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In this course every ring is commutative with unit. Every module is a left module.

De�nition 0.1. Let R be a (commutative) ring and M a (left) R-module. Then a bilinear form on
M is a map β : M ×M → R which is R-linear in both variables. i.e. β(ax+by, z) = aβ(x, z)+bβ(y, z)
and β(x, by + cz) = bβ(x, y) + cβ(x, z) ∀x, y, z ∈M,a, b, c ∈ R

Example. Standard Euclidean scalar product on Rn. Rn×Rn → R is a bilinear form on the R-module
Rn

De�nition 0.2. A bilinear form β : M×M → R is called symmetric if β(x, y) = β(y, x) ∀x, y ∈M . It
is called skewed symmetric if β(x, y) = −β(y, x)∀x, y ∈M . It is called symplectic if β(x, x) = 0∀x ∈M

Example. Standard scalar product on Rn is symmetric.
On R2 the bilinear form (x1, y1)× (x2, y2) 7→ x1y2 − x2y1 is symplectic and skew-symmetric

Remark. Any symplectic bilinear form is also skew-symmetric because β symplectic⇒ 0 = β(x+y, x+
y) = β(x, x) + β(x, y) + β(y, x) + β(y, y) = β(x, y) + β(y, x) hence it is skew-symmetric.

If 2 ∈ R is a non-zero divisor (i.e. 2a = 0 ⇒ a = 0 ∀a ∈ R) then any skew-symmetric form is also
symplectic because β skew-symmetric ⇒ β(x, x) = −β(x, x)⇒ 2β(x, x) = 0 and 2 a non-zero divisors
we can divide by 2 hence β(x, x) = 0∀x ∈M ⇒ β symplectic

Example. For R = F2, the form F2 × F2 → F2 de�ned by x, y 7→ xy is skewed-symmetric but not
symplectic because β(1, 1) = 1 6= 0 ∈ F2

De�nition 0.3. A bilinear form β : M ×M → R is called regular or non-degenerate or non-singular
if

1. ∀f : M → R a R-linear map ∃x0, y0 ∈M such that f(x) = β(x0, x) and f(x) = β(x, y0)

2. β(x, y) = 0∀x ∈M ⇒ y = 0, similarly β(x, y) = 0∀y ∈M ⇒ x = 0

Remark. r, l : M → Mv = HomR(M,R) = {f : M 7→ R : f is R-linear} de�ned by x 7→ r(x) =
β(x,−) : M → R : t 7→ β(x, t) and y 7→ l(y) = β(y,−) : M → R : t 7→ β(t, y). Then

1. says r, l are surjective

2. says r, l are injective

In particular, if M = V a �nite dimensional vector space over a �eld R = F then 2. ⇒ 1. (as
dimV = dimV v and thus 1. injectivitiy⇒ 2. surjectivity)

De�nition 0.4. Let (M,β), (M ′, β′) be bilinear forms. An isometry from M to M ′ is an R-linear
isomorphism f : M →M ′ such that β(x, y) = β′(f(x), f(y))∀x, y ∈M

Two bilinear forms (M,β), (M ′, β′) are isometric if there exists an isometry between them

Exercise. Check that isometry is an equivalence relation
Check if (M,β) and (M ′, β′) are isometric then (M,β) is symmetric (skew-symmetric, symplectic,

regular) if and only if (M ′, β′) is.

De�nition 0.5. Let M be an R-module. A quadratic form on M is a function q : M → R such that

1. q(ax) = a2q(x)∀a ∈ R, x ∈M

2. The form βq : M ×M → R de�ned by βq(x, y) = q(x+ y)− q(x)− q(y) is bilinear

βq is called the associated symmetric bilinear form.
The quadratic form q : M → R is called regular if βq is regular.
Let (M, q), (M ′, q′) be two quadratic forms modules. An isometry from M to M ′ is an R-linear

isomorphism f : M →M ′ such that q(x) = q′(f(X))∀x ∈M .

Remark. If β is a (symmetric) bilinear form then qβ(x) = β(x, x) is a quadratic form because qβ(ax) =
β(ax, ax) = a2β(x, x) = a2qβ(x) and βqβ (x, y) = qβ(x+y)− qβ(x)− qβ(y) = β(x+y, x+y)−β(x, x)−
β(y, y) = β(x, y) + β(y, x) is bilinear.

If β is symmetric then βqβ = 2β
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Corollary 0.6. If 1
2 ∈ R (i.e. 2 ∈ R is a unit) andM is an R-module then {quadratic forms on M} →

{symetric bilinear forms on M} by q 7→ βq is a bijection with inverse {symetric bilinear forms on M} →
{quadratic forms on M} de�ned by β 7→ 1

2qβ

Proof. Exercise

Remark. If 1
2 ∈ R then the theory of quadratic forms is the same as the theory of symmetric bilinear

forms.
But if 1

2 /∈ R then the two theories may di�er:

Example. The symmetric bilinear form Z× Z→ Z de�ned by x, y 7→ xy does not come from a quadratic
forms on Z because if q : Z→ Z is a quadratic form then q(a) = q(a · 1) = a2q(1) and βq(x, y) =
q(x+ y)− q(x)− q(y) = (x+ y)2q(1)− x2q(1)− y2q(1) = 2xyq(1) 6= xy

Objective of this course: Understand classi�cation of quadratic forms (or symmetric bilinear forms)
up to isometry:
How many quadratic forms exists (up to isometry)?
Given two quadratic forms how can I decide when they are isometric

A few applications of quadratic forms:

• Algebra (quaternion algebras)

• Manifold theory (as products pairing)

• Number theory

• Lattice theory (sphere packing)

1 Quadratic forms and homogeneous polynomial of degree 2

De�nition 1.1. A polynomial f =
∑
ai1,...,inx

i1
1 ...x

in
n ∈ R[x1, ..., xn] is called homogenous of degree

m if all occurring monomials xi11 ...x
in
n (ai1,...in 6= 0) has degree i1 + ...+ in = m

Example. x3 + x2y + z3 is homogeneous of degree 3
x3 + x2 + zy2 is not homogeneous.

Every homogeneous degree 2 polynomial f ∈ R[x1, ..., xn] has the form f =
∑n
i=1 aix

2
i+
∑
i<j bijxixj .

To every polynomial f ∈ R[x1, ..., xn] one can associate a (polynomial) function f̄ : Rn → R by
(r1, ..., rn) 7→ f(r1, ..., rn)

Remark. In general R[x1, ..., xn] → Funtions (Rn, R) which maps to f 7→ f̄ is not injective. (�nd
examples!)

But homogenous polynomials in n-variables of degree m → Functions (Rn, R) is injective

Claim. If f ∈ R[x1, ..., xn] is homogeneous of degree 2 then f̄ : Rn → R is a quadratic from

Proof. Note: If q1, q2 are quadratic forms on M then q1 + q2 and aq1 are all quadratic forms ∀a ∈ R.
Thus can assume f = xixj . Then f̄(r1, ..., rn) = rirj so

1. f̄(ar) = a2f̄(r)∀a ∈ R1, r ∈ Rn

2. f̄(r + s)− f̄(r)− f̄(s) = (ri + si)(rj + sj)− rirj − sisj = risj + sirj is bilinear in r, s ∈ Rn

Lemma 1.2. For any (commutative!) ring R, the map{
homoegenous polynomials of degree

2 in n variables

}
→ {quadratic forms Rn}

de�ned by f 7→ f̄ is bijective

Proof. Exercise
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If Rn → Rn
ej 7→

∑n
i=1 aijei

is an R-linear map given by a matrix A = (aij) ∈ Mn(R) we can de�ne a ring ho-

momorphism A∗ : R[x1, ..., xn]→ R[x1, ..., xn] by xj 7→ A∗(xj) =
∑n
j=1 aijxj which sends homogenous

polynomials of degree m to homogenous polynomials of the degree m.

De�nition 1.3. Two homogenous polynomials of degree 2 f, g ∈ R[x1, ..., xn] are (linearly) equivalent
if ∃A ∈Mn(R) invertible with A∗(f) = g

Lemma 1.4. The map{
homoegenous polynomials of degree

2 in n variables

}
/linear equivalence→ {quadratic forms on Rn}/isometry

is bijective

Proof. Exercise

1.1 Free bilinear form modules

De�nition 1.5. A bilinear R-module (M,β) is called free of rank n (n ∈ N) if M ∼= Rn

If (M,β) is free of rank n then M has a basis e1, ..., en and we can de�ned an associated bilin-
ear form matrix B = (β(ei, ej)). Note that B = (β(ei, ej)) determines β since if x, y ∈ M have
coordinates (with respect to e1, ..., en) x1, ..., xn, y1, ..., yn ∈ R i.e. x =

∑
xiei, y =

∑
yiei then

β(x, y) = β(
∑
xiei,

∑
yjej) =

∑
xiβ(ei, ej)yj = (x1, ..., xn)B(y1, ..., yn)T

Example. Standard scalar product on Rn has bilinear form matrix with respect to standard basis

B =

1 0
. . .

0 1


Lemma 1.6. Let (M,β) be a free bilinear form module of rank n with basis e1, . . . , en, then β is
non-degenerate ⇐⇒ the associated bilinear form matrix B = (β(ei, ej)) ∈Mn(R) is invertible

Proof. Recall that β is non degenerate if and only if r, l : M → HomR(M,R) de�ned by

x 7→ r(x) = β(x,−), r(x)(y) = β(x, y)

7→ l(x) = β(−, x), l(x)(y) = β(y, x)

are bijective. M has basis e1, . . . , en. Then HomR(M,R) has basis e#1 , ..., e
#
n where e#i ej =

{
1 i = j

0 i 6= j

i.e. e#i (
∑
xjej) = xi. Let (rij) receptively (lij) be the n×n of r, l with respect to basis e1, ..., enof M

and e#1 , ..., e
#
n of HomR(M,R) i.e.

∑n
k=1 rkje

#
k = r(ej) and

∑n
k=1 lkje

#
k = l(ej) so β(ej , ei)r(ej)(ei) =∑n

k=1 rkje
#
k (ei) = rij ∀i, j ⇒ (rij) = BT = transpose of B. Similarly for (eij) = B. So, β non

degenerated ⇐⇒ r, l are R-linear isomorphism ⇐⇒ (rij) and (lij) are invertible ⇐⇒ BT , B are
invertible ⇐⇒ B is invertible

Lemma 1.7. Let (M,β), (M ′, β′) be two free bilinear form modules over R of rank n with basis
e1, ..., en for M and e′1, ..., e

′
n for M ′ then (M,β) and (M ′, β′) are isometric ⇐⇒ associated bilinear

form matrices B = (β(ei, ej)) and B′ = (β′(e′i, e
′
j)) are congruent. i.e. ∃A ∈ Mn(R) invertible such

that B = ATB′A

Proof. ” ⇒ ”: Let f : M → M ′ be an isometry. Let (fij) be the associated matrix with respect
to the basis e1, ..., en and e′1, .., e

′
n i.e. f(ej) =

∑n
k=1 fkje

′
k. Then f isometry ⇒ f isomorphism

⇒ (fij) invertible and β(ei, ej) = β′(f(ei), f(ej)) = β′ (
∑n
k=1 fkie

′
k,
∑n
l=1 flje

′
l) =

∑
fkiβ

′(e′k, e
′
l)flj =

(ATB′A)ij . Hence B = ATB′A
” ⇐ ”: A = (fij) ∈ Mn(R) de�nes an isomorphism f : M → M ′ by f(ej) =

∑
fkje

′
k such that

β(ei, ej) = β′(f(ei), f(ej)) (Calculation as above). Hence f : M →M ′ is an isometry

4



De�nition 1.8. Let B ∈Mn(R) we let 〈B〉 stand for the bilinear form module (Rn, β), β : Rn×Rn →
R de�ned by

x
x1

xn


, y
y1

yn


7→ β(x, y) = xTBy

This is a free bilinear form module with basis e1, . . . , en with ei has an 1 in the i-th position and
associated bilinear form matrix B. Note β(ei, ej) = eTi Bej = Bij

Remark. 〈B〉 ∼= 〈B′〉 for B,B′ ∈Mn(R) ⇐⇒ ∃A ∈Mn(R) invertible such that B′ = ATBA

De�nition 1.9. The determinant of a non-degenerate free bilinear form module M = (M,β) with
basis e1, . . . , en is the determinant detM = det(β(ei, ej))i,j=1,...,n ∈ R∗/R2∗. Here R2∗ ⊂ R∗ is the set
of units which are squares. Note that detM ∈ R∗/R2∗ does not depend on the choice of basis because if
e′1, . . . , e

′
n is another basis, then (β(e′i, e

′
j)) = AT (β(ei, ej)A⇒ det(β(e′1, e

′
j) = (det(A))2 det(β(ei, ej))

Example. Recall 〈a〉 is R×R→ R de�ned by x, y 7→ axy.

• If 〈1〉 = 〈2〉 ⇒ det〈1〉
=1

= det〈2〉
=2

∈ R∗/R2∗ ⇒ 2 is a square ⇒ 〈1〉 � 〈2〉 over Q

• If

〈(
1 0
0 1

)〉
∼=
〈(

0 1
1 0

)〉
⇒ 1 = −1 ∈ R∗/R2∗ ⇒ (−1) is a square ⇒

〈(
1 0
0 1

)〉
�〈(

0 1
1 0

)〉
over Z,Q,R but

〈(
1 0
0 1

)〉
∼=
〈(

0 1
1 0

)〉
over C (see below)

Remark. if (M,β) is a free of rank n with basis e1, . . . , en and bilinear form matrix B then

• (M,β) is non-degenerate ⇐⇒ detB ∈ R∗.

• (M,β) is symmetric ⇐⇒ B = BT

• (M,β) is skew-symmetric ⇐⇒ BT = −B

• (M,β) is symplectic ⇐⇒ BT = −B and all diagonal entries of B are 0

Proof. Exercise.

Lemma 1.10. Let R be (commutative!) ring and f : Rn → Rl is a surjective R-module homomor-
phism. Then n ≥ l. In particular, Rn ∼= Rl ⇒ n = l

Proof. Letm ⊂ R be a maximal ideal. Then R/m = k is a �eld. Reducing f mod m yields a surjective
map f : (R/m)n → (R/m)l of �nite dimensional k-vector space⇒ n = dimk(R/m)n ≥ dimk(R/m)l =
l

Remark. Lemma does not hold for non-commutative ring in general. For example let V be a k-vector
space of ∞ dimension and A = Endk(V ) then A⊕A ∼= A as A module

2 Orthogonal sum

De�nition 2.1. Let (M,β) and (M ′, β′) be two bilinear form modules. Their orthogonal sum (M,β) ⊥
(M ′, β′) has underlying module M ⊕M ′ and bilinear form (M ⊕M ′) × (M ⊕M ′) → R de�ned by
(x, u), (y, v) 7→ β(x, y) + β′(u, v).

Remark. • B ∈Mn(R), B′ ∈Mm(R) then 〈B〉 ⊥ 〈B′〉 =

〈(
B 0
0 B′

)〉
• If (M,β) and (M ′, β′) are regular (symmetric,skew-symmetric,symplectic) then so is (M,β) ⊥

(M ′, β′)

De�nition 2.2. Let (M,β) be a symmetric or skew-symmetric bilinear form (so β(x, y) = 0 ⇒
β(y, x) = 0). Let N ⊂ M be a sub-module. The orthogonal complement of N (in M) is the sub-
module N⊥ = {x ∈M |β(x, y) = 0∀y ∈ N}
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Lemma 2.3. Let (M,β) be symmetric or skew-symmetric and N ⊂M a sub-module such that (N, βN )
is non degenerate. Then M = N ⊥ N⊥

Proof. Have to check that N ∩ N⊥ = 0. If x ∈ N ∩ N⊥ then β(x, y) = 0 ∀y ∈ N (as x ∈ N⊥). But
since x ∈ N and βN is non degenerate we have x = 0. So M ⊃ N +N⊥ = N ⊕N⊥.

We next need to check N + N⊥ = M . Let x ∈ M then β(x,−)|N ∈ HomR(N,R) ⇒
βN non−degenrate

∃x0 ∈ N : β(x, y) = β(x0, y)∀y ∈ N then β(x−x0, y) = 0∀y ∈ N ⇒ x−x0 ∈ N⊥ ⇒ x = x0︸︷︷︸
∈N

+x− x0︸ ︷︷ ︸
∈N⊥

.

Thus N +N⊥ = M ⇒ N ⊕N⊥ = M
Lastly we need to check that (N, βN ) ⊥ (N⊥, β⊥N ) = (M,β). If x, y ∈ N, u, v ∈ N⊥ then β(x +

u, y + v) = β(x, y) + β(x, v)︸ ︷︷ ︸
=0

+ β(v, y)︸ ︷︷ ︸
=0

+ β(u, v) = βN (x, y) + β⊥N (u, v)

Corollary 2.4. If (M,β) is a �nitely generated symmetric bilinear form module. Then M = 〈u1〉 ⊥
〈u2〉 ⊥ · · · ⊥ 〈uk〉 ⊥ N where ui ∈ R∗ and β(x, x) ∈ R \R∗ ∀x ∈ N

Proof. Set M0 = M and if β(x, x) =∈ R \ R∗ ∀x ∈ M0 = M then take N = M0 = M and we are
done. So assume ∃x ∈ M0 : β(x, x) ∈ R∗ then ax 6= 0 ∈ M ∀a ∈ R \ {0} (if ax = 0 ⇒ β(ax, x) =
aβ(x, x)⇒ a = 0). So Rx ⊂ M is a free module of rank 1 with basis x. Rx has bilinear form matrix
(β(x, x)) ∈ R∗ invertible. So, β|Rx is non degenerate. ⇒ M = Rx︸︷︷︸

〈u1〉

⊥ (Rx)⊥︸ ︷︷ ︸
=:M1

with u1 = β(x, x) ∈ R∗

contradicting Lemma 1.10
Repeat with M1in place of M0 to obtain M = 〈u1〉 ⊥ · · · ⊥ 〈uk〉 ⊥Mk. We can repeats as long as

∃x ∈ MK : β(x, x) ∈ R∗. But the procedure stops because K > n impossible otherwise there exists a
surjective map Rn �M = 〈u1〉 ⊥ · · · ⊥ 〈un〉︸ ︷︷ ︸

Rk

⊥Mk � Rk ⇒ n ≥ k

Remark. If β(x, x) ∈ R\R∗ ∀x ∈ N 6= 0 and β is non-degenerate then (N, β) cannot has an orthogonal
basis

Proof. If N = 〈u1〉 ⊥ · · · ⊥ 〈un〉 and if N is non-degenerate with respect to base e1, . . . , en then 〈ui〉

are non-degenerate ⇒ ui ∈ R∗. β(ei, ej) =

{
ui i = j

0 i 6= j
in particular β(e1, e1) = u1 ∈ R∗

Theorem 2.5 (Existence of orthogonal basis over �elds of char 6= 2). Let k be a �eld of char 6= 2
and (M,β) a �nite dimensional symmetric bilinear form. Then M = 〈u1〉 ⊥ · · · ⊥ 〈ul〉 ⊥ N such that
β|N = 0 (β(x, y) = 0∀x, y ∈ N). In particular (M,β) has an orthogonal basis, e1, . . . , el, el+1, . . . en

such that β(ei, ej) =


ui j = i = 1, . . . l

0 j = i = l + 1, . . . n

0 j 6= i

Proof. From corollary we have (R = k) M = 〈u1〉 ⊥ · · · ⊥ 〈ul〉 ⊥ N with ui ∈ R∗, β(x, x) ∈ R \R∗
k\k∗=0

∀x ∈

N . Need to show β|N = 0. β(x, x) = 0 ∀x ∈ N ⇒ associated quadratic form q(x) = β(x, x) = 0 ⇒
char 6=2

β(x, y) = 1
2 (q(x+ y)− q(x)− q(y)) = 0

Want to generalize theorem on existence of orthogonal basis to rings.

De�nition 2.6. A ring R is called local if it has a unique maximal ideal m.

Note that R/m is a �eld as m ⊂ R is a maximal ideal.

Notation. (R,m, k) is a local ring if k = R/m,m ⊂ R is the maximal ideal

Remark. In a local ring (R,m, k) we have R∗ = R \m

Proof. Need to show m = R \R∗.

• We see that m ∩R∗ = ∅ because m ( R⇒ m ⊂ R \R∗.
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• If a ∈ R \ R∗ , then (a) = Ra ( R (proper ideal because Ra = R ⇒ ∃b : ba = 1 contradicting
a /∈ R∗) Every proper ideal is contained in a maximal ideal ⇒ Ra ⊂ m⇒ a ∈ m⇒ R \R∗ ⊂ m

(R,m, k) local then A ∈Mn(R) is invertible if and only if A mod m ∈Mn(k) is invertible because
A ∈ Mn(R) invertible ⇐⇒ detA ∈ R∗ = R \ m ⇐⇒ det(A mod m) 6= 0 ∈ k = R/m ⇐⇒ A
mod m ∈Mn(k) is invertible.

Example. • Fields are local rings with m = 0

• Z(p) = {ab ∈ Q : a, b ∈ Z, p - b} where p ∈ Z is prime. This is a local ring with maximal ideal
m = {ab ∈ Q : p - b, p | a}. Then Z(p)/m = Fp

• k �eld k[T ]/Tn is a local ring with maximal ideal (T )

De�nition 2.7. A �nitely generated R-module P is called projective if it is a direct factor of some
Rn, n ∈ N i.e. ∃R-module N : M ⊕N ∼= Rn

Theorem 2.8. Let (R,m, k) be a local ring and M a �nitely generated projective R-module, then
M ∼= Rl for some l ∈ N

Proof. M projective so ∃N : M⊕N
f∼=
←
Rn . Let p : Rn → Rn be the linear mapRn

f→M ⊕N q→
x,y 7→(x,0)

M ⊕N f−1

→ Rn

and let p be the composition of all these maps. Note that p2 = (f−1qf)2 = f−1qff−1qf = f−1 q2︸︷︷︸
=q

f =

p and im p

f→∼=
←
g

M

Claim. ∃ basis of Rn with respect to which p has the form

(
1l 0
0 0

)
i.e. ∃U ∈ Mn(R) such that

p = U

(
1l 0
0 0

)
U−1.

Note that claim implies theorem because im p
∼=←
U

im

(
1l 0
0 0

)
= Rl

Claim is true over a �eld (i.e. mod m). M/mM and N/mN are �nite dimensional k-vector spaces
so kl ∼=

→
g1

M/mM , kr ∼=
→
g2

N/mN

kl ⊕ kr

g1⊕g2
��

1l 0
0 0


// kl ⊕ kr

M/mM ⊕N/mN

f mod m ∼=
��

q // M/m⊕N/mN

g−1
1 ⊕g

−1
2

OO

(R/m)n
p // (R/m)n

f−1

OO

Then we get

(
1l 0
0 0

)
= A−1pf(g1 ⊕ g2)︸ ︷︷ ︸

A∈Mn(k)

, p mod m = A

(
1l 0
0 0

)
A−1, now lift all entries of A to

entries of R (under the surjective R/m → k) to obtain a matrix S ∈ Mn(R) such that A = S

mod m. A ∈ Mn(k) invertible ⇒ S ∈ Mn(R) invertible. S−1pS mod m =

(
1l 0
0 0

)
mod m so

S−1pS =

(
T B
C D

)
with T = 1l mod m and B,C,D = 0 mod m. ⇒ after base change (given

by S) p becomes

(
T B
C D

)
as above. Idea: �Want to perform row and column operation to make
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(
T B
C D

)
into

(
1l 0
0 0

)
after base changes�. Now, T = 1 mod m ⇒ T ∈ Mn(R) invertible. p2 =

p ⇒
(
T B
C D

)
=

(
T B
C D

)(
T B
C D

)
=

(
T 2 +BC ∗
∗ ∗

)
. T = T 2 + BC ⇒ 1 = T + T−1BC.(

1 T−1B
0 1

)
︸ ︷︷ ︸

X

(
T B
C D

)(
1 −T−1B
0 1

)
︸ ︷︷ ︸

X−1

=

(
1 ∗
∗ ∗

)
⇒after bases change p becomes

(
1 B
C D

)
, B,C,D =

0 mod m. p2 = p ⇒
(

1 B
C D

)
=

(
1 B
C D

)(
1 B
C D

)
⇒ BC = 0, BD = 0, DC = 0, D = CB + D2.

⇒ D2 = DCB︸ ︷︷ ︸
0

+D3 ⇒ D2 = D3 ⇒ D2(1−D) = 0⇒ D2 = 0⇒ D = CB. The second to last implica-

tion is because 1−D is invertible as D ≡ 0 mod m.

(
1 0
−C 1

)
︸ ︷︷ ︸

Y −1

(
1 B
C CB

)(
1 0
C 1

)
︸ ︷︷ ︸

Y

=

(
1 B
0 0

)
Then

an other base change gives

(
1 B
0 1

)
︸ ︷︷ ︸

Z

(
1 B
0 0

)(
1 −B
0 1

)
︸ ︷︷ ︸

Z−1

=

(
1 0
0 0

)

Remark. If R is a Euclidean domain (e.g. R = Z) then every �nitely projective R-module is free.

Example. R = Z every �nitely generated Z-module is isomorphic to Zn⊕�nite abelian group. If P
is �nitely generated projective over Z then P ⊆ Zm ⇒ P has no element of �nite order. ⇒ P = Zn⊕ 6
�nite

Remark. For a general commutative ring, projective R-modules may not be free

Example. R = Z[
√
−5] = Z[T ]/(T 2 + 5) . Fact: R is a Dedekind domain, every ideal I ⊂ R of a

Dedekind domain is a projective R-module. Let I = (2, 1 +
√
−5) ⊂ R. From the fact I is projective.

If I was free then I ∼= Rn, n 6= 0 because I 6= 0. Let's compute R/I:

R/I = Z[T ]/(T 2 + 5, 2, 1 + T )

= F2[T ]/(T 2 + 5, T + 1)

= F2[T ]/(T 2 + 1, T + 1)

= F2[T ]/((T + 1)2, T + 1)

= F2[T ]/(T + 1)
∼= F2

Assume n = 1 then I = Rt for some t ∈ R. Now t is not a unit because otherwise 0 = R/Rt
contradicting R/I = F2. If t /∈ R∗ : I = Rt ⇒ 2 = at ⇒

2 irreducible
a ∈ R∗ ⇒ I = Rt = R 1

a2 = R · 2

and

R/I =
Z[T ]

T 2 + 5
/ I︸︷︷︸

2R

= Z[T ]/(T 2 + 5, 2)

= F2[T ]/(T 2 + 1)

= F2[T ]/(T + 1)2

6= F2

⇒ I ∼= Rn ⇒ n ≥ 2. So Rn ∼= I ⊂ R, let F = �eld of fraction of R. Then I ↪→ I ⊗R F and
R ↪→ F = R⊗R F so we get Fn = I ⊗R F ⊂ F = R⊗R F (since F is a localization of R) ⇒ Fn ⊂ F
contradiction so n 6≥ 2.

De�nition 2.9. An inner product space is a non-degenerate bilinear form module (M,β) where M is
�nitely generated and projective.

Remark. Over a local ring any inner product space is free
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De�nition 2.10. Let R be a ring. The hyperbolic plane His the symmetric inner product space〈(
0 1
1 0

)〉
i.e. H = (R2, β).

H has basis e1, e2 with respect to which we have β(ei, ej) =

{
0 i = j

1 i 6= j
. H is a symmetric

space because

(
0 1
1 0

)T
=

(
0 1
1 0

)
, it is non-degenerate because det

(
0 1
1 0

)
= −1 ∈ R∗. Does

H have an orthogonal basis? If 1
2 ∈ R (i.e. 2 ∈ R∗) then H ∼= 〈1〉 ⊥ 〈−1〉 because

(
−1 0
0 1

)
=(

1 − 1
2

1 1
2

)
︸ ︷︷ ︸

AT

(
0 1
1 0

)(
1 1
− 1

2
1
2

)
︸ ︷︷ ︸

=A

and detA = 1 and thus A is invertible. If 1
2 /∈ R (2 /∈ R∗) then H has no

orthogonal basis. In H 3
(
x
y

)
then

(
x y

)(0 1
1 0

)(
x
y

)
= 2xy /∈ R∗ ∀x, y ∈ H since 2 /∈ R∗. If (H, β)

had an orthogonal basis e1, e2 then β(ei, ei) ∈ R∗ ⇒ H has not orthogonal basis.

Example. If (R,m, k) is a local ring with chark = 2 then for all a, b ∈ m
〈(

a 1
1 b

)〉
has no orthog-

onal basis (otherwise, any orthogonal basis would yield an orthogonal basis mod m but

〈(
a 1
1 b

)〉
mod m =

〈(
0 1
1 0

)〉
= H has no orthogonal basis.

Theorem 2.11. Let (R,m, k) be a local ring and M = (M,β) a symmetric inner product space.

• If char(k) 6= 2 then M has an orthogonal basis

• If char(k) = 2 then M = 〈u1〉 ⊥ · · · ⊥ 〈ul〉 ⊥ N1 ⊥ · · · ⊥ Nr where ui ∈ R∗ and Ni =〈(
ai 1
1 bi

)〉
, ai, bi ∈ m

Proof. Recall M �nitely generated, β is symmetric ⇒ M = 〈u1〉 ⊥ · · · ⊥ 〈ul〉 ⊥ N such that ui ∈ R∗
and β(x, x) ∈ R \R∗ = m∀x ∈ N .

Recall R local and M �nitely generated projective ⇒M ∼= Rn+l, same for N so N ∼= Rn

If n = 0 done. So assume n ≥ 1.Then β non-degenerate ⇒ for ϕ : Rn = N → R
(x1,...,xn) 7→x1

linear, ∃x0 ∈ N :

β(x0, y) = ϕ(y) ∀y ∈ N ⇒ ∃x, y ∈ N : β(x, y) = 1 (y = e1, x = x0).
If char(k) 6= 2 (2 /∈ m = R \ R∗ ⇒ 2 ∈ R∗). If N 6= 0 ⇒ ∃x, y ∈ N, β(x, y) = 1. Then x + y ∈ N

so β(x+ y, x+ y)︸ ︷︷ ︸
∈m

= β(x, x)︸ ︷︷ ︸
∈m

+ 2β(x, y)︸ ︷︷ ︸
=2

+ β(y, y)︸ ︷︷ ︸
∈m

⇒ 2 ∈ m ⇒ N = 0 (due to the contradiction of

char(k) 6= 2)
Now assume that char(k) = 2. We are going to prove that N = N1 ⊥ · · · ⊥ Nr with Ni as in

the theorem by induction on n (N ∼= Rn). n = 0 ⇒ N = 0 and we are done. n = 1 ⇒ N ∼= R
then β|N is a non-degenerate symmetric form on R but any rank 1 inner product space is ∼= 〈u〉
for u ∈ R∗ because β : R × R → R, β(x, y) = xy · β(1, 1) and β non-degenerated ⇒ β(1, 1) ∈ R∗.
This contradict our assumption that β(x, x) ∈ m ∀x ∈ N . So assume n ≥ 2: Since β|N is non
degenerate and N free (of rank n) ⇒ ∃x, y ∈ N : β(x, y) = 1 (because N ∼= Rn, ϕ : Rn → R by
x1, . . . , xn 7→ x1 ⇒

β non−deg
∃x : ϕ(y) = β(x, y)∀y ∈ Rn so in particular ∃x ∈ N 1 = ϕ(e1) = β(x, e1))

The subspace Rx+Ry ⊂ N has bilinear form matrix with respect to {x, y}(
β(x, x) β(x, y)
β(y, x) β(y, y)

)
=

(
a 1
1 b

)
and by assumption a, b ∈ m because β(z, z) ∈ ∀z ∈ N . This has determinant ab︸︷︷︸

∈m

− 1︸︷︷︸
/∈m︸ ︷︷ ︸

/∈m

∈ R∗ ⇒ x, y
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linearly independent and N1 := Rx+Ry ⊂ N is isometric to

〈(
a 1
1 b

)〉
⇒ N = N1 ⊥ N⊥1 and apply

induction hypothesis to N⊥1 and we are done

Example. (M,β) =

〈(
2 1
1 2

)〉
over Z(2) = {pq ∈ Q|2 - q}. det

(
2 1
1 2

)
= 3 and 3 ∈ (Z(2))

∗, hence

M is non-degenerate. But M has no orthogonal basis because Z(2)/2 = F2 and any orthogonal basis

over Z(2) induces a orthogonal basis over Z(2)/2 but M =

〈(
0 1
1 0

)〉
over F2 which we have seen has

no orthogonal basis.
Over R = Z(p) where p ∈ Z is prime, p 6= 3 (otherwise M is degenerate as 3 /∈ (Z(3))

∗). Then M is
non-degenerate since detM = 3 ∈ (Z(p))

∗. If furthermore p 6= 2 then by theorem M has an orthogonal

basis: For instance x =

(
1
0

)
then β(x, x) = 2 ∈ (Z(p))

∗ (p 6= 2)⇒ Rx ⊂M non-degenerate subspace so

M = Rx ⊥ (Rx)⊥. Now (Rx)⊥ = {y ∈ M : β(x, y) = 0} =

{(
a
b

)
∈ R2|

(
1 0

)(2 1
1 2

)(
a
b

)
= 0

}
=

R

(
1
−2

)
⇒
{(

1
0

)
,

(
1
−2

)}
is an orthogonal basis of M if R = Z(p) p 6= 2, 3 (Also works for Q,R,C)

De�nition 2.12. Let (M,β) be a symplectic inner product space (β symplectic if β(x, x) = 0 ∀x ∈M).
A symplectic basis of M is a basis x1, y2, x2, yx, . . . , xn, yn such that M = (Rx1 + Ry1) ⊥ · · · ⊥
(Rxn +Ryn) and β(xi, yi) = 1∀i (⇒ β(yi, xi) = −1) i.e. the bilinear form matrix of β with respect to
the basis x1, y1, ..., xn, yn is 

0 1
−1 0

0

0 1
−1 0

. . .

0
0 1
−1 0


Theorem 2.13. Let (R,m, k) be a local ring and (M,β) a symplectic inner product space. Then
(M,β) has a symplectic basis

Proof. (M,β) inner product space⇒ β non-degenerate,M projective⇒ free (since R local)⇒ ∃x, y ∈

M : β(x, y) = 1. So the inner product matrix of β with respect to {x, y} is
(
β(x, x) β(x, y)
β(x, y) β(y, y)

)
=

β sympletic(
0 1
−1 0

)
. Thus set N1 = Rx+Ry ⊂M is a non-degenerate free submodule of rank 2 with symplectic

basis {x, y}. (N1, β|N1) non-degenerate⇒M = N1︸︷︷︸〈 0 1
−1 0

〉
+N⊥1 repeating the same argument with

N⊥1 instead of M we obtain M = N1 ⊥ N2 ⊥ · · · ⊥ Nn where Ni =

〈(
0 1
−1 0

)〉
Corollary 2.14. Over a local ring any symplectic inner product space has even dimension. Further-
more any two symplectic inner product spaces are isometric if and only if they have the same rank.

2.1 Witt Cancellation

Motivation: Let V1, V2 be �nite dimensional vector spaces over k, If V1 ⊕W ∼= V2 ⊕W for some �nite
dimensional vector space W then V1 ∼= V2 because dimV1 = dimV1 ⊕W − dimW = dimV2 ⊕W −
dimW = dimV2. The same is true for free modules of �nite rank (over a commutative ring), and also
over �nitely generated projective modules over local rings.

Question: If V1, V2,W are symmetric inner product spaces does V1 ⊥W ∼= V2 ⊥W ⇒ V1 ∼= V2 ?
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Example. R = F2 (or R local with 1
2 /∈ R) then 〈−1〉 ⊥ 〈−1〉 ⊥ 〈−1〉 ∼= 〈−1〉 ⊥ H, that is,〈−1 0 0

0 −1 0
0 0 −1

〉 ∼= 〈
−1 0 0

0 0 1
0 1 0

〉 but 〈−1〉 ⊥ 〈−1〉 � H because H has no orthogonal basis

over F2. For the isometry see the example below.

De�nition 2.15. We say Witt cancellation holds for a ring R if ∀M,N,P symmetric inner product
spaces over R M ⊥ P ∼= N ⊥ P ⇒M ∼= N

Example. Witt cancellation does not hold over �elds of char2 (or for local rings R where 2 /∈ R∗).

Note.

〈−1
−1

1

〉 ∼= 〈−1
0 1
1 0

〉 (∗), because β =

〈−1
−1

1

〉 has orthogonal

basis e1, e2, e3 with β(ei, ej) = 0 for i 6= j and β(ei, ei) =

{
−1 i = 1, 2

1 i = 3
. In the basis e1 + e2 +

e3, e1 + e3, e2 + e3, the inner product β has inner product matrix

〈−1
0 1
1 0

〉⇒ (∗). So If Witt

cancellation holds then 〈−1〉 ⊥ 〈−1〉 ∼= H but this is not the case for �eld char2 (or local rings R with
2 /∈ R∗)

De�nition 2.16. LetM be an symmetric inner product space and N ⊆M a non-degenerate subspace
then M = N ⊥ N⊥ and the re�ection of M at N is the isometry

rN : M = N ⊥ N⊥ → N ⊥ N⊥

(x, y) 7→ (x,−y), x ∈ N, y ∈ N⊥

Remark. rN is R-linear, an isomorphism (rN ◦ rN = id) and preserves inner product hence rN is an
isometry

Lemma 2.17. Let (M,β) be a symmetric inner product space and x, y ∈ M such that β(x, x) =
β(y, y) ∈ R∗. If R is local with 1

2 ∈ R then there is a re�ection r of M such that r(x) = y

Proof. Consider u = x+ y, v = x− y ∈M then x = 1
2 (u+ v), y = 1

2 (u− v)

• u ⊥ v: β(u, v) = β(x+ y, x− y) = β(x, x)− β(y, y) = 0 (Since by assumption β(x, x) = β(y, y))

• β(u, u) or β(v, v) ∈ R∗: 4β(x, x) = β(2x, 2x) = β(u + v, u + v) ∈ R∗ (since β(x, x) ∈ R∗ and
2 ∈ R∗). By the �rst point β(u+ v, u+ v) = β(u, u) + β(v, v). If β(u, u), β(v, v) ∈ m = maximal
ideal of R⇒ β(u, u) + β(v, v) ∈ m. Contradiction hence β(u, u) or β(v, v) ∈ R∗

• If β(u, u) ∈ R∗ then Ru ⊆M non-degenerate subspace rRu(x) = rRu(u+v2 ) = 1
2rRu(u+v) =

v∈(Ru)⊥
1
2 (u− v) = y
If β(v, v) ∈ R∗ then Rv ⊆M non-degenerate subspace r(Rv)⊥(x) = 1

2r(Rv)⊥(u+ v) =
u∈(Rv)⊥

v∈((Rv)⊥)⊥=Rv

1
2 (u− v) = y

Theorem 2.18. Let (R,m, k) be a local ring with 2 ∈ R∗. Then Witt cancellation holds for R. That
is ∀M,N,P symmetric inner product space over R we have M ⊥ P ∼= N ⊥ P ⇒M ∼= N .

Proof. Let M,N,P be symmetric inner product spaces over R such that M ⊥ P ∼= N ⊥ P . By
our assumption R local and 2 ∈ R∗ ⇒ P = 〈u1〉 ⊥ · · · ⊥ 〈ur〉 for ui ∈ R∗. Thus it su�ces to

show M ⊥ 〈u〉 ∼= N ⊥ 〈u〉 ⇒ M ∼= N . Let f : M ⊥ 〈u〉
∼=→ N ⊥ 〈u〉 be an isometry and let

x ∈ M ⊥ 〈u〉 and y ∈ N ⊥ 〈u〉 be a generator for 〈u〉 i.e. M ⊥ 〈u〉 = M ⊥ Rx and N ⊥ 〈u〉 =
N ⊥ Ry. β(x, x)M⊥〈u〉 = u = β(y, y)N⊥〈u〉. f isometry: β(f(x), f(x))N⊥〈u〉 = β(x, x)M⊥〈u〉 = u =
β(y, y)N⊥〈u〉 ⇒ f(x), y ∈ N ⊥ 〈u〉 satisfy hypotheses of lemma 2.17⇒ ∃ re�ection r : N ⊥ 〈u〉 → N ⊥
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〈u〉 such that r(f(x)) = y⇒ r ◦ f : M ⊥ 〈u〉 → N ⊥ 〈u〉 is an isometry such that r ◦ f : Rx
∼=→ Ry

x 7→y
.

⇒ r ◦ f : (Rx)⊥︸ ︷︷ ︸
M

∼=→ (Ry)⊥︸ ︷︷ ︸
N

⇒M
∼=→
r◦f

N

2.2 Symmetric Inner Product space over R
Any symmetric inner product space M over R has an orthogonal basis M = 〈u1〉 ⊥ . . . 〈un〉 , n =
dimR(M), ui ∈ R∗ = R \ {0}. If u > 0 then u = a2 for some a ∈ R, 〈u〉 ∼=

←a
〈1〉. If u < 0 then

u = −a2and 〈u〉 ∼=
←a
〈−1〉. So M = r 〈1〉 ⊥ s 〈−1〉 (and r + s = dimR(M))

Proposition 2.19 (Inertia Theorem). Over R we have r 〈1〉 ⊥ s 〈−1〉 ∼= m 〈1〉 ⊥ n 〈−1〉 ⇒ r = m and
s = n

Proof. The equation implies that r + s = dimR(M) = n + m. Assume without loss of generality
that r ≤ m then n ≤ s. Witt cancellation tells us that (s − n) 〈−1〉 ∼= (m − r) 〈1〉. Note that
if m − r = s − n 6= 0 then ∀x 6= 0 ∈ (s − n) 〈−1〉 we have β(x, x) = −

∑
x2i < 0. However

∀x 6= 0 ∈ (m− r) 〈1〉 we have β(x, x) =
∑
x2i > 0. Contradiction. Hence s− n = m− r = 0

Corollary 2.20. The numbers r, s in M ∼= r 〈1〉+s 〈−1〉 do not depend on the choice of an orthogonal
basis for M

De�nition 2.21. If M ∼= r 〈1〉 ⊥ s 〈−1〉 over R then r = i+M is called the positive index of M .
s = i−M is called the negative index of M and i+M − i−M = r − s = sgn(M) is called the signature
of M

We have showed that if (over R) M ∼= N then i+N = i+M, i−N = i−M and sgn(N) = sgn(M)

Corollary 2.22. Two symmetric inner product-spaces M,N over R are isometric M ∼= N ⇐⇒
i+M = i+N, i−M = i−N ⇐⇒ rank M = rank N, sgnM = sgnN

2.3 Witt chain equivalence theorem

Notation. Let u1, . . . , ul ∈ R∗ write 〈u1, . . . , ul〉 for 〈u1〉 ⊥ · · · ⊥ 〈ul〉 =

〈u1 0
. . .

0 ul

〉. We say

〈u1, . . . , ul〉 is a diagonal form

De�nition 2.23. We say (M,β) represent a ∈ R if ∃x ∈M such that β(x, x) = a

Example. A diagonal form 〈u1, . . . , ul〉 represents u1, . . . , ul, u1 + u2, . . . . The equation a = u1x
2
1 +

· · ·+ ulx
2
l has a solution x1, . . . , xl ∈ R ⇐⇒ a is represented by 〈u1, . . . , ul〉

Lemma 2.24. Let R be a local ring (or a ring in which every direct summand of a �nitely generated
free module is free) Let 〈a, b〉 and 〈c, d〉 be non-degenerate diagonal forms (a, b, c, d ∈ R∗). Then
〈a, b〉 ∼= 〈c, d〉 ⇐⇒ ab = cd ∈ R∗/(R∗)2 and ∃e ∈ R∗ which represent 〈a, b〉 and 〈c, d〉

Proof. �⇒�: We've already done. (They obviously need the same determinant modulo squares, and
need to represent the same numbers)

�⇐�: e ∈ R∗ represents 〈a, b〉 and 〈c, d〉 ⇒ ∃x, y ∈ R2 such that β(x, x)〈a,b〉 = e = β(y, y)〈c,d〉 ⇒
〈a, b〉 = Rx︸︷︷︸

non−degenerat

⊥ (Rx)⊥︸ ︷︷ ︸
rank1︸ ︷︷ ︸

〈e〉⊥〈u1〉

and 〈c, d〉 = Ry︸︷︷︸
non−degenerat

⊥ (Ry)⊥︸ ︷︷ ︸
rank1︸ ︷︷ ︸

〈e〉⊥〈u2〉

with u1, u2 ∈ R∗. Now e · u1 =

det(〈e〉 ⊥ 〈u1〉) = det 〈a, b〉 = det 〈c, d〉 = det 〈e, u2〉 = eu2 ∈ R∗/(R∗)2 ⇒ eu1 = eu2g
2 for some

g ∈ R∗ ⇒ u1 = u2g
2 for some g ∈ R∗, 〈u1〉 ∼= 〈u2〉 ⇒ 〈a, b〉 ∼= 〈e, u1〉 ∼= 〈e, u2〉 ∼= 〈c, d〉

De�nition 2.25. Two non-degenerate diagonal forms 〈a1, . . . , an〉 and 〈b1, . . . , bn〉 (of the same rank
n) are called simply (chain) equivalent (with notation ≈s) if either
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• n ≥ 2 and ∃1 ≤ i < j ≤ n such that 〈ai, aj〉 ∼= 〈bi, bj〉 and al = bl ∀l 6= i, j

• or n = 1 〈a1〉 ∼= 〈b1〉

Two non-degenerate diagonal forms 〈a1, . . . , an〉 and 〈b1, . . . , bn〉 are chain equivalent (with notation
≈) if ∃M1, . . . ,Mr non degenerated diagonal forms of rank n such that M1 = 〈a1, . . . , an〉 ,Mr =
〈b1, . . . , bn〉 and M1 ≈s M2 ≈s · · · ≈s Mr

Remark. 〈a1, . . . , an〉 ≈ 〈b1, ..., bn〉 ⇒ 〈a1, . . . , an〉 ∼= 〈b1, . . . , bn〉

Example. σ ∈
∑
n = permutation group on n letters. 〈a1, . . . , an〉 ≈

〈
aσ(1), . . . aσ(n)

〉
because true

for transpositions because

〈(
a 0
0 b

)〉
∼=
〈(

b 0
0 a

)〉
︸ ︷︷ ︸

〈a〉⊥〈b〉∼=〈b〉⊥〈a〉

⇒ true for all σ ∈
∑
n because

∑
n is generated

by transpositions.

Witt's Chain Equivalence Theorem. Let 〈a1, . . . , an〉 and 〈b1, . . . , bn〉 be non-degenerate diagonal
forms over a local ring R with 2 ∈ R∗ then 〈a1, . . . an〉 ≈ 〈b1, . . . , bn〉 ⇐⇒ 〈a1, . . . , an〉 ∼= 〈b1, . . . , bn〉

Proof. �⇒�: We seen this in the remark
�⇐�: We use induction on n. For n = 0 there is nothing to say. n = 1, n = 2 is true by de�nition

of chain equivalence.
Assume n ≥ 3 and 〈a1, . . . , an〉 ∼= 〈b1, . . . , bn〉
Claim: ∃ non-degenerate diagonal form 〈c1, . . . , cn〉 ≈ 〈a1, . . . , an〉 with c1 = b1.
Note that the claim implies the theorem because 〈a1, . . . , an〉 ≈ 〈c1, . . . , cn〉 , 〈c1, . . . , cn〉 = 〈b1, c2, . . . , cn〉 ∼=

〈b1, . . . , bn〉 ⇒
Witt cancellation

〈c2, . . . , cn〉 ∼= 〈b2, . . . bn〉. So by hypothesis ⇒ 〈c2, . . . , cn〉 ≈ 〈b2, . . . , bn〉

hence 〈a1, . . . , an〉 ≈

〈
c1︸︷︷︸
b1

, c2, . . . , cn

〉
≈ 〈b1, . . . , bn〉.

Proof of claim: Let P = {(c, p)|c = 〈c1, . . . , cn〉 , 1 ≤ p ≤ n such that 〈c1, . . . , cp〉 represents
b1}. Note that (〈a1, . . . , an〉 , n) ∈ P so P 6= ∅. Let p = min{l|∃(c, l) ∈ P} well de�ned and
1 ≤ p ≤ n because P 6= ∅. Choose (c, p) with p minimal as above. c = 〈c1, . . . , cn〉 has prop-
erty that 〈c1, . . . , cp〉 represent b1⇒ ∃x1, . . . xp ∈ R such that b1 = c1x

2
1 + · · · + cpx

2
p ∈ R∗. As-

sume that p ≥ 2. If ∀i 6= j cix
2
i + cjx

2
j ∈ m = R \ R∗ then (c1x

2
1 + c2x

x
2)︸ ︷︷ ︸

∈m

+ (c2x
2
2 + c3x

2
3)︸ ︷︷ ︸

∈m

+

· · · + (cpx
2
p + c1x

2
1)︸ ︷︷ ︸

∈m

= 2b1 which is a contradiction as 2 ∈ R∗ and b1 ∈ R∗ ⇒ ∃i < j such that

cix
2
i + cjx

2
j ∈ R∗. Since 〈c1, . . . , cp〉 ≈

〈
cσ(1), . . . , cσ(p)

〉
∀σ ∈

∑
p we can assume d = c1x

2
1 + c2x

2
2 ∈ R∗.

Then 〈c1, c2〉 ∼= 〈d, dc1c2〉 because both represent d ∈ R∗ and both have the same determinant
(in R∗/R2∗), ⇒ 〈c1, . . . , cp〉 ≈ 〈d, dc1c2, c3, . . . , cp〉 ≈ 〈d, c3, . . . , cp, dc1c2〉 but 〈d, c3, . . . , cp〉represent
b1 because b1 = c1x

2
1 + c2x

2
2︸ ︷︷ ︸

d·12

+ · · · + cpx
2
p⇒ (〈d, c1, . . . , cp, dc1c2, cp+1, . . . , cn〉 , p − 1) ∈ P which

contradicts minimality of p⇒ p = 1 ⇒ ∃〈c1, . . . , cp〉 ≈ 〈a1, . . . , an〉and 〈c1〉 represents b1, i.e.,
b1 = c1x

2 ⇒ 〈b1〉 ∼= 〈c1〉⇒ ∃ 〈b1, c2, . . . , cp〉 ≈ 〈a1, . . . , an〉

2.4 Witt Groups:

Goal: De�ne W (R) = abelian group to be {isometry classes of symmetric inner product space over
R}/metabolic forms (=hyperbolic if 1

2 ∈ R) with group operation given by ⊥

De�nition 2.26. A symmetric inner product space (M,β) is called metabolic (or split) if ∃ direct
summand N ⊆M such that N = N⊥. Such a direct summand N is called Lagrangian.

Remark. N ⊆ M is a direct summand if ∃P ⊆ M such that N ⊕ P = M (i.e. N + P = M and
N ∩ P = 0)

Example. • H =

〈(
0 1
1 0

)〉
is metabolic with Lagrangian

(
1
0

)
: R → R2 de�ned by x 7→

(
x
0

)
.

i.e. L = {(x, 0) ∈ R2|x ∈ R} ⊂ H is a Lagrangian. Because
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∗ L is a direct summand with complement P = {(0, y)|y ∈ R} ⊆ H,

∗ L⊥ = {(x, y) ∈ R2|(z, 0︸︷︷︸)
∈L

(
0 1
1 0

)(
x
y

)
= 0

︸ ︷︷ ︸
zy=0 ∀z ⇐⇒ y=0

∀z ∈ R} = {(x, y) ∈ R2|y = 0} = L

• In is the identity matrix inMn(R). A ∈Mn(R) then

〈(
0 In
In An

)〉
is metabolic with Lagrangian

the image of the map Rn

In
0


−→ Rn ⊕Rn (proof is the same as above)

•

Lemma 2.27. Let (M,β) be a symmetric inner product space then (M,β) ⊥ (M,−β) is metabolic.

Proof. The submodule L = {(x, x) ∈ M ⊕M |x ∈ M} ⊆ M ⊥ M is a Lagrangian for (M.β) ⊥
(M,−β) because

∗ L is a direct summand with complement P = {(y, 0) ∈M2|y ∈M} as L∩ P = 0 and every
element (a, b) ∈M2 is (a, b) = (b, b)︸ ︷︷ ︸

∈L

+ (a− b, 0)︸ ︷︷ ︸
∈P

so L⊕ P = L+ P = M2

∗ L = L⊥ because let

(
a
b

)
∈ L⊥ ⊆M2 ⇐⇒ β(a, x)−β(b, x) = 0∀x ∈M ⇐⇒ β(a−b, x) =

0 ∀x ∈M ⇐⇒
β non degenerate

a− b = 0⇒ a = b⇒
(
a
b

)
∈ L. Hence L⊥ = L

De�nition 2.28. A free symmetric inner product space is called hyperbolic if it is isometric to Hn

Note. M,N are metabolic (or hyperbolic) then so is M ⊥ N . If M,N are metabolic with Lagrangian
L1 ⊆M,L2 ⊆ N then M ⊥ N has Lagrangian L1 ⊥ L2 ⊆M ⊕N .〈(

0 In
In 0

)〉
∼= Hn (by change of basis). Let the basis of the �rst one to be e1, . . . , en, en+1, . . . , e2n

then the basis of the second one is (e1, en+1), (e2, en+2), . . . (en, e2n) where each pairs gives a copy of
H

Lemma 2.29. If 2 ∈ R∗ then for all A ∈Mn(R),

〈(
0 In
In A

)〉
∼=
〈(

0 In
In 0

)〉
∼= Hn

Proof. We need to �nd a base change, that is ∃X ∈Mn(R) which is invertible such thatX

(
0 In
In A

)
XT =(

0 In
In 0

)
. Take X =

(
In 0
− 1

2A In

)
which is invertible with inverse X−1 =

(
In 0
1
2A In

)
Lemma 2.30. Let R be a ring for which all �nitely generated projective R-module are free (e.g.., R

local or R = Z) then any metabolic inner product space (M,β) is isometric to

〈(
0 In
In A

)〉
for some

n ∈ N, and A ∈Mn(R). If moreover, 2 ∈ R∗ then every metabolic space is hyperbolic.

Proof. Let (M,β) be metabolic with Lagrangian L ⊆M . L ⊆M being a direct summand ⇒ P ⊆M
such that L∩P = 0 and L+P = M . By assumptionM projective⇒ P,L projective ⇒

assumption onR
P,L

are free. In a basis for L, and P , the inner product space β has inner product matrix

(
0 B
BT C

)
, with

C = CT . The upper left corner is 0 because L = L⊥ we have β(x, x) = 0 ∀x ∈ L.
Claim: The matrix B is invertible.
Proof of claim: B is the matrix of the linear map P → L∗

x 7→β(x,−)
= HomR(L,R) with respect to the basis

of P and the dual basis of L. Need to show P → L∗ de�ned by x 7→ β(x,−) is an isomorphism.
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Injectivitiy: x ∈ P : β(x, y) = 0 ∀y ∈ L⇒ x ∈ L⊥ = L⇒ x ∈ L ∩ P = 0⇒ x = 0
Surjectivity: Let φ ∈ L∗, φ : L → R. De�ne φ̄ : M = L ⊕ P → P by (x, y) 7→ φ(x). Now β is

non-degenerate ⇒ ∃ a
∈L
, b
∈P
∈ M = L ⊕ P such that φ̄(x, y) = β(a + b, x + y)∀x ∈ L, y ∈ P⇒ φ(x) =

φ̄(x, 0) = β(a + b, x) = β(a, x)︸ ︷︷ ︸
=0 since a,x∈L=L⊥

+ β(b, x) = β(b, x)∀x ∈ L. So b ∈ P is sent to φ under the

map P → L∗. This shows surjectivity.

Notice that

(
0 In
In (BT )−1CB−1

)
=

(
1 0
0 (BT )−1

)(
0 B
BT C

)(
1 0
0 B−1

)
⇒M ∼=

〈(
0 B
BT C

)〉
∼=〈(

0 In
In A

)〉
. For A = (BT )−1CB−1

Note. If 2 ∈ R∗ then
〈(

0 In
In A

)〉
∼= Hn

Corollary 2.31. Over a local ring R, every metabolic space has even dimension and if 2 ∈ R∗, R
local, then every metabolic space is hyperbolic

De�nition 2.32. Let M,N be symmetric inner product spaces over R then M are N are called Witt
Equivalent (M ∼ N) if ∃ metabolic spaces P,Q such that M ⊥ P ∼= N ⊥ Q. Denote by W (R) be the
set of Witt equivalence classes [M ] of symmetric inner product spaces M over R

Lemma 2.33 (De�nition). Orthogonal sum ⊥ makes W (R) into an abelian group with 0 = [0], [M ]+
[N ] = [M ⊥ N ] and −[M,β] = [M,−β]. W (R) is called the Witt group of R.

Proof. • �+� is well de�ned because if M ∼ M ′, N ∼ N ′ then ∃P, P ′, Q,Q′ metabolic such that
M ⊥ P ∼= M ′ ⊥ P ′, N ⊥ Q ∼= N ′ ⊥ Q′. Then (M ⊥ N) ⊥ (P ⊥ Q)︸ ︷︷ ︸

metabolic

∼= (M ′ ⊥ N ′) ⊥

(P ′ ⊥ Q′)︸ ︷︷ ︸
metabolic

⇒M ⊥ N ∼M ′ ⊥ N ′

• We have [M ] + [N ] = [M ⊥ N ] = [N ⊥M ] = [N ] + [M ] (since M ⊥ N ∼= N ⊥M) and the group
law is commutative

• [0] + [M ] = [0 +M ] = [M ] because 0 ⊥M ∼= M

• [M,β] + [M,−β] = [(M,β) ⊥ (M,−β)] = 0 because (M,β) ⊥ (M,−β) is metabolic for any inner
product space (M,β).

Remark. W : (commutative) rings→ abelian groups, de�ned by R 7→W (R) is a functor. For f : R→ S
a ring homomorphism, we de�ne a map of abelian groupsW (f) : W (R)→W (S) by [M,β] 7→ [MS , βS ]
where MS = S ⊗RM and βS : MS ×MS → S is de�ned s1⊗ x1, s2⊗ x2 7→ s1s2β(x1, x2). Note that if
(M,β) is non-degenerate then so is (MS , βS) : if M is free choose an R-basis of M , say x1, . . . , xn ∈M
thenMS is free with S-basis 1⊗x1, . . . , 1⊗xn. Then (M,β) non-degenerate ⇐⇒ (β(xi, xj)) ∈Mn(R)
is invertible ⇒

f :R∗→S∗
(f(β(xi, xj)) = (βS(1 ⊗ xi, 1 ⊗ xj)) ∈ Mn(S) is invertible ⇐⇒ (MS , βS) is non-

degenerate. In the case (M,β) is projective do it as an exercise

For R
g→ S

f→ T ring homomorphism, note thatW (f)◦W (g) = W (f ◦g) because T ⊗S (S⊗RM) ∼=
(T ⊗S S)︸ ︷︷ ︸
∼=T

x⊗y 7→xf(y)

⊗RM ∼= T ⊗RM

Proposition 2.34. Let R be a local ring with 2 ∈ R∗. Then two symmetric inner product spaces M,N
are isometric if and only if rank M = rank N and [M ] = [N ] ∈W (R)

Proof. �⇒�: Obvious
�⇐�: [M ] = [N ] ∈ W (R) ⇒ M ∼ N ⇒ ∃ metabolic P,Q such that M ⊥ P ∼= N ⊥ Q. R local,

2 ∈ R∗ ⇒ metabolic = hyperbolic so P ∼= Hp, Q ∼= Hq. Now rank M = rank N and rank M ⊥ P =
rank N ⊥ Q⇒ p = q ⇒M ⊥ Hp ∼= N ⊥ Hp so by Witt cancellation ⇒M ∼= N .
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De�nition 2.35. Let R be a local ring. The rank homomorphism rk : W (R) → Z/2Z is de�ned by
[M ] 7→ rank M . Note this map is well de�ned as M ∼ 0 ⇐⇒ ∃P metabolic such that M ⊥ P is
metabolic⇒ M ⊥ P and P have even rank ⇒ rkM = 0 ∈ Z/2Z. The rank map is surjective because
rk(〈1〉) = 1.

Let I(R) = ker(rk) =set of equivalence classes of even rank inner product spaces

The discriminant is the homomorphism disc: I(R) → R∗/R2∗ de�ned by [M ] 7→ (−1)
rkM

2 detM

which is well de�ned because disc P = 1 for P metabolic as det

(
0 In
In A

)
= (−1)n

Note that disc map is surjective because disc(〈u,−1〉) = u∀u ∈ R∗

Proposition 2.36. Let F be a �eld in which every element is a square (e.g. F algebraic closed, or

char F = 2 and F perfect, e.g., �nite and char F = 2) then rk : W (F )
∼=→ Z/2Z is an isomorphism.

Proof. rk : W (F ) → Z/2Z is surjective (for any commutative ring) since 〈1〉 7→ 1. Recall that every
symmetric inner product space over F a �eld is isometric to 〈u1〉 ⊥ · · · ⊥ 〈ul〉 ⊥ N1 ⊥ · · · ⊥ Nr
with Ni = H (in the case of a �eld). So W (F ) is generated by 〈u〉 , u ∈ F ∗/F 2∗ as an abelian group.
Consider the map Z → W (F ) de�ned by 1 7→ 〈1〉. Since 〈1〉 + 〈1〉 = 〈1〉 + 〈−1〉 (as −1 ∈ F 2∗), we
have 〈1〉 + 〈1〉 = 0 ⇒ This map factors as Z/2Z → W (F ) with 1 7→ 〈1〉. As W (F ) is generated by
〈u〉 , u ∈ F ∗/F 2∗ = {1} this means that the map Z/2Z → W (F ) is surjective and it is injective as

Z/2Z�W (F )
rk
� Z/2Z sends 1 7→ 〈1〉 7→ 1︸ ︷︷ ︸

id

⇒ Z/Z2
∼=→W (F )⇒W (F )

rk→∼= Z/2Z

Corollary 2.37. W (Fq) = Z/2Z for q even, rk : W (C)
∼=→ Z/2Z

Example. W (R)→ Z de�ned by [M ] 7→ sgnM is well de�ned because sgn(H) = 0

Claim: sgn : W (R)
∼=→ Z is an isomorphism

Surjective: sgn(n 〈1〉) = n sgn(〈1〉) = n · 1 = n
Injectivitiy: Every symmetric inner product space over R is M ∼= n 〈1〉 + m 〈−1〉. If sgnM =

sgn(n 〈1〉+m 〈−1〉) = n−m then n = m⇒M = n(〈1〉+ 〈−1〉) = 0 ∈W (R)

Recall:

• I(F ) = ker(W (F )
rk→ Z/2Z) = �fundamental ideal �

• I(F )
disc→ F ∗/F 2∗ map of abelian groups de�ned by M 7→ (−1)

rkM
2 detM

Note. The disc map extends to all of W (F ) by W (F ) → F ∗/F 2∗ de�ned by M 7→ (−1)
r(r−1)

2 detM ,
where r = rkM , but, in general, this is not a map of abelian groups so we don't often use this.

Proposition 2.38. Let F be a �nite �eld. Then the discriminant map is an isomorphism: I(F )
∼=→

F ∗/F 2∗

Proof. If char F = 2 this is true because both sides are equal to 0. (Since F �nite and char F = 2⇒
F ∗/F 2∗ = 0)

So assume char F is odd. We have to prove the following special case
Claim: 〈a, b〉 ∼= 〈ab, 1〉
The claim implies the proposition: de�ne the map ρ : F ∗/F 2∗ → I(F ) by a 7→ 〈a,−1〉 this is easily

seen to be a well de�ned map of sets. This is a map of abelian groups because ρ(ab) = 〈ab,−1〉 =
〈ab〉 + 〈−1〉 = 〈ab〉 + 〈1〉 + 〈−1〉 + 〈−1〉 = 〈ab, 1〉 + 〈−1〉 + 〈−1〉 =

claim
〈a, b〉 + 2 〈−1〉 = 〈a,−1〉 +

〈b,−1〉 = ρ(a) + ρ(b). The maps is surjective because every 〈a1, . . . , a2n〉 ∈ I(F ) is 〈a1, . . . , a2n〉 =
〈a1 . . . a2n, 1, 1, . . . , 1〉 =

claim
〈a1 . . . a2n,−1〉+2n 〈1〉 = ρ(a1 . . . a2n)+nρ(−1) because ρ(−1) = 〈−1,−1〉 =

claim

〈1, 1〉. The map ρ is injective because F ∗/F 2∗ ρ→ I(F )
disc→ F ∗/F 2∗ de�ned by a 7→ 〈a,−1〉 7→ a︸ ︷︷ ︸

id

, hence

we are done.
Proof of claim: Recall: 〈a, b〉 ∼= 〈c, d〉 ⇐⇒ ab = cd ∈ F ∗/F 2∗ and ∃e ∈ F such that e is represented

by both forms. Obviously 〈a, b〉 ∼= 〈ab, 1〉 has the same determinant, so the claim is equivalence to
the fact, since 〈ab, 1〉represent 1, that 〈a, b〉 represent 1, i.e., ∃x, y ∈ F such that 1 = ax2 + by2. This
follows from the following lemma
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Lemma 2.39. Let F be a �nite �eld of order q =odd. Then ∀a, b ∈ F ∗ the equation 1 = ax2 + by2

has a solution x, y ∈ F

Proof. Need to �nd x, y such that 1− by2 = ax2. We use the pigeon hole principle.
Let ϕ : F ∗ → F ∗ : x 7→ x2 hence F 2∗ = imϕ = F ∗/ ker(ϕ) = F ∗/{±1} (The last equality holds

since char F 6= 2)⇒ |(F 2∗)| = |F∗|
2 = q−1

2 ⇒ number of square in F = |F 2∗|+1 (for zero) = q+1
2 . Hence

n1 = |{ax2|x ∈ F}| = |{x2|x ∈ F} = q+1
2 . Similarly n2 = |{1 − by2|y ∈ F}| = |{y2|y ∈ F} = q+1

2 .
Hence n1 +n2 = q+ 1 > |F | ⇒ {ax2|x ∈ F}∩{1− by2|y ∈ F} 6= ∅ ⇒ 1− by2 = ax2 has a solution.

Theorem 2.40. Let F be a �nite �eld with q elements then

W (F ) =


Z/2Z char F = 2

Z/2Z⊕ Z/2Z q ≡ 1 mod 4 (⇐⇒ −1 ∈ F 2∗)

Z/4Z q ≡ 3 mod 4 (⇐⇒ −1 /∈ F 2∗)

Proof. char F = 2 we have already done (in this case rk : W (F )
∼=→ Z/2Z)

Assume char F odd, so q odd. We have an exact sequence

0→ I(F )
∼=F∗/F 2∗

→W (F )
rk→ Z/2Z→ 0

Since q is odd we have |F ∗/F 2∗| = 2 because F 2∗ = im(F ∗
.2→ F ∗

x7→x2
) and ker(F ∗

.2→ F ∗) = {±1}.
⇒ |W (F )| = 4⇒(by the structure theorem of �nite groups) W (F ) = Z/2Z⊕Z/2Z or W (F ) = Z/4Z.

If −1 ∈ F 2∗, (−1 = a2),⇒ 2 〈u〉 = 〈u〉 + 〈u〉 = 〈u〉 +
〈
a2u
〉

= 〈u〉 + 〈−u〉 = 0 ∈ W (F )∀u ∈ F ∗.
W (F ) generated as an abelian group by 〈u〉 , u ∈ F ∗ ⇒ every element in W (F ) has order ≤ 2.
⇒W (F ) 6= Z/4Z⇒W (F ) = Z/2Z⊕ Z/2Z.

If −1 /∈ F 2∗ ⇒ if 2 〈1〉 = 0 ∈ W (F ) then 〈1〉 + 〈1〉 = 〈1〉 + 〈−1〉 ∈ W (F ) ⇒
char F odd

〈1〉 + 〈1〉 ∼=

〈1〉+ 〈−1〉 ⇒
WittCancellation

〈1〉 ∼= 〈−1〉 ⇒ 1 = det 〈1〉 = det 〈−1〉 = −1 ∈ F ∗/F 2∗ ⇒ −1 ∈ F 2∗ which is

a contradiction to the assumption −1 /∈ F ∗2 ⇒ 2 〈1〉 6= 0⇒ W (F ) 6= Z/2Z⊕ Z/2Z⇒ W (F ) = Z/4Z.
(Then the theorem follows from the following lemma)

Lemma 2.41. Let F be a �nite �eld of odd characteristic, with q = |F | elements. Then −1 ∈ F 2∗ ⇐⇒
q ≡ 1 mod 4.

Proof. −1 ∈ F ∗ ∼= Z/(q − 1)Z is the only element of order 2. ⇒ −1 ∈ F 2∗ ⇐⇒ F ∗ = Z/(q − 1)Z has
an element of order 4 ⇐⇒ 4|(q − 1) ⇐⇒ q ≡ 1 mod 4.

Remark. p ∈ Z is an odd prime, then p can be written as p = a2 + b2 with a, b ∈ Z ⇐⇒ −1 is a
square in Fp (⇐⇒ p ≡ 1 mod 4)

To see this: a2 + b2 = (a + ib)(a − ib) ∈ Z[i]. Recall that Z[i] is a Euclidean domain, hence a UFD
(unique factorization domain) and thus, irreducible elements and prime elements are the same. If
a2 + b2 = (a + ib)(a− ib) ∈ Z[i], we have p = a2 + b2⇒ p not prime in Z[i]. The converse also holds:
if p is not a prime in Z[i] then p = xy ∈ Z[i] for non-units x, y ∈ Z[i]. But then (if x = a + ib)
N(x) = a2 + b2 has the properties N(xy) = N(x)N(y), N(x) = 1 ⇐⇒ x unit. So p = xy ⇒ N(p)︸ ︷︷ ︸

=p2

=

N(x)N(y)⇒ N(x) = p = N(y)⇒ a2+b2 = N(x) = p. So p can be written as p = a2+b2 with a, b ∈ Z
⇐⇒ p is not a prime in Z[i]. But p is a prime in Z[i] ⇐⇒ Z[i]/p is a domain. But Z[i] = Z[t]/(t2 +1)
so Z[i]/p = Z[t]/(t2 + 1, p) = Z

p [t]/(t2 + 1) = Fp[t]/(t2 + 1). Now Fp[t]/(t2 + 1) is a �eld ⇐⇒ t2 + 1

irreducible ⇐⇒ t2 + 1 has no solution in Fp ⇐⇒ −1 /∈ F2∗p . On the other hand t2 + 1 reducible
⇐⇒ −1 ∈ F2∗p ,−1 = a2, t2 + 1 = (t + a)(t − a). Then F[t]/(t2 + 1) = Fp[t]/((t − a)(t + a)) =

CRT

Fp[t]/(t+ a)× Fp[t]/(t− a) = Fp × Fp not a domain.
Hence p = a2 + b2 ⇐⇒ p not a prime in Z[i] ⇐⇒ Z[i]/p = Fq[t]/(t2 + 1) not a domain

⇐⇒ −1 ∈ F2∗p ⇐⇒ p ≡ 1 mod 4
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Corollary 2.42 (of Theorem 2.40 ). Two symmetric inner product spaces over a �nite �eld of odd
characteristic are isometric if and only if they have the same rank and the same determinant (∈
F ∗/F 2∗).

Theorem 2.43. Let F be a �eld then W (F ) is generated as an abelian group by 〈u〉 , u ∈ F ∗ subject
to the relations:

1. 〈u〉 =
〈
a2u
〉
∀a, u ∈ F ∗

2. 〈u〉+ 〈−u〉 = 0∀u ∈ F ∗

3. 〈u〉+ 〈v〉 = 〈u+ v〉+ 〈uv(u+ v)〉 ∀u, v ∈ F ∗, u+ v ∈ F ∗

Remark. The theorem asserts that

⊕a∈F∗
rank 1 free abelian groupwith basis {a}︷ ︸︸ ︷

Z{a}
{u} − {a2u}, {u}+ {−u}, {u}+ {v} − {u+ v} − {uv(u+ v)}

∼=→W (F )

de�ned by {a} 7→ 〈a〉 is an isomorphism. (Here Z{a} ∼= Z denotes the free Z-module of rank 1 with
basis {a}.)

Proof. We already know that W (F ) is generated by 〈u〉 , u ∈ F ∗ and that 1, 2, 3 holds in W (F )⇒

ρ :
⊕a∈F∗

rank 1 f.a.g.w/ basis {a}︷ ︸︸ ︷
Z{a}

{u} − {a2u}, {u}+ {−u}, {u}+ {v} − {u+ v} − {uv(u+ v)}
→W (F )

is a well de�ned surjective map of abelian groups. So we need to check that ρ is injective. Will give a
proof when char F 6= 2 (the char F = 2 case needs a di�erent, longer proof)

Using relation 2. ({u} = −{−u}) we can write every element in LHS as
∑n
i=1{ui}. Given U =∑n

i=1{ui} and V =
∑m
j=1{vj} in the LHS such that ρ(U) = ρ(V ) ∈W (F )⇒ n = rk ρ(u) = rk ρ(V ) =

m ∈ Z/2Z. So m ≡ n mod 2 and without loss of generality say m ≥ n so m − n = 2k, k ≥ 0. Then
U = U+k({1}+ {−1}︸ ︷︷ ︸

=0by 2.

) ∈ LHS. Replacing U ∈ LHS with U+k({1}+{−1}) we can assume thatm = n.

Then ρ(U) = ρ(V ) ∈W (F ) and rk ρ(U) = rk ρ(V ). ⇒
1
2∈F∗

〈u1, . . . , un〉 ∼= 〈v1, . . . , vn〉 ⇒
chain equivalence thm

〈u1, . . . , un〉 ≈ 〈v1, . . . , vn〉 ⇒ ∃ diagonal forms c1, . . . , cl such that 〈u1, . . . un〉 ≈S c1 ≈S · · · ≈S
cl ≈S 〈v1, . . . , vn〉 ⇒ it su�ces to show that {u1} + · · · + {un} = {v1} + · · · + {vn} in the case
〈u1, . . . , un〉 , 〈v1, . . . , vn〉 are simply chain equivalence (i.e., they di�er in two places). So, we can
assume n = 2, we need to show that 〈u1, u2〉 ∼= 〈v1, v2〉 then {u1} + {u2} = {v1} + {v2} in LHS.
Assume 〈u1, u2〉 ∼= 〈v1, v2〉 ⇒ u1u2 = v1v2a

2 for some a ∈ F ∗ and u1 = v1x
2 + v2y

2 for some x, y ∈ F .
If x, y 6= 0 then {v1}+ {v2} =

1.
{v1x2}+ {v2y2} =

3.
{v1x2 + v2y

2}+ {v1v2x2y2(v1x
2 + v2y

2)} = {u1}+

{ 1
a2u1u2x

2y2u1} =
1
{u1}+ {u2} ∈ LHS. If x or y = 0, say x = 0 then y 6= 0 since u1 ∈ F ∗, then we get

u1 = v2y
2 and v1v2a

2 = v2y
2u2 ⇒ v1(ay )2 = u2. Then {u1}+{u2} = {v2y2}+{v1(ay )2} =

1.
{v2}+{v1} ∈

LHS.
So ρ(U) = ρ(V ) ∈W (F )⇒ U = V ∈ LHS⇒ ρ injective

2.5 Second Residue Homomorphism

For a DVR (Discrete valuation ring) R with �eld of fraction F , residue �eld k = R/m and uni-
formizing element π ∈ R, we will construct maps ∂π : W (F ) → W (k) which will help compute
W (Q),W (Z),W (Qp) . . .

De�nition 2.44. A discrete valuation ring (DVR) is a local ring (R,m, k) which is:

• Noetherian

• A domain (ab = 0 ∈ R⇒ a = 0 or b = 0)
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• m 6= 0 is a principal ideal (m = πR for some π ∈ R)

There are other (equivalent) characterizations of DVR (which we won't need):

• R is a DVR ⇐⇒ local 1-dimensional integrally closed noetherian domain

• ⇐⇒ Local 1-dimensional noetherian regular domain

• ⇐⇒ Local PID

• ⇐⇒ Local domain with principal m such that ∩n≥0mn = 0

• ⇐⇒ valuation ring of a discrete valuation on a �eld

Example (Of DVR). • Z(p) = {ab ∈ Q|p - a}, p ∈ Z prime. m = pZ(p), k = Fp. Fraction �eld Q.

• The p-adic integers Zp = lim
←

n→∞

Z/pnZ = {(xn)n∈N≥1
, xn ∈ Z/pnZ : xn+1 = xn mod pn}, m =

pZp, k = Zp/pZp = Fp and �eld of fractions Zp = Qp

• D = Dedekind domain, p ⊂ D a prime ideal then Dp = {ab ∈ FracD|b /∈ p}, m = pDp, k = D/p

• K is a �eld, f ∈ K[T ] is irreducible. K[T ](f) = {ab ∈ Frac(K[T ]) = K(T )|f - b}, m =
fK[T ](f), k = K[T ]/f .

• R is a UFD, f ∈ R an irreducible element (=prime element) R(f) = {ab ∈ Frac R|f - b}

De�nition 2.45. Let (R,m, k) be a DVR, a uniformizing element of R is a choice π ∈ m ⊂ R
generating m, i.e. πR = m

Lemma 2.46. Let R be a DVR with uniformizing element π ∈ R, then every element a ∈ R, a 6= 0
can be written uniquely as a = πnu for some n ∈ N and u ∈ R∗

Proof. Uniqueness :Assume πnu = πmv with u, v ∈ R∗. Without loss of generality assume m ≥ n. R
domain ⇒ πm−n = vu−1 ∈ R. If m 6= n ⇒ πn−m ∈ πR = m but vu−1 ∈ R∗ = R \ m which is a
contradiction ⇒ n = m⇒ 1 = vu−1 ⇒ u = v

Existence :Let a ∈ R, a 6= 0. If a ∈ ∩n≥0mn = ∩n≥0πmR then a = πnbn ∀n. ⇒
R domain

bn =

πbn+1 ⇒ (bn) ⊂ (bn+1) ⊂ (bn+2) ⊂ . . . R, is an ascending chain of ideals which has to stop because R is
noetherian. ∃n such that (bn) = (bn+1) in particular bn+1 ∈ (bn)⇒ bn+1 = cbn but bn = πbn+1 ⇒

R domain

1 = cπ ⇒ π ∈ R∗ = R \m which contradicts the fact that π ∈ m. Hence a = 0 ⇒ ∩n≥0πnR = 0.
Hence ∃n such that a ∈ πnR but a /∈ πn+1R⇒ a = πnu, u /∈ πR = m hence u ∈ R∗.

Remark. ∩n≥0πnR = ∩n≥0mn. For all Noetherian R : ∩n≥0mn = 0

Corollary 2.47. Let R be a DVR with uniformizing element π and F its �eld of fractions, then every
a ∈ F, a 6= 0 can be written uniquely as a = πnu where u ∈ R∗.

So we can de�ne a function ν : F ∗ → Z de�ned by a = πnu 7→ n = ν(a) (with u ∈ R∗) with the
properties

1. ν(ab) = ν(a) + ν(b)

2. ν(a+ b) ≥ min(ν(a), ν(a))

3. Setting ν(0) =∞ we have R = {a ∈ F : ν(a) ≥ 0}, R∗ = {a ∈ F |ν(a) = 0}, m = {a ∈ F |ν(a) >
0}

De�nition 2.48. A discrete valuation on a �eld F is a function ν : F ∗ → Z satisfying 1., 2. above.
The valuation ring of ν is the ring R = {a ∈ F |ν(a) ≥ 0} where ν(0) =∞.

De�nition 2.49. Let (F, ν) be a discrete valuation on a �eld F with associated DVR R and choice
of uniformizing element π ∈ R. The second residue homomorphism is the map ∂π : W (F )→W (R/π)
de�ned by

〈a〉 7→

{
〈u〉 n = ν(a) odd

0 n = ν(a) even

where a ∈ F ∗, a = πnu, n = ν(a), u ∈ R∗, u = u mod m = πR, u ∈ R/π
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Note. ∂ depends on the choice of the uniformizing element π.

Lemma 2.50. The second residue homomorphism is well de�ned

Proof. Recall that W (F ) is generated by 〈a〉, a ∈ F ∗ subject to:

1. 〈u〉 =
〈
x2u

〉
, u, x ∈ F ∗

2. 〈u〉+ 〈−u〉 = 0

3. 〈u〉+ 〈v〉 = 〈u+ v〉+ 〈uv(u+ v)〉, u, v, u+ v ∈ F ∗

We need to check that ∂π preserves these relations. First de�ne εi =

{
0 i even

1 i odd
, so that we can write

∂ 〈u〉 = εν(u)
〈
φ
〉
where u = πν(u)φ, φ ∈ R∗, φ = φ mod πR. Then:

1. Let u = πnφ, x = πmψ where φ, ψ ∈ R∗. Then x2u = π2m+nφψ2 so ∂
〈
x2u

〉
= ε2m+n

〈
φψ2

〉
=

εn
〈
φ
〉
∈W (R/π) as required ∂ 〈u〉 = εn

〈
φ
〉
.

2. Let u = πnφ,−u = πn(−φ) with φ ∈ R∗. Then ∂ 〈u〉 + ∂ 〈−u〉 = εn
〈
φ
〉

+ εn
〈
−φ
〉

=

εn(
〈
φ
〉

+
〈
−φ
〉︸ ︷︷ ︸

=0

) = 0 ∈W (R/π)

3. Let u = πnφ, v = πmψ, without loss of generality assume n ≥ m. u + v = πnφ + πmψ =
πm(πn−mφ+ ψ)

Case 1. n > m : Then n − m > 0 ⇒ t = πn−mφ︸ ︷︷ ︸
∈m

+ ψ
/∈m
∈ R∗, u + v = πmt, note that

t ≡ ψ mod πR. Now uv(u+ v) = πn+2mφψt︸︷︷︸
∈R∗

. So ∂ 〈u+ v〉+ ∂ 〈uv(u+ v)〉 = εm 〈t〉+

εn+2m

〈
φψt

〉
= εm

〈
ψ
〉

+ εn
〈
φψ2

〉
= ∂ 〈v〉+ ∂ 〈u〉

Case 2. n = m: Now u+ v = πn(φ+ ψ) and φ+ ψ = πlt where t ∈ R∗.
Case i. l = 0: φ + ψ = t ∈ R∗. Now u + v = πnt and uv(u + v) = π3nφψt︸︷︷︸

∈R∗

. Then

∂ 〈u+ v〉+∂ 〈uv(u+ v)〉 = εn 〈t〉+ε3n
〈
φψt

〉
= εn

〈
φ+ ψ

〉
+εn

〈
φψ(φ+ ψ)

〉
=

εn(
〈
ψ
〉

+
〈
φ
〉
) ∈W (R/π) which is what we wanted.

Case ii. l > 0: u + v = πl+nt ∈ πR. In particular ψ + φ = 0 so ψ = −φ ∈ R/πR.
So uv(u + v) = π3n+lφψt. Then ∂ 〈u+ v〉 + ∂ 〈uv(u+ v)〉 = εn+l 〈t〉 +
ε3n+l

〈
φψt

〉
= εn+t 〈t〉+ εn+l∂

〈
−ψ2t

〉
= εn+l(〈t〉+ 〈−t〉) = 0 = εn(

〈
−ψ
〉

+〈
ψ
〉
) = εn

〈
φ
〉

+ εn
〈
ψ
〉

= ∂ 〈u〉+ ∂ 〈v〉

Theorem 2.51. Let D be a Dedekind domain with �eld of fractions F . Then the sequence of abelian
group

0 −→W (D) −→W (F )
⊕
∂℘−→

⊕
℘ ⊂ D

max. ideal

W (D/℘)

is exact.

We will prove the above theorem in the special cases: D = Z, DVR, k[T ].

Lemma 2.52. Let (R,m, k) be a DVR with �eld of fraction k and uniformizing element π ∈ m ⊂ R.
Then the composition

W (R) // W (F )
∂π // W (R/π)

is zero
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Proof. R local ⇒ W (R) is generated by 〈u〉 , u ∈ R∗ and
〈(

a 1
1 b

)〉
, a, b ∈ m. We have ∂ 〈u〉 = 0 by

de�nition of ∂: ∂ 〈u〉 =

{
0 ν(u) even

〈v〉 ν(u) odd
where u = πν(u)v, v ∈ R∗.

If a = 0 then

〈(
0 1
1 b

)〉
is metabolic so, W (F ) 3

〈(
a 1
1 b

)〉
= 0⇒ ∂

〈(
a 1
1 b

)〉
= 0

If a 6= 0 then a ∈ F ∗ so

〈(
a 1
1 b

)〉
= 〈a〉 + 〈a(ab− 1)〉 , a = πν(a)v, v ∈ F ∗, a(ab − 1) =

πν(a)v(ab− 1︸ ︷︷ ︸)
∈R∗

, ab ∈ m ⇒ ∂

〈(
a 1
1 b

)〉
= ∂ 〈a〉 + ∂ 〈a(ab− 1)〉 = εν(a) 〈v〉 + εν(a)

〈
v (ab− 1)︸ ︷︷ ︸
−1 mod m

〉
=

εν(a)(〈v〉+ 〈−v〉) = 0

Corollary 2.53. The compositionW (Z)→W (Q)
∂p→ ⊕p∈ZW (Z/pZ) (p prime) is zero, whereW (Q)

∂p→
W (Z/pZ) is the 2nd residue homomorphism associated with the p-adic valuation on Q which has val-
uation ring Z(p) = {ab ∈ Q|p - b}

Proof. We have de�ned

W (Q)

∏
∂p //

? ''

∏
W (Z/pZ)

⊕W (Z/pZ)
?�

OO

Need to see that
∏
∂p has image in ⊕pW (Z/pZ). This is the case because if 〈u〉 ∈W (Q), u ∈ Q∗ then

u = a
b and {p ∈ Z prime |ν(u) 6= 0} ⊂ {primes in the factorization of a, b} �nite⇒ ∀ξ ∈W (Q), ∂pξ = 0

for all but �nitely many p ∈ Z prime. For the composition to be zero, it su�ces to check that the

composition W (Z) → W (Q)
∂p→ W (Z/pZ) is zero for all p. The composition is zero because it factors

as W (Z)→W (Z(p))→W (Q)
∂π→W (Z/pZ)︸ ︷︷ ︸

0

De�nition 2.54. A principal ideal domain (PID) is a commutative ring R which is a domain (ab =
0⇒ a or b = 0) and for which every ideal is a principal ideal (I ⊂ R⇒ I = Rx for some x ∈ I)

Example. Z, k[T ] (k a �eld) are PIDs (Euclidean domain⇒PID)
A DVR R is a PID: Let π be a uniformizing element, so m = πR and let I ⊂ R be any ideal. I = 0

is principal, so assume I 6= 0. Let n = min{ν(a)|a ∈ I, a 6= 0} ∈ N≥0. Then I = πnR because I ⊂ πnR

since if a ∈ I, a 6= 0, a = πν(a)u = πn(π

≥0︷ ︸︸ ︷
ν(a)− nu︸ ︷︷ ︸
∈R

) ∈ πnR, and πnR ⊂ I since ∃a ∈ I, a 6= 0, ν(a) = n

so a = πnu, u ∈ R∗, a ∈ I ⇒ πnR = πnuR = aR ⊂ I. Hence I = πnR is principal.

Remark. A PID is noetherian

Proof. Let R be a PID, I1 ⊂ I2 ⊂ · · · ⊂ I2 ⊂ · · · ⊂ R be an ascending chain of ideals. Then
I = ∪In ⊂ R is an ideal ⇒ I = xR for some x ∈ I ⇒ x ∈ In for some n ⇒ I = Rx ⊂ In ⊂ I ⇒ In =
Im = I ∀m ≥ n

De�nition 2.55. An R-module M is called cyclic if M ∼= R/I for some ideal I ⊂ R.

Fact. Every �nitely generated module M over a PID R is a �nite direct sum of cyclic R-modules, that
is, M ∼= ⊕ni=1R/ai for some non-units a1, . . . , an ∈ R

Corollary 2.56. Let R be a PID with �eld of fractions F

1. Every submodule M of a �nitely generated free R-module is free

2. Every �nitely generated R-submodule M ⊂ Fn is also free
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Proof. R is a PID then R is noetherian, M ⊂ Rn ⇒M is �nitely generated so in 1 and 2 the module
M is �nitely generated ⇒M = ⊕ni=1R/ai for some non-unit ai. But R/a ⊂ Rn or R/a ⊂ Fn ⇒ a = 0
because:

If a 6= 0 and a /∈ R∗ then the composition R/a ⊂ R
a
↪→ R is injective and R/a

a=0→ R/a ↪→ R

zero at the same time (a contradiction). Similarly the composition R/a ⊂ Fn
a→ Fn is injective (if

a 6= 0, a /∈ R∗) and equals R/a
a=0→ R/a ↪→ Fn zero, again a contradiction

Corollary 2.57. Every inner product space over a PID is free

Lemma 2.58. Let R be a PID with �eld of fractions F then the map W (R) → W (F ) de�ned by
[M,β] 7→ (MF , βF ) is injective, where MF = M ⊗R F and βF (x ⊗ a, y ⊗ b) = abβ(x, y) for a, b ∈
F, x, y ∈M .

Proof. Assume [MF , βF ] = 0 ∈ W (F ) then (MF , βF ) ∼ 0 ⇒ ∃ metabolic V =

〈(
0 1
1 A

)〉
with

A ∈Mn(F ), AT = A such that (MF , βF ) ⊥ V is metabolic. There exist d ∈ R such that dA ∈Mn(R).
Then(
d−1 0
0 d

)(
0 1
1 A

)(
d 0
0 d−1

)
=

(
0 1
1 d2A

)
⇒
〈(

0 1
1 A

)〉
∼=
〈(

0 1
1 d2A

)〉
⇒ (M,β) ⊥

〈(
0 1
1 d2A

)〉
︸ ︷︷ ︸
metabolic overR

is metabolic over F . Hence can assume (M,β) to be metabolic over F .
Let (M,β) be a symmetric inner product space over R such that (M,β)F = (MF , βF ) is metabolic

over F . MF = M ⊗R F , βF (x ⊗ a, y ⊗ b) = abβ(x, y), x, y ∈ M,a, b ∈ F . Note M ⊂ MF (as
R ⊂ F,M ∼= Rn,MF

∼= Fn). Now (MF , βF ) metabolic⇒ ∃N ⊂MF Lagrangian
Claim: M ∩N ⊂M is a Lagrangian for (M,β)
M ∩ N is a direct summand of M because M/M ∩ N ⊂ MF /N ∼= Fm is a �nitely generated R-

submodule of Fm ⇒
PID

M/M ∩N is �nitely generated free R-module, so M/M ∩N ∼= Rl. Any section

s : M/M∩N →M of g : M →M/M∩N ∼= Rl (that is gs = 1) yields a direct sum decomposition (M∩
N)⊕ im(s) = M ⇒M ∩N ⊂M is a direct summand. We now need to check that (M ∩N)⊥ = M ∩N .
Let x ∈ M , then x ∈ (M ∩ N)⊥ ⇐⇒ β(x, y) = 0 ∀y ∈ M ∩ N ⇐⇒ β(x, y) = 0 ∀y ∈ N (because
∀t ∈MF = M ⊗RF ∃a ∈ R, a 6= 0 such that at ∈M , in particular ∀y ∈ N, ∃a ∈ R, a 6= 0, ay ∈M ∩N ,
β(x, y) = 0 ⇐⇒ β(x, ay) =

a 6=0
0). But β(x, y) = 0∀y ∈ N ⇐⇒

N=N⊥
x ∈ N⊥ = N ⇐⇒

x∈M
x ∈ M ∩ N .

Hence M ∩N ⊂M is a Lagrangian ⇒ (M,β) is metabolic ⇒ [M,β] = 0 ∈W (R)
To �nish the proof, take [M,β] ∈W (R) such that (M,β)F = 0 ∈W (F )⇒ ∃V metabolic symmetric

inner product space over R such that (M ⊥ V )F is metabolic over F⇒ M ⊥ V metabolic over
R⇒ [M ] = [M ] + [V ] = [M ⊥ V ] = 0 ∈W (R).

Theorem 2.59. The sequence of abelian group

0→W (Z)→W (Q)
⊕p∂p−→

⊕
p∈Z≥2prime

W (Fp)→ 0

is exact and the map W (Z)→W (R) de�ned by M 7→M ⊗Z R is an isomorphism

Proof. We have already proved that W (Z)→W (Q) is injective since Z is a PID and the composition
W (Z)→W (Q)→ ⊕pW (Fp) is zero.

For n ∈ Z≥1, let Pn be the set Pn = {a ∈ Z \ {0}|∀ prime p : p|a ⇒ p ≤ n} (e.g. P1 =
{+1,−1},P2 = {+2n,−2n},Pn ⊂Pn+1). Note that Pn−1 = Pn unless n is prime. Let Ln ⊂W (Q)
be the subgroup generated by 〈a〉 with a ∈Pn. So Ln−1 ⊂ Ln and Ln−1 = Ln unless n is prime. The

composition Lp−1 ⊂ Lp
∂p→W (Fp) is zero because, for a ∈Pp−1, νp(a) = 0 so ∂p(a) = 0. Hence we get

a map of abelian groups Lp/Lp−1
∂p→W (Fp).

Claim: Lp/Lp−1
∂p→W (Fp) is an isomorphism for all primes p ∈ Z≥2.

The claim will follow from:

Lemma 2.60. If 0 < |n|, |n1|, . . . , |nk| < p, and n ≡ n1 . . . nk mod p, then 〈pn〉 = 〈pn1 . . . nk〉 ∈
Lp/Lp−1
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Proof. We use induction on k. The case k = 1 follows from k = 2 with n2 = 1.
Assume k ≥ 2: Write n1n2 = pl + r, 0 6= |r| < p. |pl| = |n1n2 − r| ≤ |n1||n2| + |r| ≤ (p − 1)(p −

1) + p− 1 = p2 − p ≤ p2 ⇒ |l| < p. We will show that 〈pn1 . . . nk〉 = 〈prn3 . . . nk〉 ∈ Lp/Lp−1. This is
clear for l = 0 as then both sides are the same. Assume l 6= 0 and write m = n3 . . . nk.

〈pn1 . . . nk〉 − 〈prn3 . . . nk〉 = 〈pn1n2m〉 − 〈prm〉
= 〈pn1n2m〉 − 〈lm〉 − 〈prm〉 mod Lp−1

= 〈pn1n2m〉 −

〈
p2lm︸ ︷︷ ︸
=:v

〉
−

〈
prm︸︷︷︸
=:u

〉
mod Lp−1

= 〈pn1n2m〉 − 〈u+ v〉 − 〈uv(u+ v)〉
= 〈pn1n2m〉 − 〈pm(pl + r)〉 −

〈
p4m3lr(pl + r)

〉
= 〈pn1n2m〉 − 〈pmn1n2〉 −

〈
p4m3lrn1n2

〉
= −〈mlrn1n2〉 = 0 mod Lp−1

Hence 〈pn1n2 . . . nk〉 = 〈prn3 . . . nk〉 where n1n2 = pl+r, |r| < p. This proves the case k = 2 (and hence
k = 1). Now, the product rn3, ..., nk has k− 1 factors, and we can apply the induction hypothesis.

We now construct an inverse of the map in the claim. We de�ne the map φ : ⊕u∈F∗pZ{u} → Lp/Lp−1
by {u} 7→ 〈pn〉 where n ∈ Z \ {0}, |n| < p, u ≡ n mod p. Note that φ is well de�ned by the lemma,
that is our choice of n does not matter. Need to check that φ preserves the three relations for W (Fp)

1. 〈u〉 =
〈
a2u
〉
, a, u ∈ F∗p. Choose a0, u0, no ∈ Z \ {0} such that a0 = a, u0 = u, n0 = a2u ∈

Fp, |a0|, |u0|, |n0| < p. Then {u} − {a2u} φ7→ 〈pu0〉 − 〈pn0〉 =
lemma

〈pu0〉 −
〈
pa20u0

〉
= 0 ∈ Lp/Lp−1

2. 〈u〉 + 〈−u〉 = 0 ∈ W (Fp). Choose u0 ∈ Z \ {0}, |u0| < p, u0 = u ∈ Fp. Then {u} + {−u} φ7→
〈pu0〉+ 〈−pu0〉 = 0 ∈ Lp/Lp−1

3. 〈u〉+ 〈v〉 = 〈u+ v〉+ 〈uv(u+ v)〉 ∈W (Fp), u, v, u+ v ∈ F∗p. Choose −p < u0 < 0 < v0 < p, (then
|u0+v0| < p, |n0| < p), |n0| < p such that u0, v0, n0 ∈ Z\{0}, u0 = u, v0 = v, n0 = uv(u+v) ∈ Fp.
Then {u} + {v} − {u + v} − {uv(u + v)} φ7→ 〈pu0〉 + 〈pv0〉 − 〈p(u0 + v0)〉 − 〈pn0〉 =

lemma
〈pu0〉 +

〈pv0〉 − 〈pu0 + pv0〉 − 〈pu0pv0(pu0 + pv0)〉 = 0 ∈ Lp/Lp−1
From this it follows that φ induces a well de�ned map of abelian groups φ̄ : W (Fp)→ Lp/Lp−1. The
map φ̄ is surjective because Lp/Lp−1 generated by 〈pm〉, all prime divisors q of m are q < p. By the

lemma 〈pm〉 ∈ im(φ̄). It is injective because W (Fp)→ Lp/Lp−1
∂p→W (Fp)

〈u〉7→〈pn〉7→〈n〉=〈u〉
is the identity (∗). Hence

φ̄ is an isomorphism⇒
(∗)

∂p : Lp/Lp−1
∼=→W (Fp) is an isomorphism. This �nishes the claim.

We prove by induction on n ≥ 1 that Ln/L1 → ⊕p≤nW (Fp) is an isomorphism.
The case n = 1 is clear as both sides are 0
The case n = 2 is true by the claim
n− 1 to n: If n is not a prime then LHSn=LHSn−1=RHSn−1=RHSn
If n is a prime, we have a map of short exact sequences:

0 // Ln−1/L1
//

∼=by induction

��

Ln/L1
//

��

Ln/Ln−1

∼=by claim

��

// 0

0 // ⊕p≤n−1W (Fp) // ⊕p≤nW (Fp) // W (Fn) // 0

By the �ve lemma we have that Ln/L1
∂p→ ⊕p≤nW (Fp) is also an isomorphism.

Hence W (Q)/L1 = ∪n≥1Ln/L1

∼=→ ∪n≥1 ⊕p≤n W (Fp) = ⊕p≥1,primeW (Fp). So we get the exact
sequence

0 // L1
// W (Q) // ⊕p∈Z≥2 primeW (Fp) // 0

W (Z)
+ �

88

0

33
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Since W (Z) ⊂ W (Q) and (⊕∂p)W (Z) = 0 ⇒ W (Z) ⊂ L1. But L1 ⊂ W (Z) because L1 is generated
by 〈1〉 , 〈−1〉 ⇒ W (Z) = L1, and we have exactness of 0→ W (Z)→ W (Q)→ ⊕pW (Fp)→ 0. Finally
the map W (Z) → W (R) ∼=

sgn
Z is an isomorphism. This is due to the fact it is surjective since if

U ∈ W (R) then U = n 〈1〉+m 〈−1〉 but n 〈1〉+m 〈−1〉 ∈ W (Z). It is also injective since W (Z) = L1

is generated by 〈1〉 , 〈−1〉, so every element V of W (Z) has the form V = n 〈1〉+m 〈−1〉 which is zero
in W (R) ⇐⇒ n − m = sgn(n 〈1〉 + m 〈−1〉) = 0 ∈ Z ⇐⇒ n = m ⇐⇒ V = n 〈1〉 + n 〈−1〉 =
n(〈1〉+ 〈−1〉) = 0 ∈W (Z). Hence W (Z)→W (R) is an isomorphism

Corollary 2.61. The map

W (Q)→W (R)⊕
⊕

p∈Z≥2 prime

W (Fp)

de�ned by M 7→ (M ⊗Q R,
∑
p ∂pM) is an isomorphism.

Proof. This follows from the exact sequence 0 → W (Z) → W (Q) → ⊕pW (Fp) → 0, which is split
exact via

W (Z) �
� //

∼= &&

W (Q)

��
W (R)

Corollary 2.62. Two symmetric inner product spaces M,N over Q are isometric ⇐⇒ sgnM =
sgnN, rkM = rkN , ∂pM = ∂pN ∈ W (Fp)∀p ∈ Z prime. (In terms of quadratic forms, any two
regular quadratic forms are equivalent over Q if and only if the previous condition are ful�lled)

Proof. M ∼= N ⇐⇒ rkM = rkN and [M ] = [N ] ∈W (Q) ⇐⇒ rkM = rkN and [M ] = [N ] ∈W (R)︸ ︷︷ ︸
sgnM=sgnN

and ∂pM = ∂pN

Corollary 2.63 (Weak Hasse Principle). The map1

W (Q) ↪→W (R)⊕
∏

Z3p prime

W (Qp)

is injective. In particular two inner product spaces M,N over Q are isometric over Q if and only if
M and N are isometric over R and Qp for all p ∈ Z prime.

Proof. We have the following commutative diagram by de�nition of ∂p

W (Q)

(b)

��

(a)

∼= // W (R)⊕
⊕

p primeW (Fp)

(c)

��
W (R)⊕

∏
p primeW (Qp)

idW (R)⊕
∏
∂p

// W (R)⊕
∏
p primeW (Fp)

Now (a) isomorphism and (c) injective implies (b) injective.
M ∼=Q N ⇒M ∼=R N and M ∼=Qp N for all p ∈ Z prime.
AssumeM ∼=R N andM ∼=Qp N for all p ∈ Z prime. Then rkM = rkN and [M ] = [N ] ∈W (R) and

[M ] = [N ] ∈W (Qp) for all p. But (b) injective⇒ rkM = rkN, [M ] = [N ] ∈W (Q) ⇐⇒
charQ6=2

M ∼= N

1In the lectures I carelessly wrote
⊕

p instead of
∏

p but the image of W (Q) does not lie in
⊕

p, otherwise, what is

the image of 〈1〉 which is 6= 0 ∈ W (F ) for any �eld F?
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Example. We start with two side remarks: The quadratic form q =
∑n
i=1 aix

2
i +

∑
i<j aijxixj has

associated form matrix B = (βij) (with respect to e1, e2, e3, . . . , en) where βij = q(ei + ej) − q(ei) −

q(ej) =


aij i < j

aij j < i

2ai i = j

That is, B =


2a1 a12 . . . a1n
a12 2a2
...

. . .

a1n 2an

.
The diagonalisation of a symmetric matrix B =

 a1 a12 ... a1n
a12 a2
...

. . .
a1n an

 is 〈B〉 =
〈
d1,

d2
d1
, . . . , dn

dn−1

〉
where di = determinant of the upper left corner of size i× i of B, provided d1, . . . , dn−1 6= 0.

1. Does 15 = x2 + 2xy + 3y2 − 4yz have a solution x, y, z ∈ Q?
Solution: Let q = x2 + 2xy+ 3y2− 4yz. Does q represent 15? The associated symmetric bilinear
form β(u, v) = q(u+ v)− q(u)− q(v), u, v ∈ Q3 has form matrix

B =

2 2 0
2 6 −4
0 −4 0


which has determinant −32 hence it is non-degenerate. It has diagonalisation 〈B〉 ∼=

〈
2, 82 ,

−32
8

〉 ∼=〈
2, 1,−1︸ ︷︷ ︸

H

〉
⇒

exercise
q isotropic and represent any rational number. In particular there exists x, y, z

such that q(x, y, z) = 15

Note that 〈B〉 ∼= 〈2, 4,−4〉 ⇒ q ∼= x2 + 2y2 − 2z2 ∼= x2 + yz

2. Does 15 = x2 + 4xy − 2xz + 7y2 − 4yz + z2 =: q has a solution x, y, z ∈ Q.
Solution: The associated bilinear form β of q has matrix form

B =

 2 4 −2
4 14 −4
−2 −4 2


with determinant = 0 (since Be3 = −Be1). So q is degenerate, and we can eliminate a variable as
follows: The inner product space 〈B〉 has diagonalisation 〈B〉 ∼= (Qe1 +Qe2)︸ ︷︷ ︸

non−degenrate as det( 2 4
4 14 )=126=0

+

(Qe1 +Qe2)⊥︸ ︷︷ ︸
dim=1,degenerate as detB=0

∼=
〈(

2 4
4 14

)〉
⊥ 〈0〉 ∼=

〈
2, 122

〉
⊥ 〈0〉 ∼= 〈2, 6〉 ⊥ 〈0〉. This means that

q ∼= x2 + 3y2, so does this represent 15? This is equivalent to asking 〈2, 6〉 ∼= 〈30, a〉 for some
a ∈ Q∗. Then det LHS = det RHS modulo square units ⇐⇒ 〈1, 3〉 ∼= 〈15, 5〉 ⇐⇒ 〈1, 3〉 =
〈15, 5〉 ∈ W (Q) (because 〈1, 3〉 and 〈15, 5〉 have the same rank) ⇐⇒ 〈1, 3〉 ∼= 〈15, 5〉 ∈ W (R)
and ∂p 〈1, 3〉 ∼= ∂p 〈15, 5〉 ∈W (Fp) for all p prime.

• If p 6= 3 or 5 then ∂p 〈1, 3〉 = 0 = ∂p 〈15, 5〉
• if p = 3 then ∂3 〈1, 3〉 = ∂3 〈1〉+∂3 〈3〉 = 0+ 〈1〉, and ∂3 〈15, 5〉 = ∂3 〈15〉+∂3 〈5〉 = 〈5〉+0 =
〈−1〉. Do they agree in W (F3)? No because 〈1〉 6= 〈−1〉 ∈ W (F3) ∼= Z/4Z generated by
〈1〉⇒ 〈1〉 − 〈−1〉 = 2 〈1〉 6= 0 ∈W (F3)

We have showed that 〈1, 3〉 6= 〈15, 5〉 ∈ W (Q) ⇒ q does not represent 15 and the equation has
no solution in x, y, z ∈ Q
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2.6 The Brauer Group and the Hasse Invariant

Recall from MA377 (Rings and Modules):

De�nition 2.64. Let k be a �eld, a k-algebra A is called:

• central: if k
∼=→ Z(A), where Z(A) denotes the center of A

• simple: if A 6= 0 and the only ideals of A are 0 and A

• �nite dimensional : if dimk A <∞

Fact. Let A,B be �nite dimensional central simple k-algebras. Then:

1. A = Mn(D) where D is a �nite dimensional division k-algebra

2. A⊗k B is also a �nite dimensional central simple k-algebra

3. A⊗k Aop ∼= Mn(k) where n = dimk A

De�nition 2.65. Let F be a �eld. The Brauer group, Br(F ), is the set of Brauer equivalence classes
[A] of �nite dimensional central simple F -algebras A, where A ∼ B (A is Brauer equivalent to B) if
Mm(A) ∼= Mn(B) as F -algebras for some m,n ∈ N≥1.

Br(F ) is a group with group law: [A][B] := [A ⊗F B], with 1 = [F ] and [A]−1 = [Aop]. Indeed
Br(F ) is an abelian group: [A][B] = [A⊗F B] = [B ⊗F A] = [B][A], 1[A] = [F ][A] = [F ⊗F A] = [A],
[A][Aop] = [A⊗F Aop] =

Fact
[Mn(F )] = [F ] = 1

Example. (From MA377)

• Br(C) = Br(F ) = {F} = 0 where F = F̄ is algebraically closed

• Br(F ) = 0 if F is a �nite �eld

• Br(R) = {R,H} = Z/2

De�nition 2.66. Let F be a �eld with char F 6= 2 and a, b ∈ F ∗. Let (a,bF ) be the 4-dimensional
F -algebra with basis, 1, i, j, k such that i2 = a, j2 = b, k = ij = −ji

Note. k2 = ij(−ji) = −ab

Fact. For a, b ∈ F ∗, (a,bF ) is a 4-dimensional central simple F -algebra.

De�nition 2.67. An F -algebra which is F -algebra isomorphic to (a,bF ) for some a, b ∈ F ∗ is called
(generalized) quaternion algebra (over F )

Structure theorem for Quaternion algebras. Let F be a �eld with char F 6= 2. Then (a,bF ) ∼=
( c,dF ) ⇐⇒ 〈a, b,−ab〉 = 〈c, d,−cd〉 ∈W (F )

Remark. Let A,B be �nite dimensional central simple F -algebras. Then A ∼= B ⇐⇒ dimF A =
dimF B and [A] = [B] ∈ Br(F ).

In particular [(a,bF )] = [( c,dF )] ∈ Br(F ) ⇐⇒ 〈a, b,−ab〉 = 〈c, d,−cd〉 ∈W (F )

Example. ( 1,1
F ) ∼= M2(F ) by i 7→

(
0 1
1 0

)
, j 7→

(
1 0
0 −1

)
(−1,−1R ) = Real quaternion algebra.

M2(R) = (1,1
R ) � (−1,−1R ) because 〈1, 1,−1〉︸ ︷︷ ︸

sgn=1

6= 〈−1,−1,−1〉︸ ︷︷ ︸
sgn=−3

∈W (R)

Remark. (a,bF ) is a division algebra ⇐⇒ (a,bF ) � M2(F ) ⇐⇒ 〈a, b,−ab〉 � 〈1, 1,−1〉 ⇐⇒ 〈a, b,−ab〉
is an isotropic (i.e., does not represent 0)

Remark. (a,bF ) ∼= (a,bF )op by 1 7→ 1, i 7→ −i, j 7→ −j, k 7→ −k. This means that [(a,b2 )] has order 2 in

Br(F ) because (a,bF )⊗F (a,bF ) ∼= (a,bF )⊗F (a,bF )op ∼= M4(F )⇒ [(a,bF )][(a,bF )] = [M4(F )] = [F ] = 1 ∈ Br(F ).

Hence [(a,bF )] ∈ 2 Br(F ), where for an abelian group G we denote 2G = {x ∈ G|x2 = 1}
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Lemma 2.68. Let F be a �eld with char F 6= 2. Then:

1. (a,bF ) ∼= (a,−abF ) ∼= ( b,−abF )

2. (a,bF )⊗F (a,cF ) ∼= (a,bcF )⊗F M2(F )

Proof. 1. (a,bF ) ∼= (a,−abF ) because 〈a, b,−ab〉 ∼=
〈
a,−ab, a2b

〉
2. Let A = (a,bF ), B = (a,cF ) have basis BA = {1, iA, jA, kA} and BB = {1, iB , jB , kB} respectively.

ThenA⊗FB has basis {u⊗v|u ∈ BA, v ∈ BB}. Let ΣA = {1⊗1, iA⊗1, jA⊗jB , kA⊗jB} ⊂ A⊗FB
and ΣB = {1 ⊗ 1, 1 ⊗ jB , iA ⊗ kB ,−ciA ⊗ iB}. Then ΣA,ΣBare the basis of A

′, B′ ⊂ A ⊗F B-
subalgebras with A′ ∼= (a,bcF ) and B′ ∼= ( c,−a

2c
F ) because

• (iA ⊗ 1)2 = i2A ⊗ 1 = a(1⊗ 1) = a

• (jA ⊗ jB)2 = j2A ⊗ j2B = b⊗ c = bc(1⊗ 1) = bc

• (1A ⊗ 1)(jA ⊗ jB) = kA ⊗ jB = −(jA ⊗ jB)(iA ⊗ 1)

and

• (1⊗ jB)2 = 1⊗ j2B = c

• (iA ⊗ kB)2 = i2A ⊗ k2B = a · (−ac) = −a2c
• (1⊗ jB)(iA ⊗ kB) = −(iA ⊗ kB)(1⊗ jB) = iA ⊗−ciB = −ciA ⊗ iB

But ( c,−a
2c

F ) ∼= ( 1,1
F ) = M2(F ) because

〈
c,−a2c, a2c2

〉 ∼= 〈c,−c, 1〉 ∼= 〈1, 1,−1〉. Every element
of A′ commutes with every element of B′ (one checks that ΣA commutes with ΣB)⇒ The map
φ :A′⊗F B′ → A⊗F B de�ned by x⊗ y 7→ xy is a well de�ned map of F -algebras. The elements
{xy|x ∈ ΣA, y ∈ ΣB} are linearly independent in A ⊗F B (check!) ⇒ φ is injective. Since
dimF A

′ ⊗F B′ = 8 = dimF A⊗F B, this means that φ is an isomorphism ⇒ (a,bcF )⊗F M2(F ) ∼=
A′ ⊗F B′ ∼= A⊗F B ∼= (a,bF )⊗F (a,cF )

De�nition 2.69. Let F be a �eld with char F 6= 2, and V be a symmetric inner product space over
F with diagonalisation V ∼= 〈a1, . . . , an〉. The Hasse invariant of V is the algebra

Hasse(V ) =
∏

1≤i<j≤n

(ai, aj
F

)
∈ 2 Br(F )

Lemma 2.70. Hasse(V ) ∈2 Br(F ) does not depend on diagonalisation 〈a1, . . . , an〉 of V used to de�ne
Hasse(V )

Proof. 1. Hasse(〈a1, . . . ai, ai+1, . . . , an〉) = Hasse(〈a1, . . . , ai−1, ai+1, ai, ai+2, . . . , an〉). This is be-
cause

LHS =

 ∏
r<s,{r,s}6={i,i+1}

(ar, as
F

)(ai, ai+1

F

)

RHS =

 ∏
r<s,{r,s}6={i,i+1}

(ar, as
F

)(ai+1, ai
F

)

Since (a,bF ) ∼=
(
b,a
F

)
⇒ LHS = RHS. Hence for all σ ∈ Σn = permutation group, we have

Hasse(〈a1, . . . , an〉) = Hasse(
〈
aσ(1), . . . , aσ(n)

〉
)

2. char 6= 2, if 〈a1, . . . , an〉 and 〈b1, . . . , bn〉 are diagonalisation of V then 〈a1, . . . , an〉 ≈ 〈b1, . . . , bn〉
(Chain equivalence Theorem on page 13). Hence it su�ces to show that Hasse(〈a1, . . . , an〉) =
Hasse(〈b1, . . . , bn〉) for 〈a1, . . . , an〉 ≈s 〈b1, . . . , bn〉 simply chain equivalent. By 1. it su�ces
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to show Hasse(〈a, b, e1, . . . , en〉) = Hasse(〈c, d, e1, . . . , en〉) where 〈a, b〉 ∼= 〈c, d〉. Recall that
〈a, b〉 ∼= 〈c, d〉 ⇐⇒ ab = cd · x2, a = cy2 + dz2 for some x, y, z ∈ F . Now

LHS =

(
a, b

F

) n∏
i=1

(a, ei
F

)(b, ei
F

)
Hasse(〈e1, . . . , en〉)

RHS =

(
c, d

F

) n∏
i=1

(c, ei
F

)(d, ei
F

)
Hasse(〈e1, . . . , en〉)

Note that (a, e
F

)(b, e
F

)
=

(
ab, e

F

)
∈ Br(F )

=

(
cd, e

F

)
since ab = cdx2

=
(c, e
F

)(d, e
F

)
and (a,bF ) ∼= ( c,dF ) because 〈a, b,−ab〉 = 〈a, b〉+ 〈−ab〉 = 〈c, d〉+ 〈−cd〉 = 〈c, d,−cd〉

Lemma 2.71. Hasse(V ⊥W ) = Hasse(V ) Hasse(W ) · (detV,detW
F )

Proof. Exercise

So Hasse(−) does not de�ne a group homomorphismW (F )→ 2 Br(F ). Hasse(H) = Hasse(〈1,−1〉) =
( 1,−1
F ) ∼= ( 1,1

F ) = M2(F ) because 〈1,−1, 1〉 ∼= 〈1, 1,−1〉. But Hasse(H2) = Hasse(H) Hasse(H) ·
(detH,detH

F ) = (−1,−1F ) 6= ( 1,1
F ) = M2(F ) = F ∈ Br in general.

2.7 Tensor Product of Inner Product Spaces

De�nition 2.72. Let (M,β), (B, γ) be symmetric bilinear forms over R. We de�ne (M ⊗RN, β⊗R γ)
to be the bilinear form β ⊗ γ : M ⊗R N ×M ⊗R N → R de�ned by (x⊗ u, y ⊗ v) 7→ β(x, y) · γ(u, v),
which is symmetric: β ⊗ γ(x⊗ u, y ⊗ v) = β(x, y)γ(u, v) = β(y, x)γ(v, u) = β ⊗ γ(y ⊗ v, x⊗ u)

Lemma 2.73. Let P,Q be �nitely generated R-module then the following map φ : HomR(P,R) ⊗R
HomR(Q,R) → HomR(P ⊗R Q,R) de�ned by f ⊗ g 7→ f · g where (f · g)(x ⊗ u) = f(x)g(u), is an
isomorphism

Proof. φ is an isomorphism for (P,Q) = (R,R).
If φ is an isomorphism for (P1, Q) and (P2, Q) then φ is an isomorphism for (P1 ⊕ P2, Q) because

(P1 ⊕ P2) ⊗Q = P1 ⊗Q ⊕ P2 ⊗Q, Hom(P1 ⊕ P2, R) = Hom(P1, R) ⊕ Hom(P2, R) and φ1 ⊕ φ2 is an
isomorphism if and only if φ1 and φ2 are isomorphisms. ⇒ φ is isomorphism for (P,Q) = (Rm, Rn)
m,n ∈ Z≥0.

A �nitely generated projective module is a direct factor of Rn for some n. If φ1 is a direct summand
of a map φ which is an isomorphism then φ1 is an isomorphism⇒ φ is an isomorphism for P,Q �nitely
generated projective modules.

Lemma 2.74. Let (M,β), (N, γ) be symmetric inner product spaces over R. Then (M ⊗R N, β ⊗ γ)
is an inner product space over R

Proof. M,N is �nitely generated projective ⇒ M ⊗R N is �nitely generated projective. We need
to show β ⊗ γ is non-degenerate. Now β, γ non-degenerated ⇐⇒ M → HomR(M,R) de�ned by
x 7→ β(x,−) and N → HomR(N,R) de�ned by y 7→ γ(y,−) are isomorphisms. β⊗γ is non-degenerate
⇐⇒ M ⊗R N → HomR(M ⊗R N,R) de�ned by x ⊗ y 7→ β(x,−)γ(y,−) is an isomorphism, but this
map is the composition of the following two maps

M ⊗R N
∼=−→ HomR(M,R)⊗HomR(N,R)

∼=−→
Lemma

HomR(M ⊗R N,R)

x⊗ y 7→ β(x,−)⊗ γ(y,−) 7→ β(x,−) · γ(y,−)
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Lemma 2.75 (De�nition). The Wilt group W (R) of a a commutative ring R is a commutative ring
with multiplication [M,β] · [N, γ] = [(M,β) ⊗R (N, γ)] and unit 〈1〉. W (R) is called the Witt ring of
R.

Proof. We need to show that if (M,β) is metabolic and (N, γ) arbitrary then (M,β) ⊗ (N, γ) is
metabolic. But a Lagrangian L ⊂M of (M,β) de�nes a Lagrangian L⊗N ⊂M⊗N of (M⊗N, β⊗γ)
(exercise)

Remark. 〈u〉 · 〈v〉 = 〈uv〉 ∈W (R)

De�nition 2.76. Let R be a local ring then the rank map W (R) → Z/2 de�ned by M 7→ rkM is a
ring homomorphism. The kernel ker(rk) is an ideal I(R) which is called the fundamental ideal.

Remark. I(F ) is generated by even dimensional forms, hence additively generated by 2 dimensional
forms 〈a, b〉 = 〈a, 1〉 − 〈−b, 1〉 ⇒ I(F ) is additively generated by 〈a, 1〉 , a ∈ F ∗⇒ I2(F ) is additively
generated by 〈a, 1〉 ⊗ 〈b, 1〉 = 〈ab, a, b, 1〉, the discriminant map, disc : I(F ) → F ∗/F 2∗ de�ned by

V 7→ (−1)
dimV

2 detV , in our case we have 〈ab, a, b, 1〉 7→ a2b2 = 1 ∈ F ∗/F 2∗ hence disc(I2) = 0 and
I(F )/I2(F )→ F ∗/F 2∗ well de�ned surjective map of abelian groups

Theorem 2.77 (P�ster). The map I(F )/I2(F )→ F ∗/F 2∗ is an isomorphism for all �elds F .

Proof. The map is surjective because I(F )
disc→ F ∗/F 2∗ sends 〈a,−1〉 to a for a ∈ F ∗.

In W (F )/I2 we have:

1. 〈a〉+ 〈b〉 = 〈−ab〉+ 〈−1〉 because 〈ab, a, b, 1〉 ∈ I2

2. 3 〈−1〉 = 〈1〉 because 〈1, 1, 1, 1〉 = 〈1, 1〉 ⊗ 〈1, 1〉 ∈ I2, hence 4 〈−1〉 = 0.

If ξ = 〈u1, . . . , un〉 ∈ I/I2 then n = 2m. For u = dicsξ we have

ξ = 〈u1, . . . , u2m〉 =
1.
〈−(−1)mu,−1, . . . ,−1︸ ︷︷ ︸

2m−1

〉 in I/I2

=
2.

{
〈u,−1,−1,−1〉 m even
〈u,−1〉 m odd

= 〈−u, 1〉

where the last equation follows from 2 when m is even, and when m is odd we have 〈u,−1〉 = 〈−u, 1〉
because 〈u, u,−1,−1〉 = 〈−u2,−1,−1,−1〉 = 〈−1,−1,−1,−1〉 = 0 ∈ I/I2, by 1 and 2. Thus, if ξ is
in the kernel of the discriminant map then 1 = disc(ξ) = disc(−u, 1) = u ⇒ u = 1 ∈ F ∗/F 2∗ ⇒ ξ =
〈−u, 1〉 = 〈−1, 1〉 = 0 ∈ I/I2 ⇒ ξ = 0 ∈ I/I2 and the map I/I2 → F ∗/F 2∗ is injective.

Example. • I2(Fq) = 0 because disc : I(Fq)
∼=→ F∗q/F2∗q is an isomorphism.

• I2(F ) = I(F ) = 0 for any algebraically closed �eld F because rk : W (F )
∼=→ Z/2Z

• I(R) �
� // W (R)

rk //

sgn

Z/2Z

2Z ⊂ Z

reductionmod 2

>>

• We'll see later: I2(Qp) = Z/2Z

De�nition 2.78. Let V be a 4k-dimensional symmetric inner product space over F with discV

(= detV ) = 1. The Signed Hasse Invariant is s(V ) = (−1,−1F )k Hasse(V ) = ( (−1)k−1
F ) Hasse(V )
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Note. If V,W have dimension divisible by 4 and discV = discW = 1 then

s(V ⊥W ) = (
−1,−1

F
)

dimV+dimW
4 Hasse(V ⊥W )

=

(
−1,−1

F

) dimV
4
(
−1,−1

F

) dimW
4

Hasse(V ) Hasse(W )

(
detV,detW

F

)
︸ ︷︷ ︸

( 1,1
F )

= s(V )s(W )

and s(H2) = (−1,−12 ) Hasse(H2) = (−1,−1F )(−1,−1F ) = [F ] ∈ Br(F ) ⇒ s(H2k) = [F ] ∈ Br(F ). Hence
s : I2(F ) → 2 Br(F ) is a well de�ned map of abelian groups. (as I2 is generated by 4-dimesional
spaces)

Lemma 2.79. s(I3F ) = 0 for every �eld F of char 6= 2

Proof. I is generated by 〈1, a〉 ⇒ I3 is generated by 〈1, a〉 ⊗ 〈1, b〉 ⊗ 〈1, c〉 = 〈1, a, b, c, ab, ac, bc, abc〉 =
〈a1, . . . , a8〉. So,

s(〈a1, . . . , a8〉 = (−1)
8
4 Hasse(〈a1, . . . , a8〉)

=
∏

i≤i<j≤8

(ai, aj
F

)
=

∏
1≤i≤7

(
ai
∏
i<j≤8 aj

F

)
by Lemma 2.68

=

(
1, a4b4c4

F

)(
a, a3b4c4

F

)(
b, a3b3c4

F

)(
c, a3b3c3

F

)(
ab, a2b2c3

F

)(
ac, ab2c2

F

)(
bc, abc

F

)
=

(
1, 1

F

)(a, a
F

)(b, ab
F

)(
c, abc

F

)(
ab, c

F

)(ac, a
F

)(bc, abc
F

)
removing powers of 2

=
(a, a
F

)(b,−a
F

)(
c,−ab
F

)(
ab, c

F

)(
a,−c
F

)(
bc,−a
F

)
by using the relation

(
a, b

F

)
=

(
a,−ab
F

)
=

(a, a
F

)(a,−c
F

)(
b,−a
F

)(
bc,−a
F

)(
c,−ab
F

)(
c, ab

F

)
by rearranging

=

(
a,−ac
F

)(
c,−a
F

)(
c,−1

F

)
pairing o� and Lemma 2.68

=

(
a,−ac
F

)(c, a
F

)
Lemma 2.68 on the last two pairs

=

(
a,−ac2

F

)
Lemma 2.68

=

(
a,−a
F

)
removing powers of 2

=

(
1, 1

F

)
because

〈
a,−a, a2

〉
= 〈1, 1,−1〉

= 0

Corollary 2.80. The signed Hasse invariant gives a well de�ned map of abelian groups I2(F )/I3(F )→
2 Br(F )

Theorem 2.81 (Merkurev, 1981). The map I2F/I3F
∼=→ 2 Br(F ) is an isomorphism (char(F ) 6= 2)

Remark. I0/I2 = W (F )/I = Z/2Z, I/I2 = F ∗/F 2∗, I2/I3 = 2 Br(F ), what about Ik/Ik+1 =?

For any �eld F there are de�ned cohomology groups Hn(F,Z/2Z), sometimes called �Galois co-
homology groups�, which satisfy H0(F,Z/2Z) = Z/2Z, H1(F,Z/2Z) = F ∗/F 2∗ and H2(F,Z/2Z) =
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2 Br(F ) for any �eld F of characteristic 6= 2. This makes the statement of the following theorem
plausible. For its proof and the development of the tools needed in the proof (motivic cohomology and
motivic homotopy theory), Voevodsky was awarded the �elds medal in 2002.

Theorem 2.82 (Voevodsky, conjectured by Milnor). Let F be a �eld of char 6= 2 then

In(F )/In+1(F ) ∼= Hn(F,Z/2Z)

Lemma 2.83. Let F be a �eld with charF 6= 2 and V,W symmetric inner product spaces over F
of dimension ≤ 3. Then V ∼= W ⇐⇒ dimV = dimW, detV = detW ∈ F ∗/F 2∗ and HasseV =
HasseW ∈ Br(F )

Proof. �⇒� is clear
�⇐�: dimV = dimW = 1: V ∼= 〈detV 〉 = 〈detW 〉 ∼= W , hence we are done.
dimV = dimW = 2: Then V ∼= 〈a, b〉 ,W ∼= 〈c, d〉 (charF 6= 2). (a,bF ) = Hasse(V ) = Hasse(W ) =

( c,dF )⇒ 〈a, b,−ab〉 ∼= 〈c, d,−cd〉 ⇒
ab=cd∈F∗/F 2∗

〈a, b〉 ∼= 〈c, d〉 (Witt cancellation)

dimV = dimW = 3: V ∼= 〈a, b, c〉 ,W ∼= 〈x, y, z〉 , a, b, c, x, y, z ∈ F ∗. Hasse(〈a, b, c〉) = (−abc,−1F ) Hasse(〈−ab,−ac,−bc〉) (∗)
(Exercise).

Hasse(V ) = Hasse(W ) , abc = detV = detW = xyz

⇒
(∗)

Hasse(〈−ab,−ac,−bc〉) = Hasse(〈−xy,−xz,−yz〉)

⇒
(
−ab,−ac

F

)(
−ab,−bc

F

)(
−ac,−bc

F

)
=

(
−xy,−xz

F

)(
−xz,−yz

F

)(
−xz,−yz

F

)
⇒
(
−ab, ab
F

)(
−ac,−bc

F

)
=

(
−xy, xy

F

)(
−xz,−yz

F

)
but (−ab,abF ) = (1,1

F ) because 〈−ab, ab, 1〉 ∼= 〈1, 1,−1〉

⇒
(
−ac,−bc

F

)
∼=

(
−xz,−yz

F

)
⇒
〈
−ac,−bc,−abc2

〉 ∼=
〈
−xz,−yz,−xyz2

〉
⇒ 〈−abc〉 ⊗ 〈−ac,−bc,−ab〉 ∼= 〈−xyz〉 ⊗ 〈−xz,−yz,−xy〉 as 〈−detV 〉 = 〈−detW 〉

⇒ 〈b, a, c〉 ∼= 〈y, x, z〉

Proposition 2.84. Let F be a �eld with charF 6= 2. Assume that every 5-dimensional symmetric
inner product space is isotropic, i.e., represent 0 non-trivially. Then for symmetric inner product spaces
V,W over F , V ∼= W ⇐⇒ dimV = dimW, detV = detW ∈ F ∗/F 2∗,Hasse(V ) = Hasse(W ) ∈ Br(F )

Remark. Proposition applies when F = Qp (See below). (Also if F = any local �eld, or non-real
number �eld)

Proof. Induction on n = dimV = dimW
n ≤ 3: This case is the previous lemma
Assume n ≥ 4. V ⊥ 〈−1〉 has dimension ≥ 5 hence it is isotropic. ⇒ V ⊥ 〈−1〉 ∼= V0 ⊥ 〈1,−1〉 ⇒

V ∼= V0 ⊥ 〈1〉. Similarly W ∼= W0 ⊥ 〈1〉. Now

• dimV0 = dimW0 = n− 1.

• detV0 = detV0 · det 〈1〉 = detV = detW = detW0

• Hasse(V0 ⊥ 〈1〉) = Hasse(V ) = Hasse(W ) = Hasse(W0 ⊥ 〈1〉) ⇒ Hasse(V0) · Hasse(〈1〉) ·
(detV0,1

F ) = Hasse(W0) ·Hasse(〈1〉) · (detW0,1
F ) ⇒

detV0=detW0

Hasse(V0) = Hasse(W0)

So by induction hypothesis V0 ∼= W0 ⇒ V = V0 ⊥ 〈1〉 ∼= W0 ⊥ 〈1〉 = W
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Corollary 2.85. Let F be a �eld with charF 6= 2 for which every 5-dimensional form is isotropic.
Then I3F = 0

Proof. Let V be a symmetric inner product space over F , [V ] ∈ I3F ⊂ I(F ) ⇒ dimF V = 2k.
If 4 - dimV replace V with V ⊥ H, this doesn't change [V ] = [V ⊥ H]. Hence we can assume
dimV = 4 · l for some l ∈ N. Now

• dimV = 4l = dimH2l

• detV = (−1)
dimV

2 discV = 1 because [V ] ∈ I2 and (−1)
dimV

2 = (−1)2l = 1. But detH2l = 1

• Hasse(V ) = ( (−1)l,−1
F ) s(V )︸︷︷︸

[F ]∈Br

= ( (−1)l,−1
F ), since [V ] ∈ I3 ⊂ ker(s : I2 → Br). But HasseH2l =

( (−1)l,−1
F )

So by the proposition we have V ∼= H2l ⇒ [V ] = 0 ∈W (F )

2.8 Quadratic Forms over p-adic numbers

De�nition 2.86. The p-adic integers Zp are (p ∈ Z prime)

Zp = lim
n→∞

Z/pnZ

= {(xn)n∈N≥1
|xn ∈ Z/pnZ, xn+1 ≡ xn mod pn}

= {
∞∑
i=0

aip
i|ai ∈ {0, . . . , p− 1}}

= completion of Z with repsect to ||a||p = p−νp(a)

Zp is a Discrete Valuation Ring with maximal ideal pZp and residue �eld Zp/pZp = Fp
De�nition 2.87. The p-adic rational numbers Qp are

Qp = �eld of fractions of Zp
= completion of Q with respect to ||a||p = p−νp(a)

= {
∞∑
i=N

aip
i|ai ∈ {0, . . . , p− 1}, N ∈ Z}

We have the surjective ring homomorphism Zp � Z/pnZ by
∑∞
i=1 aip

i 7→
∑k
i=1 aip

i mod pn

(k ≥ n− 1). x ∈ Zp is a unit ⇐⇒ x ∈ Zp/pZp = Fp is a unit (Zp local). So
∑∞
i=0 aip

i ∈ Zp is a unit
⇐⇒ a0 6= 0 in Fp.

We want to understand Q∗p/Q2∗
p . If p is odd this is an exercise. For p = 2 we �rst look at Z∗2/Z2∗

2 .

We have a ring homomorphism Z2 → Z/8Z de�ned by
∑∞
i=0 ai2

i 7→ a0 + a12 + a24. Therefore
(Z2)∗ � (Z/8Z)∗ is surjective by the map 1 +

∑∞
i=1 ai2

i 7→ 1 + a12 + a24. Now (Z2)2∗ → (Z/8Z)2∗ =
{12, 32, 52, 72} = {1}, so we have a well de�ned group homomorphism (Z2)∗/(Z2)2∗ � (Z/8Z)∗.

Proposition 2.88. The map Z∗2/Z2∗
2 → (Z/8Z)∗ de�ned by

∑∞
i=0 aiz

i 7→ a0 +a12 +a24 is an isomor-
phism.

Proof. We already know that the map is surjective. z = 1 +
∑∞
i=1 ai2

i ∈ kernel of the map ⇐⇒
a1, a2 = 0 ⇐⇒ x = 1 + 8y for some y ∈ Z2. We need to sow that x is a square in Z2.

z = (1 + 8y)1/2

:=

∞∑
k=0

(
1/2

k

)
(8y)k

=

∞∑
k=0

(
1/2

k

)
4k(2y)k

=

∞∑
k=0

bk(2y)k
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where

bk =

(
1/2

k

)
4k

=
1/2(1/2− 1) · · · · · (1/2− k + 1)

k!
4k

=
(1/2)k · 1 · (−1) · · · · · (−2k + 3)

k!
4k

= (−1)k−1 · 1 · 3 · · · · · (2k − 3) · 2k

k!
.

Now k = ν2(2k) ≥ ν2(k!) since ν2(k!) ≤ (number of even number ≤ k) + (number of number divisible
by 4 ≤ k) + · · · ≤ bk2 c + bk4 c + · · · ≤

∑∞
i=1

k
2i = k

2

∑∞
i=0

1
2i = k

2
1

1− 1
2

= k
22 = k. Hence ν2(bk) ≥ 0 and

since Z2 = {t ∈ Q2|ν2(t) ≥ 0} we have that bk ∈ Z2.

∥∥∥∥∥∥∥
m∑
k=n

bky
k︸︷︷︸

∈Z2

· 2k

∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥∥
∞∑
k=n

bky
k2k−n︸ ︷︷ ︸

∈Z2

∥∥∥∥∥∥∥∥∥∥
2

‖2n‖2

≤ 1 · 2−n

where ||a||2 = 2−ν2(a) ≤ 1 for all a ∈ Z2. Hence m 7→
∑m
k=0 bky

k2k is a Cauchy sequence ⇒ z :=∑∞
k=0 bky

k2k de�nes an element in Z2. Then z
2 = x.

Remark. For p odd Z∗p/Z2∗
p

∼=→ F∗p/F2∗p (reduction mod p) is an isomorphism (exercise)

Corollary 2.89. The map

Q∗p/Q2∗
p

∼=→ Z/2Z× Z∗2/Z2∗
p =

{
Z/2Z× F∗p/F2∗p p odd

Z/2Z× (Z/8Z)∗ = Z/2Z× (Z/2Z)2 = (Z/2Z)3 p = 2

de�ned by pνa 7→ ν, a where a ∈ Z∗pis an isomorphism.

Proof. For any Discrete Valuation Ring R with �eld of fractions F , the map F ∗
∼=→ Z × R∗ de�ned

by pνa 7→ ν, a where a ∈ R∗ is a isomorphism. Hence F ∗/F 2∗ ∼=→ Z/2Z × R∗/R2∗. Now (Z/8Z)∗ is
generated by 3, 5 and 32 = 52 = 1 mod 8, hence (Z/8Z) ∼= Z/2Z⊕ Z/2Z.

Corollary 2.90. Z∗2/Z2∗
2 = {1, 3, 5, 7} and Q∗2/Q2∗

2 = {1, 3, 5, 7, 2, 6, 10, 14}.

Proposition 2.91. Let p ∈ Z be a prime. Then there is, up to isometry, a unique anisotropic
4-dimensional regular quadratic form over Qp. This form has determinant 1 and represents all of
Q∗p/Q2∗

p .

Proof. p = odd (exercise)
p = 2: Consider all possible 2-dimensioanl forms 〈1, a〉 where a ∈ Q∗2/Q2∗

2 . Set Da = {t ∈ Q∗2/Q2∗
2 |t

represent 〈1, a〉}
〈1, a〉 Da ⊂ Q∗2/Q2∗

2 = {1, 3, 5, 7, 2, 6, 10, 14}
〈1, 1〉 1, 2, 5, 10
〈1, 2〉 1, 2, 3, 6
〈1, 3〉 1, 3, 5, 7
〈1, 5〉 1, 5, 6, 14
〈1, 6〉 1, 6, 7, 10
〈1, 7〉 Hyperbolic
〈1, 10〉 1, 3, 10, 14
〈1, 14〉 1, 2, 7, 14

We check this table for 〈1, 1〉: This represent 1, 2, 5, 10 because 1 = 1·12+1·02, 2 = 12+12, 5 = 22+12

and 10 = 32 + 12, and it does not represent 3, 7, 6, 14 because x2 + y2 ∈ {3, 7, 6, 14} has no solution
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in Z2 since it has no solution mod 8 as x2 + y2 ∈ {0, 1, 2} mod 8 since x2, y2 ∈ {0, 1} mod 8. If
x2 + y2 = a ∈ {3, 7, 6, 14} has a solution in Q2 clearing denominators (multiplying with respect to 2n)
(∗)x2 + y2 = at2 has a solution in Z2 and not all of x, y, t are divisible by 2.

Case 1. 2 - t then t ∈ Z∗2 ⇒ t2 = 1 mod 8 and (∗) has no solution mod 8

Case 2. t = 2u and 2 - x then x2 = 1 mod 8, x2︸︷︷︸
1

+y2 = 4u2a has no solution mod 8 as y2 ∈ {1, 0}

mod 8.

Hence 〈1, 1〉 does not represent 3, 7, 6, 14.
We also can check that 〈1, 1〉 ∼= 〈2, 2〉 ∼= 〈5, 5〉 ∼= 〈10, 10〉 � 〈3, 3〉 ∼= 〈7, 7〉 ∼= 〈6, 6〉 ∼= 〈14, 14〉.

e.g., 〈1, 1〉 ∼= 〈2, 2〉 ∼= 〈5, 5〉 ∼= 〈10, 10〉 since 〈1, 1〉 represents 2,5 and 10 and the all have the same
determinant. Now 〈1, 1〉 � 〈3, 3〉 = 〈3〉·〈1, 1〉 because 〈1, 1〉 represent 1, 2, 5, 10 but 〈3〉·〈1, 1〉 represents
3, 6, 15 = 7, 30 = 14 ∈ Q∗2/Q2∗

2 = Z/2Z× (Z/8Z)∗.
Let φ be a 4-dimensional anisotropic form over Q2, φ = 〈d, . . . 〉, then ψ = 〈d〉φ is also anisotropic

and represent d2 = 1 ∈ Q∗2/Q2∗
2 . So ψ = 〈1, a,−b,−bc〉 for some a, b, c ∈ Q∗2. Rewrite this as

ψ = 〈1, a〉 ⊥ 〈−b〉 · 〈1, c〉. If 〈1, a〉 and 〈b〉 · 〈1, c〉 represent a common element, then ψ represent 0
which contradicts the fact that ψ is anisotropic. Note also that a, c 6= 7 because 〈1, a〉 and 〈1, c〉 are
not hyperbolic. Therefore Da ∩ bDc = ∅ ⇒

|Da|=|Dc|
Da t bDc = Q∗2/Q2∗

2 . We can use the table to see

Da ⊂ Q∗2/Q2∗
2 is a subgroup. Now 1 ∈ Da, Dc, 1 /∈ bDc ⇒

Dc subgroup
bDc ∩ Dc = ∅ ⇒ Dc t bDc =

Da t bDc = Q∗2/Q2∗
2 ⇒ Da = Dc ⇒

table
a = c ∈ Q∗2/Q2∗

2 ⇒ ψ = 〈1, a,−b,−ab〉 ⇒ detψ = 1. Now

φ =
〈
d2
〉
·ψ = 〈d〉ψ = 〈d, da,−db,−dab〉 has determinant = 1⇒ every anisotropic 4-dimensional form

has determinant 1. In particular 〈−1, a,−b,−ab〉 is isotropic as it has determinant −1 6= 1 ∈ Q∗2/Q2∗
2 ⇒

〈−1, a,−b,−ab〉 = 〈−1, 1, . . . 〉 ⇒ 〈a,−b,−ab〉 represent 1. Hence ψ = 〈1, a,−b,−ab〉 = 〈1, 1, e, e〉
since detψ = 1. But e /∈ {3, 7, 6, 14} because otherwise 〈e, e〉 =

table
〈7, 7〉 = 〈−1,−1〉and ψ isotropic

⇒ e ∈ {1, 2, 5, 10}, 〈e, e〉 ∼=
table

〈1, 1〉 ⇒ ψ = 〈1, 1, 1, 1〉.
Let us check ψ = 〈1, 1, 1, 1〉 is indeed anisotropic because otherwise 〈1, 1, 1, 1〉 ∼= 〈1,−1,_,_〉 ⇒

〈1, 1, 1〉 represent −1 = 7 ∈ Q∗2/Q2∗
2 but x2 + y2 + z2 = 7 has no solution in Q∗2 because x2 + y2 + z2

has no solution in Z2 (since no solution mod 8). If x2 + y2 + z2 = 7 has a solution in Q2 then there
exists x2 + y2 + z2 = 7t2 for some x, y, z, t ∈ Z2 and not all of x, y, z, t are divisible by 2.

Case 1. If 2 - t then t ∈ Z∗2 ⇒ t2 = 1 mod 8 contradiction since x2 + y2 + z2 = 7 has no solution
mod 8

Case 2. If 2|t⇒ t = 2u, u ∈ Z2 and one of x, y, z is not divisible by 2, say 2 - x⇒ x2+y2+z2 = 4·7·u2
has no solution mod 8 since x2 = 1 mod 8 and y2, z2 ∈ {1, 0} mod 8 while 4 ·7u2 ∈ {0, 4}
mod 8.

Hence ψ = 〈1, 1, 1, 1〉 is anisotropic.Now 〈1, 1〉, hence ψ, represents 1, 2, 5, 10 and ψ also represents
−1 = 7 = 22 + 12 + 12 + 12 ∈ Q∗2/Q2∗

2 . 〈−1〉 · ψ represents 1 and is anisotropic ⇒ 〈−1〉 · ψ = ψ ⇒ ψ ∼=
〈−1,−1,−1,−1〉 ≡ 〈7, 7, 7, 7〉 ⇒

table
ψ ∼= 〈d〉ψ = φ ∀d ∈ Q∗2/Q2∗

2

Theorem 2.92. Let p ∈ Z be a prime then:

1. Every 5-dimensional inner product space over Qp is isotropic

2. I3(Qp) = 0, I2(Qp) = Z/2Z generated by the unique anisotropic form of dimension 4. I/I2(Qp) =

Q∗p/Q2∗
p ,

W (Qp)
I(Qp) = Z/2Z

Proof. 1. 〈a1, . . . , a5〉 anisotropic ⇒ 〈a1, . . . , a4〉 is anisotropic hence is the unique 4-dimensional
anisotropic form representing all ofQ∗p/Q2∗

p , in particular 〈a1, . . . , a4〉 represents−a5 ⇒ 〈a1, . . . , a5〉
isotropic

2. Now 1. ⇒ I3(Qp) = 0 by Corollary 2.85. I2(Qp) = Z/2Z because let φ be the unique 4-
dimensional anisotropic form over Qp then φ ∈ I because dimφ = 4 = 0 ∈ Z/2Z and 0 6= φ ∈ I2
because discφ = detφ = 1 ⇒ 0 6= φ ∈ ker(disc) = I2. If 0 6= ψ ∈ I2 is anisotropic, φ 6= ψ ⇒
dimψ < 4,dimψ = 0 mod 2 since ψ ∈ I,⇒ dimψ = 2⇒ ψ = 〈a, b〉 but 1 = discψ = −ab since
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discI2 = 1⇒ ψ = 〈a,−a〉 is hyperbolic, in particular not anisotropic ⇒ ψ = 0 ∈W (Qp). Hence,
I2 = {0, φ} = Z/2Z. The rest is true for any �eld F with charF 6= 2

Theorem 2.93. Let p ∈ Z be a prime. Then the Witt groups of Zp and Qp are:

Case 1. p odd:

W (Zp)
∼= // W (Fp) (reduction mod p)

W (Qp) ∼=

∂1,∂2

// W (Fp)⊕W (Fp)

where ∂1, ∂2 are the �rst and second residue homomorphism (∂1(ζ) = ∂2(〈p〉 ⊗ ζ))

Case 2. p = 2

W (Z2)
∼= // Z/8Z× Z/2Z

W (Q2)
∼= // Z/8Z× (Z/2Z)2

Proof. The case p is odd is left as an exercise.
p = 2: I3(Q2) = 0, I2(Q2) = Z/2Z, I/I2(Q2) = Q∗2/Q2∗

2
∼= (Z/8Z)∗×(Z/2Z) = (Z/2Z)3,W (Q)/I =

Z/2Z. 0 = I3 ⊂ I2 ⊂ I ⊂ W (Q2). |W (Q2)| = |W/I| · |I/I2| · |I2| = 2 · 8 · 2 = 32 ⇒ every element of
W (Q2) has order a power of 2. We have:

• 〈1〉 ∈W (Q2) has order 8 because 0 6= 4 〈1〉 = 〈1, 1, 1, 1〉 as it is a generator of I2(Q2) = Z/2Z and
8 〈1〉 = 4 〈1〉+4 〈1〉 = 4 〈1〉+4 〈−1〉 = 0 because 〈1, 1, 1, 1〉 = 〈−1,−1,−1,−1〉 = 〈−1〉⊗〈1, 1, 1, 1〉
(both are anisotropic and there exists a unique anisotropic form of dimension 4) over Q2.

• 〈1, 3〉 ∈W (Q2) has order 2 because it represents −1 as 1+3·32 = 28 = 22 ·7 = 7 = −1 ∈ Q∗2/Q2∗
2 .

So 〈1, 3〉 ∼= 〈−1,−3〉 and 〈1, 3〉+〈1, 3〉 = 〈1,−1〉+ 〈3,−3〉︸ ︷︷ ︸
hyperbolic

= 0 ∈W (Q2) and 〈1, 3〉 6= 0 ∈W (Q2)

since disc 〈1, 3〉 = −3 = 5 6= 1 ∈ Q∗2/Q2∗
2

• 〈1, 6〉 ∈ W (Q2) has order 2 because it represent −1 as −1 = 7 = 1 · 12 + 6 · 12 ∈ Q∗2/Q2∗
2 . So

〈1, 6〉 ∼= 〈−1,−6〉 ⇒ 〈1, 6〉 + 〈1, 6〉 = 〈−1,−6〉 + 〈1, 6〉 = 〈1,−1〉 + 〈6,−6〉 = 0 ∈ W (Q2) and
0 6= 〈1, 6〉 ∈W (Q2) because disc 〈1, 6〉 = −6 6= 1 ∈ Q∗2/Q2∗

2

Hence the map Z/8Z ⊕ Z/2Z ⊕ Z/2Z → W (Q2) de�ned by a, b, c 7→ a 〈1〉 + b 〈1, 3〉 + c 〈1, 6〉 is well
de�ned. Both groups have order 32. In order to show that the map is an isomorphism it su�ces to
show that it is injective. Assume 0 = a 〈1〉+ b 〈1, 3〉+ c 〈1, 6〉 ∈W (Q2). Now b 〈1, 3〉+ c 〈1, 6〉 has order
≤ 2 ⇒ a 〈1〉 has order ≤ 2 ⇒ a = 4 mod 8 ⇒ a 〈1〉 = a′ 〈1, 1, 1, 1〉 with a′ ∈ Z/2Z. We compute the
discriminant

disc(a′ 〈1, 1, 1, 1〉+ b 〈1, 3〉+ c 〈1, 6〉) = (disc 〈1, 1, 1, 1〉)a
′
· disc(〈1, 3〉)b · disc(〈1, 6〉)c ∈ Q∗2/Q2∗

2

= 1 · (−3)3(−6)c = 5b · 10c ∈ Q∗2/Q2∗
2 .

Now 5 6= 10 ∈ Q∗2/Q2∗
2 , hence, they linearly independent in the F2-vector space in Q∗2/Q2∗

2 =
(Z/2Z)3 ⇒ b, c = 0 ∈ Z/2Z ⇒ a′ 〈1, 1, 1, 1〉 = 0 ⇒ a′ = 0 since 〈1, 1, 1, 1〉 6= 0 ∈ W (Q2) ⇒ the
map is injective. Hence W (Q2) ∼= Z/8Z⊕ Z/2Z⊕ Z/2Z.
〈1〉 , 〈1, 3〉 ∈ W (Z2) since 1, 3 ∈ Z∗2, W (Z2) ↪→ W (Q2) is injective, it follows that (Z/8Z) 〈1〉 ⊕

(Z/2Z) 〈1, 3〉 ⊂ W (Z2) ⇒ |W (Z2)| ≥ 8 · 2 = 16. Also W (Z2) → W (Q2)
∂2

� W (F2) is zero.

W (Z2) ⊂ ker(∂2) ⇒ |W (Z2)| ≤ | ker(∂2)| = |W (Q2)|
|W (F2)| = 32

2 = 16 ⇒ |W (Z2)| = 16. Hence (Z/8Z) 〈1〉 ⊕
(Z/2Z) 〈1, 3〉 = W (Z2).

Lemma 2.94 (De�nition). Set Q∞ = R, p = ∞ = �in�nite prime�. For p ∈ Z ∪ {∞} prime there
is a unique quaternion algebra over Qp that doesn't split (i.e., � M2(Qp)). Therefore, Hasse(V ) =
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{
[A] ∈ Br(Qp)
[Qp] ∈ Br(Qp)

, where A is a division quaternion algebra. The Hasse symbol hp(V ) for a symmetric

inner product space V over Qp is de�ned by

hp(V ) =

{
−1 if Hasse(V ) does not split ( 6= [Qp] ∈ Br(Qp))
1 if Hasse(V ) = [Qp] ∈ Br(Qp)

For a, b ∈ Q∗p, the Hilbert Symbol is:

(a, b)p = hp(〈a, b〉) =

1 if
(
a,b
Qp

)
splits

−1 if
(
a,b
Qp

)
does not split

Proof. We need to justify that there exists a unique non-split quaternion algebra over Qp. If p = ∞
then Br(Q∞) = Br(R) = {R,H}, so H is the unique non-split quaternion algebra over R.

If p < ∞: (a,bQp ), ( c,dQp ) � M2(Q2) ⇐⇒ 〈a, b,−ab,−1〉 , 〈c, d,−cd,−1〉 � 〈1, 1,−1,−1〉 (all forms

are in I2(Qp) ∼= Z/2Z as disc = 0 for them) ⇐⇒ 〈a, b,−ab,−1〉 , 〈c, d,−cd,−1〉 are both the unique
anisotropic 4-dimensional form over Qp ⇐⇒ 〈a, b,−ab,−1〉 ∼= 〈c, d,−cd,−1〉 � 〈1, 1,−1,−1〉 ⇐⇒
(a,bQp ) ∼= ( c,dQp ) � ( 1,1

Qp ) = M2(Qp).

Hilbert Reciprocity Law. Let V be a symmetric inner product space over Q. Then hp(V ) = 1 for
all but �nitely many primes p ∈ Z ∪ {∞}. And

∏
p∈Z∪{∞} prime hp(V ) = 1

Proof. Since hp(V ) is a product of Hilbert Symbols (a, b)p, it su�ces to show claim for V = 〈a, b〉
and thus

∏
p∈Z∪{∞}(a, b)p = 1∀a, b ∈ Q∗p. To show

∏
(a, b)p = 1, using bilinearity of Hilbert symbol

(ab, c) = (a, c)p(b, c)p, we just need to show
∏

(a, b)p = 1 for a, b prime or ±1. In this case, express
(a, b)p in terms of Legendre symbol which mean the proof is a consequence of Quadratic Reciprocity.
(Details are left as an exercise)

Corollary 2.95. Let V,W be inner product spaces over Q. Let q ∈ Z ∪ {∞} be a prime. If hp(V ) =
hp(W )∀p ∈ Z ∪ {∞} prime, p 6= q. Then hq(V ) = hq(W )

Proof.
∏
p∈Z∪{∞} hp(V ) = 1 =

∏
p∈Z∪{∞} hp(W )

We will need this theorem:

Theorem 2.96 (Dirichlet). Let a, b ∈ Z be integers with gcd(a, b) = 1, then the set of integers of the
form a+ nb, n ∈ Z, contains in�nitely many primes.

Proof. This theorem is beyond the scope of this module

Strong Hasse principle for quadratic forms over Q. A symmetric inner product space V over
Q is isotropic if and only if V is isotropic over R and Qp ∀p ∈ Z prime.

Remark. The Theorem says: A homogeneous quadratic polynomial has a non-trivial zero in Q if and
only if it has a non-trivial zero in R and Qp ∀p ∈ Z prime.

Proof. �⇒�: Is clear.

�⇐�: We assume Dirichlet Theorem. We use induction on n = dimQ V

n = 1: Every 1-dimensional inner space is anisotropic (over any �eld)

n = 2: A 2-dimensional form V is isotropic over Q (any �eld of characteristic not 2) ⇐⇒ V
hyperbolic over Q, i.e., V ∼= H ⇐⇒ V ∼= H over R and Qp ∀p ∈ Z prime⇐⇒ V is isotropic
over R and Qp ∀p ∈ Z prime

n = 3 : V isotropic over Q ⇐⇒ V ∼= 〈1,−1,−detV 〉 over Q ⇐⇒ V ∼= 〈1,−1,−detV 〉 over R
and Qp ∀p prime (Weak Hasse Principle) ⇐⇒ V isotropic over R and Qp ∀p primes.

n = 4: Write V = 〈d1, d2, d3, d4〉 with di ∈ Z \ {0} square free, d = detV square free. Let
P = {2} ∪ {p ∈ Z prime : p|d1 . . . d4} <∞. Write Vp for V ⊗Q Qp. Now Vp is isotropic by
assumption, ⇒ Vp ∼= 〈1,−1〉 ⊥ 〈ap,−apd〉 (over Qp) with ap ∈ Z \ {0} square free.
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• If p /∈ P we can assume that ap ∈ Z∗p and a∞ = 1. Otherwise if p = ∞ replace (V, β)
with (V,−β), and if∞ 6= p /∈P we would have ap = pbp (as ap ∈ Zp \{0} square free).
Therefore, 0 =

p-d1...d4
∂2pV = ∂2p 〈1,−1, pbp,−pbpd〉 = 〈bp,−bpd〉 ⇒ disc 〈bp,−bpd〉 = d =

1 ∈ F∗p/F2∗p ∼= Z∗p/Z2∗
p and d is a square in Qp ⇒ 〈ap,−apd〉 ∼= 〈ap,−ap〉 ∼= 〈1,−1〉 over

Qp and we can even assume ap = 1

• There exists q ∈ Z prime such that a := qπ = ap ∈ Q∗p/Q2∗
p ∀p ∈ P where π =∏

p∈P,ν(ap)=1 p (Note ν(ap) = 0 or 1 as ap ∈ Zp is square free). To justify existence

of q note that ap = πup, up ∈ Z∗p. By the Chinese Remainder Theorem Z � Z/8Z ×∏
p∈P,p6=2 Z/pZ is surjective. So there exists an integer r such that r = a2 ∈ (Z/8Z)∗ ⊂

Z/8Z and r = up ∈ Z/pZ for p ∈P \ {2}. In fact, any integer of the form r + ns with
s = 23

∏
p∈P\{2} p can be chosen instead of r. Since the ap's are units, it follows that

s and r are relatively prime. By Dirichlet's theorem on existence on in�nitely many
primes in an arithmetic progression, we can choose r = q a prime. By construction
a = qπ = ap ∈ Q∗p/Q2∗

p .

Claim: V ∼= 〈1,−1〉 ⊥ 〈a,−ad〉 over Q (in particular, V isotropic over Q as it contains H)
Proof of claim: By the weak Hasse principle it su�ces to show that (Vp =) 〈1,−1, ap,−apd〉 =
〈1,−1, a,−ad〉 over Qp ∀p ∈ Z ∪ {∞} prime.

Case 1. p ∈ P: We have 〈ap,−apd〉 ∼= 〈a,−ad〉 since, by construction of a, we have
a = ap ∈ Q∗p/Q2∗

p for p ∈P.

Case 2. p /∈ P and p 6= q,∞: One checks that ∂1 and ∂2 agree: ∂1〈ap,−apd〉 =
〈ap,−apd〉 = 〈a,−ad〉 = ∂1〈a,−ad〉 ∈ W (Fp) because p does not divide a, ap, d
and over Fp quadratic forms are classi�ed by rank and determinant. Further, we
have ∂2〈ap,−apd〉 = 0 = ∂2〈a,−ad〉 ∈ W (Fp) because p does not divide a, ap, d.
And so ⇒

p 6=2
〈a,−ad〉 ∼= 〈ap,−apd〉 over Qp.

Case 3. p =∞: 〈a,−ad〉 = 〈a∞,−a∞d〉 over R = Q∞ because a∞ = 1 and a > 0.

Case 4. q: Over Qq the forms 〈1,−1, a,−ad〉 and V have the same rank (= 4), determi-
nant d and Hasse invariant (by Hilbert reciprocity, as both are isometric over Qp,
p 6= q, and thus have same Hasse symbol over Qp, p 6= q) ⇒ 〈1,−1, a,−ad〉 ∼= V
over Qq.

n ≥ 5: Choose an orthogonal sum decomposition V ∼= U ⊥ W with dimU = 2 and dimW =
n− 2 ≥ 3. Want to �nd a non-degenerate subspace of V of dimension less than n which is
isotropic over R and Qp ∀p. Then by induction hypothesis, this subspace is isotropic over
Q, hence V is isotropic over Q. If (U or) W is isotropic over R and Qp ∀p then by induction
(U or)W is isotropic over Q (then so is V and we are done). Hence suppose W anisotropic
over some Qp. Let P = {p ∈ Z ∪ {∞}prime|W anisotropic over Qp} (6= ∅). P is a �nite
set because dimW ≥ 3 and 〈a, b, c〉 (a, b, c ∈ Z) is isotropic over Qp (p 6= 2) if and only if
〈a, b, c〉 ∼= 〈1,−1,−abc〉 over Qp, but if p - a, b, c and p 6= 2,∞ then 〈a, b, c〉 ∼= 〈1,−1,−abc〉
over Qp. (This holds because if p 6= 2,∞ then ∂2LHS = 0 = ∂2RHS, ∂1LHS= 〈a, b, c〉 =
〈1,−1,−abc〉 = ∂1RHS, recall W (Qp) ∼=

∂1,∂2
W (Fp) ⊕W (Fp) and over Fp quadratic forms

are classi�ed by rank and determinant)

Let q be the quadratic form of (V, β), q(x) = β(x, x), q isotropic over Qp ∀p ∈ Z ∪ {∞}
prime. Hence ∀p ∈ Z ∪ {∞} there exists 0 6= up ∈ U ⊗Qp and 0 6= wp ∈W ⊗Qp such that
q(up) + q(wp) = 0

Claim: There exists u ∈ Z \ {0} such that q(u) = q(up) ∈ Q∗p/Q2∗
p for all p ∈P

Then the claim⇒ Qu ⊥W ⊂ V has dimension n−1 and is isotropic over R and Qp ∀p prime
because W isotropic over Qp ∀p /∈P and Qu ⊥W isotropic over p ∈P as q(u) + q(wp) =
0 ∀p ∈ P. So by induction hypothesis the subspace Qu ⊥ W is isotropic over Q ⇒ V is
isotropic over Q
Justi�cation of the claim: Now q = ax2 + by2 with a, b ∈ Z \ {0} so up = (xp, yp) ∈ Zp×Zp.
Case 1. Assume �rst∞ /∈P, then plpξp = q(up) = ax2p+by2p ∈ Zp\{0} where ξp ∈ Z∗p and

lp ∈ Z≥0. By the Chinese Remainder Theorem the map Z �
∏
p∈P Z/plp+3 =∏

p∈P Zp/plp+3 is surjective. Hence there exists x, y ∈ Z such that x = xp, y =
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yp mod plp+3 for p ∈ P. and Set u = (x, y). Then q(u) = ax2 + by2 =
ax2p + by2p ∈ Zp/plp+3 implies that ax2 + by2 = plpep with ep = ξp mod p3. Now
ξp ∈ Z∗p implies that ξp = ep ∈ Q∗p/Q2∗

p due to the fact that

• ep = ξp mod p3

• Z∗p/Z2∗
p = F∗p/F2∗p mod p (p odd)

• Z∗2/Z2∗
2 = (Z/23Z)∗

Now ξp = ep ∈ Q∗p/Q2∗
p ⇒ plpξp = plpep ∈ Q∗p/Q2∗

p ∀p ∈ P ⇒ ax2 + by2 =
ax2p + by2p ∈ Q∗p/Q2∗

p ⇒ q(u) = q(up) ∈ Q∗p/Q2∗
p ∀p ∈P

Case 2. If∞ ∈P, Q∞ = R. Then q(u∞) ∈ R∗/R2∗ either > 0 or < 0, by replacing q with
−q we can assume q(u∞) > 0. Let u∞ = (x∞, y∞) ∈ R× R, q(u∞) = ax2 + by2

not both a, b < 0 since q(u∞) > 0, so without loss of generality we can assume
a > 0. Choose x, y as in the �rst case such that moreover x2 > − b

ay
2 then

q(u) = q(up) ∈ Q∗p/Q2∗
p ∀p ∈P \{∞} as above. Furthermore q(u) = ax2 +by2 >

0⇒ q(u) = q(u∞) ∈ R2/R2∗.

This ends the proof of the claim.

De�nition 2.97. Let q be a rational (or integral) quadratic form. Then q is said to be

• positive de�nite if q(x) > 0 ∀x 6= 0.

• negative de�nite if q(x) < 0 ∀x 6= 0.

• inde�nite if q is neither positive nor negative de�nite.

Corollary 2.98. Let q be a rational quadratic form of dimension ≥ 5. If q is inde�nite, then it
represents 0 over Q.

Proof. By the strong Hasse principle, we nee to see that q represents 0 over R and Qp for all p ∈ Z
prime. Since q inde�nite ⇒ qR = 〈1,−1〉 ⊥ . . . so q represent 0 over R. Since dimension of q≥ 5⇒ q
represent 0 over Qp for all p prime because every 5 dimensional form over Qp is isotropic.

2.9 Integral quadratic forms

Recall W (Z)
∼=→
sgn
Z.

De�nition 2.99. A symmetric inner product space over Z, (V, β) is called:

• even (or of type II) if β(x, x) ∈ Z is even ∀x ∈ V

• odd (or of type I) if ∃x ∈ V such that β(x, x) ∈ Z is odd.

Remark. • A symmetric inner product space over Z is also called unimodular lattice

• If q is a quadratic form over Z then β(x, y) = q(x+ y)− q(x)− q(y) and β(x, x) = 2q(X). So the
even symmetric inner product spaces over Z are precisely the inner product spaces that come
from regular quadratic forms.

Lemma 2.100. Let (V, β) be an inde�nite symmetric inner product space over Z then there exists
x ∈ V, x 6= 0 such that β(x, x) = 0.

Proof. Recall that the image of W (Z) ↪→ W (Q) is generated by 〈1〉 and 〈−1〉. (V, β) inde�nite
⇒ VQ = V ⊗Z Q = 〈1,−1〉 ⊥ . . . isotropic ⇒ ∃x ∈ VQ , x 6= 0 such that β(x, x) = 0. But
V ⊂ VQ, x = y

n for some n ∈ Z \ {0}, y ∈ V ⇒ β(y, y) = β(nx, nx) = n2β(x, x) = 0 and 0 6= y ∈ V

Theorem 2.101. Let (V, β) be an odd (i.e., type I) inde�nite symmetric inner product space over Z.
Then (V, β) has an orthogonal basis. In particular (V, β) ∼= m 〈1〉 ⊥ n 〈−1〉 over Z.
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Proof. Claim: (V, β) ∼=
〈(

0 1
1 odd

)〉
⊥ (V ′, β′).

The theorem follows from claim by induction on dimension V : For k ∈ Z we have(
0 1
1 2k + 1

)
=

(
1 1

k + 1 k

)(
1 0
0 −1

)(
1 k + 1
1 k

)
︸ ︷︷ ︸

det=−1

⇒
〈(

0 1
1 2k + 1

)〉
∼= 〈1,−1〉 .

From this the theorem follows as we have 〈1〉 ⊥ V ′ or 〈−1〉 ⊥ V ′ is inde�nite and both are odd and
have dimension less that V , and V = 〈±1〉 ⊥ (〈∓1〉 ⊥ V ′)

To prove the claim: We know (V, β) inde�nite ⇒
previous lemma

∃x ∈ V with x 6= 0 and β(x, x) = 0.

Now (V, β) inner product space over Z ⇒ V = Zn. So x = (a1, . . . , an) ∈ Zn, we can assume
d = gcd(a1, . . . , an) = 1 (otherwise replace x with x

d ). We can extend x to a Z basis x1 = x, x2, . . . , xn
of V = Zn because φ : V/Zx → (V ⊗Z Q)/Qx is injective as y = (c1, . . . , cn) ∈ kerφ then ∃r, s ∈ Z
with r 6= 0 and ry = sx ⇒ rci = sai for all i = 1, . . . , n, since gcd(a1, . . . , an) = 1 there exists
b1, . . . , bn ∈ Z such that

∑
aibi = 1. So r

∑
cibi = s

∑
aibi = s ⇒ s = rt where t =

∑
cibi, hence

ry = sx ⇒ ry = rtx ⇒
r 6=0

y = tx ⇒ y = 0 ∈ V/Zx. Hence our map is indeed injective. Now V/Zx is

a �nitely generated Z-module, submodule of V⊗ZQ
Qx = Qn−1 ⇒ V/x is a free Z-module ⇒ V

p
� V/x

has a section σ : V/Zx → V (pσ = 1)⇒ V = x ⊕ imσ︸︷︷︸
∼=V/x∼=Zn−1

. Hence x can be extended to a Z-basis

x1 = x, x2, . . . , xn of V .

Let y1, . . . , yn be the dual basis of x1, . . . , xn, i.e., β(xi, yj) =

{
1 i = j

0 i 6= j
which exists because β

is non-degenerated ⇒ β : V
∼=→ Hom(V,Z) ∼= Zn has a Z basis e1, . . . , en, where (ei)(

∑
αjxj) = αi

, yi
β↔ ei . Now (V, β) odd ⇒ there exists k ∈ {1, . . . , n} such that β(yk, yk) is odd. If β(y1, y1)

is odd then β|(Zx1+Zy1) =

〈(
0 1
1 odd

)〉
⇒ (V, β) ∼=

〈(
0 1
1 odd

)〉
non−degenerate

⊥ (Zx1 ⊕ Zy1)⊥.

If β(y1, y1) even and β(yk, yk) odd for k 6= 1 then β|(Zx1+Z(y1+yk)) =

〈(
0 1
1 odd

)〉
⇒ (V, β) ∼=〈(

0 1
1 odd

)〉
non−degenerate

⊥ (Zx1 ⊕ Z(y1 + yk))⊥

Theorem 2.102. If (V, β) is an even symmetric inner product space over Z then its signature is
divisible by 8.

Proof. Let (V, β) be an arbitary symmetric inner product space over Z. Then V/2V = V ⊗Z F2
is a symmetric inner product space over F2. But over F2 the map x 7→ β(x, x) is linear because
β(x+ y, x+ y) = β(x, x) + 2β(x, y)︸ ︷︷ ︸

=0

+ β(y, y) ∈ F2. As V/2V is non degenerate, there exists a unique

u ∈ V/2V such that β(u, x) = β(x, x) mod 2∀x ∈ V. If u, u′ ∈ V are two lifts of u ∈ V/2V then
u′ = u + 2v for some v ∈ V , and β(u′, u′) = β(u, u) + 4(β(u, v) + β(v, v)︸ ︷︷ ︸)

=0 mod 2

= β(u, u) ∈ Z/8Z because

β(u, v) = β(v, v) ∈ F2 by de�nition of u. Set φ(V ) := β(u, u) ∈ Z/8Z for any lift u of u ∈ V/2V . We
have seen that φ(V ) does not depend on the lift u of u. From the de�nition of φ we have φ(V ⊥W ) =
φ(V )+φ(W ) and φ(〈1〉) = 1, φ(〈−1〉) = −1, so φ : W (Z)→ Z/8Z : V 7→ φ(V ) is a well de�ned map. If
(V, β) is even then β(x, x) = 0 mod 2 ∀x ∈ V and we can choose u = 0⇒ u = 0⇒ φ(V ) = 0 ∈ Z/8Z.
Since φ(〈1〉) = 1⇒ φ : Z · 〈1〉 = W (Z)→ Z/8Z is the signature. Now, if (V, β) is even then β(x, x) = 0
mod 2 ∀x ∈ V and u = 0⇒ we can choose u = 0⇒ φ(V ) = 0 ∈ Z/8Z. This implies that signature of
any even symmetric inner product space over Z is divisible by 8.

Corollary 2.103. Every even positive de�nite inner product space over Z has rank divisible by 8.

Proof. If M is positive de�nite then rkM = sgnM .

Theorem 2.104. Let M,N be inde�nite symmetric inner product spaces over Z. Then M ∼= N
⇐⇒ M,N have the same rank, signature and type (odd or even).
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Proof. If M,N are odd then M,N have orthogonal basis, by Theorem 2.101,then the theorem follows.
If M,N are even, we do not have the time to prove this in this course.

Example. Of even positive de�nite inner product spaces over Z.
General Remark: Let Rn be equipped with standard Euclidean inner product 〈(x1, . . . , xn), (y1, . . . , yn)〉 =∑n
i=1 xiyi. If M ⊆ Rn is a �nitely generated Z-submodule, then M ∼= Zk for some k ≤ n. Restricting

〈, 〉Rn to M de�nes a symmetric bilinear form β(x, y) = 〈x, y〉 ∈ R on M with values in R. Assume
rkZM = n = dimR Rn ⇒ Rn/M compact Riemanian manifold. Vol(Rn/M) = volume of paral-
lelepiped spanned by a Z-basis of M . If we let A = (b1, . . . , bn) where b1, . . . , bn is a Z-basis of M then

Vol(Rn/M) = |detA| =
√

det(ATA) =
√

det (〈bi, bj〉)i,j=1,...,n︸ ︷︷ ︸
biliner formmatrix ofM

⇒ a �nitely generated M ⊂ Rn of

rkZM = n de�nes a (positive de�nite) inner product space over Z if and only if:

• 〈x, y〉 ∈ Z∀x, y ∈M , and

• Vol(Rn/M) = 1

In fact every possible de�nite inner product space (M,β) over Z arises in that way, because Rn ∼=
M ⊗Z R ⊃M and βR ∼= 〈1, . . . , 1〉︸ ︷︷ ︸

n

over R since (M,β) is positive de�nite.

Lemma 2.105. Let E4m ⊆ R4m be the Z-submodule (m ∈ Z≥1) generated by ei+ ej (i, j = 1, . . . , 4m)
and 1

2 (e1 + e2 + · · ·+ e4m) where ei = (0, . . . , 0, 1
↑
i

, 0, . . . , 0) is the standard basis vector of R4m. Then

E4m is a symmetric inner product space over Z of rank 4m which is even (respectively odd) if m is
even (respectively odd)

Proof. • E4m ⊂ R4m �nitely generated Z-submodule ⇒ E4m free Z-module, i.e., E4m
∼= Zk. Now

rkZE4m = dimQE4m⊗ZQ = 4m because ei + ej , i, j = 1, . . . , 4m and 1
2 (e1 + · · ·+ e4m) span Qn.

(Note that this contains 2ei, i = 1, . . . ,m by setting i = j).

• 〈x, y〉 ∈ Z∀x, y ∈ E4m. (check for x, y generators of E4m). E.g., 〈ei + ej , ei + ej〉 =

{
2 i 6= j

4 i = j
,〈

1
2 (e1 + · · ·+ e4m), 12 (e1 + · · ·+ e4m)

〉
= 1

44m = m ⇒ E4m is even if and only if m even.

• We are left to check it is non-degenerate. We will use the following trick: If M ⊂ N ⊂ Rn of
rank n Z-submodule, then Rn/M � Rn/N covering with |N/M | sheets because N/M acts freely
on Rn/M with quotient Rn/N . So |N/M | · Vol(Rn/N) = Vol(Rn/M)∀M ⊂ N ⊂ Rn rk = n
Z-submodules.

Now we prove E4m is non-degenerate, i.e., Vol(R4m/E4m) = 1. Let E0 ⊂ E4m be the Z-
submodule generated by ei + ej , i, j = 1, . . . 4m. Then E4m/E

0 is generated by ξ = 1
2 (e1 + · · ·+

e4m) /∈ E0, and 2ξ ∈ E0 so 2ξ = 0 ∈ E4m/E
0. Therefore E4m/E

0 = Z/2Z⇒ 2Vol(R4m/E4m) =
Vol(R4m/E0). But notice E0 ⊂ Z4m where Z4m is generated by e1, . . . , e4m. Now Z4m/E0 is
generated by e1 because ei = ei+e1−e1 ∀i = 2, . . . , 4m. Now e1 /∈ E0 but 2e1 = e1 +e1 ∈ E0 ⇒
Z4m/E0 = Z/2Z ⇒ Vol(R4m/E0) = 2Vol(R4m/Z4m) ⇒ Vol(R4m/E4m) = Vol(R4m/Z4m) =
1⇒ E4m is non-degenerate.

Corollary 2.106. E8m is an even positive de�nite symmetric inner product space of rank 8m

Fact. For all n ∈ Z≥0, {symmetric inner product spaces over Z of given rank n}/isometry is a �nite
set.

Example.

rankn 8 16 24 32

number of even positive de�nite inner products space over Z 1 2 24 Unknown ≥ 107

representative E8 E16, E8 ⊥ E8
Niemeier
(1968)

40


	Quadratic forms and homogeneous polynomial of degree 2
	Free bilinear form modules

	Orthogonal sum
	Witt Cancellation
	Symmetric Inner Product space over R
	Witt chain equivalence theorem
	Witt Groups:
	Second Residue Homomorphism
	The Brauer Group and the Hasse Invariant
	Tensor Product of Inner Product Spaces
	Quadratic Forms over p-adic numbers
	Integral quadratic forms


