 f, g € R[z1, ..., x,] are (linearly) equivalent
if 3A € M,,(R) invertible with A.(f) =g

Lemma 1.4. The map

homoegenous polynomials of degree
2 in n variables /linear equivalence — {quadratic forms on R"}/isometry

is bijective

Proof. Exercise O

1.1 Free bilinear form modules

Definition 1.5. A bilinear R-module (M, ) is called free of rank n (n € N) if M = R"

If (M,p) is free of rank n then M has a basis ey, ..., e, and we can defined an associated bilin-
ear form matrix B = (f(e;,e;)). Note that B = (3(e;,e;)) determines § since if xz,y € M have
coordinates (with respect to e1,...,€n) T1,.cc,Tn, Y1, .., yn € R ie. & = > xse;,y = Y yie; then

Blx,y) = B wies, Y yje;) = Y aiBei e)y; = (X1, ooy Zn) B(Y1, oy Yn) "

Example. Standard scalar product on R™ has bilinear form matrix with respect to standard basis

1 0
B= ]
0 1
Lemma 1.6. Let (M, ) be a free bilinear form module of rank n with basis eq,...,e,, then [ is

non-degenerate <=> the associated bilinear form matriz B = (B(e;, e;)) € M, (R) is invertible

Proof. Recall that (§ is non degenerate if and only if r,l : M — Hompg (M, R) defined by

) = B(z,y)
By, )

xr > 7"($) = ,@(ZIJ, _)’ 7"($)(y
= l(.’IJ) = B(—,.T), l(l‘)(y)

1 i=j
0 i#j
ie. ef (>-xjej) = x;. Let (r;;) receptively (I;;) be the n x n of r, 1 with respect to basis ey, ..., e,0f M
and e ..., e#of Homp(M, R) i.e. S0 rijel = r(e;) and SJ7_, lnjel = I(e;) so Blej, ei)r(e;)(e;) =
Shey T'k;jek#(ei) = 1 Vi,j = (r;;) = BT = transpose of B. Similarly for (e;;) = B. So, 8 non
degenerated <= r,l are R-linear isomorphism <= (r;;) and (I;;) are invertible < BT B are
invertible <= B is invertible O

are bijective. M has basis e1,...,e,. Then Homg (M, R) has basis efﬁ, ..., €r where efej = {

Lemma 1.7. Let (M,3),(M’,5') be two free bilinear form modules over R of rank n with basis
€1, ..., en for M and ey, ....;el, for M' then (M, ) and (M', ') are isometric <= associated bilinear
form matrices B = (B(ei,e;)) and B" = (8' (e}, €)) are congruent. i.e. 3A € M,(R) invertible such
that B = ATB'A

Proof. 7 = 7: Let f : M — M’ be an isometry. Let (f;;) be the associated matrix with respect
to the basis ey, ...,e, and ¢}, ..,e), ie. f(e;) = > p_; fuje,. Then f isometry = f isomorphism
= (fi;) invertible and B(e;, e;) = B'(f(e:), f(e;)) = B (3h_1 frich, 2012y frjer) = 2 fwiB' (eh, €)) iy =
(ATB'A);;. Hence B= ATB'A

"< " A= (fij) € M,(R) defines an isomorphism f : M — M’ by f(e;) = >_ fr;€} such that
Blei,ej) = B'(f(ei), f(ej)) (Calculation as above). Hence f: M — M’ is an isometry O



Definition 1.8. Let B € M, (R) we let (B) stand for the bilinear form module (R™, 8), 8 : R" X R"™ —
R defined by
v,y =By =a"By

This is a free bilinear form module with basis eq,...,e, with ¢; has an 1 in the i-th position and
associated bilinear form matrix B. Note 3(e;, e;) = el Be; = B

Remark. (B) = (B') for B,B’' € M,,(R) <= 3A € M, (R) invertible such that B’ = ATBA

Definition 1.9. The determinant of a non-degenerate free bilinear form module M = (M, ) with
basis e1, . .., e, is the determinant det M = det(B(e;, €;))i j=1,...n» € R*/R**. Here R** C R* is the set
of units which are squares. Note that det M € R*/R** does not, depend on the choice of basis because if
eh, ... el is another basis, then (B(e},e’)) = AT (B(ei,e;)A = det(B(e], e e/;) = (det(A))* det(B(ei, e;))

’L7J

Example. Recall {(a) is R x R — R defined by z,y — axy.
o If (1) = (2) = det(1) = det(2) € R*/R** = 2 is a square = (1) % (2) over Q
=1 =2

o If <<(1) (1)>> ~ <<(1) (1))> = 1=-1¢ R*/R* = (~1) is a square = <<(1) 2>> 2
<<(1) (1)>>0ver Z,Q,R but<<(1) (1))>~<((1) (1))>0ver(C(see below)

Remark. if (M, ) is a free of rank n with basis ey, ..., e, and bilinear form matrix B then
e (M, ) is non-degenerate <= det B € R*.
e (M, p) is symmetric <= B = BT
o (M, p) is skew-symmetric <= BT = —-B
e (M, p) is symplectic <= BT = —B and all diagonal entries of B are 0

Proof. Exercise. O

Lemma 1.10. Let R be (commutative!) ring and f : R" — R! is a surjective R-module homomor-
phism. Then n > 1. In particular, R" = R' = n =1

Proof. Let m C R be amaximal ideal. Then R/m = k is a field. Reducing f mod m yields a surjective
map f : (R/m)" — (R/m)! of finite dimensional k-vector space = n = dimy,(R/m)" > dimy(R/m)! =
l O

Remark. Lemma does not hold for non-commutative ring in general. For example let V' be a k-vector
space of co dimension and A = Endy (V') then A @ A = A as A module

2 Orthogonal sum

Definition 2.1. Let (M, 8) and (M’, 8’) be two bilinear form modules. Their orthogonal sum (M, 3) L
(M’, ') has underlying module M & M’ and bilinear form (M & M’) x (M & M’) — R defined by

(@, u), (y,v) = Blz,y) + ' (u,v).

Remark. e B € My(R), B' € My (R) then (B) L (B) — <(§ 59)>

o If (M,[) and (M',3’) are regular (symmetric,skew-symmetric,symplectic) then so is (M, ) L
(M, B")
Definition 2.2. Let (M, ) be a symmetric or skew-symmetric bilinear form (so f(z,y) = 0 =

B(y,z) = 0). Let N C M be a sub-module. The orthogonal complement of N (in M) is the sub-
module N+ = {z € M|B(z,y) =0Vy € N}



Lemma 2.3. Let (M, 3) be symmetric or skew-symmetric and N C M a sub-module such that (N, Sx)
is non degenerate. Then M = N L N+

Proof. Have to check that NN N+ = 0. If z € NN N* then B(z,y) =0Vy € N (as z € N1). But
since z € N and fy is non degenerate we have x =0. So M D N+ N- =N@® N*.
We next need to check N + N+ = M. Let z € M then 3(z, )|y € Homg(N, R) =

BN non—degenrate
3z0 € N : B(z,y) = B(wo,y)Vy € N then B(x—z¢,y) =0¥y € N = x—20 € Nt = 2= 20 +2 — 0.
N~ S——
EN eN-L
Thus N+ Nt=M=N@Nt =M
Lastly we need to check that (N,Sx) L (N+,8%) = (M,B). If 2,y € N,u,v € N+ then B(z +
u,y +v) = Bla,y) + Bla,v) + Bv,y) + Bu,v) = By (2, y) + By (u, v) O
—— =

=0 =0

Corollary 2.4. If (M, ) is a finitely generated symmetric bilinear form module. Then M = (u;) L
(ug) L -+ L (ug) L N where u; € R* and f(z,x) € R\ R*Vx € N

Proof. Set My = M and if §(z,z) =€ R\ R*Vx € My = M then take N = My = M and we are
done. So assume Iz € My : B(z,z) € R* then ax # 0 € MVa € R\ {0} (if az = 0 = B(az,z) =
aB(z,z) = a =0). So Rx C M is a free module of rank 1 with basis . Rx has bilinear form matrix
(B(z,z)) € R* invertible. So, B|g, is non degenerate. = M = Rz 1 (Rz)® with u; = f(x,z) € R*
~N -
(u1) =:M;
contradicting Lemma [1.10
Repeat with M;jin place of My to obtain M = (uy) L --- L (ug) L M. We can repeats as long as
Jx € Mg : B(x,x) € R*. But the procedure stops because K > n impossible otherwise there exists a
surjective map R® — M = (u1) L -+ 1 {u,) L My - RF =n >k O

Rk

Remark. If B(x,2) € R\ R* Vx € N # 0 and S is non-degenerate then (N, 8) cannot has an orthogonal
basis

Proof. f N = (u;) L -+ L (u,) and if N is non-degenerate with respect to base ey, ..., e, then (u;)
U; ) :j
0 i#j
Theorem 2.5 (Existence of orthogonal basis over fields of char # 2). Let k be a field of char # 2
and (M, B) a finite dimensional symmetric bilinear form. Then M = (u1) L -+ L (w;) L N such that
Bln =0 (B(z,y) = 0Vxz,y € N). In particular (M, 3) has an orthogonal basis, ey, ... e, e111,... €,
w j=i=1,...1
such that B(e;,ej) =<0 j=i=10+1,...n

are non-degenerate = u; € R*. ﬂ(ei,ej) = in particular S(ej,e;) = uy € R* O

0 j#i
Proof. From corollary we have (R =k) M = (uy) L --- L (w;) L N withu; € R*, f(z,x) € R\ R*Vz €
N. Need to show 8|y = 0. f(z,z) = 0Vx € N = associated quadratic form ¢(z) = 5(z, z) ]ikO_c(;a:;62
Bla,y) = 5(a(x +y) — a(z) —q(y)) =0 .

Want to generalize theorem on existence of orthogonal basis to rings.
Definition 2.6. A ring R is called local if it has a unique maximal ideal m.

Note that R/m is a field as m C R is a maximal ideal.
Notation. (R, m, k) is alocal ring if k = R/m,m C R is the maximal ideal
Remark. In a local ring (R, m, k) we have R* = R\'m

Proof. Need to show m = R\ R*.

e We see that m N R* = () because m C R = m C R\ R*.



o If a € R\ R*, then (a) = Ra C R (proper ideal because Ra = R = 3b: ba = 1 contradicting
a ¢ R*) Every proper ideal is contained in a maximal ideal == RaCm =a€m = R\ R*Cm

O

(R, m, k) local then A € M, (R) is invertible if and only if A mod m € M, (k) is invertible because
A € M,(R) invertible <= detA € R* = R\m <= det(A modm) #0€ k=R/m < A
mod m € M, (k) is invertible.

Example. e Fields are local rings with m =0

® Zipy =1{% € Q:a,b € Z,p1b} where p € Z is prime. This is a local ring with maximal ideal
m={% €Q:ptbp|a}. Then Zy)/m =T,

e [k field k[T]/T™ is a local ring with maximal ideal (T')

Definition 2.7. A finitely generated R-module P is called projective if it is a direct factor of some
R"neNie dR-module N:M N = R"

Theorem 2.8. Let (R,m, k) be a local ring and M a finitely generated projective R-module, then
M = R for somel € N

f -1
Proof. M projective so 3N : M@N 2 R . Let p : R* — R" be the linear map R" %5 M & N i(> Mo N Ny
+— z,y—(x,0

and let p be the composition of all these maps. Note that p* = (f~1qf)?> = fYqff q¢f =f' ¢* f =

=q

pand imp = M

T IR~

Claim. 3 basis of R™ with respect to which p has the form (Bl 8) ie. 3U € M,(R) such that

_ L 0 -1
p= (0 O)U .
~ 1; O

Note that claim implies theorem because im p ? m {0

Claim is true over a field (i.e. mod m). M/mM and N/mN are finite dimensional k-vector spaces
so k! = M/mM, k" = N/mN
—
1, 0
0 0

—
ek —————k ek

g1 g2
lm@gz gl_l@gz_lT

M/mM & N/mN ——s M/m & N/mN

f mod ml: flT

R

= R!

(R/m)" (R/m)"
1, 0 ) L 0\, . .
Then we get = A"'pf(g1 ®g2), p modm = A A~' now lift all entries of A to
0 0 {91092 00
AeM,, (k)

entries of R (under the surjective R/m — k) to obtain a matrix S € M,(R) such that A = S
mod m. A € M,(k) invertible = S € M, (R) invertible. S~'pS mod m = (ll 0) mod m so

0 0
1 T B . .
S™'pS = c D with T = 1; mod m and B,C,D = 0 mod m. = after base change (given

T
by S) p becomes (C’ D

) as above. Idea: “Want to perform row and column operation to make



T B in 1;
C D 0 0
r= (¢ )
1 T-'B 1 -T7'B\ (1
0 1 C D 0 1 To\x
———— N— ————
X X-1

1 1

after base changes”.

LB

Now, T'=1 mod m = T € M,(R) invertible. p* =
:) T =T"+BC = 1=T+T 'BC.

I) =-after bases change p becomes <1 B

C D)vacaD_

1 B

0 mod m. p2p¢<c g)(C ZB;) (C D>:>BC’O,BDO,DCO,DC’B+D2.

= D?=DCB+D3 = D?=

0

D3 = D*(1
tion is because 1 — D is invertible as D =0

1 B

, 1 B
an other base change gives (0 1) (0 0
N—_——

Z

)G

—D)=0= D?=0= D = CB. The second to last implica-

1 0\(1 B\(1 0\ _ (1 B
mod m. (—C 1) (c CB) (C 1>:<0 O)Then
——— ———
Y

Y—l
1 -B 1 0
’)=(0 o) -
———

Z-1

Remark. If R is a Euclidean domain (e.g. R = Z) then every finitely projective R-module is free.

Example. R = Z every finitely generated Z-module is isomorphic to Z"@®finite abelian group. If P
is finitely generated projective over Z then P C Z™ = P has no element of finite order. = P = Z"® /
finite

Remark. For a general commutative ring, projective R-modules may not be free

Example. R = Z[\/-5] = Z[T]/(T? + 5) . Fact: R is a Dedekind domain, every ideal I C R of a
Dedekind domain is a projective R-module. Let I = (2,1 + +/—5) C R. From the fact I is projective.
If T was free then I = R", n # 0 because I # 0. Let’s compute R/I:

R/I = Z[T)/(T*+5,2,1+T)
= Fy[T]/(T?*+5,T +1)
= Fo[T)/(T*+1,T +1)
= Fo[T)/((T +1)*,T +1)
= Fo[T)/(T+1)
~ T,

Rt for some t € R. Now ¢ is not a unit because otherwise 0 = R/Rt

I=Rt=2=at = aeR*#I:Rt:RéZZR-Z
2 irreducible

Assume n = 1 then I =
contradicting R/I = Fy. If t ¢ R* :

and

Z[T]
T2 4+5

R/I /I

~—~
2R

ZIT)/(T? +5,2)
Fy[T]/(T? + 1)
Fy[T1/(T +1)°
Fy
=I=2R"=n>2 SoR"=] CR,Ilet F =field of fraction of R. Then I — I ®g F and

R—F=R®rFsoweget F"=1®r F C F=R®pgF (since F is a localization of R) = F" C F
contradiction so n 2 2.

Definition 2.9. An inner product space is a non-degenerate bilinear form module (M, 8) where M is
finitely generated and projective.

Remark. Over a local ring any inner product space is free



Definition 2.10. Let R be a ring. The hyperbolic plane His the symmetric inner product space
0 1 . 2
<<1 0>>1.e.H—(R,6).

0 i—i
H has basis ej,es with respect to which we have [(e;,e;) = { =

1 i#j

o 1\" (o1 01
space because (1 0) = (1 O)’ it is non-degenerate because det (1 0) = —1 € R*. Does

H is a symmetric

H have an orthogonal basis? If £ € R (i.e. 2 € R*) then H = (1) L (—1) because (01 (1)> =

_1
(1 2) (0 1) < 1 1) and det A = 1 and thus A is invertible. If 1 ¢ R (2 ¢ R*) then H has no
N——

1 1 1
1 )\t o)\-L 1

AT =A

orthogonal basis. In H > (2) then (a: y) <(1) é) (;) = 2zy ¢ R*Vx,y € Hsince 2 ¢ R*. If (H, )

had an orthogonal basis e1,es then 3(e;, e;) € R* = H has not orthogonal basis.

Example. If (R, m, k) is a local ring with chark = 2 then for all a,b € m <<61L 2) >has no orthog-

onal basis (otherwise, any orthogonal basis would yield an orthogonal basis mod m but <<(11 11)>>

mod m = <<(1) (1)>> = H has no orthogonal basis.

Theorem 2.11. Let (R, m, k) be a local ring and M = (M, ) a symmetric inner product space.
o If char(k) # 2 then M has an orthogonal basis
o If char(k) = 2 then M = (uy) L --- L (@) L Ny L --- L N, where u; € R* and N; =

a; 1
<<1 bi)>7ai,bi€m

Proof. Recall M finitely generated, 8 is symmetric = M = (u1) L --- L (u;) L N such that u; € R*
and B(z,z) € R\ R* =mVz € N.

Recall R local and M finitely generated projective = M = R"*! same for N so N = R"

If n = 0 done. So assume n > 1.Then 5 non-degenerate = for ¢ : R = N — R linear, dzg € N :

(1,eyxn) =Ty
B(xo,y) =(y) Yy € N=3z,y € N : B(z,y) =1 (y = e1,7 = x9).

If char(k) #2 (2¢m=R\R*=2€ R*). f N#0= 3z,y € N,f(z,y) =1. Thenz+y € N
so Bz +y,z+y) = Bz,x) +26(x,y) + B(y,y) = 2 € m = N = 0 (due to the contradiction of

| — —— —— N —

em em =2 em
char(k) # 2)

Now assume that char(k) = 2. We are going to prove that N = N; L --- L N, with N; as in
the theorem by induction on n (N 2 R"). n =0 = N = 0 and we are done. n =1 = N ¥ R
then S|y is a non-degenerate symmetric form on R but any rank 1 inner product space is & (u)
for w € R* because f : R x R — R,B(z,y) = zy - 8(1,1) and S non-degenerated = ((1,1) € R*.
This contradict our assumption that S(x,z) € mVx € N. So assume n > 2: Since |y is non
degenerate and N free (of rank n) = Jz,y € N : B(z,y) = 1 (because N = R", ¢ : R™ — R by

T1,y...y Ty H T1 5 :>d Jz : o(y) = B(z,y) Yy € R™ so in particular 3z € N1 = ¢(ey) = B(z,e1))
non—deg

The subspace Rz + Ry C N has bilinear form matrix with respect to {z,y}

(st Sy = (5 )



a 1
1 b
induction hypothesis to Ni- and we are done O

linearly independent and N; := Rx + Ry C N is isometric to << >>:> N=N; L Nll and apply

Example. (M,3) = <G ;)> over Ze) = {2 € Q|2 { ¢}. det (? ;) =3 and 3 € (Z))*, hence

M is non-degenerate. But M has no orthogonal basis because Z)/2 = F2 and any orthogonal basis

0 1>> over F5 which we have seen has

over Z(s) induces a orthogonal basis over Z(g)/2 but M = <(1 0

no orthogonal basis.
Over R = Z,) where p € Z is prime, p # 3 (otherwise M is degenerate as 3 ¢ (Z3))*). Then M is
non-degenerate since det M = 3 € (Z))*. If furthermore p # 2 then by theorem M has an orthogonal

basis: For instance z = <é) then 3(x,x) = 2 € (Z,)* (p # 2) = Rz C M non-degenerate subspace so
M = Rz 1 (Rz)*. Now (Rz)t ={y € M : B(z,y) =0} = {(Z) € R (1 0) (f ;) (Z) = 0} =
R <12) = { ((1)> , <12> } is an orthogonal basis of M if R = Z,) p # 2,3 (Also works for Q,R, C)
Definition 2.12. Let (M, /3) be a symplectic inner product space (5 symplectic if 5(z,z) = 0Vz € M).
A symplectic basis of M is a basis %1,¥y2, T2, Yz, - - - s Tn,Yn such that M = (Rxy + Ryy) L --- L

(Rxpn + Ryyn) and B(z;,y;) = 1Vi (= B(yi,x;) = —1) i.e. the bilinear form matrix of 5 with respect to
the basis x1,y1, ..., Tn, Yn is

Theorem 2.13. Let (R,m,k) be a local ring and (M,p) a symplectic inner product space. Then
(M, B) has a symplectic basis
Proof. (M, f3) inner product space = 3 non-degenerate, M projective = free (since R local) = Jz,y €

. _ ~ : : . (Blz,z) Blz,y) _
M : B(x,y) = 1. So the inner product matrix of 8 with respect to {z, y} is (ﬁ(z, W) Blyy)) seyrmietic

(_01 (1)> Thus set N1 = Rr+ Ry C M is a non-degenerate free submodule of rank 2 with symplectic

basis {z,y}. (N1, 8|n,) non-degenerate = M = Ny + Ni- repeating the same argument with
—
0 1
-1 0

Ni- instead of M we obtain M = Ny L Ny L --- L N, where N; = <<_01 (1)>> O

Corollary 2.14. Quver a local ring any symplectic inner product space has even dimension. Further-
more any two symplectic inner product spaces are isometric if and only if they have the same rank.

2.1 Witt Cancellation

Motivation: Let Vi, V5 be finite dimensional vector spaces over k, If Vi1 @ W = V5, @& W for some finite
dimensional vector space W then V; & V5 because dim V), = dimV; @ W —dimW = dim Vo @ W —
dim W = dim V5. The same is true for free modules of finite rank (over a commutative ring), and also
over finitely generated projective modules over local rings.

Question: If V7, V5, W are symmetric inner product spaces does Vi, L W =2V, | W=V, 2V, 7?7
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Example. R =F, (or R local with 1 ¢ R) then (—1) L (—1) L (—1) = (—1) L H, that is,

-1 0 0 -1 0 0

< 0 -1 0 > = < 0 01 > but (—1) L (—1) 2 H because H has no orthogonal basis
0 o0 -1 0 1 0

over [F5. For the isometry see the example below.

Definition 2.15. We say Witt cancellation holds for a ring R if VM, N, P symmetric inner product
spacesover RM 1L PN 1 P=M2=N

Example. Witt cancellation does not hold over fields of char2 (or for local rings R where 2 ¢ R*).

-1 -1 -1
Note. < -1 > < 0 1 >(*), because 8 = < -1 > has orthogonal
1 1 0 1

1%

-1 =12
basis eq, es,e3 with [(e;,e;) = 0 for ¢ # j and B(e;, e;) = ) Z 3’ . In the basis e; + es +
1=
—1
e3, €1 + ez, es + e3, the inner product 8 has inner product matrix < 0 1 > = (). So If Witt
1 0

cancellation holds then (—1) L (—1) = H but this is not the case for field char2 (or local rings R with
2¢ RY)

Definition 2.16. Let M be an symmetric inner product space and N C M a non-degenerate subspace
then M = N L N and the reflection of M at N is the isometry

ry:M=N1LN+—>5N1Nt
(’Jj,y)'—)(l’,*y), xevaENJ_

Remark. ry is R-linear, an isomorphism (ry o ry = id) and preserves inner product hence ry is an
isometry

Lemma 2.17. Let (M,3) be a symmetric inner product space and x,y € M such that B(x,z) =
Bly,y) € R*. If R is local with % € R then there is a reflection r of M such that r(z) =y

Proof. Consider u =z +y,v=a2—y € M then 2 = J(u+v),y = 1(u—0)
o ulwv: f(u,v) =Bz +y,z—y)=pBx,x) = Byy) =0 (Since by assumption f(z,z) = 5(y,y))

o [(u,u) or B(v,v) € R*: 4f(x,x) = B(2x,22) = B(u+v,u +v) € R* (since f(z,z) € R* and
2 € R*). By the first point f(u+v,u+v) = B(u, u) + S(v,v). If B(u,u), B(v,v) € m = maximal
ideal of R = B(u,u) 4+ B(v,v) € m. Contradiction hence B(u,u) or 3(v,v) € R*

e If B(u,u) € R* then Ru C M non-degenerate subspace rry (z) = rga(“3%) = 37ru(u+v) (: "
vE(Ru
(u—v)=y
B(v,v) € R* then Rv C M non-degenerate subspace 7 (py)~ () = 37(roy (u+ v) (z "
u€(Rv
ve((Rv)L)L=Rv

=
,_hloh—\

slu—v)=y
O

Theorem 2.18. Let (R, m, k) be a local ring with 2 € R*. Then Witt cancellation holds for R. That
1s VM, N, P symmetric inner product space over R we have M L P=N | P= M = N.

Proof. Let M, N, P be symmetric inner product spaces over R such that M I P =2 N | P. By
our assumption R local and 2 € R* = P = (u3) L -+ L (u,) for u; € R*. Thus it suffices to
show M L (u) 2 N L (u) = M = N. Let f: M L (u) > N L (u) be an isometry and let
x €M L (uyand y € N L (u) be a generator for (u) ie. M L (u) = M L Rx and N L (u) =

N L Ry. B(z,2)piwy = u = By, y)nLy- fisometry: B(f(x), f(z))Niw = B(@ )iy = u =
By, y)NLwy = f(x),y € N L (u) satisfy hypotheses of lemma = Freflection r : N L (u) - N L
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(u) such that r(f(x)) = y=>rof: M L (u) = N L (u) is an isometry such that r o f : Rz = Ry.

Ty
Srof:(Re)" S (Ry) =M S N O
—— = rof

M N

2.2 Symmetric Inner Product space over R
Any symmetric inner product space M over R has an orthogonal basis M = (u1) L ... {(un),n =
dimg(M),u; € R* = R\ {0}. If u > 0 then u = a? for some a € R,(u) = (1). If u < 0 then
“—a
u= —a?and (u) = (—1). So M =r (1) L s(—1) (and r + s = dimg(M))
“—a

Proposition 2.19 (Inertia Theorem). Over R we have r (1) L s(—1) Zm (1) L n(—1) = r =m and
s=n

Proof. The equation implies that r + s = dimg(M) = n + m. Assume without loss of generality
that » < m then n < s. Witt cancellation tells us that (s — n)(=1) = (m — r)(1). Note that
if m—r =s—n # 0then Vo # 0 € (s —n)(—1) we have B(z,z) = —> 27 < 0. However
Vo # 0 € (m—r) (1) we have B(x,z) = >_ 27 > 0. Contradiction. Hence s —n=m —r =0 O

Corollary 2.20. The numbers r,s in M = r (1) +s(—1) do not depend on the choice of an orthogonal
basis for M

Definition 2.21. If M = r(1) 1L s(—1) over R then r = "M is called the positive index of M.
s =14~ M is called the negative index of M and it M — i~ M =r — s = sgn(M) is called the signature
of M

We have showed that if (over R) M = N then i* N =it M,i” N =i~ M and sgn(N) = sgn(M)
Corollary 2.22. Two symmetric inner product-spaces M, N over R are isometric M = N <=

itM =itN,i"M =i~ N <= rank M = rank N,sgn M = sgn N

2.3 Witt chain equivalence theorem

uy 0
Notation. Let uy,...,u; € R* write (uy,...,u) for (uy) L -+ L () = < > We say

0 uy
(u,...,u) is a diagonal form

Definition 2.23. We say (M, ) represent a € R if 3x € M such that 8(z,z) =a

Example. A diagonal form (uq,...,u;) represents uy,...,u;,u; + ug,.... The equation a = ulx% +
St umc? has a solution z1,...,2; € R <= a is represented by (u1,...,u;)

Lemma 2.24. Let R be a local ring (or a ring in which every direct summand of a finitely generated
free module is free) Let {a,b) and (c,d) be non-degenerate diagonal forms (a,b,c,d € R*). Then
(a,b) = (c,d) <= ab=cd € R*/(R*)? and Je € R* which represent (a,b) and {(c,d)

Proof. “=". We’ve already done. (They obviously need the same determinant modulo squares, and
need to represent the same numbers)
“&” e € R* represents (a,b) and (c,d) = 3x,y € R? such that B(x,2)ap =€ = BW,Y)ca =

(a,by = Rz 1L (Rx)* and (c,d) = Ry L (Ry)* with uj,uy € R*. Now e-u; =
~ S~—— ~~ S~——
non—degenerat rank1l non—degenerat rankl
(e)L(u1) (e) L{u2)
det({e) L (u1)) = det{a,b) = det{c,d) = det{e,us) = eus € R*/(R*)? = eu; = eusg? for some
g€ R = Uy = u292 for some g€ R*7 <u1> = <U2> = <avb> = <67’U,1> = <€,’U,2> = <C7 d> O
Definition 2.25. Two non-degenerate diagonal forms (a1, ..., a,) and (by,...,b,) (of the same rank

n) are called simply (chain) equivalent (with notation =) if either
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e n>2and 31 <4< j <nsuchthat (a;,a;) = (b;,b;) and a; = b VI # 4,5
eorn=1 (a1>% <b1>

Two non-degenerate diagonal forms (a1, ...,a,) and (by,...,b,) are chain equivalent (with notation
~) if IMy, ..., M, non degenerated diagonal forms of rank n such that M; = (a1,...,a,),M, =
(b1,...,bn) and My =~ My =, - -+ =5 M,

Remark. (a1,...,an) =~ (b1,...;0n) = (a1,...,an) = (b1,...,by)

Example. 0 € ) = permutation group on n letters. (ai,...,an) = <a0(1), . .ag(n)> because true

for transpositions because <<8 O>> = <<8 2>> = true for all 0 € ) because ) is generated
(a) L(b)==(b) L(a)

by transpositions.

Witt’s Chain Equivalence Theorem. Let (a1,...,a,) and (b1,...,b,) be non-degenerate diagonal
forms over a local ring R with 2 € R* then (a1,...a,) =~ (b1,...,b,) < (a1,...,an) = (b1,...,by)

Proof. “=". We seen this in the remark
“<" We use induction on n. For n = 0 there is nothing to say. n = 1,n = 2 is true by definition
of chain equivalence.

Assume n > 3 and (aq1,...,a,) = (b1,...,by)

Claim: 3 non-degenerate diagonal form {(c1,...,c,) = {(a1,...,a,) with ¢; = b;.

Note that the claim implies the theorem because (a1, ...,an) = {c1,...,¢n),{c1,...,cn) = (b1, ca,...
(b1,...,bn) = (coy...,cn) = (ba,...b,). So by hypothesis = (co,...,cn) = (ba,...,bp)

Witt cancellation

hence (ai,...,a,) ~ < c1 ,02,...,cn> ~ (by,...,bp).
\b/

Proof of claim: Let P = {(c,p)|lc = (c1,...,¢n),1 < p < m such that (c1,...,c,) represents
b1}. Note that ((a1,...,an),n) € P so P # 0. Let p = min{l|3(c,l) € P} well defined and
1 < p < n because P # (. Choose (c,p) with p minimal as above. ¢ = (¢1,...,c,) has prop-
erty that (ci,...,cp) represent by= Jx1,...2, € R such that by = c12] + -+ + ¢z € R*. As-

sume that p > 2. If Vi # j ¢z} + ¢jai € m = R\ R* then (123 + cox%) + (coz + c323) +

em em

R (cpr, +c12?) = 2b; which is a contradiction as 2 € R* and b; € R* = 3i < j such that
—_———

em

it +cjxs € R*. Since (c1,...,¢p) = (Co(1), -+ Cap)) Yo € Y, we can assume d = 127 + cox3 € R*.
Then (c1,c2) = (d,dcica) because both represent d € R* and both have the same determinant
(in R*/R*), = (c1,...,¢p) = (d,dcica, 3. .., ¢p) = {d,c3,...,cp,dcrca) but (d, cs, ..., c,)represent
by because b; = clx% +02x§ + o+ cpx§:> ((d,c1,...,cp derca, cpyi, .- Cn),p — 1) € P which
—_——
d-12
contradicts minimality of p= p = 1 = F(c1,...,¢) = (a1,...,an)and (c1) represents by, i.e.,
by = c12? = (by) = {c1)= I (b1, ca, . . Sep) = (ar, ..., an) O

2.4 Witt Groups:

Goal: Define W(R) = abelian group to be {isometry classes of symmetric inner product space over
R} /metabolic forms (=hyperbolic if § € R) with group operation given by L

Definition 2.26. A symmetric inner product space (M, () is called metabolic (or split) if 3 direct
summand N C M such that N = N*. Such a direct summand N is called Lagrangian.

Remark. N C M is a direct summand if 3P C M such that N@® P = M (i.e. N+ P = M and
NNP=0)

Example. e H = <((1) (1)>> is metabolic with Lagrangian <(1)) : R — R? defined by = — (g)

ie. L={(2,0) € R*|z € R} C H is a Lagrangian. Because

13
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* L is a direct summand with complement P = {(0,y)|y € R} C H,

+ L= {(r.9) € B¥|(2,0) <‘1) (1)> <‘;) —O0Vze R} = {(z,y) € Ry =0} = L

€L

zy=0Vz <= y=0

e [, is the identity matrix in M,,(R). A € M, (R) then < ( 0 I ) > is metabolic with Lagrangian

I, A,
I,
0

Lemma 2.27. Let (M, 3) be a symmetric inner product space then (M, 3) L (M, —p3) is metabolic.

the image of the map R" R™ @ R"™ (proof is the same as above)

Proof. The submodule L = {(z,2) € M & M|z € M} C M L M is a Lagrangian for (M.3) L
(M, —3) because

* L is a direct summand with complement P = {(y,0) € M?|y € M} as LN P = 0 and every
element (a,b) € M? is (a,b) = (b,b) + (a — b,0) so L& P =L+ P = M?
~  —
€L eprP

a

x L = Lt because let (b

>€LJ‘§M2 <~ B(a,x)—B(b,z) =0Vz e M < f(a—b,x) =

OVe e M a—b—0:>a—b:>(a) € L. Hence L+ = L

B non degenerate b

O

Definition 2.28. A free symmetric inner product space is called hyperbolic if it is isometric to H"
Note. M, N are metabolic (or hyperbolic) then so is M | N. If M, N are metabolic with Lagrangian
L1 CM,Ly C N then M | N has Lagrangian L; | Ly C M & N.

< ([0 Ig) > =~ H" (by change of basis). Let the basis of the first one to be ey, ..., en, €n11,-..,€2,
n

then the basis of the second one is (e1,en11), (€2, €n+t2), ... (€n,e2,) Where each pairs gives a copy of
H

Lemma 2.29. If 2 € R* then for all A € M, (R), <G) {4)> ~ <(f Ig>> ~ [

I, A

0 I, (I, 0 . . 4 _(In O
<In 0). Take X = (—;A In) which is invertible with inverse X+ = (;A In> O

Proof. We need to find a base change, that is 3X € M, (R) which is invertible such that X ( 0 I") XT =

Lemma 2.30. Let R be a ring for which all finitely generated projective R-module are free (e.g.., R

local or R = Z) then any metabolic inner product space (M, 3) is isometric to <<IO {Z>> for some
n

n €N, and A € M,,(R). If moreover, 2 € R* then every metabolic space is hyperbolic.

Proof. Let (M, 3) be metabolic with Lagrangian L C M. L C M being a direct summand = P C M
such that LNP =0 and L+ P = M. By assumption M projective = P, L projective = " P L
assumption on

are free. In a basis for L, and P, the inner product space §8 has inner product matrix (BPT g), with

C = CT. The upper left corner is 0 because L = L+ we have 3(x,z) = 0Vx € L.
Claim: The matrix B is invertible.

Proof of claim: B is the matrix of the linear map P 5—(> L*) = Hompg(L, R) with respect to the basis
x—B(x,—

of P and the dual basis of L. Need to show P — L* defined by x +— (x,—) is an isomorphism.
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Injectivitiy: xeP:ﬁ(m,y):0Vy€L:>x€IiJ-:L:>$€LQP:0$:E:0
Surjectivity: Let ¢ € L*,¢ : L — R. Define ¢ : M = L® P — P by (z,y) + ¢(x). Now 3 is
non-degenerate = EEaL, el}) € M = L& P such that ¢(z,y) = fla+ b,z +y)Ve € L,y € P= ¢(z) =
é(x,0) = Bla +b,x) = B(a, ) + B(b,z) = B(b,z)Vx € L. So b € P is sent to ¢ under the
——
=0sincea,ze L=L+
map P — L*. This shows surjectivity.

Notice that <I(31 (BT)—I?CB—1> = <(1) (BTQ)—1> (BOT g) <(1) B0‘1> - M= <(BOT g>>

1%

0 I, _ _
<<In A>> For A= (BT)"'CB~! O
. 0 I, ~
Note. If 2 € R* then <<In A>>H

Corollary 2.31. Owver a local ring R, every metabolic space has even dimension and if 2 € R*, R
local, then every metabolic space is hyperbolic

Definition 2.32. Let M, N be symmetric inner product spaces over R then M are N are called Witt
Equivalent (M ~ N) if 3 metabolic spaces P, @ such that M 1 P = N 1 Q. Denote by W(R) be the
set of Witt equivalence classes [M] of symmetric inner product spaces M over R

Lemma 2.33 (Definition). Orthogonal sum L makes W (R) into an abelian group with 0 = [0], [M]+
[N]=[M L NJ] and —[M, 5] = [M,—0]. W(R) is called the Witt group of R.

Proof. e “+” is well defined because if M ~ M', N ~ N’ then 3P, P’,Q, Q" metabolic such that
M1P~M 1P NLQ==N LQ. Then (M L N)L({PLQ) = (M LN)L
———
metabolic
(PLQ)=MLN~M LN
—_————
metabolic
e We have [M]+[N]=[M L N]=[N L M]=[N]+[M] (since M L N = N L M) and the group
law is commutative

e [0] + [M]=[0+ M] = [M] because 0 L M = M

o [M,B]+[M,-p]=[(M,B) L (M,—pB)] =0 because (M, 8) L (M,—/3) is metabolic for any inner
product space (M, 53).
O

Remark. W : (commutative) rings — abelian groups, defined by R — W(R) is a functor. For f : R — S
a ring homomorphism, we define a map of abelian groups W(f) : W(R) — W (S) by [M, 8] — [Ms, Bs]
where Mg = S®pr M and Bs : Mg x Mg — S is defined s; ® 1, $2 ® 23 — s1828(21,x2). Note that if
(M, B) is non-degenerate then so is (Mg, fs) : if M is free choose an R-basis of M, say x1,...,2, € M
then Mg is free with S-basis 1®z1,...,1®x,. Then (M, 8) non-degenerate <= (B(x;,x;)) € M, (R)

is invertible fRﬁ s (f(B(zi, ) = Bs(1 @ 4,1 ® xj)) € M,(S)isinvertible <= (Mg, Bs) is non-
R*—5*

degenerate. In the case (M, 3) is projective do it as an exercise

For R% 85T ring homomorphism, note that W(f)oW (g) = W(fog) because T ®s (S®@p M) =
T®sS)rM=TRr M
———
m®yi]a:f(y)

Proposition 2.34. Let R be a local ring with 2 € R*. Then two symmetric inner product spaces M, N
are isometric if and only if rank M = rank N and [M] = [N] € W(R)

Proof. “=": Obvious

“’ [M] =[N] € W(R) = M ~ N = 3 metabolic P,@ such that M 1 P~ N L Q. R local,
2 € R* = metabolic = hyperbolic so P = HP, @ = H?. Now rank M = rank N and rank M 1 P =
rank N 1 Q=p=q=M L HP =2 N 1 HP so by Witt cancellation = M = N. O
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Definition 2.35. Let R be a local ring. The rank homomorphism rk : W(R) — Z/2Z is defined by
[M] — rank M. Note this map is well defined as M ~ 0 <= 3P metabolic such that M L P is
metabolic== M 1 P and P have even rank = rk M = 0 € Z/27Z. The rank map is surjective because
rk((1)) = 1.

Let I(R) = ker(rk) =set of equivalence classes of even rank inner product spaces

The discriminant is the homomorphism disc: I(R) — R*/R2* defined by [M] — (—1)"%"

which is well defined because disc P = 1 for P metabolic as det <IO {Z) = (=1)"

Note that disc map is surjective because disc({u, —1)) = uVu € R*

Proposition 2.36. Let F be a field in which every element is a square (e.g. F algebraic closed, or
char F' =2 and F perfect, e.g., finite and char F = 2) then rk : W (F) 5 Z./27 is an isomorphism.

Proof. vk : W(F) — Z/27Z is surjective (for any commutative ring) since (1) — 1. Recall that every
symmetric inner product space over F' a field is isometric to (u;) L --- L () L Ny L -+ L N,
with N; = H (in the case of a field). So W (F) is generated by (u),u € F*/F?** as an abelian group.
Consider the map Z — W(F) defined by 1 ~ (1). Since (1) + (1) = (1) + (-1) (as —1 € F?*), we
have (1) + (1) = 0 = This map factors as Z/2Z — W(F') with 1 — (1). As W(F) is generated by
(u),u € F*/F?* = {1} this means that the map Z/2Z — W(F) is surjective and it is injective as
L)L — W(F) 5 2/22 sends 1 (1) 1 = /22 5 W(F) = W(F) 5 z/22 0
—_———

id
Corollary 2.37. W(F,) =Z/2Z for q even, rk : W(C) = 727
Example. W(R) — Z defined by [M] — sgn M is well defined because sgn(H) = 0
Claim: sgn : W(R) 5 Z is an isomorphism
Surjective: sgn(n (1)) =nsgn((l)) =n-1=mn

Injectivitiy: Every symmetric inner product space over R is M = n (1) + m(—1). If sgn M =
sgn(n (1) + m(=1)) =n—mthen n=m = M =n((1) + (-1)) =0 € W(R)

Recall:
o I(F)=ker(W(F) b Z/2Z) = “fundamental ideal”

dlSC
) =

o I(F F*/F?* map of abelian groups defined by M s (—1)"%"

Note. The disc map extends to all of W(F) by W (F) — F*/F?* defined by M (fl)r(
where r = rk M, but, in general, this is not a map of abelian groups so we don’t often use this.

Proposition 2.38. Let F' be a finite field. Then the discriminant map is an isomorphism: I(F) =
F*/FQ*

Proof. If char F = 2 this is true because both sides are equal to 0. (Since F finite and char F =2 =

So assume char F' is odd. We have to prove the following special case

Claim: (a,b) = (ab, 1)

The claim implies the proposition: define the map p : F*/F?* — I(F) by a + (a, —1) this is easily
seen to be a well defined map of sets. This is a map of abelian groups because p(ab) = (ab, —1) =
(ab) + (=1) = (ab) + (1) + (1) + (-1) = (ab,1) + (1) + (1) vt (a,b) + 2(-1) = (a,—1) +
(b,—1) = p(a) + p(b). The maps is surjective because every (ai,...,as,) € I(F) is {a1,...,a2,) =
(a1...a2n,1,1,...,1) = {a1...a2,,—1)+2n (1) = p(ay ...a2,)+np(—1) because p(—1) = (-1,—-1) =

claim claim
(1,1). The map p is injective because F*/F?* & I(F) dis F*/F?* defined by a — (a, —1) + a, hence
_ig_/
we are done.

Proof of claim: Recall: (a,b) = (¢,d) <= ab = cd € F*/F?* and Je € F such that e is represented
by both forms. Obviously <a b) = (ab,1) has the same determinant, so the claim is equivalence to
the fact, since (ab, 1)represent 1, that (a,b) represent 1, i.e., 3x,y € F such that 1 = ax? + by?. This
follows from the following lemma
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Lemma 2.39. Let F be a finite field of order ¢ =odd. Then Ya,b € F* the equation 1 = ax? + by?
has a solution z,y € F'

Proof. Need to find z,y such that 1 — by? = ax?. We use the pigeon hole principle.

Let o : F* — F* : 2 — 22 hence F** = imp = F*/ker(p) = F*/{£1} (The last equality holds
since char F # 2)= |(F?*)| = % = q;21 = number of square in F' = |F?*|+1 (for zero) = %. Hence
ni = |{az?|x € F}| = [{z*|]x € F} = L1 Similarly no = {1 — by?|ly € F}| = |{y*|ly € F} = <.
Hence ny +ng = q+1 > |F| = {az?|lz € F}N{l1—-by?ly € F} # 0 = 1 —by? = az? has a solution. O

O

Theorem 2.40. Let F be a finite field with q elements then

727 char F =2
W(F)=(Z]2ZL&Z/2Z q=1 mod4 (<= —1¢€ F?)
Z7/47 ¢=3 modd (= —1¢F*)

Proof. char F' = 2 we have already done (in this case rk : W (F') = Z/27)
Assume char F' odd, so ¢ odd. We have an exact sequence

0= I(F) —»W(F)52/2Z 0
> [ F2*

Since ¢ is odd we have |F*/F?*| = 2 because F?* = im(F* —2>2F*) and ker(F* A F*) = {£1}.
=T
= |W(F)| = 4 =(by the structure theorem of finite groups) W(F') = Z/2Z & Z/2Z or W (F) = Z/4Z.
If -1 € F (-1 =d?%),= 2(u) = (u) + (u) = (u) + (a®u) = (u) + (—u) =0 € W(F)Vu € F*.
W (F) generated as an abelian group by (u),u € F* = every element in W(F) has order < 2.
= W(F) # Z/AZ = W(F) = Z/2Z & Z,/2Z.
-1 F2 = if 2(1) = 0 € W(E) then (1) +(1) = (1) + (1) € W(F) = (1) +(1) =
char F
1)+ (—1) = (1) 2 (—1) = 1 = det (1) = det (—1) = —1 € F*/F? = —1 € F?* which is

Witt Cancellation
a contradiction to the assumption —1 ¢ F*2 = 2(1) # 0 = W(F) # Z/2Z ® Z/27. = W (F) = Z/AZ.
(Then the theorem follows from the following lemma) O

Lemma 2.41. Let F be a finite field of odd characteristic, with ¢ = |F| elements. Then —1 € F?* <+
¢g=1 mod 4.

Proof. —1 € F* 2 7Z/(q — 1)Z is the only element of order 2. = —1 € F** <= F* =7Z/(q¢— 1)Z has
an element of order 4 < 4|(¢—1) <= ¢=1 mod 4. O

Remark. p € Z is an odd prime, then p can be written as p = a? +b? with a,b € Z < —1lisa
square in F,, (<= p=1 mod 4)

To see this: a® + b2 = (a + ib)(a — ib) € Z[i]. Recall that Z[i] is a Euclidean domain, hence a UFD
(unique factorization domain) and thus, irreducible elements and prime elements are the same. If
a® +b? = (a + ib)(a — ib) € Z[i], we have p = a* + b= p not prime in Z[i]. The converse also holds:
if p is not a prime in Z[i] then p = zy € Z[i] for non-units =,y € Z[i]. But then (if z = a + ib)
N(z) = a? + b? has the properties N(zy) = N(z)N(y), N(z) =1 <= x unit. So p = zy = N(p) =
——
=p?
N(z)N(y) = N(z) =p = N(y) = a®>+b?> = N(z) = p. So p can be written as p = a®>+b* with a,b € Z
<= pis not a prime in Z[i]. But p is a prime in Z[i] <= Z[i]/p is a domain. But Z[i] = Z[t]/(t* +1)
so Zli|/p = Z[t]/(t* + 1,p) = Z[t]/(t* + 1) = Fp[t]/(t* + 1). Now Fp[t]/(¢* + 1) is a field <= ¢* +1
irreducible <= ¢* + 1 has no solution in F,, <= —1 ¢ F2*. On the other hand ¢* + 1 reducible
— -leFr -1=a*t*+1=(t+a)(t —a). Then F[t]/(t* + 1) = Fp[t]/((t — a)(t +a)) =

CRT

F,[t]/(t +a) x F,[t]/(t — a) =F, x F), not a domain.
Hence p = a? + > <= p not a prime in Z[i] <= Z[i]/p = F,[t]/(t*> + 1) not a domain
— —-1€F} < p=1 mod4 O
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Corollary 2.42 (of Theorem m ). Two symmetric inner product spaces over a finite field of odd
characteristic are isometric if and only if they have the same rank and the same determinant (€
F*/FQ*).

Theorem 2.43. Let F be a field then W (F) is generated as an abelian group by (u) ,u € F* subject
to the relations:

1. (u) = (a*u) Va,u € F*
2. (u) 4+ (—u) =0Vu € F*
3. (u) + (v) = (u+v) + (w(u+v)) Vu,v € F*u+v € F*

Remark. The theorem asserts that

rank 1 free abelian group with basis {a}
Z{a}
DacF= a o
= W(F
Tu] — {a?ub. {u} + (. (ab + (o} — (ut o] —{ue(ur o)y )
defined by {a} — (a) is an isomorphism. (Here Z{a} = Z denotes the free Z-module of rank 1 with
basis {a}.)

Proof. We already know that W (F) is generated by (u),u € F* and that 1,2,3 holds in W(F) =

rank 1f.a.g.w/ basis {a}
~=
Dacr* Z{CL}

P Tuy —{a2u}, {u} + {—u}, {u} + {0} — {u+ v} — {wo(u+v)}

is a well defined surjective map of abelian groups. So we need to check that p is injective. Will give a
proof when char F' # 2 (the char F' = 2 case needs a different, longer proof)

Using relation 2. ({u} = —{—u}) we can write every element in LHS as Y. {u;}. Given U =
Yoiifuiy and V=370 {v;} in the LHS such that p(U) = p(V)) € W(F) = n =tk p(u) =tk p(V) =
m € Z/27Z. So m =n mod 2 and without loss of generality say m > n so m —n = 2k, k > 0. Then
U=U+k({1} + {—1}) € LHS. Replacing U € LHS with U+k({1}+{—1}) we can assume that m = n.

—_———

=0by 2.
Then p(U) = p(V) € W(F) and tkp(U) =tk p(V). = (u1,...,up) = (v1,...,0p)

% cF* chain equivalence thm
(uyy...,up) = (v1,...,v,) = 3 diagonal forms cy,...,¢ such that (u,...u,) =g ¢ =g - &g
¢ ~g (v1,...,v,) = it suffices to show that {u1} + -+ + {un} = {v1} + -+ + {vn} in the case
(U1y...,up), (v1,...,v,) are simply chain equivalence (i.e., they differ in two places). So, we can
assume n = 2, we need to show that (uj,us) = (vy,v2) then {ui} + {u2} = {v1} + {v2} in LHS.
Assume (uy,us) = (v1,v2) = uius = vivea? for some a € F* and u; = v122 + voy? for some x,y € F.
If z,y # 0 then {v1} + {v2} = {viz?} + {v2y?} 3 {vi2® + vay®} + {v1v22?y? (v12® + v2y®)} = {ua} +
{ Luruoa?y®us } = {u1} +{uz} € LHS. If z or y = 0, say « = 0 then y # 0 since u; € F*, then we get
uy = voy? and v1v20? = voytug = vl(g)2 = ug. Then {uj }+{uz} = {U2y2}+{1}1(%)2} = {va}+{v:1} €
LHS. '
So p(U) =p(V) e W(F) = U =V € LHS= p injective O

— W(F)

2.5 Second Residue Homomorphism

For a DVR (Discrete valuation ring) R with field of fraction F', residue field ¥ = R/m and uni-
formizing element 7 € R, we will construct maps 0, : W(F) — W(k) which will help compute

Definition 2.44. A discrete valuation ring (DVR) is a local ring (R, m, k) which is:
e Noetherian

e A domain (ab=0€ R=a=0o0r b=0)
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e m # 0 is a principal ideal (m = 7R for some m € R)
There are other (equivalent) characterizations of DVR (which we won’t need):
e Risa DVR <= local 1-dimensional integrally closed noetherian domain

° Local 1-dimensional noetherian regular domain

<
e <— Local PID
<

° Local domain with principal m such that N,>em"™ =0

e <= valuation ring of a discrete valuation on a field
Example (Of DVR). o Zipy =1{% €Qlpfa}, p € Z prime. m = pZ,), k = F,. Fraction field Q.

e The p-adic integers Z, = UmZ/p"Z = {(xn)neNs,s Tn € Z/p"ZL : Tpy1 = x, mod p"}, m =
pu >

pZLy, k = Z,/pZ, =F, and field of fractions Z, = Q,
e D = Dedekind domain, p C D a prime ideal then D, = {§ € FracDI|b ¢ p}, m = pD,, k= D/p

e K is a field, f € KI[T] is irreducible. K[T]y = {} € Frac(K[T]) = K(T)|f { b}, m =
FK[T)(p), k= K[T)/f.

e Risa UFD, f € R an irreducible element (=prime element) R;) = {$ € Frac R|f { b}

Definition 2.45. Let (R, m,k) be a DVR, a uniformizing element of R is a choice 7 € m C R
generating m, i.e. TR =m

Lemma 2.46. Let R be a DVR with uniformizing element m € R, then every element a € R,a # 0
can be written uniquely as a = m"u for some n € N and u € R*

Proof. Uniqueness :Assume 7"u = 7™v with u,v € R*. Without loss of generality assume m > n. R
domain = 7™ " =vu' € R. If m #n = 7" € tR = m but vu~! € R* = R\ m which is a
contradiction = n=m=1=vu" ' =>u=v

Existence :Let a € R, a # 0. If a € Nu>em”™ = Np>om™ R then a = 7"b, Vn. = b, =

R domain

hpt1 = (by) C (bpt1) C (bpy2) C ... R, is an ascending chain of ideals which has to stop because R is
noetherian. 3n such that (b,,) = (b,41) in particular b,,+1 € (b,) = bpt1 = by, but b, = w11 = =

R domain
1=cr = m € R* =R\ m which contradicts the fact that # € m. Hence a = 0 = N,>on"R = 0.
Hence 3n such that a € 7R but a ¢ 7" R = a = n"u,u ¢ 7R = m hence u € R*. O

Remark. Np>om™ R = Nyp>om”. For all Noetherian R : Np>om™ =0

Corollary 2.47. Let R be a DVR with uniformizing element = and F its field of fractions, then every
a € F,a # 0 can be written uniquely as a = n"u where u € R*.

So we can define a function v : F* — Z defined by ¢ = 7"u — n = v(a) (with v € R*) with the
properties

1. v(ab) = v(a) + v(b)

2. v(a+0b) > min(v(a),v(a))

3. Setting v(0) = oo we have R={a € F : v(a) > 0}, R* = {a € F|v(a) =0}, m = {a € Flv(a) >
0}

Definition 2.48. A discrete valuation on a field F' is a function v : F* — Z satisfying 1., 2. above.
The valuation ring of v is the ring R = {a € F|v(a) > 0} where v(0) = oco.

Definition 2.49. Let (F,v) be a discrete valuation on a field F' with associated DVR R and choice
of uniformizing element = € R. The second residue homomorphism is the map 0, : W(F) — W(R/m)
defined by

(a) {(u) n = v(a)odd

0 n=uv(a)even

where a € F*, a = n"u,n =v(a),u € R*,u =u mod m=7R, u € R/w
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Note. 0 depends on the choice of the uniformizing element 7.
Lemma 2.50. The second residue homomorphism is well defined
Proof. Recall that W (F) is generated by (a), a € F* subject to:

L (u) = (2?u), u,x € F*

2. (u) + (—u) =0

3. (u) + (v) = (u+v) + (uv(u +v)), u,v,u+v € F*

0 ‘even
We need to check that J,; preserves these relations. First define ¢; = {1 odd so that we can write
10

9 (u) = €,(u) (¢) where u =7""¢ ¢ € R*,¢ = ¢ mod 7R. Then:

1. Let v = 7"¢,x = 7™ where ¢, € R*. Then z%u = 72"+ ¢)? so 3<m2u> = €m+n <¢7’(/12> =
n (¢) € W(R/) as required 0 (u) = €, (¢).

2. Let u = 7"¢,~u = 7"(—¢) with ¢ € R*. Then 9 (u) + d(~u) = €,(d) + en(—0¢) =
en(<9> + <;¢>) =0e W(R/n)
—_————

=0

3. Let u = 7n"¢,v = ™, without loss of generality assume n > m. u+v = 71"¢p + 1Y =

(7" + )

Casel. n > m : Thenn—-—m >0 =1t=7""¢+ ¢ € R",u+v = 7™t note that
R/—’ ém
t =4 mod mR. Now uv(u+v) = w”+2m¢wt So & (u+v)+ 0 (uv(u+v)) = €y, (t) +
ER*
Entam (SUL) = €m (1) + €n (99%) = 0 (v) + 0 ()
Case 2. n=m: Now u+v = 7"(¢+ ) and ¢ + ¢ = 7't where t € R*.
Casei. 1=0: ¢+ =t€c R*. Now u+v = 7"t and uv(u + v) = 7" ¢¢pt. Then
o
0 (u+v)+0 (wv(u +v)) = en (t)+ean (SUL) = €n (S + 1) +en (9U(6 + ¥)) =
en((¢) + (¢)) € W(R/m) which is what we wanted.
Caseii. > 0: u+v = 7'""t € 7R. In particular Y+¢=0s0v=—-¢cR/rR.
So wv(u +v) = 7r3”+l¢>¢t Then 9 (u+v) + 0 (uv(u + )) - ) +
€3n+1 (DUt) = €ntr () + €nt1 (—0°t) = € () + (=1) = 0= en((~1) +
() = €n(d) +en ($) = 0 (u) + 0 (v)

O

Theorem 2.51. Let D be a Dedekind domain with field of fractions F'. Then the sequence of abelian
group

0—wD) —wrE P WD/
o CD
max. ideal

15 exact.
We will prove the above theorem in the special cases: D = Z, DVR, k[T].

Lemma 2.52. Let (R, m,k) be a DVR with field of fraction k and uniformizing element 7 € m C R.
Then the composition

W(R) — W(F) —2~ W(R/x)

1S 2ero
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a 1

Proof. R local = W(R) is generated by (u),u € R* and <(1 b

)>,a,b€m. We have 0 (u) =0 by

0  v(u)even

(v) v(u)odd

Ifa()then<((1) 11)>>ismeEaboli;so,W(F)3<(61l ll))>0:sa<<‘ll 11)>>0

If @ # 0 then @ € F* so = (a) + {a(ab—1)),a = 7Dy, v € F* a(ab - 1) =

definition of 9: 0 (u) = where u = ¥y, v € R*.

a 1
1 b
7 @y(ab —1),ab € m = 8<<a 1>> = 0(a) + 0 (a(ab—1)) = €,(a) (V) + €v(a) <v (ab—1) > =
S—— b N——
c€ER* —1 mod m

6V(a)(<y> + <_Q>) =0 ]

Corollary 2.53. The composition W (Z) — W(Q) % ®pczW (Z/pZ) (p prime) is zero, where W(Q) %
W(Z/pZ) is the 2nd residue homomorphism associated with the p-adic valuation on Q which has val-
uation ring L) = {3 € Qlp 1 b}

Proof. We have defined

10y
.

w(Q) [IW(Z/pZ)

~
o
7~

SW(Z/p2)

Need to see that [] 0, has image in &, W (Z/pZ). This is the case because if (u) € W(Q),u € Q* then
u = ¢ and {p € Z prime |v(u) # 0} C {primes in the factorization of a, b} finite = V¢ € W(Q), 9, =0
for all but finitely many p € Z prime. For the composition to be zero, it suffices to check that the

composition W (Z) — W(Q) % W (Z/pZ) is zero for all p. The composition is zero because it factors
as W(Z) = W(Z,) = W(Q) 5 W(Z/pZ) O

0

Definition 2.54. A principal ideal domain (PID) is a commutative ring R which is a domain (ab =
0 = a or b =0) and for which every ideal is a principal ideal (I C R = I = Rz for some z € I)

Example. Z, k[T] (k a field) are PIDs (Euclidean domain=-PID)
A DVR R is a PID: Let 7 be a uniformizing element, so m = 7R and let I C R be any ideal. I =0
is principal, so assume I # 0. Let n = min{v(a)|a € I,a # 0} € N>g. Then I = 7" R because I C 7" R
>0
since if a € I,a # 0,0 = 7Dy = ﬂ'n(ﬂ'y(a) “"y) € R, and "R C I since Ja € I,a # 0, v(a) =n
—_——

€R
soa=7"u,u€ R*;ael=7"R=7n"uR=aR C 1. Hence I = "R is principal.
Remark. A PID is noetherian

Proof. Let R be a PID, I; C I C --- C Is C --- C R be an ascending chain of ideals. Then
I=Ul,CRisanideal == I = xR forsomexz €I =z €I, forsomen=I1I=RxCl,Ccl=1I,=
I, =1IVm>n O

Definition 2.55. An R-module M is called cyclic if M = R/I for some ideal I C R.

Fact. Every finitely generated module M over a PID R is a finite direct sum of cyclic R-modules, that
is, M =2 @ ,R/a; for some non-units ay,...,a, € R

Corollary 2.56. Let R be a PID with field of fractions F
1. Every submodule M of a finitely generated free R-module is free

2. Every finitely generated R-submodule M C F™ is also free
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Proof. R is a PID then R is noetherian, M C R™ = M is finitely generated so in 1 and 2 the module
M is finitely generated = M = @' | R/a; for some non-unit a;. But R/a C R or R/a C F" = a=0
because:

If a # 0 and a ¢ R* then the composition R/a C R < R is injective and R/a = R/a — R
zero at the same time (a contradiction). Similarly the composition R/a C F™ % F™ is injective (if

a#0,a ¢ R*) and equals R/a = R/a — F™ zero, again a contradiction O
Corollary 2.57. Every inner product space over a PID is free

Lemma 2.58. Let R be a PID with field of fractions F' then the map W (R) — W (F) defined by
[M, B8] — (Mg, Br) is injective, where Mp = M ®@p F and Bp(x @ a,y ® b) = abB(z,y) for a,b €
F.x,ye M.

Proof. Assume [Mp,fr] = 0 € W(F) then (Mp,Br) ~ 0 = 3 metabolic V = <<(1) /11>> with

A€ M,(F),AT = A such that (Mg, Br) LV is metabolic. There exist d € R such that dA € M, (R).
Then

(o )0 A6 ) =0 )= (0 4)=(0 )= 0mon s ([ )

metabolic over R

is metabolic over F. Hence can assume (M, 3) to be metabolic over F.

Let (M, B) be a symmetric inner product space over R such that (M, 8)r = (Mp, BF) is metabolic
over F. Mp = M ®gr F, fr(x ® a,y ®b) = abB(x,y), v,y € M,a,b € F. Note M C Mp (as
RCF,M~=R" Mp=F"). Now (Mg, 8r) metabolic= 3N C M Lagrangian

Claim: M NN C M is a Lagrangian for (M, 8)

M N N is a direct summand of M because M/M NN C Mp/N = F™ is a finitely generated R-
submodule of F™ = M/M N N is finitely generated free R-module, so M/M N N = R'. Any section

s:M/MNN — Mofg: M — M/MNN = R! (that is gs = 1) yields a direct sum decomposition (M N
N)@im(s) = M = MNN C M is a direct summand. We now need to check that (M NN)+ = MNN.
Let # € M, then z € (M N N)* <= B(z,y) =0Vy € MNN <= B(z,y) = 0¥y € N (because
Vte Mp = M®gF Ja € R,a # 0 such that at € M, in particular Vy € N,3a € R,a # 0,ay € MNN,

Blx,y) =0 <= [B(z,ay) o 0). But B(z,y):OVyGNNﬁLIENL:N xe<:>M x € MNN.

Hence M NN C M is a Lagrangian = (M, /3) is metabolic = [M, 5] =0 € W(R)

To finish the proof, take [M, 5] € W (R) such that (M, 8)r = 0 € W(F) = 3V metabolic symmetric
inner product space over R such that (M L V)p is metabolic over F= M L1 V metabolic over
R=[M]=[M]+[V]=[MLV]=0e W(R). O

Theorem 2.59. The sequence of abelian group

05wz W2 @ WE,) -0

PEZ>2prime
is exact and the map W(Z) — W(R) defined by M — M ®z R is an isomorphism

Proof. We have already proved that W(Z) — W(Q) is injective since Z is a PID and the composition
W(Z) - W(Q) = &,W(F,) is zero.

For n € Z>1, let &, be the set &, = {a € Z\ {0}|V prime p : pla = p < n} (eg. Y =
{+1, -1}, Py = {+2", -2"}, &, C Pp11). Note that Z,,_1 = &, unless n is prime. Let L, C W(Q)
be the subgroup generated by (a) with a € &,,. So L,,—1 C L,, and L,,_1 = L,, unless n is prime. The
composition L,_1 C L, % W(IF,) is zero because, for a € &,_1,vp(a) = 050 0p(a) = 0. Hence we get
a map of abelian groups L,/L,_1 % W (Fp).

Claim: L, /L, 1 % W(F,) is an isomorphism for all primes p € Z>s.

The claim will follow from:

Lemma 2.60. If 0 < |nl|,|n1],...,|nk] < p, andn = ny...n, mod p, then (pn) = (pni...nk) €
Ly/Lp—
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Proof. We use induction on k. The case k = 1 follows from k = 2 with ny = 1.

Assume k > 2: Write ning = pl + 7,0 # |r| < p. |pl] = |ning —r| < |nalina| + 7| < (p— 1)(p —
+p—1=p*>—p<p?>=|l| <p. Wewill show that (pny...ny) = (prns...ng) € L,/L,_1. This is
clear for [ = 0 as then both sides are the same. Assume [ # 0 and write m = ng...ng.

(pni...ng) —(prns...ng) = (pninam) — <p7"m>
= —

(pningm) — (Im) — (prm) mod L,_4

= (pninam) p’lm prm mod Ly,
v

=:u

= (pninam) — (u+ uv(u +v))
= (pingm) — (pm (pl +7)) = (p'm?lr(pl + 7))
= (pninam) — (pmning) — <p4m3lrn1n2>

= —(mlrning) =0 mod L,
Hence (pning...ng) = (prns...ny) where ning = pl+r, |r| < p. This proves the case k = 2 (and hence
k =1). Now, the product rns, ..., ng has k — 1 factors, and we can apply the induction hypothesis. [

We now construct an inverse of the map in the claim. We define the map ¢ : @ueF;Z{u} — L,/L,_1
by {u} — (pn) where n € Z\ {0}, |n| < p,u =n mod p. Note that ¢ is well defined by the lemma,
that is our choice of n does not matter. Need to check that ¢ preserves the three relations for W ([F,)

1. (u) = <a2u>,a7u € F;. Choose ag,up,n, € Z \ {0} such that ag = a,u0 = u,ng = a’u €

P
Fp, |aol, [uol, |no| < p. Then {u} — {a®u} — (pug) — (pno) - (puo) — (paduo) =0 € L, /Ly

(u) + (—u) = 0 € W(F,). Choose ug € Z\ {0}, |up| < p,ugp = v € F,. Then {u} + {—u} A
(puo) + (—puo) =0 € Lp/Ly—1

3. (u) + (v) = (u+v) + (uv(u +v)) € W(F,),u,v,u+v € Fy. Choose —p < ug <0 < vg < p, (then
luo+vo| < p, |0l < p), |no| < psuch that ug, vo, no € Z\{0}, up = u, vo = v,no = wv(u+v) € F,,.
Then {u} + {0} — {u+ v} — {u(u+ )} & (uo) + {pro) — {pluto + v0)) — (pmo) = {puo) +
(pvo) — (puo + pvo) — (puopvo(puo + pvo)) =0 € Ly/Lp—

From this it follows that ¢ induces a well defined map of abelian groups ¢:W(F,) — L,/L,—1. The
map ¢ is surjective because L,/L,_1 generated by (pm), all prime divisors ¢ of m are ¢ < p. By the

2.

- 0,
lemma (pm) € im(¢). It is injective because W (F,) — L,/L,—1 — W (F,) is the identity (x). Hence
(uy={pn)—(n)=(u)
¢ is an isomorphism(:>) Op: Ly/L,—1 = W(F,) is an isomorphism. This finishes the claim.

We prove by induction on n > 1 that L, /L1 = @p<, W (F}) is an isomorphism.
The case n =1 is clear as both sides are 0

The case n = 2 is true by the claim

n — 1 to n: If n is not a prime then LHS,,=LHS,,_;=RHS,,_1=RHS,,

If n is a prime, we have a map of short exact sequences:

OﬁLnfl/Ll Ln/Ll Ln/Lnfl ——0

l: by induction l ll’ by claim

0 —— Dp<n 1 W(lFp) —— Bp<nW(Fp) W(Fy,)

By the five lemma we have that L, / L1 5 Dp<nW(F,) is also an isomorphism.

Hence W(Q)/Ly = Up>1L, /L1 = Un>1 Bp<n W(F,) = Dy>1 primeW(IFp). So we get the exact
sequence B

0 Ll W(Q) —_— @pGZZ2 primeW(]Fp) —— 0

W (Z)
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Since W(Z) C W(Q) and (90,)W(Z) =0 = W(Z) C L. But Ly C W(Z) because L; is generated
by (1),(—1) = W(Z) = L, and we have exactness of 0 - W(Z) - W(Q) — @©,W (F,) — 0. Finally

Z
the map W(Z) W(R) = Z is an isomorphism. This is due to the fact it is surjective since if
sgn

_>
U e W(R)then U=n (1) +m(—1) but n(1) + m(—1) € W(Z). It is also injective since W(Z) = L,
is generated by (1), (—1), so every element V of W(Z) has the form V = n (1) + m (—1) which is zero
in WR) <= n—-m=sgn(n(l)+m(=1)) =0€Z < n=m < V=n(l)+n(-1) =
n({1) + (=1)) = 0 € W(Z). Hence W(Z) — W(R) is an isomorphism O

Corollary 2.61. The map
W) —-WRe € WE)
pEZZQ prime

defined by M — (M ®@q R, 0,M) is an isomorphism.

Proof. This follows from the exact sequence 0 — W(Z) — W(Q) — &,W(F,) — 0, which is split

exact via
W(Z)——W(Q)

|

W(R)

IR

O

Corollary 2.62. Two symmetric inner product spaces M, N over Q are isometric <= sgnM =
sgn N,tk M =tk N, 0,M = 0,N € W(F,)Vp € Z prime. (In terms of quadratic forms, any two
reqular quadratic forms are equivalent over Q if and only if the previous condition are fulfilled)

Proof. M~ N < rtkM =1k N and [M] = [N] € W(Q) < rkM =1k N and [M] = [N] € W(R)

sgn M=sgn N
and 9,M = 9,N m

Corollary 2.63 (Weak Hasse Principle). The magﬂ

W —=wrRe [[ W)

Z>p prime

is injective. In particular two inner product spaces M, N over Q are isometric over Q if and only if
M and N are isometric over R and Q, for all p € Z prime.

Proof. We have the following commutative diagram by definition of J,

~

(a) W(R) D @p prime W(]FP)
(b) (e)

W(R) ® Hp prime W<Q;D>

w(Q)

R , F
i o115,V ®) @ L prime W (Fp)

Now (a) isomorphism and (¢) injective implies (b) injective.
M =g N = M =g N and M =g, N for all p € Z prime.
Assume M =g N and M =g N for all p € Z prime. Thenrk M = rk N and [M] = [N] € W(R) and

[M] = [N] € W(Q,) for all p. But (b) injective = rk M =1k N, [M] = [N] € W(Q) h%é& M=N O

'Tn the lectures I carelessly wrote €D, instead of [, but the image of W(Q) does not lie in €p,,, otherwise, what is
the image of (1) which is # 0 € W (F) for any field F?

24



Example. We start with two side remarks: The quadratic form ¢ = Y 1 | a;z? + Ziq a;;Tix; has

associated form matrix B = (B;;) (with respect to ei, es,es3,...,e,) where B;; = q(e; + ;) — q(e;) —
Qi 1<y
qlej) =qai; j<i
20,1 a2 N A1n
a2 2as
That is, B =
Q1n 2an
ai @12 ... Qin
. . . . . a1z a2 . d d
The diagonalisation of a symmetric matrix B = : . is (B) = <d1, oo dni1>
A1n [e25%
where d; = determinant of the upper left corner of size i x i of B, provided dy,...,d,_1 # 0.

1. Does 15 = 22 + 2xy + 3y? — 4yz have a solution z,vy, z € Q?

Solution: Let ¢ = 2% + 2xy + 3y? — 4yz. Does ¢ represent 15?7 The associated symmetric bilinear
form B(u,v) = q(u+v) — q(u) — q(v), u,v € Q3 has form matrix

2 2 0
B=1[2 6 -4
0 —4 0
which has determinant —32 hence it is non-degenerate. It has diagonalisation (B) = (2,3, =32) =

exercise

<27 1, —1> = ¢ isotropic and represent any rational number. In particular there exists z, y, z
——
H
such that ¢(z,y,2) = 15
Note that (B) & (2,4, —4) = ¢ =2 2% + 2y*> — 222 ¥ 2% + y2

2. Does 15 = 22 4 4oy — 2x2 + Ty? — 4yz + 22 =: ¢ has a solution z,y, z € Q.

Solution: The associated bilinear form  of ¢ has matrix form

2 4 =2
B=1|14 14 -4
-2 —4 2
with determinant = 0 (since Beg = —Bej). So ¢ is degenerate, and we can eliminate a variable as
follows: The inner product space (B) has diagonalisation (B) 22 (Qe1 + Qe2) +
—_——

non—degenrate as det( 421 144 ):12;&0

(Qey + Qez) ™ = <(i 144>> 1 (0) = (2,42) 1 (0) = (2,6) L (0). This means that
dim=1,degenerate as det B=0
q = 22 + 3y?, so does this represent 15?7 This is equivalent to askin or
a € Q*. Then det LHS = det RHS modulo square units <= (1,3) = (15,5) <= (1,3) =
(15,5) € W(Q) (because (1,3) and (15,5) have the same rank) <= (1,3) = €
and 9, (1,3) = 9, (15,5) € W(F,) for all p prime.

aQ
—~
JM
D
~
112
—~
w
=
S
~
=

o If p # 3 or 5 then 9, (1,3) = 0 = 9, (15,5)

e if p =3 then J; <1,3> =03 <1>+83 <3> = 0+<1>, and 05 <15,5> =03 <15>+83 <5> = <5>+0 =
(—1). Do they agree in W(F3)? No because (1) # (—1) € W(F3) = Z/4Z generated by
D= (1) = (1) =2(1) # 0 € W(F3)

We have showed that (1,3) # (15,5) € W(Q) = ¢ does not represent 15 and the equation has
no solution in z,y,z € Q
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2.6 The Brauer Group and the Hasse Invariant
Recall from MA377 (Rings and Modules):
Definition 2.64. Let k be a field, a k-algebra A is called:
o central: if k = Z(A), where Z(A) denotes the center of A
o simple: if A 2 0 and the only ideals of A are 0 and A
e finite dimensional: if dimj A < co
Fact. Let A, B be finite dimensional central simple k-algebras. Then:
1. A= M, (D) where D is a finite dimensional division k-algebra
2. AQ® B is also a finite dimensional central simple k-algebra
3. A®y AP = M, (k) where n = dimy, A

Definition 2.65. Let F be a field. The Brauer group, Br(F'), is the set of Brauer equivalence classes
[A] of finite dimensional central simple F-algebras A, where A ~ B (A is Brauer equivalent to B) if
M, (A) =2 M, (B) as F-algebras for some m,n € N>1.

Br(F) is a group with group law: [A][B] := [A ®F B], with 1 = [F] and [A]~! = [4°P]. Indeed
Br(F) is an abelian group: [A][B] = [A®Fr B] = [B®r A] = [B][A], 1[4] = [F][A] = [F ®Fr A] = [A],
[AJLA] = [A©p A7) = [M,(F)] = [F] = 1

Example. (From MA377)
e Br(C) = Br(F) = {F} = 0 where F = F is algebraically closed
e Br(F) =0if F'is a finite field
e Br(R) = {R,H} =Z/2

Definition 2.66. Let F be a field with char F # 2 and a,b € F*. Let (
F-algebra with basis, 1,1, 7, k such that i2 = a,j2 = b,k = ij = —ji

Note. k? =ij(—ji) = —ab

%) be the 4-dimensional

Fact. Fora,b e F~, (“ﬁ ) is a 4-dimensional central simple F-algebra.

Definition 2.67. An F-algebra which is F-algebra isomorphic to ( I;b) for some a,b € F* is called

(generalized) quaternion algebra (over F')

Structure theorem for Quaternion algebras. Let F' be a field with char F # 2. Then (af;b) =}
(&) = (a,b,—ab) = (c,d, —cd) € W(F)

Remark. Let A, B be finite dimensional central simple F-algebras. Then A % B <= dimp A =

dimp B and [4] = [B] € Br(F).
In particular [(%2)] = [(%%)] € Br(F) <= (a,b, —ab) = (c,d, —cd) € W(F)

/001 . /1 0
Example. ( 1) & My(F) by i — (1 0) ,J (0 1)
(=) = Real quaternion algebra.
My(R) = (&) 2 (=%=) because (1,1, —1) # (—1,—1,-1) € W(R)
—_—— — —

sgn=1 sgn=—3

Remark. (%b) is a division algebra <= (%) 2 My(F) < {(a,b,—ab) 2 (1,1,—1) < {(a,b,—ab)
is an isotropic (i.e., does not represent 0)

Remark. (%2) = (%2)°p by 1+ 1,i + —i,j ~ —j,k +— —k. This means that [(%")] has order 2 in
Br(F) because (“b)®F( ?) (an)®F(an)op = My(F) = [(5)](5)] = [Ma(F)] = [F] = 1 € Br(F).
Hence [(a )] € 2 Br(F), where for an abelian group G we denote 2G = {x € G|z% = 1}
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Lemma 2.68. Let F' be a field with char F # 2. Then:
1. (a}%b) o (a,;ab) (b,}ab)
2. (%) @r (%) = (%°) ©p Ma(F)

°)
Proof. 1. (algb > (L 7‘11’) because (a, b, —ab) = (a, —ab, a’b)

1

2. Let A = (a};b),B = (%) have basis %4 = {1,i4,j4,ka} and Bp = {1,ip,jB, kp} respectively.
Then A® r B has basis {u®v|u € ,@A,U S @B} Let ¥4 = {1®1,iA®1,jA®jB,kA®jB} C AQrB
and X = {1® 1,1 ® jp,ia ® kg, —cia ® ip}. Then X4, X pare the basis of A’, B’ C A ®p B-
subalgebras with A’ = (%bc) and B’ = (F_T“%) because

o (i2®1)2=i4®1=a(l®1)=a
o (ju®jp)>?=730®i3=b@c=bc(1®1)=bc
e (14®1)(ja®jB) =ka®jp=—(ja®jB)(ia®1)

and

e 1®jp)=1Qj=c
e (ia®kp)? =44 ®k% =a-(—ac) = —d’c

e (1®jp)(ia®kp)=—(ia®kp)(1®jp) =ia ® —cip = —Cia Qip

But (‘:;“26) =~ (L1) = M,(F) because (c, —a’c,a%c?) = =~ (1,1,—1). Every element
of A’ commutes with every element of B’ (one checks that E A commutes with ¥p)= The map
¢:A'@F B — AQp B defined by x ® y — xy is a well defined map of F-algebras. The elements
{zylz € B4,y € Lp} are linearly independent in A ® B (check!) = ¢ is injective. Since
dimp A’ ®p B’ = 8 = dimp A ® B, this means that ¢ is an isomorphism = (a}i’c) ®p My(F)

A/ ®F B/ ~ A®F B o (a},?b) ®F (a};‘C)
O
Definition 2.69. Let F be a field with char F # 2, and V be a symmetric inner product space over
F with diagonalisation V' 2 (ay,...,a,). The Hasse invariant of V is the algebra
Hasse(V) = H (%) € 2 Br(F)
1<i<j<n

Lemma 2.70. Hasse(V') €3 Br(F') does not depend on diagonalisation {a1,...,a,) of V used to define
Hasse(V)

Proof. 1. Hasse({a1,...a;,a;i11,-..,a,)) = Hasse({a1,...,a;—1,Qitr1,0i,Qi12,...,a,)). This is be-
cause

LHS = H (arlv:as ) (ai;;i+1 )
r<s{rs}#{ii+1}
RHS = H (arlv:as ) (CLH}, a; )

r<s,{rs}A{ii+1}

Since ( ‘% ~ (Ta) = LHS = RHS. Hence for all ¢ € ¥, = permutation group, we have
Hasse({a1,...,an)) = Hasse(<ao(1), ce, ao(n)>)

2. char # 2, if (a1,...,a,) and (by,...,b,) are diagonalisation of V then (ai,...,a,) = (b1,...,bn)
(Chain equivalence Theorem on page Hence it suffices to show that Hasse({a1,...,a,)) =
Hasse((by,...,bn)) for {(ai,...,a,) = (bh...,bn) simply chain equivalent. By 1. it suffices
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to show Hasse({(a,b,e1,...,e,)) = Hasse({c,d,e1,...,e,)) where (a,b) = (c,d). Recall that
{a,b) = (c,d) <= ab=cd 2% a = cy®+ dz? for some z,y,2 € F. Now

(%) 1] (%5) (P ) oselfen, . ea)
s = (59) T (52) (%) Hame(tr )

() (%) - (5)
- (C];e> since ab = cdz?
- (%)

and (%2) = (5%) because (a,b, —ab) = (a,b) + (—ab) = (¢, d) + (—cd) = (c, d, —cd)

LHS

Note that

=)

b, e

€ Br(F)

Lemma 2.71. Hasse(V L W) = Hasse(V') Hasse(W) - (W)
Proof. Exercise O

So Hasse(—) does not define a group homomorphism W (F') — 2 Br(F'). Hasse(H) = Hasse((1, —1)) =
(%) ~ (&) = My(F) because (1,—1,1) = (1,1,—1). But Hasse(H?) = Hasse(H) Hasse(H) -

i
(detHﬁdetH) = (_11’:_1) # (1131) = My (F) = F € Br in general.

2.7 Tensor Product of Inner Product Spaces

Definition 2.72. Let (M, 3), (B, ) be symmetric bilinear forms over R. We define (M ®g N, B®Rr7)
to be the bilinear form S ® v: M ®g N x M ® g N — R defined by (z ® u,y ® v) — B(x,y) - y(u,v),
which is symmetric: 8 ®v(z ® u,y ®v) = Bz, y)y(u,v) = By, z)y(v,u) = BR V(Y @ v,z @ u)

Lemma 2.73. Let P,Q be finitely generated R-module then the following map ¢ : Hompg (P, R) Qg
Hompg(Q, R) — Hompg(P ®r Q, R) defined by f @ g — [ - g where (f - g)(x @ u) = f(x)g(u), is an
isomorphism

Proof. ¢ is an isomorphism for (P, Q) = (R, R).

If ¢ is an isomorphism for (P, Q) and (P, @) then ¢ is an isomorphism for (P, @ P, Q) because
(PLP)@Q=PoQ®P,®Q, Hom(P; & P, R) = Hom(P;, R) ® Hom(P,, R) and ¢1 & ¢» is an
isomorphism if and only if ¢; and ¢ are isomorphisms. = ¢ is isomorphism for (P, Q) = (R™, R")
m,n € ZLxg.

A finitely generated projective module is a direct factor of R™ for some n. If ¢; is a direct summand
of a map ¢ which is an isomorphism then ¢; is an isomorphism = ¢ is an isomorphism for P, ) finitely
generated projective modules. O

Lemma 2.74. Let (M, 3),(N,~) be symmetric inner product spaces over R. Then (M @r N, ® 7)
s an inner product space over R

Proof. M, N is finitely generated projective = M ®p N is finitely generated projective. We need
to show § ® v is non-degenerate. Now f[3,v non-degenerated <= M — Hompg(M, R) defined by
x+— B(x,—) and N — Hompg(N, R) defined by y — ~(y, —) are isomorphisms. 3 ®~ is non-degenerate
< M ®r N — Homgr(M ®r N, R) defined by z ® y — S(x, —)v(y, —) is an isomorphism, but this
map is the composition of the following two maps

M @gr N —=s Homg(M, R) ® Homg(N,R) — Hompg(M ®z N, R)

Lemma

TRY — B(]"v—) ®7(y’_) = ﬁ(&?,—) '7(3/7_)
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Lemma 2.75 (Definition). The Wilt group W (R) of a a commutative ring R is a commutative ring
with multiplication [M, ] - [N,~] = [(M, ) ®r (N,v)] and unit (1). W(R) is called the Witt ring of
R.

Proof. We need to show that if (M, 3) is metabolic and (N,v) arbitrary then (M,3) ® (N,v) is
metabolic. But a Lagrangian L C M of (M, 8) defines a Lagrangian L& N C M @ N of (M @ N, BR~)
(exercise) O

Remark. {(u) - (v) = (ww) € W(R)

Definition 2.76. Let R be a local ring then the rank map W(R) — Z/2 defined by M — rk M is a
ring homomorphism. The kernel ker(rk) is an ideal I(R) which is called the fundamental ideal.

Remark. I(F) is generated by even dimensional forms, hence additively generated by 2 dimensional
forms (a,b) = (a,1) — (=b,1) = I(F) is additively generated by (a,1),a € F*= I*(F) is additively
generated by (a,1) ® (b,1) = (ab,a,b,1), the discriminant map, disc : I(F) — F*/F?** defined by
V — (=1)"%" det V, in our case we have (ab,a,b,1) — a2b? = 1 € F*/F?* hence disc(I2) = 0 and
I(F)/I*(F) — F*/F?* well defined surjective map of abelian groups

Theorem 2.77 (Pfister). The map I(F)/I?(F) — F*/F?* is an isomorphism for all fields F.
Proof. The map is surjective because I(F') d1_s>c F*/F?* sends (a,—1) to a for a € F*.

In W(F)/I? we have:

1. {a) + (b) = (—ab) + (—1) because (ab,a,b,1) € I?

2. 3(=1) = (1) because (1,1,1,1) = (1,1) ® (1,1) € I?, hence 4 (—1) = 0.
If £ = (ug,...,u,) € I/I% then n = 2m. For u = dics¢ we have

€= {(u1,... ugm) = (—(=1)"u,—1,...,—1)in I/I?
1. —_
2m—1

B (u,—1,—-1,-1) m even

2. (u, —1) m odd

= <7u7 1>
where the last equation follows from 2 when m is even, and when m is odd we have (v, —1) = (—u, 1)
because (u,u,—1,—1) = (—u? —1,-1,-1) = (=1,—-1,—1,—1) = 0 € I/I?, by 1 and 2. Thus, if £ is
in the kernel of the discriminant map then 1 = disc(¢) = disc(—u,1) =u = u=1¢€ F*/F?* = ¢ =
(—u,1) =(=1,1) =0 € I/I* = £ =0 € I/I? and the map I/I?> — F*/F?* is injective. O
Example. o I%(F,) = 0 because disc : I(F,) = F/F2* is an isomorphism.

e I2(F) = I(F) = 0 for any algebraically closed field F because rk : W (F) > Z/27Z

o I(R)— W(R)2-7/27

Action mod 2

o We'll see later: 12(Q,) = Z/2Z

sgn

2Z C Z

Definition 2.78. Let V be a 4k-dimensional symmetric inner product space over F' with discV

(=detV) = 1. The Signed Hasse Invariant is s(V) = (—53—)* Hasse(V) = (%) Hasse(V)
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Note. If V,W have dimension divisible by 4 and discV = discWW = 1 then

71 71 d]mV+d1mW

7 )
(=)

= s(V)s(W)

s(VLw) = ( Hasse(V L W)

dim V dim W
4 4

(=)

Hasse(V') Hasse(WV) (W)

—_— —

(#)

and s(H?) =
s I*(F) —
spaces)

F F

(=71 Hasse(H?) = (=571)(=5) = [F] € Br(F) = s(H?*) = [F] € Br(F). Hence
2 Br(F) is a well defined map of abelian groups. (as I? is generated by 4-dimesional

Lemma 2.79. s(I3F) = 0 for every field F of char # 2

Proof. I is generated by (1,a) = I is generated by (1,a) ® (1,b) @ (1,¢) = (1,a,b,c, ab, ac, be, abc) =
<a1, ey Cls). SO,

s({ag,...,ag) = (—1)%Hasse(<a1,...7a8>)
_ Ay Qg
- 1 )
1<i<j<8
a; i< a;
= H <H }]Sg j> by Lemma [2.68
1<i<7

1, a%b*ct a3bict b, a3b3ct a’b’c? ab, a’b*c3 ac, ab*c? be, abe
- o) () () () (25) (55) ()
) (b ab> (c abc> (ab,c) ac, a <bc abc> removing powers of 2
F F
(al,?a) (b,Fa) <c ab> (ab c> a,— > < a) by using the relation (al,?b> _ <a,Fab>
) (b, —a) (bc,—a) (c, —ab) (c, ab) by rearranging
F F F F

_ - -1
a,Fac) (C,Fa) (C,F ) pairing off and Lemma [2.68

Il
N
—
hj:—\
N———
/-\
hq\.

O

Corollary 2.80. The signed Hasse invariant gives a well defined map of abelian groups I*(F)/I3(F) —
2 BT(F)

Theorem 2.81 (Merkurev, 1981). The map [?F/I3F 5, Br(F) is an isomorphism (char(F) # 2)

Remark. 1°/1? = W (F)/I = Z/2Z, I/I? = F*/F?*  I?/I3 = , Br(F), what about I*/I*+1 =?

For any field F' there are defined cohomology groups H"(F,Z/27Z), sometimes called “Galois co-
homology groups”, which satisfy H(F,Z/27) = 7Z/27Z, H'(F,7Z/27) = F*/F?* and H?(F,7/27) =
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2 Br(F) for any field F' of characteristic # 2. This makes the statement of the following theorem
plausible. For its proof and the development of the tools needed in the proof (motivic cohomology and
motivic homotopy theory), Voevodsky was awarded the fields medal in 2002.

Theorem 2.82 (Voevodsky, conjectured by Milnor). Let F be a field of char # 2 then
I"(F)/I""Y(F) = H"(F,7./27)

Lemma 2.83. Let F be a field with charF # 2 and V,W symmetric inner product spaces over F
of dimension < 3. Then V =2 W <= dimV = dimW,detV = detW € F*/F?** and HasseV =
Hasse W € Br(F)

Proof. “=" is clear
“<” dimV =dimW =1: V = (det V) = (det W) = W, hence we are done.
dimV = dimW = 2: Then V & (a,b) ,W 2 (¢,d) (charF # 2). (%b) = Hasse(V) = Hasse(W) =

(%2) = (a,b, —ab) = (c,d, —cd) oot (a,b) = (¢,d) (Witt cancellation)

dimV =dimW =3: V 2 (a,b,c) , W = (2,y,2),a,b,¢c,2,y,z € F*. Hasse({a, b, c))
(Exercise).

(#) Hasse({—ab, —ac, —bc)

Hasse(V) = Hasse(W) , abc=detV =detW = zyz
)

(:3 Hasse({(—ab, —ac, —bc)) = Hasse({(—zy, —xz, —yz))

N (—ab7 —ac> <—ab,—bc) (—ac, —bc\ <—my, —xz) (—xz,—yz) (—xz,—yz)
F F F F F F
N (ab,ab) (ac, bc> B <xy,asy) (xz, yz>
F F F F

but (#) = (1271) because (—ab,ab,1) = (1,1, —1)

N —ac, —bc
F

2

7N

|

S

I

Ned

N
N———

= <fac, —be, fabc2> = <fxz, —yz, f:cy22>
= (—abc) ® (—ac, —be, —ab) = (—zayz) ® (—xz,—yz,—xy) as (—detV) = (—det W)
:> <b7 a? c> g <y’x7z>

O

Proposition 2.84. Let F be a field with charF # 2. Assume that every 5-dimensional symmetric
inner product space is isotropic, i.e., represent 0 non-trivially. Then for symmetric inner product spaces
V.W over F, V=W <= dimV =dimW,detV = det W € F*/F?* Hasse(V) = Hasse(W) € Br(F)

Remark. Proposition applies when F' = Q, (See below). (Also if F = any local field, or non-real
number field)

Proof. Induction on n =dimV = dim W

n < 3: This case is the previous lemma

Assume n > 4. V L (—1) has dimension > 5 hence it is isotropic. =V L (—1) =V, L (1,-1) =
V=V, L (1). Similarly W = W, L (1). Now

e dimVy=dimWy =n—1.

o det Vo =det V- det (1) =detV =det W = det Wy

e Hasse(Vp L (1)) = Hasse(V) = Hasse(W) = Hasse(Wy L (1)) = Hasse(Vy) - Hasse((1)) -

(%) = Hasse(W)) - Hasse((1)) - (%) = Hasse(Vy) = Hasse(Wy)

det Vo=det Wy

So by induction hypothesis Vo 2 Wy =V =V, L (1) 2 Wy L (1) =W O
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Corollary 2.85. Let F' be a field with charF # 2 for which every 5-dimensional form is isotropic.
Then I?F =0

Proof. Let V be a symmetric inner product space over F, [V] € I?F C I(F) = dimpV = 2k.
If 4 + dimV replace V with V' L H, this doesn’t change [V] = [V L H|. Hence we can assume
dimV =4[ for some [ € N. Now

e dimV = 4] = dim H%

dim V. dim V.
2

o detV = (—1)"2 discV = 1 because [V] € I? and (—1)

=(-1)2 =1. But det H* =1

e Hasse(V) = (#) s(V) = (%), since [V] € I® C ker(s : I? — Br). But HasseH? =
~—~—
]eBr

El

—_ l_
(57

So by the proposition we have V = H? = [V] =0 € W(F) O

2.8 Quadratic Forms over p-adic numbers
Definition 2.86. The p-adic integers Z, are (p € Z prime)
Z, = HILH;O Z/p"Z

= {(xn)nGNzl ‘xn € Z/an, Tny1 = Tp, mod pn}
= {Zaipﬂaie{O,...,p—l}}
=0

= completion of Z with repsect to ||a||, = p~*»(®
Zy is a Discrete Valuation Ring with maximal ideal pZ, and residue field Z,/pZ, = F),

Definition 2.87. The p-adic rational numbers Q, are

Q, = field of fractions of Z,

= completion of Q with respect to ||a||, = pvr(@)

o0
{Z aipi|ai €{0,...,p—1},N ez}
i=N

We have the surjective ring homomorphism Z, — Z/p"Z by > =, a;pt Zle a;p* mod p"
(k>n—1). x €Zy,is aunit < x € Z,/pZ, =F, is a unit (Z, local). So >_:*, a;p' € Z, is a unit
<~ Qo 7é 0 in Fp.

We want to understand Q5/Q2*. If p is odd this is an exercise. For p = 2 we first look at Z3/7Z3*.
We have a ring homomorphism Zs — Z/8Z defined by >~ a;2° — ag + a12 + ag4. Therefore
(Zy)* — (Z/8Z)* is surjective by the map 14+ > ~; a;2° — 14+ a12 + as4. Now (Z2)** — (Z/8Z)* =
{12,32,52,7?} = {1}, so we have a well defined group homomorphism (Zz)*/(Z2)** — (Z/8Z)*.
Proposition 2.88. The map Z5/Z3* — (Z/8Z)* defined by Y ;o a;z' — ag+ai12+ as4 is an isomor-
phism.

Proof. We already know that the map is surjective. z = 1+ >, ;2" € kernel of the map <=
a1,a2 =0 < x =1+ 8y for some y € Zs. We need to sow that x is a square in Zs.

z = (1+8y)Y?

-y () s

k=0

S () et

k=0

= i bk (2y) k
k=0
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where

- (2

1/2(1/2_ 1) ..... (1/2_k+1)4k

k!
()R (1) (—2k + 3)4k
o k!
k—1 2"
— (_1) '1'3""'(2k_3)'ﬁ'

Now k = v5(2F) > vy(k!) since vo(k!) <
byd < k) +-- < 3]+ L+ S EE 5 =305 = 5127 =
since Zy = {t € Qa|va(t) > 0} we have that by, € Zo.

(number of even number < k) + (number of number divisible
£2 = k. Hence v5(by;) > 0 and

m o0
bey® 28| = bey"2R (127,
€Zs )
€Z, 9
< 1.27"

where ||a||; = 2772(9) < 1 for all @ € Zy. Hence m +— > ;" byy*2¥ is a Cauchy sequence = z :=
> e biy*2"F defines an element in Z,. Then 2% = z. O

Remark. For p odd Z5 /7.2* 5 F* /F>* (reduction mod p) is an isomorphism (exercise)

Corollary 2.89. The map

Z/2Z x F /B2 podd

Q/Q" = Z/2L X L3/ L7 = {z/zz x (L/8L)* = Z/2Z x (Z/22)> = (Z/22)° p=2

defined by p”a — v, a where a € Zyis an isomorphism.

Proof. For any Discrete Valuation Ring R with field of fractions F', the map F* 5 Z x R* defined
by p“a + v,a where a € R* is a isomorphism. Hence F*/F?* 5 Z/27 x R*/R**. Now (Z/8Z)* is
generated by 3,5 and 32 = 52 = 1 mod 8, hence (Z/8Z) = 7Z/27 & 7./ 27Z. O

Corollary 2.90. Z3/73* = {1,3,5,7} and Q3/Q3* = {1,3,5,7,2,6,10, 14}.

Proposition 2.91. Let p € Z be a prime. Then there is, up to isometry, a unique anisotropic
4-dimensional regular quadratic form over Q. This form has determinant 1 and represents all of

Q;/Qpr.
Proof. p = odd (exercise)

p = 2: Consider all possible 2-dimensioanl forms (1, a) where a € Q3/Q3*. Set D, = {t € Q5/Q3*|t
represent (1,a)}

(LLa) | D, C Q3/Q3" ={1,3,5,7,2,6,10,14} |
(1,1) 1,2,5,10

(1,2) 1,2,3,6

(1,3) 1,3,5,7

(1,5) 1,5,6,14

(1,6) 1,6,7,10

(1,7) Hyperbolic

(1,10) 1,3,10,14

(1,14) 1,2,7,14

We check this table for (1,1): This represent 1,2, 5,10 because 1 = 1-12+1.0%,2 = 124125 = 22412
and 10 = 32 + 12, and it does not represent 3,7,6,14 because 2 + y* € {3,7,6,14} has no solution
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in Zy since it has no solution mod 8 as x? + 3% € {0,1,2} mod 8 since z2,5? € {0,1} mod 8. If
22 +y% =a € {3,7,6,14} has a solution in Qs clearing denominators (multiplying with respect to 27)
(x) 2% + y? = at? has a solution in Zy and not all of z,y,t are divisible by 2.

Case 1. 2f{tthent € Z5=1t>=1 mod 8 and (x) has no solution mod 8

Case 2. t=2uand?2f{zthenz?=1 mod 8, x> +y? = 4u’a hasno solution mod 8 as y* € {1,0}

1
mod 8.

Hence (1, 1) does not represent 3,7, 6, 14.

We also can check that (1,1) = (2,2) = (5,5) = (10,10) 2 (3,3) = (7,7) = (6,6) = (14,14).
e.g., (1,1) = (2,2) = (5,5) = (10,10) since (1,1) represents 2,5 and 10 and the all have the same
determinant. Now (1,1) 2 (3,3) = (3)-(1, 1) because (1, 1) represent 1,2,5,10 but (3)-(1, 1) represents
3,6,15 = 7,30 = 14 € Q}/Q%* = Z/2Z x (Z,/ST)".

Let ¢ be a 4-dimensional anisotropic form over Qq, ¢ = (d,...), then b = (d) ¢ is also anisotropic
and represent d> = 1 € Q35/Q3%*. So v = (1,a,—b,—bc) for some a,b,c € Qj. Rewrite this as
¥ = (L,a) L (=b)-(1,¢). If (1,a) and (b) - (1,¢) represent a common element, then i represent 0
which contradicts the fact that 1 is anisotropic. Note also that a,c # 7 because (1,a) and (1,c) are

not hyperbolic. Therefore D, N bD, = () | ﬁ | D, UbD,. = Q5/Q3%*. We can use the table to see
Da|=|D.

D, C Q3/Q3* is a subgroup. Now 1 € D,,D., 1 ¢ bD, - bD.ND. =0 = D,UbD, =
¢ subgroup

D, UbD, = Q3/Q% = D, = D, t:b>1 a=ceQ5/Q¥ = ¢ = (1,a,—b, —ab) = detyp = 1. Now

o= <d2> ) = (d) ¢ = (d, da, —db, —dab) has determinant = 1= every anisotropic 4-dimensional form
has determinant 1. In particular (—1, a, —b, —ab) is isotropic as it has determinant —1 # 1 € Q3/Q3* =
(-1,a,—b,—ab) = (-1,1,...) = (a,—b,—ab) represent 1. Hence ¢ = (1,a,—b,—ab) = (1,1,e,e)
since detty = 1. But e ¢ {3,7,6,14} because otherwise (e, e) e (7,7 = (—1,—1)and ¥ isotropic
= e € {1,2,5,10}, (e,e) = (1,1) =4 = (1,1,1,1).
table

Let us check ¢ = (1,1,1,1) is indeed anisotropic because otherwise (1,1,1,1) = (1,-1, , ) =
(1,1,1) represent —1 = 7 € Q3/Q3* but 22 + y? + 22 = 7 has no solution in Q} because z? + y? + 22
has no solution in Z (since no solution mod 8). If 22 + y2 + 22 = 7 has a solution in Q then there
exists 22 + y? + 22 = Tt? for some z,y, z,t € Zy and not all of z,y, z,t are divisible by 2.

Case 1. 1If 2{t then t € Z5 = t> =1 mod 8 contradiction since 22 + y? + 22 = 7 has no solution
mod 8

Case 2. If2|t = t = 2u,u € Zy and one of , y, z is not divisible by 2, say 2 { v=> 22 +y>+22 = 4-7-u?
has no solution mod 8 since 22 =1 mod 8 and y?, 2% € {1,0} mod 8 while 4-7u? € {0,4}
mod 8.

Hence v = (1,1,1,1) is anisotropic.Now (1,1), hence 9, represents 1,2,5,10 and v also represents

—1=7=22+12+12+12 € Q3/Q3*. (—1) -1 represents 1 and is anisotropic = (—1) -1 = = ¢h =

<_17 _15 _17 _1> = <77 7a 77 7) t?l w = <d> ’(/) = ¢Vd € Qg/@g* D
able

Theorem 2.92. Let p € Z be a prime then:

1. Every 5-dimensional inner product space over Q, is isotropic

2. I3(Q,) =0, I*(Q,) = Z/2Z generated by the unique anisotropic form of dimension 4. I1/1*(Q,) =
Q;/ 2% W(Qp) — Z/?Z

P2 I(Qp)
Proof. 1. {ai,...,as) anisotropic = {(ay,...,a4) is anisotropic hence is the unique 4-dimensional
anisotropic form representing all of Qj, / 12)*, in particular {(as, ..., aq) represents —as = (ai,...,as)
isotropic

2. Now 1. = I3(Q,) = 0 by Corollary I*(Q,) = Z/27 because let ¢ be the unique 4-
dimensional anisotropic form over Q, then ¢ € I because dim¢ =4 =0 € Z/2Z and 0 # ¢ € I*
because discg = det¢p = 1 = 0 # ¢ € ker(disc) = 2. If 0 # ¢ € I? is anisotropic, ¢ # 1) =
dimvy < 4,dimy =0 mod 2 since ¢ € I,= dimvy = 2 = ¢ = {(a,b) but 1 = discyp = —ab since
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discI? = 1 = 1 = (a, —a) is hyperbolic, in particular not anisotropic = ¢ = 0 € W(Q,). Hence,
I? = {0, ¢} = Z/27Z. The rest is true for any field F with charF # 2
O

Theorem 2.93. Let p € Z be a prime. Then the Witt groups of Z, and Q, are:

Case 1. p odd:

W(Zy)

W (F,) (reduction  mod p)

W(@Q,) — 2L W(F,) & W(F,)

where 9!, 5% are the first and second residue homomorphism (9(¢) = 8?((p) @ ())

Case2. p=2
W(Zy) ————~ 7,/87 x 7.)27.

o

W(Q2)

Z/8Z x (Z/27)?

Proof. The case p is odd is left as an exercise.

p =2 P(Qs) = 0,12(Qs) = /22, 1/1%(Qs) = Q3/Q" = (Z/ST) x(2/2Z) = (Z/22)°,W(Q)/I =
Z)2Z. 0=13C 1> C I C W(Qg). [W(Qg)| = |W/I|-|I/I? -|I?| =2 -8 -2 =32 = every element of
W(Q2) has order a power of 2. We have:

e (1) € W(Q2) has order 8 because 0 # 4 (1) = (1,1,1,1) as it is a generator of I?(Qs) = Z/2Z and
8(1) =4(1)+4(1) =4(1)+4(—1) = 0 because (1,1,1,1) = (-1,-1,-1,-1) = (-1)®(1,1,1,1)
(both are anisotropic and there exists a unique anisotropic form of dimension 4) over Qs.

e (1,3) € W(Q2) has order 2 because it represents —1 as 1+3-32 =28 =22.7=7= —1 € Q3/Q3".
So (1,3) =2 (—1,-3) and (1,3)+(1,3) = (1,-1)+ (3,-3) =0€ W(Q2) and (1,3) # 0 € W(Q2)
——

hyperbolic

since disc (1,3) = =3 =5 # 1 € Q3/Q3*

e (1,6) € W(Qy) has order 2 because it represent —1 as —1 =7 =1-12+6-12 € Q3/Q3*. So
<1a6> = <_1a_6> = <176> + <156> = <_17_6> + <176> = <1a_1> + <6a _6> =0¢€ W(Q2) and
0

(1,6) € W(Qo) because disc (1,6) = —6 # 1 € Q5/Q32*

Hence the map Z/8Z & 7./27 & 7./27. — W (Qsz) defined by a,b,c — a (1) + b{1,3) + ¢(1,6) is well
defined. Both groups have order 32. In order to show that the map is an isomorphism it suffices to
show that it is injective. Assume 0 = a (1) +b(1,3)+c(1,6) € W(Q2). Now b(1,3) +c(1,6) has order
<2=a(l) hasorder <2 =a =4 mod 8 = a(l) =da’(1,1,1,1) with o’ € Z/2Z. We compute the
discriminant

disc(a’ (1,1,1,1) + b(1,3) + ¢ (1,6)) = (disc(1,1,1, 1})‘1/ - disc((1, 3>)b -disc((1,6))° € Qg/@g*
1-(=3)%(=6)° = 5"-10° € Q5/Q3".

Now 5 # 10 € Q3/Q3*, hence, they linearly independent in the Fo-vector space in Qi/Q3%* =
(Z)22)® = b,c = 0 € Z/2Z = a' (1,1,1,1) = 0 = o = 0 since (1,1,1,1) # 0 € W(Qz) = the
map is injective. Hence W (Qq) X Z/8Z & Z/27 & Z/2Z.
(1),(1,3) € W(Zs) since 1,3 € Z3, W(Zy) — W(Qz) is injective, it follows that (Z/8Z) (1) &
2

(Z)22) (1,3) C W(Zs) = [W(Zs)] > 8-2 = 16. Also W(Zs) — W(Qs) > W(Fy) is zero.

W (Zs) C ker(92) = [W(Zy)| < |ker(9?)] = WHES = 32 = 16 = |[W(Z,)| = 16. Hence (Z/8Z) (1) @

(Z)22) (1,3) = W (Z>). O

Lemma 2.94 (Definition). Set Q. = R, p = oo = “infinite prime”. For p € Z U {oc} prime there
is a unique quaternion algebra over Q, that doesn’t split (i.e., & M2(Q,)). Therefore, Hasse(V) =
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, where A is a division quaternion algebra. The Hasse symbol h, (V) for a symmetric

[A] € Br(Qp)
[Qp] € Br((@p)

inner product space V' over Q, is defined by

ho (V) = —1 if Hasse(V') does not split (# [Q,] € Br(Q,))
b 1 if Hasse(V) = [Q,] € Br(Q,)

For a,b € Qy, the Hilbert Symbol is:

1 if (a’b> splits
Q
(a,0)p = hp((a, b)) = e (ot :
-1 if (@> does not split
P
Proof. We need to justify that there exists a unique non-split quaternion algebra over Q,. If p = oo
then Br(Qs) = Br(R) = {R, H}, so H is the unique non-split quaternion algebra over R.

If p < oo: (§2),(59) 2 Ma(Q2) <= (a,b,—ab,~1),(c,d, —cd, =1) 2 (1,1, ~1,~1) (all forms
are in 1?(Q,) & Z/27Z as disc = 0 for them) <= (a,b, —ab,—1), (c,d, —cd,—1) are both the unique
anisotropic 4-dimensional form over Q, < (a,b, —ab, 1) = (c,d, —cd,—1) 2 (1,1,-1,-1) <=
(5) = (§)) % (3,) = Ma(Qy). .

Hilbert Reciprocity Law. Let V be a symmetric inner product space over Q. Then h,(V) =1 for
all but finitely many primes p € ZU {oo}. And [[,cz0 (00} prime (V) =1

Proof. Since h,(V) is a product of Hilbert Symbols (a,b),, it suffices to show claim for V' = (a, b)
and thus [, cz,¢00y(a,0)p = 1Va,b € Q. To show [[(a,b), = 1, using bilinearity of Hilbert symbol
(ab,c) = (a,¢)p(b,¢)p, we just need to show [[(a,b), = 1 for a,b prime or +1. In this case, express
(a,b), in terms of Legendre symbol which mean the proof is a consequence of Quadratic Reciprocity.
(Details are left as an exercise) O

Corollary 2.95. Let V,W be inner product spaces over Q. Let g € Z U {oo} be a prime. If h,(V) =
hy(W)¥p € ZU {oo} prime, p # q. Then hy(V) = he(W)

PTOOf. HpEZU{oo} hP(V) =1= HpEZU{oo} hP(W) O
We will need this theorem:

Theorem 2.96 (Dirichlet). Let a,b € Z be integers with ged(a,b) = 1, then the set of integers of the
form a +nb, n € Z, contains infinitely many primes.

Proof. This theorem is beyond the scope of this module O

Strong Hasse principle for quadratic forms over Q. A symmetric inner product space V over
Q s isotropic if and only if V is isotropic over R and Q,Vp € Z prime.

Remark. The Theorem says: A homogeneous quadratic polynomial has a non-trivial zero in Q if and
only if it has a non-trivial zero in R and Q, Vp € Z prime.

Proof. “=": Is clear.

“<" We assume Dirichlet Theorem. We use induction on n = dimg V'

n = 1: Every 1-dimensional inner space is anisotropic (over any field)

n = 2: A 2-dimensional form V is isotropic over Q (any field of characteristic not 2) «<— V
hyperbolic over Q, i.e., V=H <= V = Hover R and Q, Vp € Z prime <= V is isotropic
over R and Q, Vp € Z prime

n=3: V isotropic over Q <= V = (1,-1,—detV) over Q <= V = (1,—1,—det V) over R
and Q,, Vp prime (Weak Hasse Principle) <= V isotropic over R and @, Vp primes.

n=4: Write V' = (dy,ds,ds,ds) with d; € Z\ {0} square free, d = detV square free. Let
P ={2}U{p € Z prime :p|di...ds} < co. Write V, for V ®q Q,. Now V,, is isotropic by
assumption, = V, = (1,—1) L (ap, —a,d) (over Q,) with a, € Z \ {0} square free.
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e If p ¢ & we can assume that a, € Z; and aw, = 1. Otherwise if p = oo replace (V, )
with (V, —0), and if oo # p ¢ & we would have a, = pb, (as a, € Z, \ {0} square free).

Therefore, 0 o 2V = 92 (1, =1, pby, —pbpd) = (by, —bpd) = disc (b,, —byd) = d =
pfay...ds

1 e F;/F2* = 7+ /72* and d is a square in Q, = (a,, —a,d) = (ap, —a,) = (1,—1) over
Qp and we can even assume a, = 1
e There exists ¢ € Z prime such that a := g7 = a, € @;/Qg* Vp € & where m =

e (a,)=1 P (Note v(ap) =0 or 1 as a, € Zj is square free). To justify existence
of ¢ note that a, = 7Tu,,u, € Z;. By the Chinese Remainder Theorem Z — Z/8Z x
[, 2 pz2 Z/PZ is surjective. So there exists an integer r such that r = as € (Z/8Z)* C
Z/8Z and r = u, € Z/pZ for p € &\ {2}. In fact, any integer of the form r + ns with
s =23 Hpeﬂ\{2} p can be chosen instead of r. Since the a,’s are units, it follows that
s and r are relatively prime. By Dirichlet’s theorem on existence on infinitely many
primes in an arithmetic progression, we can choose r = ¢ a prime. By construction
a=qr=a, € Q;/Q.

Claim: V = (1, —1) L (a, —ad) over Q (in particular, V isotropic over Q as it contains H)

Proof of claim: By the weak Hasse principle it suffices to show that (V, =) (1, -1, a,, —a,d) =

(1,-1,a,—ad) over Q, ¥p € Z U {oo} prime.

Case 1. p € &: We have (ap, —a,d) = (a,—ad) since, by construction of a, we have
a=ap€ Q;/Qg* for p € 2.

Case2. p ¢ 2 and p # ¢,00: One checks that ' and 9% agree: 9'(a,,—a,d) =
(ap, —apd) = (a,—ad) = 0'(a,—ad) € W(F,) because p does not divide a, a,,d
and over [, quadratic forms are classified by rank and determinant. Further, we
have 9%*(a,, —a,d) = 0 = §*(a, —ad) € W (F,) because p does not divide a, a,, d.
And so pjg (a, —ad) = (a,, —a,d) over Q,.

Case 3. p=o00: (a,—ad) = (e, —Good) Over R = Q4 because as =1 and a > 0.

Case 4. gq: Over Qg the forms (1, —1,a, —ad) and V have the same rank (= 4), determi-
nant d and Hasse invariant (by Hilbert reciprocity, as both are isometric over Qy,
p # ¢, and thus have same Hasse symbol over Q,, p # q) = (1, —1,a,—ad) =V
over Q.

n > 5: Choose an orthogonal sum decomposition V = U L W with dimU = 2 and dim W =
n — 2 > 3. Want to find a non-degenerate subspace of V' of dimension less than n which is
isotropic over R and @Q, Vp. Then by induction hypothesis, this subspace is isotropic over
Q, hence V is isotropic over Q. If (U or) W is isotropic over R and Q,, ¥p then by induction
(U or)W is isotropic over @ (then so is V and we are done). Hence suppose W anisotropic
over some Q,. Let & = {p € Z U {oco} prime|W anisotropic over Q,} (# 0). & is a finite
set because dim W > 3 and (a,b,¢) (a,b,c € Z) is isotropic over Q, (p # 2) if and only if
(a,b,¢) = (1,—1, —abc) over Q,, but if pta,b,c and p # 2,00 then {(a,b,c) = (1, -1, —abc)
over Q,. (This holds because if p # 2,00 then 9°LHS = 0 = 9?°RHS, 9'LHS= (a,b,c) =

(1,—1, —abc) = O'RHS, recall W(Q,) 31%82 W(F,) @ W(F,) and over F, quadratic forms

are classified by rank and determinant)

Let ¢ be the quadratic form of (V, ), q(z) = B(z,x), ¢ isotropic over Q,Vp € Z U {oo}
prime. Hence Vp € Z U {oo} there exists 0 # u, € U ® Q, and 0 # w, € W ® Q,, such that
q(up) + q(wp) =0

Claim: There exists u € Z \ {0} such that q(u) = q(u,) € Q;/Q2* for all p € &

Then the claim = Qu L. W C V has dimension n—1 and is isotropic over R and Q, Vp prime
because W isotropic over Q,Vp ¢ & and Qu L W isotropic over p € & as q(u) + g(wy) =
0Vp € &. So by induction hypothesis the subspace Qu L W is isotropic over Q = V is
isotropic over Q

Justification of the claim: Now ¢ = az? + by? with a,b € Z\ {0} s0 up, = (zp,Yp) € Zyp X Zy.
Case 1. Assume first co ¢ 2, then p'»§, = q(up) = ax’+by2 € Z,\{0} where §, € Z and
lp € Z>o- By the Chinese Remainder Theorem the map Z — [[ ¢ 5 Z/p'»*? =

Hpe?] Zp/plp+3 is surjective. Hence there exists x,y € Z such that x = z,, y =
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yp mod pl»*3 for p € &. and Set u = (z,y). Then g(u) = az? + by? =
axz% + byf) € Zp/plp'*‘3 implies that az? + by? = plpep with e, = £, mod p*. Now
&p € Z7 implies that &, = e, € Q% /Q2* due to the fact that

e ¢, =&, mod 3

o Z3/72* = F;/F2* mod p (p odd)

o 7573 = (Z/2°7)*
No;v & 2: ep € Q;;/Qf)* = pl¢, = plre, %Q;/Qf,*Vp € P = ax? +by? =
azy + by, € Qy/Q2 = q(u) = q(uy) € Qy/Q* Vp € P

Case 2. Ifoo € 2, Qs = R. Then q(us) € R*/R?* either > 0 or < 0, by replacing g with

—q we can assume q(Uso) > 0. Let too = (Too, Yoo) € R X R, q(us) = ax? + by?
not both a,b < 0 since g(us) > 0, so without loss of generality we can assume
a > 0. Choose z,y as in the first case such that moreover z? > —%y? then
q(u) = q(up) € Q;/Q2* Vp € P\ {oo} as above. Furthermore g(u) = az® +by* >
0= q(u) = q(us) € R?2/R?*.

This ends the proof of the claim.

Definition 2.97. Let ¢ be a rational (or integral) quadratic form. Then ¢ is said to be
e positive definite if q(x) > 0Vx # 0.
e negative definite if q(xz) < 0Vz £ 0.
e indefinite if ¢ is neither positive nor negative definite.

Corollary 2.98. Let g be a rational quadratic form of dimension > 5. If q is indefinite, then it
represents 0 over Q.

Proof. By the strong Hasse principle, we nee to see that ¢ represents 0 over R and Q, for all p € Z
prime. Since ¢ indefinite = gg = (1,—1) L ... so ¢ represent 0 over R. Since dimension of ¢> 5 = ¢
represent 0 over Q, for all p prime because every 5 dimensional form over Q, is isotropic. O

2.9 Integral quadratic forms

Recall W(Z) > Z.

sgn
Definition 2.99. A symmetric inner product space over Z, (V, 3) is called:

o even (or of type II) if B(z,x) € Z is even Vx € V

e odd (or of type I) if 3z € V such that 5(z,z) € Z is odd.
Remark. e A symmetric inner product space over Z is also called unimodular lattice

e If ¢ is a quadratic form over Z then B(x,y) = q(x +y) — q(z) — q(y) and S(z,x) = 2¢(X). So the
even symmetric inner product spaces over Z are precisely the inner product spaces that come
from regular quadratic forms.

Lemma 2.100. Let (V, ) be an indefinite symmetric inner product space over Z then there exists
x € V,x # 0 such that B(x,z) = 0.

Proof. Recall that the image of W(Z) — W(Q) is generated by (1) and (—1). (V,/) indefinite
= Vo =V®Q = (1,-1) L ... isotropic = Iz € Vg , = # 0 such that S(z,z) = 0. But
V C Vg,z =¥ for somen € Z\{0},y €V = B(y,y) = B(nz,nz) =n?*B(z,2) =0and 0 £y eV O

Theorem 2.101. Let (V, ) be an odd (i.e., type I) indefinite symmetric inner product space over Z.
Then (V,B) has an orthogonal basis. In particular (V, ) = m (1) L n(—1) over Z.
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Proof. Claim: (V, ) & (1) oild

The theorem follows from claim by induction on dimension V: For k € Z we have

<(1) 2k:1+1><k‘i1 /16) (é —01) G k—’gl);&«g 2k11)>w<1’1>'
N

det=—1

LV, p).

From this the theorem follows as we have (1) L V' or (—1) L V' is indefinite and both are odd and
have dimension less that V, and V = (+1) L ((¥1) L V')
To prove the claim: We know (V, ) indefinite = Jr € V with z # 0 and B(z,z) = 0.

previous lemma
Now (V,p) inner product space over Z = V = Z". So =z = (a1,...,a,) € Z"™, we can assume

d = ged(ay,...,a,) =1 (otherwise replace x with 7). We can extend z to a Z basis x1 = z, 72, ..., 2,
of V = Z" because ¢ : V/Zx — (V ®z Q)/Qu is injective as y = (c1,...,¢,) € ker¢ then Ir;s € Z
with » # 0 and ry = sz = re¢; = sa; for all i« = 1,...,n, since ged(aq,...,a,) = 1 there exists
bi,...,b, € Z such that > a;b; = 1. So r> . ¢;b; = s> a;b; = s = s = rt where t = > ¢;b;, hence
ry = sr = ry = rtx T?ZO y =tx = y =0 € V/Zzx. Hence our map is indeed injective. Now V/Zz is

a finitely generated Z-module, submodule of V(g%f,Q = Q" ! = V/x is a free Z-module = V 5 V/x
has a section ¢ : V/Zz — V (po =1)= V =24 img . Hence x can be extended to a Z-basis

oV Jpmgn—1
T, =x,Ta,...,Ty of V.

1 i=j
0 i#j
is non-degenerated = 3 : V > Hom(V,Z) = Z" has a Z basis ey, ..., e,, where (e;)(> ajz;) = oy
y Ui <—>Bei . Now (V, ) odd = there exists k € {1,...,n} such that S8(yx,yx) is odd. If B(y1,y1)

. 0 1 - 0 1 non—degenerate N
is odd then 6|(Z$1+Zy1) = 1 odd = (V,ﬁ) = 1 odd 1 (Zl‘l D Zyl) .

0 1
I B(yn. 1) even and Bluns ) 0dd for k # 1 then Bliurszininy = { (3 ohg) ) = (V)

0 1 nonfdejg_;enerate (Z . Z( n ))J_ 0
1 odd T Y1+ Yk

Theorem 2.102. If (V,3) is an even symmetric inner product space over 7 then its signature is
divisible by 8.

Let y1,...,yn be the dual basis of z1,...,z,, Le., B(z;y;) = { which exists because

1

Proof. Let (V,) be an arbitary symmetric inner product space over Z. Then V/2V = V ®y Fy

is a symmetric inner product space over Fo. But over Fy the map x — [(x,z) is linear because

Bx+yxz+y) =Bz z)+26(xy) + B(y,y) € F2. As V/2V is non degenerate, there exists a unique
——

=0
u € V/2V such that 8(4,z) = f(z,z) mod 2Vx € V. If u,u’ € V are two lifts of @ € V/2V then
v’ = u+ 2v for some v € V, and B(v/,u') = B(u,u) + 4(8(u,v) + B(v,v)) = B(u,u) € Z/8Z because
—_—
=0 mod 2
B(u,v) = B(v,v) € Fy by definition of u. Set ¢(V') := B(u,u) € Z/8Z for any lift u of w € V/2V. We
have seen that ¢(V) does not depend on the lift « of w. From the definition of ¢ we have ¢(V L W) =
d(V)+d(W) and ¢((1)) =1, ¢((—1)) = —1,s0 ¢ : W(Z) — Z/8Z : V — ¢(V) is a well defined map. If
(V,B) is even then S(z,2) =0 mod 2Vz € V and we can choose u=0=u=0= ¢(V) =0 € Z/8Z.
Since ¢((1)) =1 = ¢ : Z- (1) = W(Z) — Z/8Z is the signature. Now, if (V, §) is even then f(z,x) =0
mod 2Vz € V and @ = 0 = we can choose u = 0 = ¢(V) = 0 € Z/8Z. This implies that signature of
any even symmetric inner product space over Z is divisible by 8. O

Corollary 2.103. Ewvery even positive definite inner product space over 7, has rank divisible by 8.
Proof. If M is positive definite then rk M = sgn M. O

Theorem 2.104. Let M, N be indefinite symmetric inner product spaces over Z. Then M = N
<= M, N have the same rank, signature and type (odd or even).
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Proof. If M, N are odd then M, N have orthogonal basis, by Theorem [2.101}then the theorem follows.
If M, N are even, we do not have the time to prove this in this course. O

Example. Of even positive definite inner product spaces over Z.

General Remark: Let R™ be equipped with standard Euclidean inner product ((z1,..., %), (Y1, --,Yn))

S @iy If M C R™ is a finitely generated Z-submodule, then M 2 Z* for some k < n. Restricting

(,)gn to M defines a symmetric bilinear form 5(z,y) = (z,y) € R on M with values in R. Assume

tkz M = n = dimgR" = R"/M compact Riemanian manifold. Vol(R"/M) = volume of paral-

lelepiped spanned by a Z-basis of M. If we let A = (b1,...,b,) where bq,...,b, is a Z-basis of M then

Vol(R"/M) = |det A| = \/det(ATA) = [det ({b;,b;))i j=1,...n = a finitely generated M C R™ of
—_—————

biliner form matrix of M

rkz M = n defines a (positive definite) inner product space over Z if and only if:
e (x,y) € ZVx,y € M, and
o VOI(R"/M) = 1

In fact every possible definite inner product space (M, ) over Z arises in that way, because R™ &
M ®zR DM and g = (1,...,1) over R since (M, () is positive definite.
———
Lemma 2.105. Let By, C RY™ be the Z-submodule (m € Z>1) generated by e; +e; (i,j =1,...,4m)
and %(el +es+ -+ eqn) where e; = (0,...,0, %, 0,...,0) is the standard basis vector of R*™. Then

i

Ey. is a symmetric inner product space over Z of rank 4m which is even (respectively odd) if m is
even (respectively odd)

Proof. o E,,, C R*" finitely generated Z-submodule = Ej,, free Z-module, i.e., By, = Z*. Now
rkz, By, = dimg Eyy, ®7 Q = 4m because ¢; +¢€j,i,7 = 1,...,4m and 3(e1 + - + €4n,) span Q™.
(Note that this contains 2e;,7 = 1,...,m by setting i = 7).

9 it
o (z,y) € ZVz,y € E4y,. (check for z,y generators of Eyy,). E.g., (e; +¢ej,e; +e;) = {4 Z 7&‘7'7
i=7
<%(61 + -+ eam), %(el 4+ e4m)> = %4m =m = Ey,, is even if and only if m even.

e We are left to check it is non-degenerate. We will use the following trick: If M C N C R" of
rank n Z-submodule, then R"/M — R™/N covering with | N/M]| sheets because N/M acts freely
on R"/M with quotient R"/N. So |[N/M| - Vol(R"/N) = Vol(R"/M)YM Cc N C R" rtk =n
Z-submodules.

Now we prove FEj,, is non-degenerate, i.e., Vol(R*"/Ey,,) = 1. Let E° C Ej,,, be the Z-
submodule generated by e; +e;,7,5 = 1,...4m. Then Eym/E° is generated by & = %(61 + -+
eam) ¢ EY, and 26 € E° s0 26 = 0 € Eyy,/E°. Therefore Ey,,/E° = 7/27 = 2Vol(R*™ /Ey,,) =
Vol(R*™/EP). But notice E° C Z*™ where Z*™ is generated by e1,...,€4,. Now Z*™/EC is
generated by e; because e; = e; +e; —e1 Vi =2,...,4m. Now e; ¢ E° but 2e; = e; +e; € B =
74 | B0 = 7,27 = Vol(R*™/E?) = 2Vol(R*™/Z*™) = Vol(R*™/E*™) = Vol(R*™/Z4™) =
1 = E4,, is non-degenerate.

O

Corollary 2.106. Eg,, is an even positive definite symmetric inner product space of rank 8m

Fact. For all n € Z>o, {symmetric inner product spaces over Z of given rank n}/isometry is a finite
set.

Example.
y rankn | 8] 16 | 24 | 32
number of even positive definite inner products space over Z | 1 2 24 Unknown > 1(
representative FEg | Ei6,FEg 1 Eg N(lfgng r
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