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Aims:

� More character theory

� A bridge between representations and modules

� Representations of �nite groups over �elds (of characteristic 0) that are not algebraically closed.

Applications to Representation Theory

Theorem (Burnside). If |G| = pαqβ where p, q are primes, then G is soluble.

Theorem (Frobenius). If H ≤ G is such that gHg−1 ∩H = {1} ∀g ∈ G \H. Then ∃N CG such that N ∩H = {1}
and NH = G, i.e., G = N oH.

Idea of Proof: De�ne N = G \
(
∪g∈GgHg−1 ∪ {1}

)
. We then use representation theory to prove that N is a

normal subgroup of G.

Theorem. If G = Sn, 1 ∈ G has the most square roots among all g ∈ Sn.
More generally, can express the square root counting function through characters.
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0 Revision

0.1 Representations

Let G be a �nite group.

De�nition 0.1. A representation of G over a �eld K is a K-vector space V together with a group homomorphism
ρ : G→ GL(V ) :={invertible linear maps V → V }. Suppose dimV = n and v1, . . . , vn s a basis of V , such a choice
identi�es GL(V ) with GLn(K) = {invertible n× n matrices over K}.

If (V1, ρ1), (V2, ρ2) are two representations of G over K, a homomorphism φ : (V1, ρ1) → (V2, ρ2) is a vector
space homomorphism φ : V1 → V2 such that for all v ∈ V1, g ∈ G φ(ρ1(g) · v) = ρ2(g) · φ(v).

Notation.

� Sometimes just say �V is a representation� when the map ρ is understood.

� Write gv or g · v instead of ρ(g) · v.

De�nition 0.2. If V is a representation, a subrepresentation is a a subvector space W ⊂ V such that G ·W = W .
We denote it W ≤ V .

We have the obvious notion of V/W as a representation and the usual isomorphism theorems. (In particular
kernels and images of homomorphism are subrepresentations.)

Example. Let G = C2 = 〈g〉, let V be of dimension of 2, with basis v1, v2. We could have ρ : g 7→
(

0 1
1 0

)
.

W1 =

〈(
1
1

)〉
is a subrepresentation (one can easily see that it is invariant under ρ). The other subrepresentation

is W2 =

〈(
1
−1

)〉
.

If W1,W2 ≤ V we say V = W1 ⊕W2 if this is true on the level of vector spaces.

De�nition 0.3. A representation is indecomposible if it's not a direct sum of proper subrepresentation.
A representation is irreducible if it is non-zero and has no proper non-zero subrepresentation.

Example. Let G = Cp = 〈g〉 (where p is a prime). Let K = Fp, V is 2 dimensional. Let the representation be

G → GL2(Fp), de�ned by g 7→
(

1 1
0 1

)
. This is not irreducible (i.e, reducible) since W =

〈(
1
0

)〉
is invariant

under G (and W ≤ V ). But V is indecomposible, since there is no other proper subrepresentation.

Example.

� Given any group G and any �eld K, G → GL1(K) = K∗ de�ned by g 7→ 1. This is called the trivial
representation denoted I.

� � Given any group G, X a �nite G-set (i.e., G acts on X by permutations) with |X| = n. Take an n-
dimensional vectors space V over any �eld K, with a basis{vx : x ∈ X}. Let G act on V by g · vx = vg(x).
This representation is denoted by K[X].

� Important special case: X = G, G acts by left multiplication. The resulting representation, K[G], is called
the regular representation.

Schur's Lemma. Let G be a group, V1, V2 be two irreducible representations. Any homomorphism V1 → V2 is
either 0, or an isomorphism.

Lemma 0.4. Any irreducible representation V of G over K is isomorphic to a quotient of the regular representation
K[G].
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Proof. Take any v ∈ V \ {0}, de�ne a map K[G]→ V by g 7→ g · v. This is a homomorphism of representations, it
is not the zero map, so it is onto. So we are done by the �rst isomorphism theorem.

Theorem 0.5 (Maschke). Suppose charK - |G|. Given any W1 ≤ V , representations of G/K. Then there exists a
representation W2 ≤ V such that V = W1 ⊕W2.

Corollary 0.6. Every irreducible representation V (in the case charK - |G|) is isomorphic to a subrepresentation
of K[G].

0.2 Modules

De�nition 0.7. An algebra A over a �eld K is a ring (with 1) that is also aK-vector space, such that (x·α)·(y ·β) =
(xy) · (α · β) for all x, y ∈ K, α, β ∈ A.

Equivalently, A is a ring with K ⊂ Z(A).

Example.

� C is a C-algebra, but it is also an R-algebra

� If A is any K-algebra, then the ring of n× n matrices over A, denoted Mn(A), is also a K-algebra.

� H =
〈
R · 1 + R · i+ R · j + R · k | ij = k, jk = i, ki = j, ij = −k, kj = −i, ik = −j, i2 = j2 = k2 = −1

〉
is an

R-algebra.

� If G is a group, K is a �eld, the group algebra K[G] is a vector space spanned by vectors vg, g ∈ G, with
multiplication vg · vj = vgh.

De�nition 0.8. If A is a K-algebra, a left A-module is an abelian group (M,+) with a map A ×M → M such
that

� a× (m1 +m2) = a×m1 + a×m2

� (a1 + a2)×m = a1 ×m+ a2 ×m

� 0A ×m = 0M

� 1A ×m = m

� (a1 · a2)×m = a1 × (a2 ×m)

Equivalently, the map A→ End(M) = Hom(M,M) de�ned by a 7→ (m 7→ a×m) is a ring homomorphism.

Moral: K[G]-modules are the same as representations of G over K.
We have the obvious notions of homomorphisms of modules, submodules, quotients, isomorphisms theorems,

etc.

Example. Any algebra A can be thought as a module over itself: M = A and a ×m = a ·m. This is called the
left regular module of A.

The left regular module of K[G] is the same as the regular representation of G over K.

De�nition 0.9. A module M is simple if M 6= 0 and there exists no proper non-zero submodules.
A module M is semi-simple if it's a direct sum of simple modules.

Schur's Lemma. If M1,M2 are simple A-modules, then any homomorphisms M1 → M2 is either the 0 map, or
an isomorphism.

In particular, if M is simple, then End(M) is a Division Ring (i.e., every non zero elements has a two-sided
inverse)

Note. A submodule of the left regular module of A is nothing but a left ideal.
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Maschke's Theorem. The left regular module of K[G] is semi-simple, when charK - |G|.

Theorem 0.10 (Artin - Wedderburn). Any algebra whose regular module is semi-simple is isomorphic to ⊕iMni(Di)
where Di are division rings.

Hence, if charK - |G| we have K[G] ∼= ⊕iMni(Di), where Di are division algebras over K.

Remark.

1. Mn(D) is really semi-simple. Ii =

0 · · · 0 ∗ 0 · · · 0
...

...
...

...
...

0 · · · 0 ∗ 0 · · · 0

 is clearly a left ideal, Mn(D) = ⊕Ii as a

module.

Claim. Ii is simple.

Proof. If U ≤ Ii, v ∈ U is non-zero, without loss of generality v =

(
α
...

)
, α ∈ D∗. Then


1 0 · · · 0
0
... 0
0




α
0 ∗ 0

...
∗

 =


α

0 0 0
...
0

 ∈ U

α−1 0 · · · 0

0
... 0
0




α
0 ∗ 0

...
∗

 =


1

0 0 0
...
0

 ∈ U
So U = Ii.

Claim. The Ii are all pairwise isomorphic.

2.

Corollary 0.11. Then number of irreducible representations (up to isomorphism) of G over K (equivalently
simple K[G]-modules) is equal to the number of conjugate classes of elements of G

Proof. Compute dimK Z(K[G]) on both sides. On the left had side Z =
〈∑

h∈G hgh
−1|g ∈ G

〉
, so dimK Z is

precisely the number of conjugacy classes of elements of G. On the right hand side Z = 〈(0, . . . , 0, Ini , 0, . . . 0)〉
where Ini ∈ Mni(Di), so dimK Z equals the number of distinct isomorphism classes of simple modules (one
for each i).

3. Suppose A is a semi-simple algebra. S is a simple A-module. Then Schur's Lemma says EndA(S) = D is a
division algebra. Put M = S ⊕ · · · ⊕ S︸ ︷︷ ︸

n copies

. Then EndA(M) = Mn(D). (Each endomorphism of M is determined

by the image of (0, . . . , 0, s, 0, . . . , 0) (in the ith place), which is determined by projections to all components).
The Wedderburn isomorphism comes by identifying A (actually Aop) with its endomorphism ring.

4. A decomposition A = ⊕iMni(Di) corresponds to writing 1 =
∑
ei, where ei are non-zero orthogonal primitive

central idempotent.

idempotent e2
i = ei

central eia = aei for all a ∈ A.
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orthogonal eiej = 0 if i 6= j

primitive ei is not a sum of non-zero orthogonal central idempotent elements.

If A = ⊕Mni(Di), then 1 = (1, . . . , 1) = (1, 0, . . . , 0)+ · · ·+(0, . . . , 0, 1). Conversely if 1 =
∑
ei, then Ui = eiA

gives A = ⊕Ui. Since they are orthogonal, we have Ui ∩ Uj = {0}, since they are central idempotent, Ui are
ideals, since they are primitive Ui are isotypical (S ⊕ · · · ⊕ S), and since their sum are 1, A =

∑
Ui.

Example. If G ∼= C3, then C[G] ∼= C⊕ C⊕ C. On the other hand R[G] ∼= R⊕ C.
To see the second statement, consider e1 = 1

3 (1+g+g2). We have e2
1 = 1

9 (1+g+g2)(1+g+g2) = 1
9 (3+3g+3g2) =

e1. The ideal e1R[G] had R-dimension 1, so it is isomorphism to R.
Consider e2 = 1 − e1 = 2

3 −
1
3g −

1
3g

2. The ideal e2R[G] is generated (as R-vector space) by α = e2 and
β = 1√

3
(g − g2). We haveβ2 = 1

3 (g − g2)2 = 1
3 (g2 − 2 + g) = −α. So α 7→ 1, β 7→ i is an isomorphism e2R[G]→ C.

0.3 Characters

If ρ : G→ GLn(C) is a representation, the corresponding character χρ(g) = Tr(ρ(g)).

Theorem 0.12. Let ρ1, ρ2 be two representations, then ρ1
∼= ρ2 if and only if χρ1 = χρ2 .

Remark.

� χρ1⊕ρ2 = χρ1 + χρ2 .

� Recall: the number of distinct irreducible representations of G over C is equal to the number of conjugacy
classes of elements. The character table of G is a square table,

1 g2 g3 . . . . . . gk

I 1 1 1 . . . . . . 1
χ1 dimχ1 χ2(g2) χ2(g3) . . . . . . χ2(gk)
...

...
...

...
. . .

. . .
...

χk dimχk χk(g2) χk(g3) . . . . . . χk(gk)
Character are class functions, i.e., constant on conjugacy classes and the irreducible characters span the vector
space of class functions.

Theorem 0.13 (Schur's Lemma in disguise, Row Orthogonality). If χ1, χ2 are irreducible characters of G, then
the inner product

〈χ1, χ2〉 =
1

|G|
·
∑
g∈G

χ1(g)χ2(g) =

{
1 if χ1 = χ2

0 if χ1 6= χ2

.

We also have column orthogonality. (Exercise: try to derive it using Row Orthogonality)
An arbitrary G representation ρ is a sum ρ =

∑
i niρi where ρi are distinct irreducible representations and

ni ∈ Z. So χρ =
∑
niχρi , and from the Row Orthogonality Theorem, ni = 〈χρ, χρi〉, i.e.,χρ =

∑
〈χρ, χρi〉χρi .

Remark. The inner product can be de�ned for arbitrary class functions, so the theorem says that irreducible
characters form an orthonormal basis of the space of class functions.

New characters / representations from old ones

If N C G, then any group homomorphism from G/N induces a group homomorphism from G. So we can lift
representations and characters from quotients.

Example. Let G ∼= S3 and N ∼= C3. Then G/N ∼= C2. Let ε : C2 = 〈g〉 → C∗ = GL1(C) be de�ned by g 7→ −1
1 (12) (123)

I 1 1 1
ε 1 −1 1
ρ 2 0 −1
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Where the last row was worked out using the dimension (sum of the dimension squared need to equal |G|) and
column orthogonality.

Another way to get new representations from old ones is using restriction. Any group homomorphism G → X
(where X is anything) restricts to a group homomorphism H → X for any H ≤ G. We will write this ResG/Hρ or
ρ ↓GH .

We also have induction: Let H ≤ G and ρ : H → GL(V ). Take a set of coset representatives {g1H, . . . , gnH}
for G/H. De�ne a new vector space W = ⊕gi gi · V︸ ︷︷ ︸

∼=V as v.s.

. For any g ∈ G and for each gi, write (uniquely) g · gi = gjh,

with h ∈ H. Let g act on W by g · (giv) = gjρ(h)(v). This de�nes a representation of G on W , ( note that
dimW = dimV · |G/H|). We write this as IndG/Hρ, or ρ ↑GH .

The character of ρ ↑GH is

χ ↑GH (x) =
1

|H|
∑
g∈G

χ0(gxg−1) where χ0(y) =

{
χ(y) if y ∈ H
0 if y /∈ H

.

Frobenius reciprocity. If H ≤ G, χ is a character of G and τ is a character of H, then〈
χ, τ ↑GH

〉
G

=
〈
χ ↓GH , τ

〉
H
.

More functorial statement of Frobenius reciprocity is the following:
If H ≤ G, ρ : H → GL(V ) and ρ′ : G → GL(V ′), then there is a natural isomorphism HomG

(
ρ′, ρ ↑GH

) ∼=
HomH

(
ρ′ ↓GH , ρ

)
.

This works over any �eld!

Some Properties of Characters

� Character values are sum of roots of unities, more speci�cally if g ∈ G has order n, χ is d-dimensional, then
χ(g) is the sum of d nth root of unity.

In particular, χ(g) is an algebraic integer, i.e., roots of monic polynomial with integer coe�cients.

Also, it follows that |χ(g)| ≤ |χ(1)|, with equality if and only if the matrix corresponding to g is in fact scalar
(independent of basis on the vector space). Furthermore χ(g) = χ(1) if and only if g 7→ In (the identity
matrix). Hence de�ne kerχ = {g ∈ G|χ(g) = χ(1)}. De�ne the centre, Z(χ) = {g ∈ G| |χ(g)| = χ(1)}.

� There exists a bijection between irreducible characters χ of G with kerχ ≥ N CG and irreducible characters
of G/N lifted to G.

All normal subgroups of G are obtained as intersections of kerχ for suitable irreducible character χ. Also
Z(G) = ∩χ∈Irr(G)Z(χ)

� Recall that C[G] = ⊕ρi irrρ
⊕ dim ρi
i , so for any irreducible χ we have 〈C[G], χ〉G = dimχ, hence |G| =∑

χ∈Irr(G) (dimχ)
2

� Let G′ =
〈
ghg−1h−1|g, h ∈ G

〉
C G. This is called the derived subgroup or commutator subgroup. It is the

unique minimal normal subgroup with abelian quotient, i.e., if NCG is such that G/N is abelian then N ≥ G′.
It is easy to see that G′ = ∩dimχ=1 kerχ.

� If φ is any character and χ is a 1-dimensional character, then φ⊗χ(g) = φ(g) ·χ(g) is also a character (check!)

Example.
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1. Cyclic groups, Cn = 〈g〉, of order n. All irreducible characters are 1-dimensional, χk : g 7→ e
2πi
n k for

k = 0, . . . , n− 1. Let ζ = e
2π1
n

1 g g2 . . . gn−1

I 1 1 1 . . . 1
χ1 1 ζ ζ2 . . . ζn−1

χ2 1 ζ2 ζ4 . . . ζ2(n−1)

...

2. Abelian groups, A = Cn1 × · · · × Cnr = 〈g1〉 × · · · × 〈gr〉. Then all irreducible characters are 1-dimensional,

χk1...kr : gj 7→ e
2πi
nj
kj

for 0 ≤ kj ≤ nj − 1.

3. Non-abelian group of order 8:

� G1 = D8 =
〈
σ, τ | σ2 = τ4 = 1, στσ = τ−1

〉
� G2 = Q8 =

〈
−1, i, j, k | (−1)2 = 1, i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, ji = −k, kj = −i, ik −−j

〉
.

First look at G1/G
′
1
∼= C2 × C2 where G′1 =

〈
τ2
〉
. So we can easily lift the characters of G1/G

′
1 to G1.

1 σ τ τ2 στ

I 1 1 1 1 1
ε1 1 1 −1 1 −1
ε2 1 −1 1 1 −1
ε3 1 −1 −1 1 1
χ 2 0 0 −2 0

G2 is left as an exercise, but they do have the same character table (but G1 � G2)

4. G = S4. First recall that the character table for S3 is
1 (12) (123)

I 1 1 1
ε 1 −1 1
ρ 2 0 −1

and recall that S4/V4
∼= S3. Hence we can lift the three characters of S3 into S4. Then we use the dimensional

formula to �nd that the last two characters must be 3 dimensional, so can complete using column orthogonality
and the fact that ε⊗ χ1 must be a character.

1 (12) (123) (1234) (12)(34)

I 1 1 1 1 1
ε 1 −1 1 −1 1
ρ 2 0 −1 0 2
χ1 3 1 0 −1 −1
χ2 3 −1 0 1 −1
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1 Mackey's Formula and Applications

Let H ≤ G, and ρ is a representation of H, what is ρ ↑G↓H?

De�nition 1.1. Let H,K ≤ G, a double coset is a set of the form KgH = {kgh|k ∈ K,h ∈ H} = ∪k∈KkgH =
∪h∈HKgh.

K\G/H is the set of double cosets (or, by slight abuse of notation, the set of double coset representative).

Note. Kg1H = Kg2H if and only if g2 ∈ Kg1H.

Warning: Di�erent double cosets can have di�erent size.

Example. Let G = S3 and H = K = 〈(12)〉.

� H · 1 ·K = H, size is 2.

� H · (123) ·K = {(123), (12)(123)(12) = (132), (123)(12) = (23), (12)(123) = (13)}, size is 4.

Mackey's Formula. Let H,K ≤ G and ρ a representation of H over any �eld L. Then

ρH ↑G↓K=
⊕

g∈K\G/H

gρ ↓K∩gHg−1↑K

where gρ(ghg−1) = ρ(h) for all h ∈ H.

Proof. (Not Examinable) Let V be the vector space corresponding to ρ, then ρ ↑G is represented onW = ⊕g∈G/HgV .
Now G acts transitively on G/H, but K may not. Suppose

g1H, . . . , gr1H︸ ︷︷ ︸
∪=Kg1H

, gr1+1H, . . . , gr2H︸ ︷︷ ︸
∪=Kgr1+1H

, . . .

For a giving k ∈ K, there exists gnH such that kg1H = gnH if and only if gn ∈ kg1H. So g1V ⊕ · · · ⊕ gr1V is a
K-subrepresentation of W . By direct calculation, we see that this is isomorphism to g1ρ ↓K∩g1Hg−1

1
↑K

Example. Take ρ = IH , then ρ ↑G= L[G/H] where L is the �eld as above. Now ρ ↑G↓K= ⊕g∈K\G/HIK∩gHg−1 ↑K=
⊕g∈K\G/HL[K/K ∩ gHg−1].

Check: The orbit of K acting on G/H are in bijection with K\G/H.

1.1 Application I: principal series representation of GL2(Fp)

Let G = GL2(Fp) (where p ∈ Z is any prime). We have the subgroups B =

{(
∗ ∗
0 ∗

)}
≤ G, T =

{(
∗ 0
0 ∗

)}
≤ B

and U =

{(
1 ∗
0 1

)}
≤ B. Note that |U | = p, |T | = (p − 1)2, |B| = (p − 1)2p and |G| = (p2 − 1)(p2 − p) =

(p− 1)2p(p+ 1). We have T ∼= F∗p × F∗p, U ∼= (Fp,+)CB. We have B/U ∼= F∗p × F∗p, in fact B = U o T (i.e, U CB,
T ≤ B, U ∩ T = {1} and UT = B).

Let χ1, χ2 : F∗p → C∗ be two irreducible characters, then de�ne τ = χ1⊗χ2 : B → C∗ by
(
a b
0 d

)
7→ χ1(a)·χ2(d).

(Note U ≤ ker τ).

Theorem 1.2. τ ↑GB (which has dimension p+ 1) is either

� irreducible if χ1 6= χ2 or

� (one dimensional)⊕ irreducible if χ1 = χ2.
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Proof. Recall that a character is irreducible if and only if 〈τ, τ〉G = 1. We have

〈τ, τ〉B =
Frob rec

〈
χ1 ⊗ χ2 ↑GB↓B , χ1 ⊗ χ2

〉
B

=
Mackey

∑
g∈B\G/B

〈
g (χ1 ⊗ χ2) ↓B∩gBg−1↑B , χ1 ⊗ χ2

〉
B

=
Frob rec

∑
g∈B\G/B

〈
g (χ1 ⊗ χ2) ↓B∩gBg−1 , χ1 ⊗ χ2 ↓B∩gBg−1

〉
B∩gBg−1

Claim. B\G/B = {B · 1 ·B,B ·
(

0 1
1 0

)
·B}

Proof. It is enough to show that any

(
a b
c d

)
∈ G with c 6= 0 is of the form X

(
0 1
1 0

)
Y with X,Y ∈ B. Let

X =

(
x y
0 z

)
and Y =

(
w v
0 u

)
, we compute that X

(
0 1
1 0

)
Y =

(
x y
0 z

)(
0 u
w v

)
=

(
yw ux+ vy
zw vz

)
. For

a, b, c, d with c 6= 0 and ad− bc 6= 0, we can solve x, y, z, w, u, v.

Going back to the equality above, we have

〈τ, τ〉 =
〈

1(χ1 ⊗ χ2) ↓B∩1·B·1↑B , χ1 ⊗ χ2

〉
B

+

〈0 1
1 0


(χ1 ⊗ χ2) ↓

B∩

0 1
1 0

B
0 1

1 0

, χ1 ⊗ χ2 ↓
B∩

0 1
1 0

B
0 1

1 0


〉

= 1 +

〈 0 1
1 0


(χ1 ⊗ χ2)︸ ︷︷ ︸a b

c d

 7→χ1(d)χ2(a)

↓T , χ1 ⊗ χ2 ↓T

〉

T

= 1 +

{
0 if χ1 6= χ2

1 if χ1 = χ2

=

{
1 if χ1 6= χ2

2 if χ1 = χ2

.

We deduce that if χ1 6= χ2, then τ is irreducible and otherwise it is the sum of two distinct irreducible.

Claim. If χ1 = χ2, then 〈τ, χ1 ◦ det〉G = 1.

Proof. We have

〈τ, χ1 ◦ det〉G =

〈
χ1 ⊗ χ2︸ ︷︷ ︸
χ1(a)χ2(d)

, (χ1 ◦ det)︸ ︷︷ ︸
χ1(ad)

↓B

〉
B

= 1

So if χ1 = χ2, then τ = χ1 ◦ det⊕ (a p-dimensional irreducible character)

Example. If χ1 = χ2 = I, then τ ∼= C[G/B] = I+ (Steinberg representation)

10



1.2 Application II: Semi-direct products by Abelian groups

Let GCN , such that N ∩H = {1}, NH = G. Then G = NoH (called semi-direct product). Note that this implies
that for any g ∈ G there exists unique n ∈ N,h ∈ H such that g = nh. So as sets G↔ N×H. Under this bijection,
(n1, h1) · (n2, h2) = (n1(h1n2h

−1
1 )︸ ︷︷ ︸

∈N

, h1h2). We have that H acts on N by conjugation, i.e., hn = hnh−1. This de�nes

a map H → Aut(N). So G is uniquely determined by N,H and the map φ : H → Aut(N). Conversely, given N,H
and φ, we can construct the group G de�ned by as a set N ×H, with (n1, h1) · (n2, h2) = (n1φ(h1) · n2, h1h2)

Example.

� D2n = Cn o C2 with φ : C2 = 〈σ〉 → Aut(Cn) is de�ned by σ 7→ (τ 7→ τ−1).

� If φ : H → Aut(N) is de�ned by h 7→ id, then we get the direct product, G = N ×H.

Caution: We can get things that are isomorphic to N ×H even if φ is non-trivial.
If N CG, then G acts on the irreducible characters of N by gχ(n) = χ(g−1ng). Note that N acts trivially on

its own characters, so we get a well-de�ned action of G/N on Irr(N).

Remark. gχ is certainly a class function (if χ is) but why is it a character, i.e., what is the corresponding represent-
ation? If ρ : N → GL(V ) is the representation attached to χ, then gρ : N → GL(V ) is de�ned by n 7→ ρ(g−1ng).
Note that the latter de�nition make sense over any �elds.

Remark. If N CG and H ∼= G/N , then in general G � N oH.

Example. Let G = C4, N ∼= C2, G/N ∼= C2 but G � C2 o C2.

Now suppose G = A o H where A is an Abelian group. We will completely describe Irr(G). Let χ ∈ Irr(A)
(hence χ is one dimensional), let Sχ := StabH(χ) = {h ∈ H|χ(h−1ah) = χ(a)∀a ∈ A}. We extend χ to A o Sχ
by χ(a · s) = χ(a). (Check that this is a 1-dimensional character of A o Sχ). Take any irreducible character ρ of
Sχ ∼= (Ao Sχ)/A, thought of as a character of Ao Sχ, and de�ne τχ,ρ = χ⊗ ρ ↑G.

Theorem 1.3.

� τχ,ρ are all irreducible,

� All irreducible characters of G are of this form,

� τχ,ρ = τχ′,ρ′ if and only if χ, χ′ lie in the same orbit under the H-action (i.e., there exists h ∈ H such that
Sχ = hSχ′h

−1) and ρ = hρ′.

Proof. Left as an exercise

Example. We describe the characters of D2n
∼= CnoC2 in this way. If Cn = 〈g〉, and C2 = 〈h〉, then we know the

characters χk : Cn → C∗ are de�ned by g 7→ e2πik/n. Also hχk(g) = χk(h−1gh) = χk(g−1) = e−2πik/n, so

Stabχk(C2) =

{
C2 if e−2πik/n = e2πik/n ⇐⇒ k = 0, n/2

1 otherwise
.

So if k 6= 0, n/2 then χk ↑G is irreducible. If k = 0, n/2 then χk extends (in two ways) to a 1-dimensional character
of G. Also χk ↑G= χk′ ↑G is and only if k = ±k′.

Exercise.

� We describe the characters of S4
∼= V4 o S3 (where V4

∼= C2 × C2 is the Klein group)

� Suppose H ≤ Sn, A is any (Abelian) group. Consider G = (A× · · · ×A︸ ︷︷ ︸)
n−times

oH =: A oH, the wreath product.

Describe Irr(G) using Theorem 1.3.

Remark. Sylp(Sp2) ∼= Cp o Cp. (prove it!)
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1.3 Application III: Cli�ord Theory (induction from and restriction to normal sub-
groups)

Theorem 1.4 (Cli�ord). Let G be any �nite group, N CG, F any �elds, and ρ any irreducible representations of
G over F , (equivalently a simple F [G]-module). Then ρ ↓N= ⊕τ⊕ei , where τi are simple F [N ]-modules, that form
a single orbit under the G-action.

Proof. Let τ1 be a simple quotient submodule of ρ ↓N . So then HomN (ρ ↓N , τ1) is non-trivial. By Frobenius
reciprocity, HomG(ρ, τ1 ↑G) is non-trivial. Equivalently, ρ is isomorphic to a submodule of τ1 ↑G. So ρ ↓N is a
submodule of

τ1 ↑G↓N =
⊕

N\G/N

gτ1 ↓N∩gNg−1↑N

=
⊕

g∈G/N

gτ1

As τ1 is simple, all gτ1 are simple. Using the exercise below, we see that ρ ↓N= ⊕some g
gτ1. Note that HomN (ρ ↓N

, τ1) = HomN ( gρ ↓N , gτ1). If ρ ↓N∼= ⊕τ⊕eii then HomN (ρ ↓N , τi) ∼= D⊕ei , where D = EndN (τi). So ei are the
same for all the distinct conjugates of τ1.

Exercise. Submodules of semisimple modules are semisimple.

Exercise. Prove the above theorem over C, using characters.

Example.

� Let G = S3 and N = C2. Consider the 2-dimensional irreducible representation, ρ, over C. Then ρ ↓N= χ⊕χ
where χ is de�ned by (123) 7→ e2πi/3. Note (12)χ = χ.

� Let G = Sn and N = An.

Now we want to translate Cli�ord's theorem into a statement about induction.

Example. G = C3 o C4 =
〈
x, y|x3 = y4 = 1, yxy−1 = x−1

〉
, where C4 acts on C3 through the quotient C4/C2.

Let N = C3, χ a non-trivial 1-dimensional character of C3. We investigate χ ↑G in two steps. Consider χ ↑G=
χ ↑C3oC2=C6↑G= (τ ⊕ τ ′) ↑G where τ and τ ′ are distinct irreducible Irr(C6). Both τ ↑G and τ ′ ↑G are irreducible
by the 2nd exercise sheet

De�nition. Let NCG and χ an irreducible character of N . The inertia subgroup of χ in G is IG(χ) = StabG(χ) =
{g ∈ G| gχ = χ) = {g ∈ G|χ(g−1ng) = χ(n)∀n ∈ N}.

Theorem 1.5. Let N CG, χ ∈ Irr(N), T = IG(χ) ≥ N . Let τ be an irreducible summand of χ ↑τ .

1. ρ = τ ↑G is irreducible

2. τ → τ ↑G is a bijection between the distinct irreducible summand of χ ↑T and those of χ ↑G

3. ρ ↓T= τ+(stu� that is disjoint from χ ↑T ). By disjoint we mean ψ ∈ Irr(T ) such that
〈
ψ, χ ↑T

〉
= 0.

4. 〈ρ ↓N , χ〉 = 〈τ ↓N , χ〉.

Proof. First note that τ ↓N= e · χ, and hence gτ ↓N= e · gχ. If g /∈ T then gχ 6= χ, hence 〈τ ↓N , gτ ↓N 〉 = 0 if
g /∈ T . Now compute〈

τ ↑G, τ ↑G
〉
G

=
〈
τ ↑G↓T , τ

〉
T

=
∑

g∈T\G/T

〈
gτ ↓T∩gTg−1↑T , τ

〉
T

= 1 +
∑

someg/∈T

〈
gτ ↓T∩gTg−1 , τ ↓T∩gTg−1

〉
T ∩ gTg−1 ≥ N

= 1 + 0

12



This proves 1. We have that 2. and 4. follows from 3. .To prove 3. ,

ρ ↓T = τ ↑G↓T
=

∑
T\G/T

gτ ↓T∩gTg−1↑T

= τ +
∑

some g/∈T

gτ ↓T∩gTg−1↑T

1.4 Application IV: Frobenius groups

Theorem 1.6 (Frobenius). Suppose H ≤ G is such that H ∩ gHg−1 = {1} for all g /∈ H (H is called a Frobenius
complement). Then there exists N CG such that G = N oH.

To prove this we will need several lemma. De�ne

N = G\
(
∪ggHg−1

)
∪ {1}.

Lemma 1.7. Let N be de�ned as above, |N | = |G|
|H| , also is M CG intersect H trivially, then M ⊂ N

Proof. The second part is by de�nition of N . For the �rst part

|N | = |G| − |G|
|H|

(|H| − 1)

= |G| − |G|+ |G|
|H|

Lemma 1.8. Let G and H be as in Theorem 1.3. Let θ be a class function on H with θ(1) = 0. Then θ ↑G↓H= θ.

Proof. By Machke we have

θ ↑G↓H =
∑

g∈H\G/H

gθ ↓H∩gHg−1↑H

= θ +
∑
g/∈H

gθ ↓H∩gHg−1↑H

= θ +
∑

0{1} ↑H

= θ

Proof of Theorem 1.6. Motivation: if χ ∈ Irr(G) is such that kerχ ⊇ N , then χ ↓H is irreducible. We want to
recover χ from χ ↓H .

Let IH 6= φ ∈ Irr(H). De�ne θφ = φ− φ(1)IH , hence θφ(1) = 0. Note that〈
θφ ↑G, IG

〉
G

= 〈θφ, IH〉H
= −φ(1).

13



Let us set χφ = φψ ↑G +φ(1)IG, hence 〈χφ, IG〉G = 0. Furthermore

〈χφ, χφ〉+ φ(1)2 =
〈
θφ ↑G, θφ ↑G

〉
G

=
〈
θφ, θφ ↑G↓H

〉
H

=
Lemma 1.8

〈θφ, θφ〉H
=

def θφ
〈φ, φ〉︸ ︷︷ ︸

=1

+ φ(1)2.

Hence 〈χφ, χφ〉G = 1 and is irreducible. Now θφ is the di�erence of two characters, therefore so is θφ ↑G, and hence
so is χρ. But 〈χφ, χφ〉 = 1, hence ±χφ ∈ Irr(G). But also,

χφ ↓H = θφ ↑G↓H +θ(1) · IG ↓H
= θφ + φ(1) · IG
= θ.

So χθ ∈ Irr(G).
De�ne

M =
⋂

IH 6=φ∈Irr(H)

ker(χφ) CG.

Claim. M ∩H = {1} (and hence M ⊆ N)

Indeed, if h ∈ H, then χφ(h) = φ(h). So H ∩M = ∩φ∈Irr(H) kerφ = {1}
Claim. N ⊆M .

If n /∈ gHg−1, then

χφ(n) = θφ ↑G (n) + φ(1) · IG
= φ ↑G (n)− φ(1) · I ↑G (n) + φ(1) · IG
=

def of irreducible char
0 + 0 + φ(1)

= χφ(1)

for all IH 6= φ ∈ Irr(H). Hence n ∈M .
So N = M CG and we are done.
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2 Tensor Products, Frobenius - Schur indicators and much more

Let G be a �nite group and K be any �eld.
Motivation: If χ, φ are characters of G, then so is χ+ φ. But what about χ · φ?

De�nition 2.1. Let V and W be vector spaces (over K). The tensor product V ⊗W is the vector space spanned
by �symbols� v ⊗ w with v ∈ V,w ∈W , with relations

� (kv)⊗ w = v ⊗ (kw) = k(v ⊗ w)

� (v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w

� v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2

Fact. If v1, . . . , vn is a basis for V and w1, . . . , wm a basis of W , then vi ⊗ wj for 1 ≤ i ≤ n,1 ≤ j ≤ m is a basis
for V ⊗W .

Proposition 2.2. Tensor products have the following properties:

� (V ⊗W )⊗ U ∼= V ⊗ (W ⊗ U)

� (V ⊕ U)⊗W ∼= V ⊗W ⊕ U ⊗W

Proof. Check that:

� (v ⊗ w)⊗ u 7→ v ⊗ (w ⊗ u)

� (u, v)⊗ w 7→ (v ⊗ w, u⊗ w)

are isomorphisms.

If V,W are G-representation, then G acts on V ⊗W via g · (v⊗w) = g · v⊗ g ·w. Suppose that g is represented
by A = (aij)1≤i,j≤n on V with respect to v1, . . . , vn, and it is represented by B = (bij)1≤i,j≤m on W with respect
to w1, . . . , wm. Then g · (vi ⊗ wk) = gvi ⊗ gwk = (

∑
aijvj)⊗ (

∑
bklwl) =

∑
j,l aijbkl(vj ⊗ wl). So with respect to

the basis v1 ⊗ w1, . . . , v1 ⊗ wm, v2 ⊗ w1, . . . , vn ⊗ wn of V ⊗W , g is represented by a11B a12B . . . a1nB
...

an1B annB

 =: A⊗B

Example. Let G = S3 and take ρ to be the standard representation, that is ρ is de�ned by

(123) 7→
(
−1 −1
1 0

)
(12) 7→

(
1 1
0 −1

)
.

The basis of ρ⊗ ρ is v1 ⊗ v1, v1 ⊗ v2, v2 ⊗ v1, v2 ⊗ v2. So ρ⊗ ρ is de�ned by

(123) 7→


1 1 1 1
−1 0 −1 0
−1 −1 0 0
1 0 0 0



(12) 7→


1 1 1 1
0 −1 0 −1
0 0 −1 −1
0 0 0 1
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If V,W are complex representations with characters χ, φ respectively then the character τ of V ⊗W is

τ(g) =
∑

1≤i≤n,1≤k≤m

aiibkk

=

(∑
i

aii

)
·

(∑
k

bkk

)
= χ(g) · φ(g).

Aside: Duals and homomorphism spaces

De�nition 2.3. Let V be a representation of over K. The dual representation is V ∗ = {f : V → K|f(v + αw) =
f(v) + αf(w)∀α ∈ K, v,w ∈ V } with G action on V ∗ by (g · f)(v) = f(g−1v), i.e., g · f : v 7→ f(g−1v) ∈ K

Lemma 2.4. If V is a complex representation with character χ, then the character of V ∗ is χ.

Proof. Let v1, . . . , vn be a basis of V . Take the dual basis V ∗ to be f1, . . . , fn such that fi(vj) = δij =

{
1 i = j

0 i 6= j
.

Assume without loss of generality that g ∈ G is represented by

α1

. . .

αn

 with respect to v1, . . . , vn. Then

check that g in represented by

α
−1
1

. . .

α−1
n

 with respect to f1, . . . , fn. Since αi are roots of unity, α−1
i =

αi.

Corollary 2.5. V ∼= V ∗ (as representations over C) if and only if χ is R-valued.

De�nition 2.6. If V,W are representations of G over K, then HomK(V,W ) is a G-representation via (g · f)(v) =
g · f(g−1v).

Lemma 2.7. If V and W are representations over C with characters χ, φ respectively then the character τ of
HomK(V,W ) is χ · φ.

Proof. Use matrices with respect to basis fik : vj 7→ δijwk.

In particular, over C, V ⊗W ∼= Hom(V ∗,W ) (by comparing characters)

Lemma 2.8. Over any �eld K, V ⊗K W ∼= HomK(V ∗,W ).

Proof. Check that V ⊗ W → Hom(V ∗,W ) de�ned by v ⊗ w 7→ (f 7→ f(v) · w) is an isomorphism (of G-
representations).

Remark. The �xed subspace of Hom(V,W ) under the G-action is

HomG(V,W ) = {f : V →W linear|g · f(v) = f(g · v)∀v ∈ V, g ∈ G}

Assume: For the rest of this chapter that the characteristic of K is 0

Notation. V ⊗n = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
n times
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Example. Going back to the case that G = S3, ρ the standard representation. The character table is
1 (123) (12)

ρ⊗2 4 1 0

〈
ρ⊗2, I

〉
=

1

6
(4 + 2) = 1〈

ρ⊗2, sign
〉

=
1

6
(4 + 2) = 1〈

ρ⊗2, ρ
〉

= 1

Hence we have that ρ⊗2 = I+ ε+ ρ.

V ⊗n carries an action of Sn, σ(v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n) for all σ ∈ Sn, vi ∈ V . This action
commutes with the G-action. (So we get an action of G× Sn).
Claim. If ρ1, . . . , ρk is a complete set of irreducibleK-representations of Sn,then V

⊗n = ⊕ki=1V
⊗n
(ρi)

asG-representations.

Proof. If g ∈ G, then (for t ∈ V ⊗n) t 7→ g · t is a homomorphism of Sn-representation. So if t ∈ V ⊗n(ρi)
, then the

projection of g · t to any V ⊗n(ρj)
for j 6= i is 0 by Schur's lemma.

Example. Let v1, . . . , vn be a basis for V . We consider S2 and hence V ⊗2, which has basis vi⊗ vj for 1 ≤ i, j ≤ n.

� V ⊗2
(I) has basis vi ⊗ vj + vj ⊗ vi for 1 ≤ i ≤ j ≤ n.

� V ⊗2
(sign) has basis vi ⊗ vj − vj ⊗ vi for 1 ≤ i < j ≤ n.

So in part, V ⊗2
(I) has dimension n(n+1)

2 , V ⊗2
(sign) has dimension n(n−1)

2 .

De�nition 2.9. V ⊗2
(I) is called the symmetric square of V , written S2V . V ⊗2

(sign) is called the alternating square of

V , written ∧2V .

Lemma 2.10. The characters of S2V and ∧2V are

χS2V (g) =
1

2

(
χ(g)2 + χ(g2)

)
χ∧2V (g) =

1

2

(
χ(g)2 − χ(g2)

)
Proof. Let g ∈ G, take a basis of V to be v1, . . . , vn such that g = diag(α1, . . . , αn) with respect to that basis. Then
g · (vi ⊗ vj + vj ⊗ vi) = αiαj(vi ⊗ vj + vj ⊗ vi). So

χS2V (g) =
∑

1≤i≤j≤n

αiαj

=
1

2

(
χ(g)2 + χ(g2)

)
.

A similar calculation shows that

χS2V (g) =
∑

1≤i<j≤n

αiαj

=
1

2

(
χ(g)2 − χ(g2)

)
.

Remark. S2χ+ ∧2χ = χ2.
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De�nition 2.11. Let χ be an irreducible character of G, the Frobenius - Schur indicator of χ is

s2(χ) :=
1

|G|
∑
g∈G

χ(g2).

Theorem 2.12. s2(χ) ∈ {0, 1,−1} and s2(χ) = 0 if and only if χ 6= χ.

Proof. Note that χ(g2) = S2χ(g)− ∧2χ(g), so s2(χ) =
〈
S2χ, I

〉
G
−
〈
∧2χ, I

〉
G
.

Claim.

〈
S2χ+ ∧2χ︸ ︷︷ ︸

χ2

, I

〉
G

= 0 or 1

Let V be the vector space attached to χ. Then
〈
V ⊗2, I

〉
= dim

(
(V ⊗ V )G

)
= HomG(V ∗, V ) (where (−)G are

elements �xed by G.) By Schur's lemma, these G-homomorphism are 1-dimensional if V ∗ ∼= V (i.e., if χ ∼= χ) and
0 otherwise.

So what does this ±1 mean for s2 of real-valued characters?

Example. Let G = S3 and χ the standard character, i.e., χ(1) = 2, χ((123)) = −1 and χ((12)) = 0. Now
s2(χ) = 1

6 (2 + 3 · 2 + 2 · (−1)) = 1.

Pairings on vector spaces

De�nition 2.13. Let V be a vector space over a �eld K. A pairing on V is a bilinear map 〈 , 〉 : V × V → K.

Given a paring, we get a linear map V → V ∗ de�ned by v 7→ (w 7→ 〈v, w〉). Conversely, given a homomorphism
φ : V → V ∗, we can de�ne a pairing by 〈v, w〉 = φ(v)(w). These operations are inverses to each other.

De�nition 2.14. A pairing is non-degenerate if, given v ∈ V , 〈v, w〉 = 0∀w ∈ V then v = 0. (This is equivalent to
�right non-degenerate� for �nite dimensional vector spaces.)

In the language of φ : V → V ∗, this is equivalent to φ being an isomorphism.

De�nition 2.15. 〈 , 〉 is symmetric if 〈v, w〉 = 〈w, v〉 for all v, w ∈ V
It is alternating if 〈v, w〉 = −〈w, v〉 for all v, w ∈ V .
Let G act on V . We say that 〈 , 〉 is G-invariant if 〈gv, gw〉 = 〈v, w〉 ∀v, w ∈ V,∀g ∈ G.

This is equivalent to φ : V → V ∗ being a G-homomorphism. So we have a bijection between HomG(V, V ∗) and
G-invariant pairings on V .

If U, V,W are vector spaces, then bilinear maps U × V →W are �the same things as� linear maps U ⊗ V →W
in the following sense: there is a canonical map U × V → U ⊗ V de�ned by (u, v) 7→ u⊗ v, and given any bilinear
map

U × V //

%%

U ⊗ V

∃!
��
W

so that the diagram commutes.
In particular, bilinear maps V ×V → K correspond canonically to maps V ⊗V → K, and the set of G-invariant

pairings on V is in bijection with HomG(V ⊗ V, I).

� The pairing is symmetric if the map V ⊗ V → K is 0 on ∧2V , i.e., such pairings correspond to maps
V ⊗ V/ ∧2 V ∼= S2V → K.

� The pairing is alternating if the map V ⊗ V → K is 0 on S2V , i.e., such pairings correspond to maps
V ⊗ V/S2V ∼= ∧2V → K.
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� V ∼= V ∗ if and only if there exists a G-invariant non-degenerate pairing on V . Conversely, given f : V → V ∗,
take 〈u, v〉 = f(u)v if and only if χ = χ. If V ∼= V ∗, then HomG(V, V ∗) is 1-dimensional

� If 〈 , 〉 is a non-degenerate G-invariant pairings, we can write it

〈u, v〉 =
1

2
(〈u, v〉+ 〈v, u〉)︸ ︷︷ ︸

〈 , 〉s

+
1

2
(〈u, v〉 − 〈v, u〉)︸ ︷︷ ︸

〈 , 〉a

We cannot have both 〈 , 〉s and 〈 , 〉a non-degenerate, since they would have to be multiple of each other.
Another way of saying this: since V ⊗ V = S2V ⊕ ∧2V we either have

� dim(HomG(S2V, I)) = 1 and HomG(∧2V, I) = 0 or

� dim(HomG(S2V, I)) = 0 and HomG(∧2V, I) = 1

� There exists a symmetric G-invariant, non-degenerate pairing on V if and only if HomG(S2V, I) 6= 0, if and
only if V ∼= V ∗ and HomG(∧2V, I) = 0.

Explicitly, if f : S2V → I, construct the pairing by 〈u, v〉 = f(u⊗ v + v ⊗ u)

� There exists an alternating G-invariant, non-degenerate pairing on V if and only if HomG(∧2V, I) 6= 0, if and
only if V ∼= V ∗ and HomG(S2V, I) = 0.

Theorem 2.16. Let V be an irreducible complex representation of G.

1. There exists a non-degenerated G-invariant pairing on V if and only if V ∼= V ∗ if and only if χ ∼= χ

2. There exists a symmetric non-degenerate G-invariant pairing on V if and only if there exists a basis on V
with respect to which G is represented by real matrices.

3. There exists an alternating non-degenerate G-invariant pairing on V if and only if χ is real-valued, but V
cannot be de�ned over R (in the above sense)

Example. Let G = D10 =
〈
τ, σ|τ2 = σ5 = 1, τστ = σ−1

〉
. Rotations and re�ections of the 5-gon gives the following

representation: τ 7→
(

1 0
0 −1

)
, σ 7→

(
e2πi/5 0

0 e−2πi/5

)
. But with respect to �the right� basis, this can be written

as τ 7→
(

0 1
1 0

)
, σ 7→

(
cos 2π

5 sin 2π
5

− sin 2π
5 cos 2π

5

)
Theorem (Part 2). 1. holds if and only if s2(χ) =

〈
S2χ, I

〉
−
〈
∧2χ, I

〉
6= 0

2. holds if and only if s2(χ) = 1

3. holds if and only if s2(χ) = −1

Partial proof. Su�ces to show 2. (as we already know 1. ). We will only prove the implication ⇐.
Suppose that V is de�nable over R. This means that if V is regarded as an R-vector space (of twice its dimension

over C), then V = W + iW , where W is invariant under G. Let ( , ) be any positive-de�nite pairing on W . De�ne
〈 , 〉1 on W by 〈u, v〉1 = 1

|G|
∑
g∈G(g · u, g · v). This is clearly G-invariant and positive-de�nite.

De�ne 〈u, v〉2 = 〈u, v〉1 + 〈v, u〉1. Then this is still G-invariant and positive-de�nite, furthermore it is symmetric.
De�ne 〈u, v〉3 on V by 〈u+ iu′, v + iv′〉3 = 〈u, v〉2 − 〈u′, v′〉2 + i (〈u, v′〉2 + 〈u′, v〉2), this is the required pairing.

For the implication �⇒� see for example Serre, chapter 2, Theorem 31, or Curtis - Reiner, Vol II, Section
73.13.
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Application

De�ne r2(g) = #{h ∈ G|h2 = g}. First observe: h 7→ xhx−1 gives a bijection between square roots of h2 and those
of xh2x−1. So r2 is a class function. Thus r2 =

∑
χ∈Irr(G) αχ · χ for αχ ∈ C. Now

αχ = 〈r2, χ〉G

=
1

|G|
∑
g∈G

r2(g)χ(g)

=
1

|G|
∑
g∈G

#{h ∈ G|h2 = g}χ(g)

=
1

|G|
∑
g∈G

∑
h∈G,h2=g

χ(g)

=
1

|G|
∑
g∈G

∑
h∈G,h2=g

χ(h2)

=
1

|G|
∑
h∈G

χ(h2)

= s2(χ) ∈ {−1, 0, 1}.

Hence r2 =
∑
ρ irr reps realisable overR χρ −

∑
self dual irr reps not realisable overR χρ.

Corollary 2.17. Let G be an abelian group, then r2 takes its maximum at the identity element.

Proof. r2(g) =
∣∣∣∑realχ χ(g)

∣∣∣ ≤∑realχ |χ(g)| ≤
∑

realχ χ(1) = r2(1).

Similarly for dihedral groups, symmetric groups, alternating groups, and for all groups that don't have χ with
s2(χ) = −1.

Remark. One can de�ne higher Frobenius - Schur indicators:

sk(χ) :=
1

|G|
∑
g∈G

χ(gk), k ∈ N.

For k ≥ 3, these are unbounded as G varies (hint for proof: consider the Heisenberg group of order p3, i.e.,1 ∗ ∗
0 1 ∗
0 0 1

 ⊂ GL3(Fp))

To �nish our discussion of R[G]-modules, we should talk about Wedderburn components.
Recall: R[G] ∼= ⊕iMni(Di) where Di are division algebras. In fact Di = EndR[G](ρi), where ρi are the distinct

simple R[G]-modules.

Fact. The only associative division algebras over R are R,C,H.

Theorem 2.18. Let ρ be a complex irreducible representation of G.

1. If ρ 6= ρ∗, then ρ ⊕ ρ∗ is realisable over R, is simple as an R[G]-module and the corresponding Wedderburn
block is isomorphic to Mni(C)

2. If ρ is realisable over R, then the Wedderburn component is isomorphic to Mni(R)

3. If ρ ∼= ρ∗ but not realisable over R (i.e., ρ is simpletic or quaternion) then ρ ⊕ ρ is realisable over R, it is
simple and the corresponding Wedderburn block is isomorphic to Mni(H).

20



Proof (sketch). In cases 1. and 3. , to prove realisability over R, we construct a symmetric non-degenerate, G-
invariant pairing.

E.g., in case 3. let [ , ] be a G-invariant non-degenerate alternating pairing on ρ. De�ne 〈 , 〉 on ρ ⊕ ρ by
〈(u1, v1), (u2, v2)〉 = [u1, v2]− [v1, u2]. We can see that this is symmetric.

Case 1. is omitted
To �nd the corresponding Wedderburn component, notice that R,C and H have di�erent dimensions over R. So

just need to know dimR EndR[G](−), which we use the following lemma for.

Lemma 2.19. If τ is an R[G]-module, τ⊗RC the corresponding C[G]-module. Then dimR EndR[G](τ) = dimC EndC[G](τ⊗R
C)

We can calculate the following:

1. ρ 6= ρ∗, 〈ρ⊕ ρ∗, ρ⊕ ρ∗〉 = 2 hence EndR[G] = C

2. 〈ρ, ρ〉G = 1 hence EndR[G] = R

3. 〈ρ⊕ ρ, ρ⊕ ρ〉G = 4 hence EndR[G] = H.

Recall that V ⊗n ∼= ⊕χ∈Irr(Sn)V
⊗n
(χ) . In general, if V is a C[G]-module, V = ⊕χ∈Irr(G)V(χ), to �nd V(χ) ⊂ V , use

idempotent:

� eχ = 1
|G|
∑
g∈G χ(g) · g ∈ C[G] - a primitive central idempotent.

Hence V(χ) = eχ · V = {eχ · v|v ∈ V }.

Example. Let G = S3, V = C[S3], χ be the the standard character (2-dimensional).

eχ =
1

6
(2 · id−(123)− (132)) ∈ C[G],

e.g, eχ · id = eχ

eχ(12) =
1

6
(2 · (12)− (23)− (13))

eχ(13) =
1

6
(2 · (13)− (12)− (23))

etc, we get a 4 dimensional subrepresentation of C[S3] ∼= ρ⊕2 (where ρ is the standard representation)
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3 Permutation representation, monomial representation, induction the-

orems

Recall: Let X be a �nite G-set, i.e., X = {1, . . . , n}, and there is a group homomorphism G→ Sn. Then C[X] is
the associated permutation representation.

Philosophy: these are easy, so we want to express pother representations in terms of these.
Recall: If X = G/H, then C[X] ∼= IH ↑G. In particular, 〈C[X], I〉G =

〈
IH ↑G, I

〉
G

= 〈IH , I〉H = 1. So we can
write C[X] ∼= 1⊕ ρ. When is ρ irreducible?

Lemma 3.1. If X is transitive, i.e., ∀x, y ∈ X there exists g ∈ G such that g · x = y, de�ne H = StabG(X) for a
�xed x ∈ X. Then X ∼= G/H, i.e., there is a bijection of sets that commutes with the G-action.

Proof. De�ne X → G/H by g · x 7→ g ·H.

� This is well-de�ned and one to one:

g · x = g′ · x, g, g′ ∈ G ⇐⇒ g−1gx = g−1g′x

⇐⇒ g−1g′ ∈ StabG(x) = H

⇐⇒ g ·H = g′ ·H

� Surjective by Orbit-Stabiliser:

|G/H| = |G|
|H|

= |Orbit(x)| = |X|

� An isomorphism of G-sets: g(hx) = (gh)x 7→ (gh)H = g(hH)

Remark. StabG(g · x) = gStabG(x)g−1. In particular G/H ∼= G/(gHg−1)

An arbitrary set X can be written as a union of orbits, X =
∐r
i=1G/Hi. Then C[X] = ⊕ri=1C [G/Hi] and

〈C[X], I〉G =

r∑
i=1

〈C[G/Hi], I〉G

= r

= number of orbit ofX underG.

Lemma 3.2. Let X be a transitive set, X ∼= G/H and χ be the permutation character. Then 〈χ, χ〉G = the number
of orbits on X under the action of H

Proof. Let number of orbits under H is

〈χ ↓H , IH〉H =
〈
χ, IH ↑G

〉
G

= 〈χ, χ〉G

Corollary 3.3. C[G/H] ∼= I⊕ ρ with ρ irreducible if and only if H acts transitively on the non-trivial cosets. We
say that X = G/H is doubly transitive.

Example.

� Sn, n ≥ 2, acts doubly transitively on {1, . . . , n}, so we get an (n − 1)-dimensional irreducible character χ.
E.g., n = 4,

χ′((123)) = χ((123))− I((123))

= 1
#fixed pts

− 1 = 0
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� G = GL2(Fp) acts doubly transitively on the (p+ 1) lines through 0 in (Fp)2
; e.g. the stabiliser of 〈(1, 0)〉 is(

∗ ∗
0 ∗

)
, and that acts transitively on the remaining p lines 〈(a, 1)〉, a ∈ Fp.

So we get a p-dimensional irreducible representation, C[G/H]− I.

Artin's Induction. Let χ be a Q-valued character (i.e., χ(g) ∈ Q for all g ∈ G). Then χ =
∑
H≤G

aH
[NG(H):H] ·

IH ↑G, where the sum runs over representatives over conjugacy classes of cyclic subgroups and aH ∈ Z and NG(H) ={
g ∈ G|gHg−1 = H

}
.

Proof. The idea is to express χ as linear combinations of characteristic functions Φx(y) =

{
1 if 〈x〉 ∼ 〈y〉
0 else

, and

then express Φx as linear combinations of IH ↑G.

Lemma 3.4. χ(x) = χ(y) whenever 〈x〉 ∼ 〈y〉, i.e., χ is a Q-linear combinations of characteristics functions of
Φx.

Proof. Suppose 〈x〉 ∼ 〈y〉, i.e., x is a conjugate to some ym, where m is coprime to the ord(x) = ord(y) = n. Up
to replacing x by a conjugate, let x = ym. We can diagonalise x and y in the representation corresponding to
χ, x = diag(εm1 , . . . , ε

m
d ) and y = diag(ε1, . . . , εd), where εi are nth-roots of unity. There is an automorphism σ

of Q(e2πi/n) such that for any nth-root of unity ε, σ(ε) = εm. So σ(χ(y)) = σ(
∑
εi) =

∑
εmi = χ(x) ∈ Q. But

σ|Q = id, hence χ(x) = χ(y)

Let H1, . . . ,Hs be representatives of conjugacy classes of cyclic subgroups, Φi(g) =

{
1 if 〈g〉 ∼ Hi

0 else
. By the

above lemma, IHi ↑G=
∑s
j=1 bijΦj . So we want to invert B = (bij). First note that the Φi are orthogonal with

respect to 〈 , 〉G:

〈Φi,Φj〉 =
1

|G|
∑
g∈G

Φi(g)Φj(g)

=

{
0 i 6= j

1
|G|φ (|Hi|) · |G|

|NG(Hi)| = φ(|Hi|)
|NG(Hi)| i = j

By de�nition, Φj ↓Hi is identically 0 unless Hj ≤G Hi in this case Φj ↓Hi= 1 on the φ(|Hj |) generators of Hj in
Hi. Now

bij ·
φ (|Hi|)
|NG(Hj)|

=
〈
IHi ↑G,Φj

〉
G

= 〈IHi ,Φj ↓Hi〉Hi

=
1

|Hi|
· φ (|Hj |) if Hj ≤G Hi.

Hence bij =
|NG(Hj)|
|Hi| if Hj ≤G Hi and otherwise bij = 0.

Now order the Hi by size, then we have established that B is triangular, integer entries, and in the ith row, all
entries are divisible by [NG(Hi) : Hi] ,because if Hj ≤ Hi then |NG(Hi)|

∣∣ |NG(Hj)|. It follows that B is invertible,
with denominators in the ith row of the inverse dividing [NG(Hi) : Hi].

Remark. It is still an open question, how �bad� these denominators can get, e.g., we do not know for what groups
G, any Q-valued χ can be written as

∑
H≤G,cyclic cHIH ↑G with cH ∈ Z. This is possible in Sn.

Example. Let G = Cp × Cp. There are p + 1 cyclic subgroups of order p, denote them H1, . . . ,Hp+1. Any
irreducible, non-trivial character χ factors through a unique G/Hi. In fact, IHi ↑G=

∑
kerχij≥Hi χij with χi1 = I.

After solving the system of linear equations, we �nd that I{1} ↑G −
∑
i IHi ↑G= −p · I.
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Corollary 3.5. The number of irreducible Q[G]-modules is equal to conjugacy classes of cyclic subgroups.

Proof. This corollary also depends on the theory of Schur indices, which we will cover later.

Corollary 3.6. Two Q[G]-modules V1, V2 are isomorphic if and only if dimV H1 = dimV H2 for all cyclic H ≤ G.

Proof. Exercise

Example. Let G = S3,

� I{1} ↑G= I⊕ ε⊕ ρ⊕2, where ε is the sign representation and ρ is the standard representation

� IC2 ↑G= I⊕ ρ

� IC3
↑G= I⊕ ε

Now φ = I, −I{1} ↑G +2 · IC2
↑G +IC3

↑G= 2 · I.

Example. Let G = Cp o Cp−1, then −I{1} ↑G +(p− 1)ICp−1 ↑G +ICp ↑G= (p− 1) · IG. Prove this as an exercise

Remark. Even if one was allowed to use IH ↑G for all H ≤ G, one would still have denominators

Example. Let G = Q8×C3 and let ρ be the standard representations of Q8, χ a 1-dimensional non-trivial character
of C3. Then ρ ⊗ (χ⊗ χ) is a representation that can be de�ned over Q, but it is not a Z-linear combination of
IH ↑G for all H ≤ G, but twice that is.

De�nition 3.7. A group is called p-quasi-elementary if it's of the form G = C o P where C is cyclic and P a
p-group (i.e., order pn for some n).

Without loss of generality, we can assume p - |G|.

Solomon Induction. There exists aH ∈ Z for H ≤ G quasi-elementary subgroups such that I =
∑
H≤G aHIH ↑G.

Brauer's Induction Theorem. Let φ ∈ Irr(G). Then there exists aH,λ ∈ Z for H of the form H = C×P (with C
cyclic and P a p-group, these are called elementary groups), such that φ =

∑
aH,λλ ↑G, where λ are 1-dimensional

characters of elementary subgroups.

We will �rst deduce Brauer from Solomon, to do so we will use for the �rst time the ring structure of the ring
of class functions.

De�nition 3.8. We de�ne R(G) = 〈Irr(G)〉Z =
{∑

χ∈Irr(G) aχ · χ
∣∣aχinZ}.

For any family of subgroups of G, H, we de�ne IH(G) =
{∑

H∈H,λ∈Irr(H) aH,λλH ↑G
∣∣aH,λ ∈ Z}.

Lemma 3.9. Let H ≤ G, φ a class function of H, ψ a class function of G. Then φH ↑G ·ψ = (φ · ψ ↓H) ↑G.

Proof. Just do it. (exercise)

Corollary 3.10. IH(G) is an ideal in R(G)

Proof. If φ =
∑
aH,λλH ↑G∈ IH(G), ψ ∈ Irr(G), then ψ · φ =

∑
aH,λψλH ↑G=

∑
aH,λ (ψ ↓H ·λ) ↑G∈ IH(G).

Now let H =
{
C × P ≤ G

∣∣C cyclic, P a p group
}
. We will prove Brauer if we can show

� I ∈ IH(G) =: I(G)

� All elementary groups are M-groups, i.e., every irreducible characters is monomial, i.e., induced from a 1-
dimensional character. (This is left as an exercise)

Theorem 3.11. I ∈ I(G).
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Proof (assuming Solomon). We do this by induction on |G|. We can use elementary groups G as our base case.
Assume that the theorem holds for all proper subgroups ofG, i.e., for allH ≤ G, IH =

∑
U≤H elem,λ∈Irr(U) aU,λλU ↑H .

Then it is enough to show that

I =
∑

H�G,λ∈Irr(H)

bH,λλH ↑G, (†)

because then, each λ =
∑
U≤H elem a

(λ)
u,µµ ↑H and IG =

∑∑
bH,λa

(λ)
U,µµ ↑H↑G. If G is not quasi-elementary, then

Solomon shows (†).
So we are left with proving the statement

I =
∑

H�G,λ∈Irr(H)

bH,λλH ↑G, bH,λ ∈ Z

for G = C o P , where P acts non-trivially on C by conjugation, so that G 6= C × P . Let Z = ZC(P ) = {x ∈
C|xpx−1 = p∀p ∈ P}. Since G 6= C × P , Z 6= C. Set E = ZP 6= G.

We have IE ↑G= IG + Ξ. It is enough to show that any irreducible summand of Ξ is induced from a proper
subgroup. Let ξ be an irreducible summand of Ξ. Let χ be an irreducible summand of ξ ↓C . Let S = StabG(χ).
Recall that if ι is an irreducible summand of χ ↑S , then ι ↑G is irreducible and all summands of χ ↑G are of this
form (in particular this is true for ξ). So we now just need to know that S 6= G, i.e., that χ is not invariant under
the G-action. To do so, we use the following lemma.

Lemma 3.12. Let G = C o P , p - |C|, χ ∈ Irr(C), Z = ZC(P ) and assume Z ∈ kerχ =: K. If χ is invariant in
G, then χ = IC .

Proof. χ is a faithful character on C/K, so for χ to be invariant, G has to preserve each coset cK. But if P acts on
cK, then the number of points moved is divisible by p (by Orbit - Stabiliser). But p - |C| so p - |K|, hence p - |cK|.
So there is at least one point in cK that is normalised by P , i.e., cK ∩ Z 6= ∅. But Z ⊆ K, so cK = K for all c,
i.e., kerχ = K = C.

In our situation, Z CG, so by Cli�ord, Z ⊂ ker(IE ↑G), so in particular Z ⊂ kerχ. We claim that χ 6= I: note

〈IG ↓C +Ξ ↓C , I〉 =
〈
IE ↑G↓C , I

〉
=

〈
⊕E\G/CI ↓↑, I

〉
butE\G/C = E · 1 · C

= 1

So 〈ξ ↓C , I〉 = 0, so χ 6= I. Hence χ is not invariant.

Lemma 3.13 (Banashewski). Let S be a �nite set, and R be a rng (i.e., a ring which does not necessarily contain
1) of functions f : S → Z. Then either R 3 IS or there exists s ∈ S and a prime p such that p|f(x)∀x ∈ R.

Proof. Suppose there is no such x, p. Then for any x ∈ S, gcd {f(x)|f ∈ R} = 1. So there exists x ∈ R such that
fx(x) = 1. Consider

∏
x∈S(fx − IS) ≡ 0 on S. So expanding the product gives an expression for IS as a linear

combination of products of fx ∈ R.

De�nition 3.14. We de�ne PH(G) =
{∑

H∈H aHIH ↑G |aH ∈ Z
}
.

Lemma 3.15. Suppose that H is closed under taking subgroups, i.e., H ∈ H implies U ∈ H for all U ≤ H. Then
PH(G) is a rng.

Proof. Either use

IH ↑G ·IH ↑G =
(
IH · IH ↑G↓H

)
↑G

=
∑

H\G/H′
I ↓H∩gH′g−1↑G∈ PH(G)

or note that if v1, . . . , vn is a permutation basis of V , w1, . . . , wm is a permutation basis of W , then vi ⊗ wj is a
permutation basis. and the point stabiliser of vi ⊗wj = Stab(vi) ∩ Stab(wj) ∈ H if one of the other stabilisers was
in H.
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We want to use Banaschewski's lemma to conclude that if H = {quasi-elementary subgroups}, then IG ∈ PH(G).

Lemma 3.16. For any prime p, any x ∈ G, there exists a quasi-elementary H ≤ G such that p- IH ↑G (x).

Proof. For x ∈ G, write 〈x〉 = Cp × Cp′ , where Cp is a p-group and C = Cp′ has order not divisible by p. Let
N = NG(C), let P be a p-Sylow group in N containing Cp. Set H = C o P .
Claim. p - IH ↑G (x)

Indeed,

IH ↑G (x) = #
{
gH ∈ G/H

∣∣xgH = gH
}

= #
{
gH ∈ G/H

∣∣g−1xg ∈ H
}
.

If g−1xg ∈ H, then g−1Cg = C. So

IH ↑G (x) = #
{
gH ∈ G/H

∣∣g−1Cg = C and g−1xg ∈ H
}

= #
{
gH ∈ N/H

∣∣g−1xg ∈ H
}
.

The action of 〈x〉 on N/H factors through 〈x〉 /C, i.e., C acts trivially on N/H: indeed C C N and C ≤ H, so
c · nH = n · c′ ·H = nH. But 〈x〉 /C is a p-group, so the number of elements of N/H that are not �xed by 〈x〉 /C
is a multiple of p. So

IH ↑G (x) ≡ |N/H| mod p

6≡ 0 mod p

because H/C is a p-Sylow of N/C.

Remark. There is a counterpart to Brauer's theorem, which is called �Brauer's characterisation of Characters�:

Theorem 3.17. A class function φ of G is a Z-linear combination of characters (φ ∈ R(G)) if and only if φ ↓H∈ R(G)
for all H ≤ G elementary subgroups.

Idea of Proof. De�ne RH(G) = {class functionsφ of G|φ ↓H∈ R(H)∀H ∈ H}. Note that IH(G) ⊂ RH(G) is an
ideal (exercise). But I ∈ IH(G), so IH(G) = RH(G).

For consequences, see Isaacs, chapter on Brauer's Theorem

4 Rationality questions, Schur indices.

De�nition 4.1. Let M be a K[G]-module, F ⊂ K a sub�eld. We say that M is realisable over F if there exists
an F [G]-module MF such that MF ⊗F K ∼= M .

In the language of representations: In the language of representations, this means that we can �nd a K-basis
on M such that all g ∈ G are represented by matrices with entries in F with respect to this basis.

Example. Consider G = S3. We have ρ : (123) 7→
(
e2πi/3 0

0 e4πi/3

)
, (12) 7→

(
0 1
1 0

)
. But we can change

this basis in such a way that ρ becomes (123) 7→
(

0 −1
1 −1

)
, (12) 7→

(
0 1
1 0

)
. So the K[G]-representation ρ

(K = Q(e2πi/3) = Q(
√
−3)) is realisable over Q.

� In fact, ρ is induced from χ : (123) 7→ e2πi/3, 〈(123)〉 ∼= C3 C S3. This χ is de�nitely not realisable over Q,
since GL1(K) is commutative, so change of basis doesn't do anything to χ((123)).

More generally, the character of a representation is independent of basis, so if ρ realisable over F , then we
need F ⊇ Q(χρ), where Q(χρ) is the �eld generated over Q by χρ(g) for all g ∈ G.
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Let G = Q8 =
〈
x, y|x4 = 1, x2 = y2, yxy−1 = x−1

〉
. Let ρ : x 7→

(
i 0
0 −i

)
, y 7→

(
0 1
−1 0

)
, this is a K[G]-

representation where K = Q(i). We already know that ρ can not be de�ned over R, so it is certainly not realisable
over Q. But we have exactly two copies of ρ inside C[G], which is realisable over Q. The other summands in C[G]
are 1-dimensional, all realisable over Q. So Q[G]/(all 1-dimensional subrepresentations) ∼= ρ⊕2. So ρ⊕2 is realisable
over Q.

De�nition 4.2. Let K ⊂ C, ρ an irreducible (complex) representation of G, the Schur index, mK(ρ), of ρ over K is
the the smallest integer m such that there exists an irreducible K[G]-representation τ with 〈τ, ρ〉 = m. Equivalently,
it's the unique integer m such that m| 〈ρ, τ〉 for all K[G]-module τ .

Example. We have:

� mQ(standard representation of Q8) = 2

� mQ(standard representation of S3) = 1.

� mQ(χ : (123) 7→ e2πi/3) = 1, although χ is not realisable over Q. (Note that χ+ χ is de�nable over Q)

De�nition 4.3. A representation over K is said to be absolutely irreducible if it is irreducible over C.
A �eld K ⊂ C is called a splitting �eld of G if every irreducible K[G]-representation is absolutely irreducible,

equivalently if every complex G-representation is realisable over K.

Lemma 4.4. Let χ be an irreducible character of G, F ⊂ C such that F (χ) = F , i.e., χ takes values in F . Let τ
be an irreducible F [G]-representations such that 〈τ, χ〉 6= 0. Then τ ⊗ C = mF (χ) · χ.

Proof. The element eχ = 1
|G|
∑
g∈G χ(g)g−1 ∈ F [G]. So eχ · τ = τ . But for any complex representation V ,

eχ · V ∼= χ⊕n, for some n. But this n has to be mF (χ).

If χρ is a character, why is χσρ a character for all σ ∈ Gal(Q(χρ)/Q) = Gal(Q/Q)/Gal(Q/Q(χρ))? We have that

if ρ : G → GLn(Q) is de�ned by g 7→ (aij), then ρ
σ : G → GLn(Q) is de�ned by g 7→ (aσij). Now if σ �xes Q(χρ),

then by de�nition χρσ = χρ. Hence ρ
σ ∼= ρ.

Theorem 4.5. Let K ⊂ C be arbitrary, ρ ∈ Irr(G), τ a simple K[G]-module such that 〈τ, ρ〉 6= 0. Then

τ ⊗ C = mK(ρ)
∑

σ∈Gal(K(χρ)/K)

ρσ.

Proof. Let F = K(χρ), let ψ be a simple F [G]-module such that 〈τ, ψ〉 6= 0. So by the lemma, ψ ⊗ C = mF (ρ) · ρ.
Let σ ∈ Gal(F/K). Since τσ = τ (as τ is a K[G]-module),

〈τ, ψσ〉 = 〈τσ, ψσ〉

=
1

|G|
∑
g∈G

χστχ
σ
ψ

=

 1

|G|
∑
g∈G

χτχψ

σ

= 〈τ, ψ〉σ

= 〈τ, ψ〉 .

So each Galois conjugate occurs with equal multiplicity inside τ , i.e., τ ⊗F = α
∑
ψσ+stu� that is not Galois con-

jugate to ψ. So τ ⊗C = αmF (ρ)
∑
σ∈Gal(F/K) ρ

σ+stu� that has nothing to do with ρ. In particular mF (ρ)|mK(ρ).

We just need to prove now that mF (ρ)
∑
ρσ is realisable over K.

Let V be the F -vector space on which ψ is represented. Regarding F as a |Gal(F/K)|-dimensional K-vector
space, we can think of V as a |Gal(F/K)| · dimF V -dimensional vector space over K. Inspecting the action of G on
V with respect to this K-basis, one can see that V ⊗K F =

∑
σ∈Gal(F/K) ψ

σ, which is realisable over K.

27



Example. Let G = C7 o C9, where C9 acts on C7 through C9/C3
∼= C3. Let χ ∈ Irr(C7) be faithful, extended

trivially to Sχ ∼= C3. Let τ be a faithful character of C3
∼= C7 × C3/C7, ρ = (χ⊗ τ) ↑G∈ Irr(G). The �eld Q(χρ)

is the degree 4 sub�eld of Q(ζ21), call it F . In particular,
∑
σ∈Gal(F/Q) ρ

σ takes values in Q. But mQ(ρ) = 3. So∑
σ∈Gal(F/Q) ρ

σ is not a character of a Q[G]-module, but 3 times it is (and it's a simple Q[G]-module).

Corollary 4.6. We have mK(ρ) = mK(χρ)(ρ).

Theorem 4.7. Let e = exponent(G) = min{n ∈ N|gn = id∀g ∈ G}. Let F = Q(ζe). Then F is a splitting �eld for
G.

Proof. Let χ ∈ Irr(G). Write

χ =
∑

H≤G elem,λ∈Irr(H) 1−dim

aH,λλH ↑G

with aH,λ ∈ Z. Clearly λ can be realised over F , therefore so can λ ↑G. But mF (χ)| 〈χ, everyF [G]−module〉, so
mF (χ)| 〈RHS, χ〉 = 〈χ, χ〉 = 1. So mF (χ) = 1, so χ is realisable over F .

Remark.

� Schur indices can be arbitrarily large: let p, q be primes, q ≡ 1 mod p and q 6≡ 1 mod p2. Let G = Cq oCp2
where Cp2 acts on Cq through Cp2/Cp ∼= Cp. Then using the same notation as in the above example χ⊗ψ is
a faithful irreducible character of Cq × Cp. Now let p = (χ⊗ ψ) ↑G, then mQ(ρ) = p (this claim can not be
proven with techniques learn in this course)

� Schur indices don't behave very well under induction, restriction and tensor products (in part, if G = H ×K,
χ ∈ Irr(H), ψ ∈ Irr(K), mQ(χ⊗ ψ) 6= mQ(χ) ·mQ(ψ)).

� Schur indices are hard to calculate. There is an algorithm, based on another induction theorem (Witt -
Berman). But it's di�cult to understand Schur indices in natural families.

� There is no unique minimal �eld of de�nition for ρ ∈ Irr(G).

Example. Let G = Q8 and ρ be the standard representation. We know that ρ is not realisable over Q. But
it is realisable over Q(i). In fact ρ is realisable over K if and only if −1 = x2 + y2 for some x, y ∈ K. In
particular, ρ is realisable in in�nitely many quadratic �elds.

� Note: mQ(ρ) = 1 if and only if
∑
σ∈Gal(Q(χρ)/Q) ρ

σ is realisable over Q, if and only if ρ is realisable over Q(χρ).

4.1 Schur indices and Artin - Wedderburn

Recall: K[G] ∼= ⊕iMni(Di) with ni ∈ N, and Di are division algebras over K. These Di are isomorphic to EndG(Ai)
as Ai ranges over simple non-isomorphic K[G]-modules. Each Di contains K in its centre, Z = Z(Di). Also Z is a
�eld, but Di can also contain bigger �elds.

Example. Let D = H = 〈1, i, j, k〉R. Note that Z ∼= R = 〈1〉, but 〈1, i〉R ∼= C.

We will show the following theorem:

Theorem 4.8. If χ ∈ Irr(G), K = Q(χ), M a simple K[G]-module with 〈M,χ〉 6= 0, i.e., M ⊗ C = mK(χ) · χ,
and let D = EndK[G](M). If F ⊂ D is a maximal sub�eld of D, then χ can be realised by a representation over F .
Moreover [F : K] = mK(χ), and χ cannot be realised over any smaller degree extension.

Lemma 4.9. Let ρ : G→ GLn(F ) be an irreducible representation over F . Then the following are equivalent:

1. ρ is absolutely irreducible

2. The centraliser of ρ(G) in Mn(F ) is just scalar matrices.
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Proof. Note that the centraliser of ρ(G) in Mn(F ) is EndG(ρ) ∼= F .

1. ⇒2. Suppose that ρ is absolutely irreducible, let M ∈ Mn(F ) commute with ρ(g) for all g ∈ G. Let L/F be
an extension in whichM has an eigenvalue, λ. ThenM−λI commutes with ρ(g) for all g ∈ G. But ρ⊗L
is still simple, so Schur's lemma impliesM −λI is either 0 or invertible. But, its singular, soM −λI = 0,
so M = λI.

2. ⇒1. Suppose that ρ is not absolutely irreducible. Let L/F be a �nite Galois extension of F such that

ρ ⊗ L ∼= ρ1 ⊕ ρ2, so with respect to a suitable L-basis, ρ →
(
∗
∗

)
. Let X be the change of

basis matrix form the original basis to this one. Any matrix of the form Aλ1λ2
=

(
λ1Id1

λ2Id2

)
commutes with ρ(G), note λ1, λ2 ∈ L. So XAλ1,λ2

X−1 commutes with im(ρ → Mn(F )). Also A =∑
σ∈Gal(L/F )

(
XAλ1λ2

X−1
)σ ∈ Mn(F ) commutes with im(ρ → Mn(F )). Exercise: by varying λ1, λ2,

we can arrange A to not be scalar.

Proof of Theorem 4.8. Since F ⊂ EndG[K](M), M can be thought as a vector space over F , and this F -commutes
with the G-action, so M becomes an F [G]-module. But EndF [G](M) is the centraliser of F [G] in D. But by the
maximality of F , EndF [G](M) ∼= F , so M is an absolutely simple F [G]-module. So M ⊗F C has character χ.

It remains to compute [F : K]. Regarding F as a K-vector space, M becomes a K[G]-module of K-dimension
equal to dimF (M) · [F : K]. But also, this dimension is mK(χ) · χ(1); on the other hand, M is an absolutely
simple F [G]-module, so dimF (M) = χ(1). So mK(χ) = [F : K]. Also, if L/K is a degree d-extension such that χ
is realised by a simple L[G]-module M ′ then regarding L as a K-vector space, M ′ becomes a K[G]-module with
dimK(M ′) = dimL(M ′) · [L : K] = [L : K] · χ(1). So by de�nition, mK(χ)|[L : K].

Remark.

� There is a local to global theory of Schur indices: If D is a division algebra over a number �eld K, one de�nes
mp(D) = m(D ⊗Kp) for all place (�nite and in�nite) p of K, and m(D) = lcm(mp(D)).

� If p is an odd prime, and G is a p-group, then mQ(χ) = 1 for all χ ∈ Irr(G).

If p = 2 and G is a 2-group, then mQ(χ) = 1 or 2, and it's 1 if and only if χ is realisable over R.

� m(χ)2
∣∣ |G|

For more details see Curtis - Reiner, Vol II.

29



5 Examples

1. Let G = C2 o C3 = (C2 × C2 × C2)o C3. The conjugacy classes:

� 1 = ((0, 0, 0), id)

� ((1, 0, 0), id), this has 3 elements

� ((1, 1, 0), id), this has 3 elements

� ((1, 1, 1), id), this has 1 element

� ((0, 0, 0), (123)), this has 4 elements

� ((0, 0, 0), (132)), this has 4 elements

� ((1, 0, 0), (123)), this has 4 elements

� ((1, 0, 0), (132)), this has 4 elements

All irreducible characters are (χ ⊗ ψ) ↑G, with χ ∈ Irr(C3
2 ) and ψ ∈ Irr(StabC3(χ)). Let ε denote the sign

representation.

� χ = I. Then Stab(χ) = C3, so we get 3 irreducible characters corresponding to the irreducible characters
of C3.

� χ = (ε, I, I), then Stab(χ) = {1}. Hence χ ↑G is irreducible.

� χ = (ε, ε, I), then Stab(χ) = {1}. Hence χ ↑G is irreducible.

� χ = (ε, ε, ε), then Stab(χ) = C3. So χ⊗ ψ is irreducible for ψ ∈ Irr(C3).

1 ((
1,

1,
1
),

id
)

((
1,

0,
0)
,i

d
)

((
1
,1
,0

),
id

)

((
0,

0,
0)
,(

12
3)

)

((
0,

0,
0)
,(

13
2)

)

((
1,

0
,0

),
(1

23
))

((
1,

0
,0

),
(1

32
))

χ1 = I 1 1 1 1 1 1 1 1

χ2 1 1 1 1 e2πi/3 e4πi/3 e2πi/3 e4πi/3

χ3 1 1 1 1 e4πi/3 e2πi/3 e4πi/3 e2πi/3

χ4 1 −1 −1 1 1 1 −1 −1

χ5 1 −1 −1 1 e2πi/3 e4πi/3 −e2πi/3 −e4πi/3

χ6 1 −1 −1 1 e4πi/3 e2πi/3 −e4πi/3 −e2πi/3

χ7 3 −3 1 −1 0 0 0 0
χ8 3 3 −1 −1 0 0 0 0

We see that s2(χ2,3,5,6) = 0, s2(I) = 1, s2(χ4) = 1, and s2(χ7,8) = 1 because the corresponding representations
are inductions of rational representations.

So for example, the number of square roots of

((1, 1, 1), id) =
∑
χ∈Irr

s2(χ) · χ((1, 1, 1), id)

= 1− 1− 3 + 3 = 0.

Indeed, there are no elements of order 4.

We could explicate Brauer's induction theorem, e.g., χ7 = Indc32 . But for χ1...6, need to induce various
characters of elementary subgroups and look for linear relationships.
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2. Let G = PSL2(F7) = SL2(F7)/ {± id}. This is a simple group of order 168. This has conjugacy classes are

id,

(
5 0
0 3

)
,

(
0 1
−1 0

)
,

(
4 3
2 0

)
,

(
1 1
0 1

)
,

(
5 5
1 4

)
. Let B =

〈(
5 0
0 3

)
,

(
1 1
0 1

)〉
∼= C7 oC3. Using Machke,

you can check that if χ is a one-dimensional non-trivial character of B, then χ ↑G is irreducible (8-dimensional).
(To compute

〈
χ ↑G, χ ↑G

〉
=
〈
χ, χ ↑G↓B

〉
=
〈
χ,⊕B\G/B gχ ↓B∩ gB

〉
).

G acts doubly-transitively on lines in (F7)
2
. (SL2 acts doubly transitively, because, the line 〈(1, 0)〉 is stabilised

by

(
1 1
0 1

)
, which permutes the lines 〈(a, 1)〉; and ± id acts trivially). Hence the (permutation character −I)

is irreducible. (7-dimensional).

Also, PSL2(F7) ∼= GL3(F2) ∼= PSL3(F2), which acts on non-zero vectors in (F2)
3
. So we get an irreducible

7− 1 = 6-dimensional character. By |G| =
∑

(dimχ)
2
, there are 2 3-dimensional irreducible characters.

These can be obtained by column orthogonality. It then turns out that s2(3-dimensionals) = 0. The 7-
dimensional character is the character of a Q[G]-module/Q[G]-submodule, so the representation is de�ned
over Q. Similarly, the 6-dimensional one. The 8-dimensional is, a priory, de�ned over Q

(√
−3
)

= Q
(
e2πi/3

)
.

But on the other hand, it is real-valued, and s2(χ ↑G) = 1 (check, but only if you feel adventurous). From
general theory of Schur indices (beyond the scope of this course), mQ(χ ↑G) = 1.

3. Let G = S7. The conjugacy classes are: id, (12), (12)(34), (12)(34)(56), . . . (there are 15 of them).

Obvious Characters: I, sign, χ = (standard permutation character −I) which is 6 dimensional, and χ⊗ sign.

Consider χ⊗2 = S2χ ⊕ ∧2χ, note that S2χ = I + . . . , hence it is still reducible. We have ∧2χ(g) =
1
2

(
χ(g)2 − χ(g2)

)
, so we can explicitly work out its values, and hence can calculate that

〈
∧2χ,∧2χ

〉
= 1,

so ∧2χ is irreducible. This also gives us ∧2χ⊗ sign for free.

It turns out that ∧kχ(g) is (−1)k times the coe�cient of xk in det(ρ(g)−x · id). So again, we can explicatively
calculate ∧3χ(g) for all g, and �nd that ∧3χ is irreducible.

4. Generalised quaternions: Q2n+2 =
〈
c, x|c2n = x2, xcx−1 = c−1

〉
(so ord(c) = 2n+1, ord(x) = 4). Hence

|Q2n+2 | = 2n+2.

Let n = 2, so consider G = Q24 : We have the conjugacy classes:

Representative Size Order

id 1 1
x2 1 2
x 4 4
c2 2 4
cx 4 4
c 2 8
c3 2 8

Let G′ =
〈
c2
〉
, G/G′ ∼= C2 × C2, so we get 4 1-dimensional characters.

id x2 x c2 cx c c3

I 1 1 1 1 1 1 1
χ1 1 1 −1 1 1 −1 1
χ2 1 1 −1 1 −1 1 1
χ3 1 1 1 1 −1 −1 −1
τ1 2 2 0 −2 0 0 0

τ2 2 −2 0 0 0
√

2 −
√

2

τ3 2 −2 0 0 0 −
√

2
√

2

We then calculate an induced character from a non-abelian

quotient of order 8 (hence either Q8 or D8, but they have the same character table)
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We now compute the Frobenius - Schur indicator: s2(χi) = 1, s2(τ1) = 1
16

∑
g∈G τ1(g2) = 1

16 (2 + 2 + 2 · 2 + 4 · 2 + . . . ) >

0, hence s2(τ1) = 1. This actually shows that G/
〈
c4
〉 ∼= D8 (and not Q8), and τ1 is realisable over Q. Next

we compute s2(τ2) = s2(τ3) = −1. So τ2, τ3 are nor realisable over R (in particular not over Q
(√

2
)
). In

particular, mQ(τ2,3) > 1. Let H = 〈c〉 ∼= C8,

〈
τ2 ↓H ,

(
c 7→ e2πi/8

)〉
H

=
1

|H|

7∑
k=0

τ2(ck) · e2πik/8

= 1

=
〈
τ2,
(
c 7→ e2πi/8

)
↑G
〉
G
.

Hence τ2 =
(
c 7→ e2πi/8

)
↑G. So we can de�ne τ2 over Q

(
e2πi/8

)
. Note that [Q

(
e2πi/8

)
: Q

(√
2
)
] = 2, so

mQ(τ2) = 2. Similarly for τ3. This last calculation also veri�es Brauer's induction theorem for τ2 and τ3.

Let us verify Artin's Induction:

� The cyclic subgroups are: 1, Z =
〈
x2
〉
, C1 =

〈
c2
〉
, C2 = 〈x〉 , C3 = 〈cx〉 , C4 = 〈c〉.

� So we get I{1} ↑G= 1 + χ1 + χ2 + χ3 + χ4 + 2 · (τ1 + τ2 + τ3)

� IZ ↑G= 1 + χ1 + χ2 + χ3 + 2τ1

� etc
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6 Symmetric Groups

Motivation:

1. Artin - Wedderburn: C[G] ∼= ⊕ti=1Mni(C). It's clear what the simple modules of the RHS look like (they are,
as submodules of the regular module, columns). If ei = (0, . . . , 0, Ini , 0, . . . , 0) ∈ ⊕Mni(C), then ei · ⊕Mni(C)

is a direct sum of ni mutually isomorphic simple modules. By �nding that ei = χi(1)
|G|

∑
g∈G χi(g

−1)g ∈ C[G],

one �nds the �χi�-isotypical block Mni(C) as a submodule of C[G]. For example:

� I =
〈∑

g∈G g
〉
≤ C[G].

� G = S3, χ the standard representation, so eχ = 2
6 (2 id−(123)− (132)) ∈ C[S3], and eχC[G] is 4-

dimensional.

But if we knew what fi =


1

0
. . .

0

 ∈ Mni(C) looks like as an element of C[G], then C[G]fi would

give us a simple summand.

2. We know that the number of conjugacy classes of elements of G is the same as the number of isomorphism
classes of simple C[G]-modules. But there is, in general, no canonical bijection between these two sets.

6.1 Young Diagrams

Conjugacy classes of Sn ↔cycle types ↔ partitions λ = (λ1, . . . , λk) of n such that λi ∈ N, λ1 ≥ λ2 ≥ · · · ≥ λk and∑
λi = n.
The associated Young diagram is

λ1 boxes
λ2 boxes

...
...

...
λk boxes

For example

which corresponds to 5 + 4 + 4 + 1 + 1 = 15.

The conjugate partition is obtained by re�ecting the Young diagram in the \ diagonal. A Young tableau is
a numbering of the boxes of a Young Diagram by numbers from 1 to n. Sn acts on the Young tableau of any
given Young diagram. Fix any tableau of the Young diagram corresponding to λ (e.g., the obvious one), de�ne
Pλ = {g ∈ Sn|g fixes each row of the tableau}.

For example

λ =

1 2 3
4 5
6
7

, then Pλ = 〈(123), (45), (12)〉 ∼= S3 × S2 × S1 × S1.

We also de�ne Qλ = {g ∈ Sn|g fixes each columns of the tableau}. De�ne:

� aλ =
∑
g∈Pλ g ∈ C[Sn]

� bλ =
∑
g∈Qλ sgn(g) · g ∈ C[Sn],

� cλ = aλ · bλ. This is the Young symmetriser corresponding to λ.

33



Example. Let G = S3 and λ = (2, 1), i.e.,
1 2
3

. Then Pλ = 〈(12)〉, Qλ = 〈(13)〉, aλ = id +(12), bλ = id−(13)

and hence cλ = id +(12)− (13)− (123).

Theorem 6.1. Vλ := C[G] · cλ is a simple Sn-module, only depending on λ up to isomorphism. Vλ = Vµ if and
only λ = µ, and all simple modules are isomorphic to some Vλ.

Reference for the proof: Fulton, Harris: Representation Theory: a �rst course.

Example. Continuing from above, G = S3 and λ = (2, 1), we get C[G]cλ = 〈cλ, (13) · cλ〉 := 〈v1, v2〉. Then see
how S3 acts on v1, v2:

� (13)v1 = v2, (13)v2 = v1

� (123)v1 = (123) + (23)− (12)− (132) = −v1 − v2, (123)v2 = v1.

Example. Let G = Sn:

� Consider λ = (n). Then we have Pλ = Sn, Qλ = {1}, aλ =
∑
g∈Sn g = cλ. So Vλ ∼= I.

� Consider λ = (1, . . . , 1). Then we have Pλ = {1} , Qλ = Sn, bλ =
∑
g∈Sn sgn(g) · g = cλ. So Vλ ∼= sign.

� Consider λ = (n − 1, 1). Then we have Pλ = Sn−1 = stabSn(n) ≤ Sn, Qλ = 〈(1n)〉. So aλ =
∑
g∈Stab(n) g,

bλ = id−(1n), hence cλ =
∑
g∈Stab(n) g −

∑
g∈Stab(n)·(1n) g. After some work, you should �nd that Vλ is the

standard representation of Sn ((n− 1)-dimensional)

� More generally: λ = (n− i, 1, . . . , 1), then Vλ = ∧iV(n−1,1).

6.2 Frobenius's Formula

Let χλ be the character of Vλ. Let g ∈ Sn, i1 = number of 1-cycles in g, i2 = number of 2-cycles of g, . . . , in =
number of n-cycles of g. As usual λ = (λ1, . . . , λk). Consider the following symmetric function in x1, . . . , xk:

� Pj(x) = xj1 + · · ·+ xjk, 1 ≤ j ≤ n

� ∆(x) =
∏
i<j(xi − xj)

Set l1 = λ1 + (k − 1), l2 = λ2 + (k − 2), . . . , lk = λk.

Theorem 6.2 (Frobenius). χλ(g) is the coe�cient of xl11 . . . x
lk
k in

∆(x)

n∏
j=1

Pj(x)
ij .

Example. Let G = S3, λ = (2, 1).

� g = (12), then we have i1 = 1, i2 = 1, i3 = 0, l1 = 2 + 2− 1 = 3, l2 = 1 + 2− 2 = 1. We have ∆(x) = x1 − x2,
so χλ(g) is the coe�cient of x3

1x2 in (x1 − x2)(x1 + x2)1(x2
1 + x2

2)1 = (x4
1 − x4

2). So χλ(g) = 0.

� g = (123), then we have i1 = 0, i2 = 0, i3 = 1, l1 = 3, l2 = 1. So χλ(g) is the coe�cient of x3
1x2 in

(x1 − x2)(x3
1 + x3

2) = x4
1 + x1x

3
2 − x2x

3
1 − x4

2. So χλ(g) = −1.

Note that with manipulation, we can �nd that

dimχλ =
n!

l1! . . . lk!
·
∏
i<j

(l1 − lj).

Another dimension formula: De�ne the look length of a box in a Young Diagram is the number of boxes to the
right and underneath it (counting the box itself once). E.g.,

34



7 4 3 1
5 2 1
2
1

Theorem 6.3.

dimχλ =
n!∏

hook length inλ

E.g., with the example above, we �nd that χλ = 9!
2·2·3·4·5·7 = 6·8·9

2 = 216.

Remark. Since cλ ∈ Q[G], all simple C[Sn]-modules are realisable over Q.
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7 Revision Quiz Session

True or False

� If H ≤ G, χ ∈ Irr(G), then all irreducible summands of χ ↓H have the same dimension.

No: Let H = S3, we are looking for G ≥ S3 and χ ∈ Irr(G), such that
〈
χ, stand ↑G

〉
= 〈χ ↓S3 , stand〉 6= 0 6=

〈χ ↓S3
, a 1−dimensional char〉 =

〈
χ, 1−dim ↑G

〉
. Let ρ be the standard representation and τ the 1-dimensional

representation, then we want
〈
ρ ↑G, τ ↑G

〉
6= 0. We have〈

ρ ↑G, τ ↑G
〉

=
〈
ρ ↑G↓S3 , τ

〉
=

∑
S3\G/S3

〈
gρ ↓S3∩ gS3

↑S3 , τ
〉

If G = S6, S3 = Stab(4, 5, 6), there exists a g ∈ G such that gS3 = Stab(1, 2, 3), so S3 ∩ gS3 = {1}, so
ρ ↓S3∩ gS3= I+ I.

� If H = N CG, χ ∈ Irr(G), then all irreducible summand of χ ↓H have the same dimension.

Yes: (Cli�ord).

� If H ≤ G, χ ∈ Irr(H), then all irreducible summand of χ ↑G have the same dimension.

No: Consider the regular representation with any groups.

� If H = N CG, χ ∈ Irr(H), then all irreducible summand of χ ↑G have the same dimension.

No: by the above reasoning.

� If χ is realisable over K, then so are all irreducible summands of χ ↓H .
No: Let G = S3, H = C3, χ be the standard representation.

� If χ is realisable over K, then so are all irreducible summands of χ ↑G.
No: Take the regular representation.

� If χH ↑G is realisable over K, then so is χ.

No: Let χ ∈ Irr(C3) be non-trivial and G = S3.

� If F/K is an extension of �elds, then mF (χ) ≤ mK(χ).

Yes: By de�nition of m(χ). (Also using Tower laws we get mF (χ)
∣∣mK(χ))

Recall: If F/K is a �nite �eld extension, M an F [G]-module, by thinking of F as a K-vector space, we can think
of M as a K[G]-module of K-dimension equal to dimF (M) · [F : K].

A completely di�erent instance of the same �philosophy�: Let C be a curve over Q, e.g., C : y2 = x3 + x.
We can think of this as a curve over Q[i]. So now, write x = u + iv and y = w + iz, with u, v, w, z ∈ Q. So
C : (w+ iz)2 = (u+ iv)3 + (u+ iv). By equating real and imaginary parts, we get two equations in four unknowns
over Q. So we now have a surface over Q.
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