Further Representation Theory

Alex Bartel
Notes by Florian Bouyer
Copyright (C) Bouyer 2014.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license can be found at http://www.gnu.org/licenses/fdl.html

Contents

0 Revision 3
0.1 Representations 3
0.2 Modules 4
0.3 Characters 6
1 Mackey's Formula and Applications 9
1.1 Application I: principal series representation of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ 9
1.2 Application II: Semi-direct products by Abelian groups 11
1.3 Application III: Clifford Theory (induction from and restriction to normal subgroups) 12
1.4 Application IV: Frobenius groups 13
2 Tensor Products, Frobenius - Schur indicators and much more 15
3 Permutation representation, monomial representation, induction theorems 22
4 Rationality questions, Schur indices. 26
4.1 Schur indices and Artin - Wedderburn 28
5 Examples 30
6 Symmetric Groups 33
6.1 Young Diagrams 33
6.2 Frobenius's Formula 34
7 Revision Quiz Session 36

Aims:

- More character theory
- A bridge between representations and modules
- Representations of finite groups over fields (of characteristic 0) that are not algebraically closed.

Applications to Representation Theory

Theorem (Burnside). If $|G|=p^{\alpha} q^{\beta}$ where p, q are primes, then G is soluble.
Theorem (Frobenius). If $H \leq G$ is such that $g H^{-1} \cap H=\{1\} \forall g \in G \backslash H$. Then $\exists N \triangleleft G$ such that $N \cap H=\{1\}$ and $N H=G$, i.e., $G=N \rtimes H$.

Idea of Proof: Define $N=G \backslash\left(\cup_{g \in G} g H g^{-1} \cup\{1\}\right)$. We then use representation theory to prove that N is a normal subgroup of G.

Theorem. If $G=S_{n}, 1 \in G$ has the most square roots among all $g \in S_{n}$. More generally, can express the square root counting function through characters.

0 Revision

0.1 Representations

Let G be a finite group.
Definition 0.1. A representation of G over a field K is a K-vector space V together with a group homomorphism $\rho: G \rightarrow \mathrm{GL}(V):=\{$ invertible linear maps $V \rightarrow V\}$. Suppose $\operatorname{dim} V=n$ and v_{1}, \ldots, v_{n} s a basis of V, such a choice identifies $\mathrm{GL}(V)$ with $\mathrm{GL}_{n}(K)=\{$ invertible $n \times n$ matrices over $K\}$.

If $\left(V_{1}, \rho_{1}\right),\left(V_{2}, \rho_{2}\right)$ are two representations of G over K, a homomorphism $\phi:\left(V_{1}, \rho_{1}\right) \rightarrow\left(V_{2}, \rho_{2}\right)$ is a vector space homomorphism $\phi: V_{1} \rightarrow V_{2}$ such that for all $v \in V_{1}, g \in G \phi\left(\rho_{1}(g) \cdot v\right)=\rho_{2}(g) \cdot \phi(v)$.

Notation.

- Sometimes just say " V is a representation" when the map ρ is understood.
- Write ${ }^{g} v$ or $g \cdot v$ instead of $\rho(g) \cdot v$.

Definition 0.2. If V is a representation, a subrepresentation is a a subvector space $W \subset V$ such that $G \cdot W=W$. We denote it $W \leq V$.

We have the obvious notion of V / W as a representation and the usual isomorphism theorems. (In particular kernels and images of homomorphism are subrepresentations.)

Example. Let $G=C_{2}=\langle g\rangle$, let V be of dimension of 2, with basis v_{1}, v_{2}. We could have $\rho: g \mapsto\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. $W_{1}=\left\langle\binom{ 1}{1}\right\rangle$ is a subrepresentation (one can easily see that it is invariant under ρ). The other subrepresentation is $W_{2}=\left\langle\binom{ 1}{-1}\right\rangle$.

If $W_{1}, W_{2} \leq V$ we say $V=W_{1} \oplus W_{2}$ if this is true on the level of vector spaces.
Definition 0.3. A representation is indecomposible if it's not a direct sum of proper subrepresentation.
A representation is irreducible if it is non-zero and has no proper non-zero subrepresentation.
Example. Let $G=C_{p}=\langle g\rangle$ (where p is a prime). Let $K=\mathbb{F}_{p}, V$ is 2 dimensional. Let the representation be $G \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$, defined by $g \mapsto\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. This is not irreducible (i.e, reducible) since $W=\left\langle\binom{ 1}{0}\right\rangle$ is invariant under G (and $W \leq V$). But V is indecomposible, since there is no other proper subrepresentation.

Example.

- Given any group G and any field $K, G \rightarrow \mathrm{GL}_{1}(K)=K^{*}$ defined by $g \mapsto 1$. This is called the trivial representation denoted \mathbb{I}.
- - Given any group G, X a finite G-set (i.e., G acts on X by permutations) with $|X|=n$. Take an n dimensional vectors space V over any field K, with a basis $\left\{v_{x}: x \in X\right\}$. Let G act on V by $g \cdot v_{x}=v_{g(x)}$. This representation is denoted by $K[X]$.
- Important special case: $X=G, G$ acts by left multiplication. The resulting representation, $K[G]$, is called the regular representation.

Schur's Lemma. Let G be a group, V_{1}, V_{2} be two irreducible representations. Any homomorphism $V_{1} \rightarrow V_{2}$ is either 0 , or an isomorphism.

Lemma 0.4. Any irreducible representation V of G over K is isomorphic to a quotient of the regular representation $K[G]$.

Proof. Take any $v \in V \backslash\{0\}$, define a map $K[G] \rightarrow V$ by $g \mapsto g \cdot v$. This is a homomorphism of representations, it is not the zero map, so it is onto. So we are done by the first isomorphism theorem.

Theorem 0.5 (Maschke). Suppose charK $\backslash|G|$. Given any $W_{1} \leq V$, representations of G / K. Then there exists a representation $W_{2} \leq V$ such that $V=W_{1} \oplus W_{2}$.

Corollary 0.6. Every irreducible representation V (in the case char $K \nmid|G|$) is isomorphic to a subrepresentation of $K[G]$.

0.2 Modules

Definition 0.7. An algebra A over a field K is a ring (with 1) that is also a K-vector space, such that $(x \cdot \alpha) \cdot(y \cdot \beta)=$ $(x y) \cdot(\alpha \cdot \beta)$ for all $x, y \in K, \alpha, \beta \in A$.

Equivalently, A is a ring with $K \subset Z(A)$.

Example.

- \mathbb{C} is a \mathbb{C}-algebra, but it is also an \mathbb{R}-algebra
- If A is any K-algebra, then the ring of $n \times n$ matrices over A, denoted $M_{n}(A)$, is also a K-algebra.
- $\mathbb{H}=\left\langle\mathbb{R} \cdot 1+\mathbb{R} \cdot \underline{i}+\mathbb{R} \cdot \underline{j}+\mathbb{R} \cdot \underline{k} \mid i j=k, j k=i, k i=j, i j=-k, k j=-i, i k=-j, i^{2}=j^{2}=k^{2}=-1\right\rangle$ is an \mathbb{R}-algebra.
- If G is a group, K is a field, the group algebra $K[G]$ is a vector space spanned by vectors $v_{g}, g \in G$, with multiplication $v_{g} \cdot v_{j}=v_{g h}$.

Definition 0.8. If A is a K-algebra, a left A-module is an abelian group $(M,+)$ with a map $A \times M \rightarrow M$ such that

- $a \times\left(m_{1}+m_{2}\right)=a \times m_{1}+a \times m_{2}$
- $\left(a_{1}+a_{2}\right) \times m=a_{1} \times m+a_{2} \times m$
- $0_{A} \times m=0_{M}$
- $1_{A} \times m=m$
- $\left(a_{1} \cdot a_{2}\right) \times m=a_{1} \times\left(a_{2} \times m\right)$

Equivalently, the map $A \rightarrow \operatorname{End}(M)=\operatorname{Hom}(M, M)$ defined by $a \mapsto(m \mapsto a \times m)$ is a ring homomorphism.
Moral: $K[G]$-modules are the same as representations of G over K.
We have the obvious notions of homomorphisms of modules, submodules, quotients, isomorphisms theorems, etc.

Example. Any algebra A can be thought as a module over itself: $M=A$ and $a \times m=a \cdot m$. This is called the left regular module of A.

The left regular module of $K[G]$ is the same as the regular representation of G over K.
Definition 0.9. A module M is simple if $M \neq 0$ and there exists no proper non-zero submodules.
A module M is semi-simple if it's a direct sum of simple modules.
Schur's Lemma. If M_{1}, M_{2} are simple A-modules, then any homomorphisms $M_{1} \rightarrow M_{2}$ is either the 0 map, or an isomorphism.

In particular, if M is simple, then $\operatorname{End}(M)$ is a Division Ring (i.e., every non zero elements has a two-sided inverse)

Note. A submodule of the left regular module of A is nothing but a left ideal.

Maschke's Theorem. The left regular module of $K[G]$ is semi-simple, when char $K \nmid G \mid$.
Theorem 0.10 (Artin-Wedderburn). Any algebra whose regular module is semi-simple is isomorphic to $\oplus_{i} M_{n_{i}}\left(D_{i}\right)$ where D_{i} are division rings.

Hence, if char $K \nmid|G|$ we have $K[G] \cong \oplus_{i} M_{n_{i}}\left(D_{i}\right)$, where D_{i} are division algebras over K.
Remark.

1. $M_{n}(D)$ is really semi-simple. $I_{i}=\left(\begin{array}{ccccccc}0 & \cdots & 0 & * & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & \vdots & & \vdots \\ 0 & \cdots & 0 & * & 0 & \cdots & 0\end{array}\right)$ is clearly a left ideal, $M_{n}(D)=\oplus I_{i}$ as a module.
Claim. I_{i} is simple.
Proof. If $U \leq I_{i}, v \in U$ is non-zero, without loss of generality $v=\binom{\alpha}{\vdots}, \alpha \in D^{*}$. Then

$$
\begin{aligned}
\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & 0 & \\
0 & & &
\end{array}\right)\left(\begin{array}{ccc}
\alpha & \\
0 & * & 0 \\
& \vdots & \\
* &
\end{array}\right) & =\left(\begin{array}{ccc}
& \alpha & \\
0 & 0 & 0 \\
& \vdots & \\
& 0 &
\end{array}\right) \in U \\
\left(\begin{array}{cccc}
\alpha^{-1} & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & 0 & \\
0 & & &
\end{array}\right)\left(\begin{array}{lll}
\alpha & \\
0 & * & 0 \\
& \vdots &
\end{array}\right) & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \vdots \\
0 &
\end{array}\right) \in U
\end{aligned}
$$

So $U=I_{i}$.
Claim. The I_{i} are all pairwise isomorphic.
2.

Corollary 0.11. Then number of irreducible representations (up to isomorphism) of G over K (equivalently simple $K[G]$-modules) is equal to the number of conjugate classes of elements of G

Proof. Compute $\operatorname{dim}_{K} Z(K[G])$ on both sides. On the left had side $Z=\left\langle\sum_{h \in G} h g h^{-1} \mid g \in G\right\rangle$, so $\operatorname{dim}_{K} Z$ is precisely the number of conjugacy classes of elements of G. On the right hand side $Z=\left\langle\left(0, \ldots, 0, I_{n_{i}}, 0, \ldots 0\right)\right\rangle$ where $I_{n_{i}} \in M_{n_{i}}\left(D_{i}\right)$, so $\operatorname{dim}_{K} Z$ equals the number of distinct isomorphism classes of simple modules (one for each i).
3. Suppose A is a semi-simple algebra. S is a simple A-module. Then Schur's Lemma says $\operatorname{End}_{A}(S)=D$ is a division algebra. Put $M=\underbrace{S \oplus \cdots \oplus S}_{n \text { copies }}$. Then $\operatorname{End}_{A}(M)=M_{n}(D)$. (Each endomorphism of M is determined
by the image of $(0, \ldots, 0, s, 0, \ldots, 0)$ (in the i th place), which is determined by projections to all components). The Wedderburn isomorphism comes by identifying A (actually A^{op}) with its endomorphism ring.
4. A decomposition $A=\oplus_{i} M_{n_{i}}\left(D_{i}\right)$ corresponds to writing $1=\sum e_{i}$, where e_{i} are non-zero orthogonal primitive central idempotent.
idempotent $e_{i}^{2}=e_{i}$
central $\quad e_{i} a=a e_{i}$ for all $a \in A$.
orthogonal $e_{i} e_{j}=0$ if $i \neq j$
primitive e_{i} is not a sum of non-zero orthogonal central idempotent elements.
If $A=\oplus M_{n_{i}}\left(D_{i}\right)$, then $1=(1, \ldots, 1)=(1,0, \ldots, 0)+\cdots+(0, \ldots, 0,1)$. Conversely if $1=\sum e_{i}$, then $U_{i}=e_{i} A$ gives $A=\oplus U_{i}$. Since they are orthogonal, we have $U_{i} \cap U_{j}=\{0\}$, since they are central idempotent, U_{i} are ideals, since they are primitive U_{i} are isotypical $(S \oplus \cdots \oplus S)$, and since their sum are $1, A=\sum U_{i}$.
Example. If $G \cong C_{3}$, then $\mathbb{C}[G] \cong \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$. On the other hand $\mathbb{R}[G] \cong \mathbb{R} \oplus \mathbb{C}$.
To see the second statement, consider $e_{1}=\frac{1}{3}\left(1+g+g^{2}\right)$. We have $e_{1}^{2}=\frac{1}{9}\left(1+g+g^{2}\right)\left(1+g+g^{2}\right)=\frac{1}{9}\left(3+3 g+3 g^{2}\right)=$ e_{1}. The ideal $e_{1} \mathbb{R}[G]$ had \mathbb{R}-dimension 1 , so it is isomorphism to \mathbb{R}.

Consider $e_{2}=1-e_{1}=\frac{2}{3}-\frac{1}{3} g-\frac{1}{3} g^{2}$. The ideal $e_{2} \mathbb{R}[G]$ is generated (as \mathbb{R}-vector space) by $\alpha=e_{2}$ and $\beta=\frac{1}{\sqrt{3}}\left(g-g^{2}\right)$. We have $\beta^{2}=\frac{1}{3}\left(g-g^{2}\right)^{2}=\frac{1}{3}\left(g^{2}-2+g\right)=-\alpha$. So $\alpha \mapsto 1, \beta \mapsto i$ is an isomorphism $e_{2} \mathbb{R}[G] \rightarrow \mathbb{C}$.

0.3 Characters

If $\rho: G \rightarrow \mathrm{GL}_{n}(\mathbb{C})$ is a representation, the corresponding character $\chi_{\rho}(g)=\operatorname{Tr}(\rho(g))$.
Theorem 0.12. Let ρ_{1}, ρ_{2} be two representations, then $\rho_{1} \cong \rho_{2}$ if and only if $\chi_{\rho_{1}}=\chi_{\rho_{2}}$.
Remark.

- $\chi_{\rho_{1} \oplus \rho_{2}}=\chi_{\rho_{1}}+\chi_{\rho_{2}}$.
- Recall: the number of distinct irreducible representations of G over \mathbb{C} is equal to the number of conjugacy classes of elements. The character table of G is a square table,

	1	g_{2}	g_{3}	\ldots	\ldots	g_{k}
\mathbb{I}	1	1	1	\ldots	\ldots	1
χ_{1}	$\operatorname{dim} \chi_{1}$	$\chi_{2}\left(g_{2}\right)$	$\chi_{2}\left(g_{3}\right)$	\ldots	\ldots	$\chi_{2}\left(g_{k}\right)$
\vdots	\vdots	\vdots	\vdots	\ddots	\ddots	\vdots
χ_{k}	$\operatorname{dim} \chi_{k}$	$\chi_{k}\left(g_{2}\right)$	$\chi_{k}\left(g_{3}\right)$	\ldots	\ldots	$\chi_{k}\left(g_{k}\right)$

Character are class functions, i.e., constant on conjugacy classes and the irreducible characters span the vector space of class functions.
Theorem 0.13 (Schur's Lemma in disguise, Row Orthogonality). If χ_{1}, χ_{2} are irreducible characters of G, then the inner product

$$
\left\langle\chi_{1}, \chi_{2}\right\rangle=\frac{1}{|G|} \cdot \sum_{g \in G} \chi_{1}(g) \overline{\chi_{2}(g)}= \begin{cases}1 & \text { if } \chi_{1}=\chi_{2} \\ 0 & \text { if } \chi_{1} \neq \chi_{2}\end{cases}
$$

We also have column orthogonality. (Exercise: try to derive it using Row Orthogonality)
An arbitrary G representation ρ is a sum $\rho=\sum_{i} n_{i} \rho_{i}$ where ρ_{i} are distinct irreducible representations and $n_{i} \in \mathbb{Z}$. So $\chi_{\rho}=\sum n_{i} \chi_{\rho_{i}}$, and from the Row Orthogonality Theorem, $n_{i}=\left\langle\chi_{\rho}, \chi_{\rho_{i}}\right\rangle$, i.e., $\chi_{\rho}=\sum\left\langle\chi_{\rho}, \chi_{\rho_{i}}\right\rangle \chi_{\rho_{i}}$.
Remark. The inner product can be defined for arbitrary class functions, so the theorem says that irreducible characters form an orthonormal basis of the space of class functions.

New characters / representations from old ones

If $N \triangleleft G$, then any group homomorphism from G / N induces a group homomorphism from G. So we can lift representations and characters from quotients.

Example. Let $G \cong S_{3}$ and $N \cong C_{3}$. Then $G / N \cong C_{2}$. Let $\epsilon: C_{2}=\langle g\rangle \rightarrow \mathbb{C}^{*}=\mathrm{GL}_{1}(\mathbb{C})$ be defined by $g \mapsto-1$

	1	(12)	(123)
\mathbb{I}	1	1	1
ϵ	1	-1	1
ρ	2	0	-1

Where the last row was worked out using the dimension (sum of the dimension squared need to equal $|G|$) and column orthogonality.

Another way to get new representations from old ones is using restriction. Any group homomorphism $G \rightarrow X$ (where X is anything) restricts to a group homomorphism $H \rightarrow X$ for any $H \leq G$. We will write this $\operatorname{Res}_{G / H} \rho$ or $\rho \downarrow_{H}^{G}$.

We also have induction: Let $H \leq G$ and $\rho: H \rightarrow \mathrm{GL}(V)$. Take a set of coset representatives $\left\{g_{1} H, \ldots, g_{n} H\right\}$ for G / H. Define a new vector space $W=\oplus_{g_{i}} \underbrace{g_{i} \cdot V}_{\cong \text { as v.s. }}$. For any $g \in G$ and for each g_{i}, write (uniquely) $g \cdot g_{i}=g_{j} h$, with $h \in H$. Let g act on W by $g \cdot\left(g_{i} v\right)=g_{j} \rho(h)(v)$. This defines a representation of G on W, (note that $\operatorname{dim} W=\operatorname{dim} V \cdot|G / H|)$. We write this as $\operatorname{Ind}_{G / H} \rho$, or $\rho \uparrow_{H}^{G}$.

The character of $\rho \uparrow_{H}^{G}$ is

$$
\chi \uparrow_{H}^{G}(x)=\frac{1}{|H|} \sum_{g \in G} \chi^{0}\left(g x g^{-1}\right) \text { where } \chi^{0}(y)= \begin{cases}\chi(y) & \text { if } y \in H \\ 0 & \text { if } y \notin H\end{cases}
$$

Frobenius reciprocity. If $H \leq G, \chi$ is a character of G and τ is a character of H, then

$$
\left\langle\chi, \tau \uparrow_{H}^{G}\right\rangle_{G}=\left\langle\chi \downarrow_{H}^{G}, \tau\right\rangle_{H} .
$$

More functorial statement of Frobenius reciprocity is the following:
If $H \leq G, \rho: H \rightarrow \operatorname{GL}(V)$ and $\rho^{\prime}: G \rightarrow \mathrm{GL}\left(V^{\prime}\right)$, then there is a natural isomorphism $\operatorname{Hom}_{G}\left(\rho^{\prime}, \rho \uparrow_{H}^{G}\right) \cong$ $\operatorname{Hom}_{H}\left(\rho^{\prime} \downarrow_{H}^{G}, \rho\right)$.

This works over any field!

Some Properties of Characters

- Character values are sum of roots of unities, more specifically if $g \in G$ has order n, χ is d-dimensional, then $\chi(g)$ is the sum of $d n$th root of unity.
In particular, $\chi(g)$ is an algebraic integer, i.e., roots of monic polynomial with integer coefficients.
Also, it follows that $|\chi(g)| \leq|\chi(1)|$, with equality if and only if the matrix corresponding to g is in fact scalar (independent of basis on the vector space). Furthermore $\chi(g)=\chi(1)$ if and only if $g \mapsto I_{n}$ (the identity matrix). Hence define $\operatorname{ker} \chi=\{g \in G \mid \chi(g)=\chi(1)\}$. Define the centre, $Z(\chi)=\{g \in G| | \chi(g) \mid=\chi(1)\}$.
- There exists a bijection between irreducible characters χ of G with ker $\chi \geq N \triangleleft G$ and irreducible characters of G / N lifted to G.
All normal subgroups of G are obtained as intersections of $\operatorname{ker} \chi$ for suitable irreducible character χ. Also $Z(G)=\cap_{\chi \in \operatorname{Irr}(G)} Z(\chi)$
- Recall that $\mathbb{C}[G]=\oplus_{\rho_{i} \operatorname{irr}} \rho_{i}^{\oplus \operatorname{dim} \rho_{i}}$, so for any irreducible χ we have $\langle\mathbb{C}[G], \chi\rangle_{G}=\operatorname{dim} \chi$, hence $|G|=$ $\sum_{\chi \in \operatorname{Irr}(G)}(\operatorname{dim} \chi)^{2}$
- Let $G^{\prime}=\left\langle g h g^{-1} h^{-1} \mid g, h \in G\right\rangle \triangleleft G$. This is called the derived subgroup or commutator subgroup. It is the unique minimal normal subgroup with abelian quotient, i.e., if $N \triangleleft G$ is such that G / N is abelian then $N \geq G^{\prime}$. It is easy to see that $G^{\prime}=\cap_{\operatorname{dim}} \chi=1 \operatorname{ker} \chi$.
- If ϕ is any character and χ is a 1-dimensional character, then $\phi \otimes \chi(g)=\phi(g) \cdot \chi(g)$ is also a character (check!)

Example.

1. Cyclic groups, $C_{n}=\langle g\rangle$, of order n. All irreducible characters are 1-dimensional, $\chi_{k}: g \mapsto e^{\frac{2 \pi i}{n} k}$ for $k=0, \ldots, n-1$. Let $\zeta=e^{\frac{2 \pi 1}{n}}$

	1	g	g^{2}	\ldots	g^{n-1}
\mathbb{I}	1	1	1	\ldots	1
χ_{1}	1	ζ	ζ^{2}	\ldots	ζ^{n-1}
χ_{2}	1	ζ^{2}	ζ^{4}	\ldots	$\zeta^{2(n-1)}$
\vdots					

2. Abelian groups, $A=C_{n_{1}} \times \cdots \times C_{n_{r}}=\left\langle g_{1}\right\rangle \times \cdots \times\left\langle g_{r}\right\rangle$. Then all irreducible characters are 1-dimensional, $\chi_{k_{1} \ldots k_{r}}: g_{j} \mapsto e^{\frac{2 \pi i}{n_{j}} k_{j}}$ for $0 \leq k_{j} \leq n_{j}-1$.
3. Non-abelian group of order 8 :

- $G_{1}=D_{8}=\left\langle\sigma, \tau \mid \sigma^{2}=\tau^{4}=1, \sigma \tau \sigma=\tau^{-1}\right\rangle$
- $G_{2}=Q_{8}=\left\langle-1, i, j, k \mid(-1)^{2}=1, i^{2}=j^{2}=k^{2}=-1, i j=k, j k=i, k i=j, j i=-k, k j=-i, i k--j\right\rangle$.

First look at $G_{1} / G_{1}^{\prime} \cong C_{2} \times C_{2}$ where $G_{1}^{\prime}=\left\langle\tau^{2}\right\rangle$. So we can easily lift the characters of G_{1} / G_{1}^{\prime} to G_{1}.

	1	σ	τ	τ^{2}	$\sigma \tau$
\mathbb{I}	1	1	1	1	1
ϵ_{1}	1	1	-1	1	-1
ϵ_{2}	1	-1	1	1	-1
ϵ_{3}	1	-1	-1	1	1
χ	2	0	0	-2	0

G_{2} is left as an exercise, but they do have the same character table (but $G_{1} \not \not G_{2}$)
4. $G=S_{4}$. First recall that the character table for S_{3} is

	1	(12)	(123)
\mathbb{I}	1	1	1
ϵ	1	-1	1
ρ	2	0	-1

and recall that $S_{4} / V_{4} \cong S_{3}$. Hence we can lift the three characters of S_{3} into S_{4}. Then we use the dimensional formula to find that the last two characters must be 3 dimensional, so can complete using column orthogonality and the fact that $\epsilon \otimes \chi_{1}$ must be a character.

	1	(12)	(123)	(1234)	$(12)(34)$
\mathbb{I}	1	1	1	1	1
ϵ	1	-1	1	-1	1
ρ	2	0	-1	0	2
χ_{1}	3	1	0	-1	-1
χ_{2}	3	-1	0	1	-1

1 Mackey's Formula and Applications

Let $H \leq G$, and ρ is a representation of H, what is $\rho \uparrow^{G} \downarrow_{H}$?
Definition 1.1. Let $H, K \leq G$, a double coset is a set of the form $K g H=\{k g h \mid k \in K, h \in H\}=\cup_{k \in K} k g H=$ $\cup_{h \in H} K g h$.
$K \backslash G / H$ is the set of double cosets (or, by slight abuse of notation, the set of double coset representative).
Note. $K g_{1} H=K g_{2} H$ if and only if $g_{2} \in K g_{1} H$.
Warning: Different double cosets can have different size.
Example. Let $G=S_{3}$ and $H=K=\langle(12)\rangle$.

- $H \cdot 1 \cdot K=H$, size is 2 .
- $H \cdot(123) \cdot K=\{(123),(12)(123)(12)=(132),(123)(12)=(23),(12)(123)=(13)\}$, size is 4 .

Mackey's Formula. Let $H, K \leq G$ and ρ a representation of H over any field L. Then

$$
\rho_{H} \uparrow^{G} \downarrow_{K}=\bigoplus_{g \in K \backslash G / H}{ }^{g} \rho \downarrow_{K \cap g H g^{-1}} \uparrow^{K}
$$

where ${ }^{g} \rho\left(g h g^{-1}\right)=\rho(h)$ for all $h \in H$.
Proof. (Not Examinable) Let V be the vector space corresponding to ρ, then $\rho \uparrow^{G}$ is represented on $W=\oplus_{g \in G / H} g V$. Now G acts transitively on G / H, but K may not. Suppose

$$
\underbrace{g_{1} H, \ldots, g_{r_{1}} H}_{\cup=K g_{1} H}, \underbrace{g_{r_{1}+1} H, \ldots, g_{r_{2}} H}_{\cup=K g_{r_{1}+1} H}, \ldots
$$

For a giving $k \in K$, there exists $g_{n} H$ such that $k g_{1} H=g_{n} H$ if and only if $g_{n} \in k g_{1} H$. So $g_{1} V \oplus \cdots \oplus g_{r_{1}} V$ is a K-subrepresentation of W. By direct calculation, we see that this is isomorphism to ${ }^{g_{1}} \rho \downarrow_{K \cap g_{1} H g_{1}^{-1} \uparrow} \uparrow^{K}$
Example. Take $\rho=\mathbb{I}_{H}$, then $\rho \uparrow^{G}=L[G / H]$ where L is the field as above. Now $\rho \uparrow^{G} \downarrow_{K}=\oplus_{g \in K \backslash G / H} \mathbb{I}_{K \cap g H g^{-1}} \uparrow^{K}=$ $\oplus_{g \in K \backslash G / H} L\left[K / K \cap g H g^{-1}\right]$.

Check: The orbit of K acting on G / H are in bijection with $K \backslash G / H$.

1.1 Application I : principal series representation of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$

Let $G=\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ (where $p \in \mathbb{Z}$ is any prime). We have the subgroups $B=\left\{\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right)\right\} \leq G, T=\left\{\left(\begin{array}{ll}* & 0 \\ 0 & *\end{array}\right)\right\} \leq B$ and $U=\left\{\left(\begin{array}{ll}1 & * \\ 0 & 1\end{array}\right)\right\} \leq B$. Note that $|U|=p,|T|=(p-1)^{2},|B|=(p-1)^{2} p$ and $|G|=\left(p^{2}-1\right)\left(p^{2}-p\right)=$ $(p-1)^{2} p(p+1)$. We have $T \cong \mathbb{F}_{p}^{*} \times \mathbb{F}_{p}^{*}, U \cong\left(\mathbb{F}_{p},+\right) \triangleleft B$. We have $B / U \cong \mathbb{F}_{p}^{*} \times \mathbb{F}_{p}^{*}$, in fact $B=U \rtimes T$ (i.e, $U \triangleleft B$, $T \leq B, U \cap T=\{1\}$ and $U T=B)$.

Let $\chi_{1}, \chi_{2}: \mathbb{F}_{p}^{*} \rightarrow \mathbb{C}^{*}$ be two irreducible characters, then define $\tau=\chi_{1} \otimes \chi_{2}: B \rightarrow \mathbb{C}^{*}$ by $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \mapsto \chi_{1}(a) \cdot \chi_{2}(d)$. (Note $U \leq \operatorname{ker} \tau$).

Theorem 1.2. $\tau \uparrow_{B}^{G}$ (which has dimension $p+1$) is either

- irreducible if $\chi_{1} \neq \chi_{2}$ or
- (one dimensional) \oplus irreducible if $\chi_{1}=\chi_{2}$.

Proof. Recall that a character is irreducible if and only if $\langle\tau, \tau\rangle_{G}=1$. We have

$$
\begin{aligned}
& \langle\tau, \tau\rangle_{B} \underset{\text { Frobrec }}{=}\left\langle\chi_{1} \otimes \chi_{2} \uparrow_{B}^{G} \downarrow_{B}, \chi_{1} \otimes \chi_{2}\right\rangle_{B} \\
& \underset{\text { Mackey }}{\overline{=}} \sum_{g \in B \backslash G / B}\left\langle{ }^{g}\left(\chi_{1} \otimes \chi_{2}\right) \downarrow_{B \cap g B g^{-1}} \uparrow^{B}, \chi_{1} \otimes \chi_{2}\right\rangle_{B} \\
& \underset{\text { Frob rec }}{ } \sum_{g \in B \backslash G / B}\left\langle{ }^{g}\left(\chi_{1} \otimes \chi_{2}\right) \downarrow_{B \cap g B g^{-1}}, \chi_{1} \otimes \chi_{2} \downarrow_{B \cap g B g^{-1}}\right\rangle_{B \cap g B g^{-1}}
\end{aligned}
$$

Claim. $B \backslash G / B=\left\{B \cdot 1 \cdot B, B \cdot\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \cdot B\right\}$
Proof. It is enough to show that any $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$ with $c \neq 0$ is of the form $X\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) Y$ with $X, Y \in B$. Let $X=\left(\begin{array}{ll}x & y \\ 0 & z\end{array}\right)$ and $Y=\left(\begin{array}{cc}w & v \\ 0 & u\end{array}\right)$, we compute that $X\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) Y=\left(\begin{array}{ll}x & y \\ 0 & z\end{array}\right)\left(\begin{array}{cc}0 & u \\ w & v\end{array}\right)=\left(\begin{array}{cc}y w & u x+v y \\ z w & v z\end{array}\right)$. For a, b, c, d with $c \neq 0$ and $a d-b c \neq 0$, we can solve x, y, z, w, u, v.

Going back to the equality above, we have

$$
\begin{aligned}
& \langle\tau, \tau\rangle=\left\langle{ }^{1}\left(\chi_{1} \otimes \chi_{2}\right) \downarrow_{B \cap 1 \cdot B \cdot 1} \uparrow^{B}, \chi_{1} \otimes \chi_{2}\right\rangle_{B}
\end{aligned}
$$

$$
\begin{align*}
& =1+\langle\underbrace{\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\chi_{1} \otimes \chi_{2}\right)}_{\left(\begin{array}{ll}
a & b
\end{array}\right)} \downarrow_{T}, \chi_{1} \otimes \chi_{2} \downarrow_{T}\rangle \\
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto \chi_{1}(d) \chi_{2}(a) \\
& =1+ \begin{cases}0 & \text { if } \chi_{1} \neq \chi_{2} \\
1 & \text { if } \chi_{1}=\chi_{2}\end{cases} \\
& =\left\{\begin{array}{ll}
1 & \text { if } \chi_{1} \neq \chi_{2} \\
2 & \text { if } \chi_{1}=\chi_{2}
\end{array} .\right.
\end{align*}
$$

We deduce that if $\chi_{1} \neq \chi_{2}$, then τ is irreducible and otherwise it is the sum of two distinct irreducible.
Claim. If $\chi_{1}=\chi_{2}$, then $\left\langle\tau, \chi_{1} \circ \operatorname{det}\right\rangle_{G}=1$.
Proof. We have

$$
\left\langle\tau, \chi_{1} \circ \operatorname{det}\right\rangle_{G}=\langle\underbrace{\chi_{1} \otimes \chi_{2}}_{\chi_{1}(a) \chi_{2}(d)}, \underbrace{\left(\chi_{1} \circ \operatorname{det}\right)}_{\chi_{1}(a d)} \downarrow_{B}\rangle_{B}=1
$$

So if $\chi_{1}=\chi_{2}$, then $\tau=\chi_{1} \circ \operatorname{det} \oplus($ a p-dimensional irreducible character $)$
Example. If $\chi_{1}=\chi_{2}=\mathbb{I}$, then $\tau \cong \mathbb{C}[G / B]=\mathbb{I}+(\underline{\text { Steinberg representation }})$

1.2 Application II: Semi-direct products by Abelian groups

Let $G \triangleleft N$, such that $N \cap H=\{1\}, N H=G$. Then $G=N \rtimes H$ (called semi-direct product). Note that this implies that for any $g \in G$ there exists unique $n \in N, h \in H$ such that $g=n h$. So as sets $G \leftrightarrow N \times H$. Under this bijection, $\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)=(n_{1} \underbrace{\left(h_{1} n_{2} h_{1}^{-1}\right)}_{\in N}, h_{1} h_{2})$. We have that H acts on N by conjugation, i.e., ${ }^{h} n=h n h^{-1}$. This defines a map $H \rightarrow \operatorname{Aut}(N)$. So G is uniquely determined by N, H and the map $\phi: H \rightarrow \operatorname{Aut}(N)$. Conversely, given N, H and ϕ, we can construct the group G defined by as a set $N \times H$, with $\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)=\left(n_{1} \phi\left(h_{1}\right) \cdot n_{2}, h_{1} h_{2}\right)$

Example.

- $D_{2 n}=C_{n} \rtimes C_{2}$ with $\phi: C_{2}=\langle\sigma\rangle \rightarrow \operatorname{Aut}\left(C_{n}\right)$ is defined by $\sigma \mapsto\left(\tau \mapsto \tau^{-1}\right)$.
- If $\phi: H \rightarrow \operatorname{Aut}(N)$ is defined by $h \mapsto \mathrm{id}$, then we get the direct product, $G=N \times H$.

Caution: We can get things that are isomorphic to $N \times H$ even if ϕ is non-trivial.
If $N \triangleleft G$, then G acts on the irreducible characters of N by ${ }^{g} \chi(n)=\chi\left(g^{-1} n g\right)$. Note that N acts trivially on its own characters, so we get a well-defined action of G / N on $\operatorname{Irr}(N)$.
Remark. ${ }^{g} \chi$ is certainly a class function (if χ is) but why is it a character, i.e., what is the corresponding representation? If $\rho: N \rightarrow \mathrm{GL}(V)$ is the representation attached to χ, then ${ }^{g} \rho: N \rightarrow \mathrm{GL}(V)$ is defined by $n \mapsto \rho\left(g^{-1} n g\right)$. Note that the latter definition make sense over any fields.
Remark. If $N \triangleleft G$ and $H \cong G / N$, then in general $G \nsupseteq N \rtimes H$.
Example. Let $G=C_{4}, N \cong C_{2}, G / N \cong C_{2}$ but $G \nsupseteq C_{2} \rtimes C_{2}$.
Now suppose $G=A \rtimes H$ where A is an Abelian group. We will completely describe $\operatorname{Irr}(G)$. Let $\chi \in \operatorname{Irr}(A)$ (hence χ is one dimensional), let $S_{\chi}:=\operatorname{Stab}_{H}(\chi)=\left\{h \in H \mid \chi\left(h^{-1} a h\right)=\chi(a) \forall a \in A\right\}$. We extend χ to $A \rtimes S_{\chi}$ by $\chi(a \cdot s)=\chi(a)$. (Check that this is a 1-dimensional character of $A \rtimes S_{\chi}$). Take any irreducible character ρ of $S_{\chi} \cong\left(A \rtimes S_{\chi}\right) / A$, thought of as a character of $A \rtimes S_{\chi}$, and define $\tau_{\chi, \rho}=\chi \otimes \rho \uparrow^{G}$.

Theorem 1.3.

- $\tau_{\chi, \rho}$ are all irreducible,
- All irreducible characters of G are of this form,
- $\tau_{\chi, \rho}=\tau_{\chi^{\prime}, \rho^{\prime}}$ if and only if χ, χ^{\prime} lie in the same orbit under the H-action (i.e., there exists $h \in H$ such that $S_{\chi}=h S_{\chi^{\prime}} h^{-1}$) and $\rho={ }^{h} \rho^{\prime}$.
Proof. Left as an exercise
Example. We describe the characters of $D_{2 n} \cong C_{n} \rtimes C_{2}$ in this way. If $C_{n}=\langle g\rangle$, and $C_{2}=\langle h\rangle$, then we know the characters $\chi_{k}: C_{n} \rightarrow \mathbb{C}^{*}$ are defined by $g \mapsto e^{2 \pi i k / n}$. Also ${ }^{h} \chi_{k}(g)=\chi_{k}\left(h^{-1} g h\right)=\chi_{k}\left(g^{-1}\right)=e^{-2 \pi i k / n}$, so

$$
\operatorname{Stab}_{\chi_{k}}\left(C_{2}\right)= \begin{cases}C_{2} & \text { if } e^{-2 \pi i k / n}=e^{2 \pi i k / n} \Longleftrightarrow k=0, n / 2 \\ 1 & \text { otherwise }\end{cases}
$$

So if $k \neq 0, n / 2$ then $\chi_{k} \uparrow^{G}$ is irreducible. If $k=0, n / 2$ then χ_{k} extends (in two ways) to a 1-dimensional character of G. Also $\chi_{k} \uparrow^{G}=\chi_{k^{\prime}} \uparrow^{G}$ is and only if $k= \pm k^{\prime}$.

Exercise.

- We describe the characters of $S_{4} \cong V_{4} \rtimes S_{3}$ (where $V_{4} \cong C_{2} \times C_{2}$ is the Klein group)
- Suppose $H \leq S_{n}, A$ is any (Abelian) group. Consider $G=(\underbrace{A \times \cdots \times A}_{n \text {-times }}) \rtimes H=: A$ 乙, the wreath product. Describe $\operatorname{Irr}(G)$ using Theorem 1.3 .
Remark. $\operatorname{Syl}_{p}\left(S_{p^{2}}\right) \cong C_{p}$ 乙 C_{p}. (prove it!)

1.3 Application III: Clifford Theory (induction from and restriction to normal subgroups)

Theorem 1.4 (Clifford). Let G be any finite group, $N \triangleleft G, F$ any fields, and ρ any irreducible representations of G over F, (equivalently a simple $F[G]$-module). Then $\rho \downarrow_{N}=\oplus \tau_{i}^{\oplus e}$, where τ_{i} are simple $F[N]$-modules, that form a single orbit under the G-action.
Proof. Let τ_{1} be a simple quotient submodule of $\rho \downarrow_{N}$. So then $\operatorname{Hom}_{N}\left(\rho \downarrow_{N}, \tau_{1}\right)$ is non-trivial. By Frobenius reciprocity, $\operatorname{Hom}_{G}\left(\rho, \tau_{1} \uparrow^{G}\right)$ is non-trivial. Equivalently, ρ is isomorphic to a submodule of $\tau_{1} \uparrow^{G}$. So $\rho \downarrow_{N}$ is a submodule of

$$
\begin{aligned}
\tau_{1} \uparrow^{G} \downarrow_{N} & =\bigoplus_{N \backslash G / N}{ }^{g} \tau_{1} \downarrow_{N \cap g N g^{-1}} \uparrow{ }^{N} \\
& =\bigoplus_{g \in G / N}{ }^{g} \tau_{1}
\end{aligned}
$$

As τ_{1} is simple, all ${ }^{g} \tau_{1}$ are simple. Using the exercise below, we see that $\rho \downarrow_{N}=\oplus_{\text {some } g}{ }^{g} \tau_{1}$. Note that $\operatorname{Hom}_{N}\left(\rho \downarrow_{N}\right.$, $\left.\tau_{1}\right)=\operatorname{Hom}_{N}\left({ }^{g} \rho \downarrow_{N},{ }^{g} \tau_{1}\right)$. If $\rho \downarrow_{N} \cong \oplus \tau_{i}^{\oplus e_{i}}$ then $\operatorname{Hom}_{N}\left(\rho \downarrow_{N}, \tau_{i}\right) \cong D e^{\oplus e_{i}}$, where $D=\operatorname{End}_{N}\left(\tau_{i}\right)$. So e_{i} are the same for all the distinct conjugates of τ_{1}.

Exercise. Submodules of semisimple modules are semisimple.
Exercise. Prove the above theorem over \mathbb{C}, using characters.

Example.

- Let $G=S_{3}$ and $N=C_{2}$. Consider the 2-dimensional irreducible representation, ρ, over \mathbb{C}. Then $\rho \downarrow_{N}=\chi \oplus \bar{\chi}$ where χ is defined by $(123) \mapsto e^{2 \pi i / 3}$. Note ${ }^{(12)} \chi=\bar{\chi}$.
- Let $G=S_{n}$ and $N=A_{n}$.

Now we want to translate Clifford's theorem into a statement about induction.
Example. $G=C_{3} \rtimes C_{4}=\left\langle x, y \mid x^{3}=y^{4}=1, y x y^{-1}=x^{-1}\right\rangle$, where C_{4} acts on C_{3} through the quotient C_{4} / C_{2}. Let $N=C_{3}, \chi$ a non-trivial 1-dimensional character of C_{3}. We investigate $\chi \uparrow^{G}$ in two steps. Consider $\chi \uparrow^{G}=$ $\chi \uparrow^{C_{3}} \rtimes C_{2}=C_{6} \uparrow^{G}=\left(\tau \oplus \tau^{\prime}\right) \uparrow^{G}$ where τ and τ^{\prime} are distinct irreducible $\operatorname{Irr}\left(C_{6}\right)$. Both $\tau \uparrow^{G}$ and $\tau^{\prime} \uparrow^{G}$ are irreducible by the 2 nd exercise sheet
Definition. Let $N \triangleleft G$ and χ an irreducible character of N. The inertia subgroup of χ in G is $I_{G}(\chi)=\operatorname{Stab}_{G}(\chi)=$ $\left\{g \in G \mid{ }^{g} \chi=\chi\right)=\left\{g \in G \mid \chi\left(g^{-1} n g\right)=\chi(n) \forall n \in N\right\}$.

Theorem 1.5. Let $N \triangleleft G$, $\chi \in \operatorname{Irr}(N), T=I_{G}(\chi) \geq N$. Let τ be an irreducible summand of $\chi \uparrow^{\tau}$.

1. $\rho=\tau \uparrow^{G}$ is irreducible
2. $\tau \rightarrow \tau \uparrow^{G}$ is a bijection between the distinct irreducible summand of $\chi \uparrow^{T}$ and those of $\chi \uparrow^{G}$
3. $\rho \downarrow_{T}=\tau+$ (stuff that is disjoint from $\chi \uparrow^{T}$). By disjoint we mean $\psi \in \operatorname{Irr}(T)$ such that $\left\langle\psi, \chi \uparrow^{T}\right\rangle=0$.
4. $\left\langle\rho \downarrow_{N}, \chi\right\rangle=\left\langle\tau \downarrow_{N}, \chi\right\rangle$.

Proof. First note that $\tau \downarrow_{N}=e \cdot \chi$, and hence ${ }^{g} \tau \downarrow_{N}=e \cdot{ }^{g} \chi$. If $g \notin T$ then ${ }^{g} \chi \neq \chi$, hence $\left\langle\tau \downarrow_{N},{ }^{g} \tau \downarrow_{N}\right\rangle=0$ if $g \notin T$. Now compute

$$
\begin{aligned}
\left\langle\tau \uparrow^{G}, \tau \uparrow^{G}\right\rangle_{G} & =\left\langle\tau \uparrow^{G} \downarrow_{T}, \tau\right\rangle_{T} \\
& =\sum_{g \in T \backslash G / T}\left\langle{ }^{g} \tau \downarrow_{\left.T \cap g T g^{-1} \uparrow^{T}, \tau\right\rangle_{T}}\right. \\
& =1+\sum_{\text {someg } \notin T}\left\langle{ }^{g} \tau \downarrow_{\left.T \cap g T g^{-1}, \tau \downarrow_{T \cap g T g^{-1}}\right\rangle \quad T \cap g T g^{-1} \geq N}\right. \\
& =1+0
\end{aligned}
$$

This proves 1 . We have that 2. and 4. follows from 3. .To prove 3.,

$$
\begin{aligned}
\rho \downarrow_{T} & =\tau \uparrow{ }^{G} \downarrow_{T} \\
& =\sum_{T \backslash G / T}{ }^{g} \tau \downarrow_{T \cap g T g^{-1} \uparrow T} \\
& =\tau+\sum_{\text {some } g \notin T}{ }^{g} \tau \downarrow_{T \cap g T g^{-1} \uparrow} \uparrow^{T}
\end{aligned}
$$

1.4 Application IV: Frobenius groups

Theorem 1.6 (Frobenius). Suppose $H \leq G$ is such that $H \cap g H g^{-1}=\{1\}$ for all $g \notin H$ (H is called a Frobenius complement). Then there exists $N \triangleleft G$ such that $G=N \rtimes H$.

To prove this we will need several lemma. Define

$$
N=G \backslash\left(\cup_{g} g H g^{-1}\right) \cup\{1\}
$$

Lemma 1.7. Let N be defined as above, $|N|=\frac{|G|}{|H|}$, also is $M \triangleleft G$ intersect H trivially, then $M \subset N$
Proof. The second part is by definition of N. For the first part

$$
\begin{aligned}
|N| & =|G|-\frac{|G|}{|H|}(|H|-1) \\
& =|G|-|G|+\frac{|G|}{|H|}
\end{aligned}
$$

Lemma 1.8. Let G and H be as in Theorem 1.3. Let θ be a class function on H with $\theta(1)=0$. Then $\theta \uparrow^{G} \downarrow_{H}=\theta$. Proof. By Machke we have

$$
\begin{aligned}
\theta \uparrow^{G} \downarrow_{H} & =\sum_{g \in H \backslash G / H}{ }^{g} \theta \downarrow_{H \cap g H g^{-1}} \uparrow^{H} \\
& =\theta+\sum_{g \notin H}{ }^{g} \theta \downarrow_{H \cap g H g^{-1} \uparrow^{H}} \\
& =\theta+\sum 0_{\{1\}} \uparrow^{H} \\
& =\theta
\end{aligned}
$$

Proof of Theorem 1.6. Motivation: if $\chi \in \operatorname{Irr}(G)$ is such that $\operatorname{ker} \chi \supseteq N$, then $\chi \downarrow_{H}$ is irreducible. We want to recover χ from $\chi \downarrow_{H}$.

Let $\mathbb{I}_{H} \neq \phi \in \operatorname{Irr}(H)$. Define $\theta_{\phi}=\phi-\phi(1) \mathbb{I}_{H}$, hence $\theta_{\phi}(1)=0$. Note that

$$
\begin{aligned}
\left\langle\theta_{\phi} \uparrow^{G}, \mathbb{I}_{G}\right\rangle_{G} & =\left\langle\theta_{\phi}, \mathbb{I}_{H}\right\rangle_{H} \\
& =-\phi(1)
\end{aligned}
$$

Let us set $\chi_{\phi}=\phi_{\psi} \uparrow^{G}+\phi(1) \mathbb{I}_{G}$, hence $\left\langle\chi_{\phi}, \mathbb{I}_{G}\right\rangle_{G}=0$. Furthermore

$$
\begin{array}{rll}
\left\langle\chi_{\phi}, \chi_{\phi}\right\rangle+\phi(1)^{2} & = & \left\langle\theta_{\phi} \uparrow^{G}, \theta_{\phi} \uparrow^{G}\right\rangle_{G} \\
& = & \left\langle\theta_{\phi}, \theta_{\phi} \uparrow^{G} \downarrow_{H}\right\rangle_{H} \\
= & \left\langle\theta_{\phi}, \theta_{\phi}\right\rangle_{H} \\
\operatorname{Lemmar} \\
& =1.8 \\
\operatorname{def} \theta_{\phi}
\end{array} \underbrace{\langle\phi, \phi\rangle}_{=1}+\phi(1)^{2} .
$$

Hence $\left\langle\chi_{\phi}, \chi_{\phi}\right\rangle_{G}=1$ and is irreducible. Now θ_{ϕ} is the difference of two characters, therefore so is $\theta_{\phi} \uparrow^{G}$, and hence so is χ_{ρ}. But $\left\langle\chi_{\phi}, \chi_{\phi}\right\rangle=1$, hence $\pm \chi_{\phi} \in \operatorname{Irr}(G)$. But also,

$$
\begin{aligned}
\chi_{\phi} \downarrow_{H} & =\theta_{\phi} \uparrow^{G} \downarrow_{H}+\theta(1) \cdot \mathbb{I}_{G} \downarrow_{H} \\
& =\theta_{\phi}+\phi(1) \cdot \mathbb{I}_{G} \\
& =\theta
\end{aligned}
$$

So $\chi_{\theta} \in \operatorname{Irr}(G)$.
Define

$$
M=\bigcap_{\mathbb{I}_{H} \neq \phi \in \operatorname{Irr}(H)} \operatorname{ker}\left(\chi_{\phi}\right) \triangleleft G
$$

Claim. $M \cap H=\{1\}$ (and hence $M \subseteq N$)
Indeed, if $h \in H$, then $\chi_{\phi}(h)=\phi(h)$. So $H \cap M=\cap_{\phi \in \operatorname{Irr}(H)}$ ker $\phi=\{1\}$
Claim. $N \subseteq M$.
If $n \notin g H g^{-1}$, then

$$
\begin{array}{rlrl}
\chi_{\phi}(n) & = & & \theta_{\phi} \uparrow^{G}(n)+\phi(1) \cdot \mathbb{I}_{G} \\
& = & & \phi \uparrow^{G}(n)-\phi(1) \cdot \mathbb{I} \uparrow^{G}(n)+\phi(1) \cdot \mathbb{I}_{G} \\
& = & & 0+0+\phi(1) \\
\text { def of irreducible char } & & \\
& = & & \chi_{\phi}(1)
\end{array}
$$

for all $\mathbb{I}_{H} \neq \phi \in \operatorname{Irr}(H)$. Hence $n \in M$.
So $N=M \triangleleft G$ and we are done.

2 Tensor Products, Frobenius - Schur indicators and much more

Let G be a finite group and K be any field.
Motivation: If χ, ϕ are characters of G, then so is $\chi+\phi$. But what about $\chi \cdot \phi$?
Definition 2.1. Let V and W be vector spaces (over K). The tensor product $V \otimes W$ is the vector space spanned by "symbols" $v \otimes w$ with $v \in V, w \in W$, with relations

- $(k v) \otimes w=v \otimes(k w)=k(v \otimes w)$
- $\left(v_{1}+v_{2}\right) \otimes w=v_{1} \otimes w+v_{2} \otimes w$
- $v \otimes\left(w_{1}+w_{2}\right)=v \otimes w_{1}+v \otimes w_{2}$

Fact. If v_{1}, \ldots, v_{n} is a basis for V and w_{1}, \ldots, w_{m} a basis of W, then $v_{i} \otimes w_{j}$ for $1 \leq i \leq n, 1 \leq j \leq m$ is a basis for $V \otimes W$.

Proposition 2.2. Tensor products have the following properties:

- $(V \otimes W) \otimes U \cong V \otimes(W \otimes U)$
- $(V \oplus U) \otimes W \cong V \otimes W \oplus U \otimes W$

Proof. Check that:

- $(v \otimes w) \otimes u \mapsto v \otimes(w \otimes u)$
- $(u, v) \otimes w \mapsto(v \otimes w, u \otimes w)$
are isomorphisms.
If V, W are G-representation, then G acts on $V \otimes W$ via $g \cdot(v \otimes w)=g \cdot v \otimes g \cdot w$. Suppose that g is represented by $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ on V with respect to v_{1}, \ldots, v_{n}, and it is represented by $B=\left(b_{i j}\right)_{1 \leq i, j \leq m}$ on W with respect to w_{1}, \ldots, w_{m}. Then $g \cdot\left(v_{i} \otimes w_{k}\right)=g v_{i} \otimes g w_{k}=\left(\sum a_{i j} v_{j}\right) \otimes\left(\sum b_{k l} w_{l}\right)=\sum_{j, l} a_{i j} b_{k l}\left(v_{j} \otimes w_{l}\right)$. So with respect to the basis $v_{1} \otimes w_{1}, \ldots, v_{1} \otimes w_{m}, v_{2} \otimes w_{1}, \ldots, v_{n} \otimes w_{n}$ of $V \otimes W, g$ is represented by

$$
\left(\begin{array}{c|c|c|c}
a_{11} B & a_{12} B & \ldots & a_{1 n} B \\
\hline \vdots & & & \\
\hline a_{n 1} B & & & a_{n n} B
\end{array}\right)=: A \otimes B
$$

Example. Let $G=S_{3}$ and take ρ to be the standard representation, that is ρ is defined by

$$
\begin{aligned}
(123) & \mapsto\left(\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right) \\
(12) & \mapsto\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right) .
\end{aligned}
$$

The basis of $\rho \otimes \rho$ is $v_{1} \otimes v_{1}, v_{1} \otimes v_{2}, v_{2} \otimes v_{1}, v_{2} \otimes v_{2}$. So $\rho \otimes \rho$ is defined by

$$
\begin{aligned}
& \mapsto\left(\begin{array}{cc|cc}
1 & 1 & 1 & 1 \\
-1 & 0 & -1 & 0 \\
\hline-1 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \\
& \mapsto\left(\begin{array}{cc|cc}
1 & 1 & 1 & 1 \\
0 & -1 & 0 & -1 \\
\hline 0 & 0 & -1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

If V, W are complex representations with characters χ, ϕ respectively then the character τ of $V \otimes W$ is

$$
\begin{aligned}
\tau(g) & =\sum_{1 \leq i \leq n, 1 \leq k \leq m} a_{i i} b_{k k} \\
& =\left(\sum_{i} a_{i i}\right) \cdot\left(\sum_{k} b_{k k}\right) \\
& =\chi(g) \cdot \phi(g) .
\end{aligned}
$$

Aside: Duals and homomorphism spaces

Definition 2.3. Let V be a representation of over K. The dual representation is $V^{*}=\{f: V \rightarrow K \mid f(v+\alpha w)=$ $f(v)+\alpha f(w) \forall \alpha \in K, v, w \in V\}$ with G action on V^{*} by $(g \cdot f)(v)=f\left(g^{-1} v\right)$, i.e., $g \cdot f: v \mapsto f\left(g^{-1} v\right) \in K$

Lemma 2.4. If V is a complex representation with character χ, then the character of V^{*} is $\bar{\chi}$.
Proof. Let v_{1}, \ldots, v_{n} be a basis of V. Take the dual basis V^{*} to be f_{1}, \ldots, f_{n} such that $f_{i}\left(v_{j}\right)=\delta_{i j}=\left\{\begin{array}{ll}1 & i=j \\ 0 & i \neq j\end{array}\right.$.
Assume without loss of generality that $g \in G$ is represented by $\left(\begin{array}{ccc}\alpha_{1} & & \\ & \ddots & \\ & & \alpha_{n}\end{array}\right)$ with respect to v_{1}, \ldots, v_{n}. Then check that g in represented by $\left(\begin{array}{ccc}\alpha_{1}^{-1} & & \\ & \ddots & \\ & & \alpha_{n}^{-1}\end{array}\right)$ with respect to f_{1}, \ldots, f_{n}. Since α_{i} are roots of unity, $\alpha_{i}^{-1}=$ $\overline{\alpha_{i}}$.

Corollary 2.5. $V \cong V^{*}$ (as representations over \mathbb{C}) if and only if χ is \mathbb{R}-valued.
Definition 2.6. If V, W are representations of G over K, then $\operatorname{Hom}_{K}(V, W)$ is a G-representation via $(g \cdot f)(v)=$ $g \cdot f\left(g^{-1} v\right)$.
Lemma 2.7. If V and W are representations over \mathbb{C} with characters χ, ϕ respectively then the character τ of $\operatorname{Hom}_{K}(V, W)$ is $\bar{\chi} \cdot \phi$.

Proof. Use matrices with respect to basis $f_{i k}: v_{j} \mapsto \delta_{i j} w_{k}$.
In particular, over $\mathbb{C}, V \otimes W \cong \operatorname{Hom}\left(V^{*}, W\right)$ (by comparing characters)
Lemma 2.8. Over any field $K, V \otimes_{K} W \cong \operatorname{Hom}_{K}\left(V^{*}, W\right)$.
Proof. Check that $V \otimes W \rightarrow \operatorname{Hom}\left(V^{*}, W\right)$ defined by $v \otimes w \mapsto(f \mapsto f(v) \cdot w)$ is an isomorphism (of G representations).

Remark. The fixed subspace of $\operatorname{Hom}(V, W)$ under the G-action is

$$
\operatorname{Hom}_{G}(V, W)=\{f: V \rightarrow W \text { linear } \mid g \cdot f(v)=f(g \cdot v) \forall v \in V, g \in G\}
$$

Assume: For the rest of this chapter that the characteristic of K is 0
Notation. $V^{\otimes n}=\underbrace{V \otimes V \otimes \cdots \otimes V}_{n \text { times }}$

Example. Going back to the case that $G=S_{3}, \rho$ the standard representation. The character table is

	1	(123)	(12)
$\rho^{\otimes 2}$	4	1	0

$$
\begin{aligned}
\left\langle\rho^{\otimes 2}, \mathbb{I}\right\rangle & =\frac{1}{6}(4+2)=1 \\
\left\langle\rho^{\otimes 2}, \operatorname{sign}\right\rangle & =\frac{1}{6}(4+2)=1 \\
\left\langle\rho^{\otimes 2}, \rho\right\rangle & =1
\end{aligned}
$$

Hence we have that $\rho^{\otimes 2}=\mathbb{I}+\epsilon+\rho$.
$V^{\otimes n}$ carries an action of $S_{n}, \sigma\left(v_{1} \otimes \cdots \otimes v_{n}\right)=v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(n)}$ for all $\sigma \in S_{n}, v_{i} \in V$. This action commutes with the G-action. (So we get an action of $G \times S_{n}$).
Claim. If $\rho_{1}, \ldots, \rho_{k}$ is a complete set of irreducible K-representations of S_{n}, then $V^{\otimes n}=\oplus_{i=1}^{k} V_{\left(\rho_{i}\right)}^{\otimes n}$ as G-representations.
Proof. If $g \in G$, then (for $t \in V^{\otimes n}$) $t \mapsto g \cdot t$ is a homomorphism of S_{n}-representation. So if $t \in V_{\left(\rho_{i}\right)}^{\otimes n}$, then the projection of $g \cdot t$ to any $V_{\left(\rho_{j}\right)}^{\otimes n}$ for $j \neq i$ is 0 by Schur's lemma.

Example. Let v_{1}, \ldots, v_{n} be a basis for V. We consider S_{2} and hence $V^{\otimes 2}$, which has basis $v_{i} \otimes v_{j}$ for $1 \leq i, j \leq n$.

- $V_{(\mathbb{I})}^{\otimes 2}$ has basis $v_{i} \otimes v_{j}+v_{j} \otimes v_{i}$ for $1 \leq i \leq j \leq n$.
- $V_{\text {(sign) }}^{\otimes 2}$ has basis $v_{i} \otimes v_{j}-v_{j} \otimes v_{i}$ for $1 \leq i<j \leq n$.

So in part, $V_{(\mathbb{I})}^{\otimes 2}$ has dimension $\frac{n(n+1)}{2}, V_{(\text {sign })}^{\otimes 2}$ has dimension $\frac{n(n-1)}{2}$.
Definition 2.9. $V_{(\mathbb{I})}^{\otimes 2}$ is called the symmetric square of V, written $S^{2} V . V_{(\text {sign })}^{\otimes 2}$ is called the alternating square of V, written $\wedge^{2} V$.

Lemma 2.10. The characters of $S^{2} V$ and $\wedge^{2} V$ are

$$
\begin{aligned}
\chi_{S^{2} V}(g) & =\frac{1}{2}\left(\chi(g)^{2}+\chi\left(g^{2}\right)\right) \\
\chi_{\wedge^{2} V}(g) & =\frac{1}{2}\left(\chi(g)^{2}-\chi\left(g^{2}\right)\right)
\end{aligned}
$$

Proof. Let $g \in G$, take a basis of V to be v_{1}, \ldots, v_{n} such that $g=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ with respect to that basis. Then $g \cdot\left(v_{i} \otimes v_{j}+v_{j} \otimes v_{i}\right)=\alpha_{i} \alpha_{j}\left(v_{i} \otimes v_{j}+v_{j} \otimes v_{i}\right)$. So

$$
\begin{aligned}
\chi_{S^{2} V}(g) & =\sum_{1 \leq i \leq j \leq n} \alpha_{i} \alpha_{j} \\
& =\frac{1}{2}\left(\chi(g)^{2}+\chi\left(g^{2}\right)\right)
\end{aligned}
$$

A similar calculation shows that

$$
\begin{aligned}
\chi_{S^{2} V}(g) & =\sum_{1 \leq i<j \leq n} \alpha_{i} \alpha_{j} \\
& =\frac{1}{2}\left(\chi(g)^{2}-\chi\left(g^{2}\right)\right)
\end{aligned}
$$

Remark. $S^{2} \chi+\wedge^{2} \chi=\chi^{2}$.

Definition 2.11. Let χ be an irreducible character of G, the Frobenius - Schur indicator of χ is

$$
s_{2}(\chi):=\frac{1}{|G|} \sum_{g \in G} \chi\left(g^{2}\right)
$$

Theorem 2.12. $s_{2}(\chi) \in\{0,1,-1\}$ and $s_{2}(\chi)=0$ if and only if $\chi \neq \bar{\chi}$.
Proof. Note that $\chi\left(g^{2}\right)=S^{2} \chi(g)-\wedge^{2} \chi(g)$, so $s_{2}(\chi)=\left\langle S^{2} \chi, \mathbb{I}\right\rangle_{G}-\left\langle\wedge^{2} \chi, \mathbb{I}\right\rangle_{G}$.
Claim. $\langle\underbrace{S^{2} \chi+\wedge^{2} \chi}_{\chi^{2}}, \mathbb{I}\rangle_{G}=0$ or 1
Let V be the vector space attached to χ. Then $\left\langle V^{\otimes 2}, \mathbb{I}\right\rangle=\operatorname{dim}\left((V \otimes V)^{G}\right)=\operatorname{Hom}_{G}\left(V^{*}, V\right)\left(\right.$ where $(-)^{G}$ are elements fixed by G.) By Schur's lemma, these G-homomorphism are 1-dimensional if $V^{*} \cong V$ (i.e., if $\chi \cong \bar{\chi}$) and 0 otherwise.

So what does this ± 1 mean for s_{2} of real-valued characters?
Example. Let $G=S_{3}$ and χ the standard character, i.e., $\chi(1)=2, \chi((123))=-1$ and $\chi((12))=0$. Now $s_{2}(\chi)=\frac{1}{6}(2+3 \cdot 2+2 \cdot(-1))=1$.

Pairings on vector spaces

Definition 2.13. Let V be a vector space over a field K. A pairing on V is a bilinear map $\langle\rangle:, V \times V \rightarrow K$.
Given a paring, we get a linear map $V \rightarrow V^{*}$ defined by $v \mapsto(w \mapsto\langle v, w\rangle)$. Conversely, given a homomorphism $\phi: V \rightarrow V^{*}$, we can define a pairing by $\langle v, w\rangle=\phi(v)(w)$. These operations are inverses to each other.

Definition 2.14. A pairing is non-degenerate if, given $v \in V,\langle v, w\rangle=0 \forall w \in V$ then $v=0$. (This is equivalent to "right non-degenerate" for finite dimensional vector spaces.)

In the language of $\phi: V \rightarrow V^{*}$, this is equivalent to ϕ being an isomorphism.
Definition 2.15. \langle,$\rangle is symmetric if \langle v, w\rangle=\langle w, v\rangle$ for all $v, w \in V$
It is alternating if $\langle v, w\rangle=-\langle w, v\rangle$ for all $v, w \in V$.
Let G act on V. We say that \langle,$\rangle is G$-invariant if $\langle g v, g w\rangle=\langle v, w\rangle \forall v, w \in V, \forall g \in G$.
This is equivalent to $\phi: V \rightarrow V^{*}$ being a G-homomorphism. So we have a bijection between $\operatorname{Hom}_{G}\left(V, V^{*}\right)$ and G-invariant pairings on V.

If U, V, W are vector spaces, then bilinear maps $U \times V \rightarrow W$ are "the same things as" linear maps $U \otimes V \rightarrow W$ in the following sense: there is a canonical map $U \times V \rightarrow U \otimes V$ defined by $(u, v) \mapsto u \otimes v$, and given any bilinear map

so that the diagram commutes.
In particular, bilinear maps $V \times V \rightarrow K$ correspond canonically to maps $V \otimes V \rightarrow K$, and the set of G-invariant pairings on V is in bijection with $\operatorname{Hom}_{G}(V \otimes V, \mathbb{I})$.

- The pairing is symmetric if the map $V \otimes V \rightarrow K$ is 0 on $\wedge^{2} V$, i.e., such pairings correspond to maps $V \otimes V / \wedge^{2} V \cong S^{2} V \rightarrow K$.
- The pairing is alternating if the map $V \otimes V \rightarrow K$ is 0 on $S^{2} V$, i.e., such pairings correspond to maps $V \otimes V / S^{2} V \cong \wedge^{2} V \rightarrow K$.
- $V \cong V^{*}$ if and only if there exists a G-invariant non-degenerate pairing on V. Conversely, given $f: V \rightarrow V^{*}$, take $\langle u, v\rangle=f(u) v$ if and only if $\chi=\bar{\chi}$. If $V \cong V^{*}$, then $\operatorname{Hom}_{G}\left(V, V^{*}\right)$ is 1-dimensional
- If \langle,$\rangle is a non-degenerate G$-invariant pairings, we can write it

$$
\langle u, v\rangle=\frac{1}{2} \underbrace{(\langle u, v\rangle+\langle v, u\rangle)}_{\langle,\rangle_{s}}+\frac{1}{2} \underbrace{(\langle u, v\rangle-\langle v, u\rangle)}_{\langle,\rangle_{a}}
$$

We cannot have both \langle,\rangle_{s} and \langle,\rangle_{a} non-degenerate, since they would have to be multiple of each other. Another way of saying this: since $V \otimes V=S^{2} V \oplus \wedge^{2} V$ we either have

$$
\begin{aligned}
& -\operatorname{dim}\left(\operatorname{Hom}_{G}\left(S^{2} V, \mathbb{I}\right)\right)=1 \text { and } \operatorname{Hom}_{G}\left(\wedge^{2} V, \mathbb{I}\right)=0 \text { or } \\
& -\operatorname{dim}\left(\operatorname{Hom}_{G}\left(S^{2} V, \mathbb{I}\right)\right)=0 \text { and } \operatorname{Hom}_{G}\left(\wedge^{2} V, \mathbb{I}\right)=1
\end{aligned}
$$

- There exists a symmetric G-invariant, non-degenerate pairing on V if and only if $\operatorname{Hom}_{G}\left(S^{2} V, \mathbb{I}\right) \neq 0$, if and only if $V \cong V^{*}$ and $\operatorname{Hom}_{G}\left(\wedge^{2} V, \mathbb{I}\right)=0$.
Explicitly, if $f: S^{2} V \rightarrow \mathbb{I}$, construct the pairing by $\langle u, v\rangle=f(u \otimes v+v \otimes u)$
- There exists an alternating G-invariant, non-degenerate pairing on V if and only if $\operatorname{Hom}_{G}\left(\wedge^{2} V, \mathbb{I}\right) \neq 0$, if and only if $V \cong V^{*}$ and $\operatorname{Hom}_{G}\left(S^{2} V, \mathbb{I}\right)=0$.

Theorem 2.16. Let V be an irreducible complex representation of G.

1. There exists a non-degenerated G-invariant pairing on V if and only if $V \cong V^{*}$ if and only if $\chi \cong \bar{\chi}$
2. There exists a symmetric non-degenerate G-invariant pairing on V if and only if there exists a basis on V with respect to which G is represented by real matrices.
3. There exists an alternating non-degenerate G-invariant pairing on V if and only if χ is real-valued, but V cannot be defined over \mathbb{R} (in the above sense)

Example. Let $G=D_{10}=\left\langle\tau, \sigma \mid \tau^{2}=\sigma^{5}=1, \tau \sigma \tau=\sigma^{-1}\right\rangle$. Rotations and reflections of the 5 -gon gives the following representation: $\tau \mapsto\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \sigma \mapsto\left(\begin{array}{cc}e^{2 \pi i / 5} & 0 \\ 0 & e^{-2 \pi i / 5}\end{array}\right)$. But with respect to "the right" basis, this can be written as $\tau \mapsto\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \sigma \mapsto\left(\begin{array}{cc}\cos \frac{2 \pi}{5} & \sin \frac{2 \pi}{5} \\ -\sin \frac{2 \pi}{5} & \cos \frac{2 \pi}{5}\end{array}\right)$
Theorem (Part 2). 1. holds if and only if $s_{2}(\chi)=\left\langle S^{2} \chi, \mathbb{I}\right\rangle-\left\langle\wedge^{2} \chi, \mathbb{I}\right\rangle \neq 0$
2. holds if and only if $s_{2}(\chi)=1$
3. holds if and only if $s_{2}(\chi)=-1$

Partial proof. Suffices to show 2. (as we already know 1.). We will only prove the implication \Leftarrow.
Suppose that V is definable over \mathbb{R}. This means that if V is regarded as an \mathbb{R}-vector space (of twice its dimension over \mathbb{C}), then $V=W+i W$, where W is invariant under G. Let (,) be any positive-definite pairing on W. Define \langle,\rangle_{1} on W by $\langle u, v\rangle_{1}=\frac{1}{|G|} \sum_{g \in G}(g \cdot u, g \cdot v)$. This is clearly G-invariant and positive-definite.

Define $\langle u, v\rangle_{2}=\langle u, v\rangle_{1}+\langle v, u\rangle_{1}$. Then this is still G-invariant and positive-definite, furthermore it is symmetric. Define $\langle u, v\rangle_{3}$ on V by $\left\langle u+i u^{\prime}, v+i v^{\prime}\right\rangle_{3}=\langle u, v\rangle_{2}-\left\langle u^{\prime}, v^{\prime}\right\rangle_{2}+i\left(\left\langle u, v^{\prime}\right\rangle_{2}+\left\langle u^{\prime}, v\right\rangle_{2}\right)$, this is the required pairing.

For the implication " \Rightarrow " see for example Serre, chapter 2, Theorem 31, or Curtis - Reiner, Vol II, Section 73.13 .

Application

Define $r_{2}(g)=\#\left\{h \in G \mid h^{2}=g\right\}$. First observe: $h \mapsto x h x^{-1}$ gives a bijection between square roots of h^{2} and those of $x h^{2} x^{-1}$. So r_{2} is a class function. Thus $r_{2}=\sum_{\chi \in \operatorname{Irr}(G)} \alpha_{\chi} \cdot \chi$ for $\alpha_{\chi} \in \mathbb{C}$. Now

$$
\begin{aligned}
\alpha_{\chi} & =\left\langle r_{2}, \chi\right\rangle_{G} \\
& =\frac{1}{|G|} \sum_{g \in G} r_{2}(g) \chi(g) \\
& =\frac{1}{|G|} \sum_{g \in G} \#\left\{h \in G \mid h^{2}=g\right\} \chi(g) \\
& =\frac{1}{|G|} \sum_{g \in G} \sum_{h \in G, h^{2}=g} \chi(g) \\
& =\frac{1}{|G|} \sum_{g \in G} \sum_{h \in G, h^{2}=g} \chi\left(h^{2}\right) \\
& =\frac{1}{|G|} \sum_{h \in G} \chi\left(h^{2}\right) \\
& =s_{2}(\chi) \in\{-1,0,1\} .
\end{aligned}
$$

Hence $r_{2}=\sum_{\rho \text { irr reps realisable over } \mathbb{R}} \chi_{\rho}-\sum_{\text {self dual irr reps not realisable over } \mathbb{R}} \chi_{\rho}$.
Corollary 2.17. Let G be an abelian group, then r_{2} takes its maximum at the identity element.
Proof. $r_{2}(g)=\left|\sum_{\text {real } \chi} \chi(g)\right| \leq \sum_{\text {real } \chi}|\chi(g)| \leq \sum_{\text {real } \chi} \chi(1)=r_{2}(1)$.
Similarly for dihedral groups, symmetric groups, alternating groups, and for all groups that don't have χ with $s_{2}(\chi)=-1$.
Remark. One can define higher Frobenius - Schur indicators:

$$
s_{k}(\chi):=\frac{1}{|G|} \sum_{g \in G} \chi\left(g^{k}\right), k \in \mathbb{N}
$$

For $k \geq 3$, these are unbounded as G varies (hint for proof: consider the Heisenberg group of order p^{3}, i.e., $\left.\left(\begin{array}{ccc}1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1\end{array}\right) \subset \mathrm{GL}_{3}\left(\mathbb{F}_{p}\right)\right)$

To finish our discussion of $\mathbb{R}[G]$-modules, we should talk about Wedderburn components.
Recall: $R[G] \cong \oplus_{i} M_{n_{i}}\left(D_{i}\right)$ where D_{i} are division algebras. In fact $D_{i}=\operatorname{End}_{\mathbb{R}[G]}\left(\rho_{i}\right)$, where ρ_{i} are the distinct simple $\mathbb{R}[G]$-modules.

Fact. The only associative division algebras over \mathbb{R} are $\mathbb{R}, \mathbb{C}, \mathbb{H}$.
Theorem 2.18. Let ρ be a complex irreducible representation of G.

1. If $\rho \neq \rho^{*}$, then $\rho \oplus \rho^{*}$ is realisable over \mathbb{R}, is simple as an $\mathbb{R}[G]$-module and the corresponding Wedderburn block is isomorphic to $M_{n_{i}}(\mathbb{C})$
2. If ρ is realisable over \mathbb{R}, then the Wedderburn component is isomorphic to $M_{n_{i}}(\mathbb{R})$
3. If $\rho \cong \rho^{*}$ but not realisable over \mathbb{R} (i.e., ρ is simpletic or quaternion) then $\rho \oplus \rho$ is realisable over \mathbb{R}, it is simple and the corresponding Wedderburn block is isomorphic to $M_{n_{i}}(\mathbb{H})$.

Proof (sketch). In cases 1. and 3., to prove realisability over \mathbb{R}, we construct a symmetric non-degenerate, G invariant pairing.
E.g., in case 3. let [,] be a G-invariant non-degenerate alternating pairing on ρ. Define \langle,$\rangle on \rho \oplus \rho$ by $\left\langle\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right\rangle=\left[u_{1}, v_{2}\right]-\left[v_{1}, u_{2}\right]$. We can see that this is symmetric.

Case 1. is omitted
To find the corresponding Wedderburn component, notice that \mathbb{R}, \mathbb{C} and \mathbb{H} have different dimensions over \mathbb{R}. So just need to know $\operatorname{dim}_{\mathbb{R}} \operatorname{End}_{\mathbb{R}[G]}(-)$, which we use the following lemma for.
Lemma 2.19. If τ is an $\mathbb{R}[G]$-module, $\tau \otimes_{\mathbb{R}} \mathbb{C}$ the corresponding $\mathbb{C}[G]$-module. Then $\left.\operatorname{dim}_{\mathbb{R}} \operatorname{End}_{\mathbb{R}[G]}(\tau)=\operatorname{dim}_{\mathbb{C}} \operatorname{End} \mathbb{C}_{\mathbb{C}}\right]\left(\tau \otimes_{\mathbb{R}}\right.$ C)

We can calculate the following:

1. $\rho \neq \rho^{*},\left\langle\rho \oplus \rho^{*}, \rho \oplus \rho^{*}\right\rangle=2$ hence $\operatorname{End}_{\mathbb{R}[G]}=\mathbb{C}$
2. $\langle\rho, \rho\rangle_{G}=1$ hence $\operatorname{End}_{\mathbb{R}[G]}=\mathbb{R}$
3. $\langle\rho \oplus \rho, \rho \oplus \rho\rangle_{G}=4$ hence $\operatorname{End}_{\mathbb{R}[G]}=\mathbb{H}$.

Recall that $V^{\otimes n} \cong \oplus_{\chi \in \operatorname{Irr}\left(S_{n}\right)} V_{(\chi)}^{\otimes n}$. In general, if V is a $\mathbb{C}[G]$-module, $V=\oplus_{\chi \in \operatorname{Irr}(G)} V_{(\chi)}$, to find $V_{(\chi)} \subset V$, use idempotent:

- $e_{\chi}=\frac{1}{|G|} \sum_{g \in G} \overline{\chi(g)} \cdot g \in \mathbb{C}[G]$ - a primitive central idempotent.

Hence $V_{(\chi)}=e_{\chi} \cdot V=\left\{e_{\chi} \cdot v \mid v \in V\right\}$.
Example. Let $G=S_{3}, V=\mathbb{C}\left[S_{3}\right], \chi$ be the the standard character (2-dimensional).

$$
e_{\chi}=\frac{1}{6}(2 \cdot \mathrm{id}-(123)-(132)) \in \mathbb{C}[G]
$$

e.g, $e_{\chi} \cdot \mathrm{id}=e_{\chi}$

$$
\begin{aligned}
e_{\chi}(12) & =\frac{1}{6}(2 \cdot(12)-(23)-(13)) \\
e_{\chi}(13) & =\frac{1}{6}(2 \cdot(13)-(12)-(23))
\end{aligned}
$$

etc, we get a 4 dimensional subrepresentation of $\mathbb{C}\left[S_{3}\right] \cong \rho^{\oplus 2}$ (where ρ is the standard representation)

3 Permutation representation, monomial representation, induction theorems

Recall: Let X be a finite G-set, i.e., $X=\{1, \ldots, n\}$, and there is a group homomorphism $G \rightarrow S_{n}$. Then $\mathbb{C}[X]$ is the associated permutation representation.

Philosophy: these are easy, so we want to express pother representations in terms of these.
Recall: If $X=G / H$, then $\mathbb{C}[X] \cong \mathbb{I}_{H} \uparrow^{G}$. In particular, $\langle\mathbb{C}[X], \mathbb{I}\rangle_{G}=\left\langle\mathbb{I}_{H} \uparrow^{G}, \mathbb{I}\right\rangle_{G}=\left\langle\mathbb{I}_{H}, \mathbb{I}\right\rangle_{H}=1$. So we can write $\mathbb{C}[X] \cong 1 \oplus \rho$. When is ρ irreducible?

Lemma 3.1. If X is transitive, i.e., $\forall x, y \in X$ there exists $g \in G$ such that $g \cdot x=y$, define $H=\operatorname{Stab}_{G}(X)$ for a fixed $x \in X$. Then $X \cong G / H$, i.e., there is a bijection of sets that commutes with the G-action.
Proof. Define $X \rightarrow G / H$ by $g \cdot x \mapsto g \cdot H$.

- This is well-defined and one to one:

$$
\begin{aligned}
g \cdot x=g^{\prime} \cdot x, g, g^{\prime} \in G & \Longleftrightarrow g^{-1} g x=g^{-1} g^{\prime} x \\
& \Longleftrightarrow g^{-1} g^{\prime} \in \operatorname{Stab}_{G}(x)=H \\
& \Longleftrightarrow g \cdot H=g^{\prime} \cdot H
\end{aligned}
$$

- Surjective by Orbit-Stabiliser:

$$
|G / H|=\frac{|G|}{|H|}=|\operatorname{Orbit}(x)|=|X|
$$

- An isomorphism of G-sets: $g(h x)=(g h) x \mapsto(g h) H=g(h H)$

Remark. $\operatorname{Stab}_{G}(g \cdot x)=g \operatorname{Stab}_{G}(x) g^{-1}$. In particular $G / H \cong G /\left(g H g^{-1}\right)$
An arbitrary set X can be written as a union of orbits, $X=\coprod_{i=1}^{r} G / H_{i}$. Then $\mathbb{C}[X]=\oplus_{i=1}^{r} \mathbb{C}\left[G / H_{i}\right]$ and

$$
\begin{aligned}
\langle\mathbb{C}[X], \mathbb{I}\rangle_{G} & =\sum_{i=1}^{r}\left\langle\mathbb{C}\left[G / H_{i}\right], \mathbb{I}\right\rangle_{G} \\
& =r \\
& =\text { number of orbit of } X \text { under } G
\end{aligned}
$$

Lemma 3.2. Let X be a transitive set, $X \cong G / H$ and χ be the permutation character. Then $\langle\chi, \chi\rangle_{G}=$ the number of orbits on X under the action of H
Proof. Let number of orbits under H is

$$
\begin{aligned}
\left\langle\chi \downarrow_{H}, \mathbb{I}_{H}\right\rangle_{H} & =\left\langle\chi, \mathbb{I}_{H} \uparrow^{G}\right\rangle_{G} \\
& =\langle\chi, \chi\rangle_{G}
\end{aligned}
$$

Corollary 3.3. $\mathbb{C}[G / H] \cong \mathbb{I} \oplus \rho$ with ρ irreducible if and only if H acts transitively on the non-trivial cosets. We say that $X=G / H$ is doubly transitive.

Example.

- $S_{n}, n \geq 2$, acts doubly transitively on $\{1, \ldots, n\}$, so we get an $(n-1)$-dimensional irreducible character χ. E.g., $n=4$,

$$
\begin{aligned}
\chi^{\prime}((123)) & =\chi((123))-\mathbb{I}((123)) \\
& ={ }_{\text {\#fixed pts }}-1=0
\end{aligned}
$$

- $G=\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ acts doubly transitively on the $(p+1)$ lines through 0 in $\left(\mathbb{F}_{p}\right)^{2}$; e.g. the stabiliser of $\langle(1,0)\rangle$ is $\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right)$, and that acts transitively on the remaining p lines $\langle(a, 1)\rangle, a \in \mathbb{F}_{p}$.
So we get a p-dimensional irreducible representation, $\mathbb{C}[G / H]-\mathbb{I}$.
Artin's Induction. Let χ be a \mathbb{Q}-valued character (i.e., $\chi(g) \in \mathbb{Q}$ for all $g \in G$). Then $\chi=\sum_{H \leq G} \frac{a_{H}}{\left[N_{G}(H): H\right]}$. $\mathbb{I}_{H} \uparrow^{G}$, where the sum runs over representatives over conjugacy classes of cyclic subgroups and $a_{H} \in \mathbb{Z}$ and $N_{G}(H)=$ $\left\{g \in G \mid g H g^{-1}=H\right\}$.

Proof. The idea is to express χ as linear combinations of characteristic functions $\Phi_{x}(y)=\left\{\begin{array}{ll}1 & \text { if }\langle x\rangle \sim\langle y\rangle \\ 0 & \text { else }\end{array}\right.$, and then express Φ_{x} as linear combinations of $\mathbb{I}_{H} \uparrow^{G}$.
Lemma 3.4. $\chi(x)=\chi(y)$ whenever $\langle x\rangle \sim\langle y\rangle$, i.e., χ is a \mathbb{Q}-linear combinations of characteristics functions of Φ_{x}.

Proof. Suppose $\langle x\rangle \sim\langle y\rangle$, i.e., x is a conjugate to some y^{m}, where m is coprime to the $\operatorname{ord}(x)=\operatorname{ord}(y)=n$. Up to replacing x by a conjugate, let $x=y^{m}$. We can diagonalise x and y in the representation corresponding to $\chi, x=\operatorname{diag}\left(\epsilon_{1}^{m}, \ldots, \epsilon_{d}^{m}\right)$ and $y=\operatorname{diag}\left(\epsilon_{1}, \ldots, \epsilon_{d}\right)$, where ϵ_{i} are n th-roots of unity. There is an automorphism σ of $\mathbb{Q}\left(e^{2 \pi i / n}\right)$ such that for any n th-root of unity $\epsilon, \sigma(\epsilon)=\epsilon^{m}$. So $\sigma(\chi(y))=\sigma\left(\sum \epsilon_{i}\right)=\sum \epsilon_{i}^{m}=\chi(x) \in \mathbb{Q}$. But $\left.\sigma\right|_{\mathbb{Q}}=\mathrm{id}$, hence $\chi(x)=\chi(y)$

Let H_{1}, \ldots, H_{s} be representatives of conjugacy classes of cyclic subgroups, $\Phi_{i}(g)=\left\{\begin{array}{ll}1 & \text { if }\langle g\rangle \sim H_{i} \\ 0 & \text { else }\end{array}\right.$. By the above lemma, $\mathbb{I}_{H_{i}} \uparrow^{G}=\sum_{j=1}^{s} b_{i j} \Phi_{j}$. So we want to invert $B=\left(b_{i j}\right)$. First note that the Φ_{i} are orthogonal with respect to \langle,\rangle_{G} :

$$
\begin{aligned}
\left\langle\Phi_{i}, \Phi j\right\rangle & =\frac{1}{|G|} \sum_{g \in G} \Phi_{i}(g) \Phi_{j}(g) \\
& = \begin{cases}0 & i \neq j \\
\frac{1}{|G|} \phi\left(\left|H_{i}\right|\right) \cdot \frac{|G|}{\left|N_{G}\left(H_{i}\right)\right|}=\frac{\phi\left(\left|H_{i}\right|\right)}{\left|N_{G}\left(H_{i}\right)\right|} & i=j\end{cases}
\end{aligned}
$$

By definition, $\Phi_{j} \downarrow_{H_{i}}$ is identically 0 unless $H_{j} \leq_{G} H_{i}$ in this case $\Phi_{j} \downarrow_{H_{i}}=1$ on the $\phi\left(\left|H_{j}\right|\right)$ generators of H_{j} in H_{i}. Now

$$
\begin{aligned}
b_{i j} \cdot \frac{\phi\left(\left|H_{i}\right|\right)}{\left|N_{G}\left(H_{j}\right)\right|} & =\left\langle\mathbb{I}_{H_{i}} \uparrow^{G}, \Phi_{j}\right\rangle_{G} \\
& =\left\langle\mathbb{I}_{H_{i}}, \Phi_{j} \downarrow_{H_{i}}\right\rangle_{H_{i}} \\
& =\frac{1}{\left|H_{i}\right|} \cdot \phi\left(\left|H_{j}\right|\right) \text { if } H_{j} \leq_{G} H_{i}
\end{aligned}
$$

Hence $b_{i j}=\frac{\left|N_{G}\left(H_{j}\right)\right|}{\left|H_{i}\right|}$ if $H_{j} \leq_{G} H_{i}$ and otherwise $b_{i j}=0$.
Now order the H_{i} by size, then we have established that B is triangular, integer entries, and in the i th row, all entries are divisible by $\left[N_{G}\left(H_{i}\right): H_{i}\right]$, because if $H_{j} \leq H_{i}$ then $\left|N_{G}\left(H_{i}\right)\right|\left|\left|N_{G}\left(H_{j}\right)\right|\right.$. It follows that B is invertible, with denominators in the i th row of the inverse dividing $\left[N_{G}\left(H_{i}\right): H_{i}\right]$.

Remark. It is still an open question, how "bad" these denominators can get, e.g., we do not know for what groups G, any \mathbb{Q}-valued χ can be written as $\sum_{H \leq G, \text { cyclic }} c_{H} \mathbb{I}_{H} \uparrow^{G}$ with $c_{H} \in \mathbb{Z}$. This is possible in S_{n}.

Example. Let $G=C_{p} \times C_{p}$. There are $p+1$ cyclic subgroups of order p, denote them H_{1}, \ldots, H_{p+1}. Any irreducible, non-trivial character χ factors through a unique G / H_{i}. In fact, $\mathbb{I}_{H_{i}} \uparrow^{G}=\sum_{\text {ker } \chi_{i j} \geq H_{i}} \chi_{i j}$ with $\chi_{i 1}=\mathbb{I}$. After solving the system of linear equations, we find that $\mathbb{I}_{\{1\}} \uparrow^{G}-\sum_{i} \mathbb{I}_{H_{i}} \uparrow^{G}=-p \cdot \mathbb{I}$.

Corollary 3.5. The number of irreducible $\mathbb{Q}[G]$-modules is equal to conjugacy classes of cyclic subgroups.
Proof. This corollary also depends on the theory of Schur indices, which we will cover later.
Corollary 3.6. Two $\mathbb{Q}[G]$-modules V_{1}, V_{2} are isomorphic if and only if $\operatorname{dim} V_{1}^{H}=\operatorname{dim} V_{2}^{H}$ for all cyclic $H \leq G$.
Proof. Exercise
Example. Let $G=S_{3}$,

- $\mathbb{I}_{\{1\}} \uparrow^{G}=\mathbb{I} \oplus \epsilon \oplus \rho^{\oplus 2}$, where ϵ is the sign representation and ρ is the standard representation
- $\mathbb{I}_{C_{2}} \uparrow^{G}=\mathbb{I} \oplus \rho$
- $\mathbb{I}_{C_{3}} \uparrow^{G}=\mathbb{I} \oplus \epsilon$

Now $\phi=\mathbb{I},-\mathbb{I}_{\{1\}} \uparrow^{G}+2 \cdot \mathbb{I}_{C_{2}} \uparrow^{G}+\mathbb{I}_{C_{3}} \uparrow^{G}=2 \cdot \mathbb{I}$.
Example. Let $G=C_{p} \rtimes C_{p-1}$, then $-\mathbb{I}_{\{1\}} \uparrow^{G}+(p-1) \mathbb{I}_{C_{p-1}} \uparrow^{G}+\mathbb{I}_{C_{p}} \uparrow^{G}=(p-1) \cdot \mathbb{I}_{G}$. Prove this as an exercise
Remark. Even if one was allowed to use $\mathbb{I}_{H} \uparrow^{G}$ for all $H \leq G$, one would still have denominators
Example. Let $G=Q_{8} \times C_{3}$ and let ρ be the standard representations of Q_{8}, χ a 1-dimensional non-trivial character of C_{3}. Then $\rho \otimes(\chi \otimes \bar{\chi})$ is a representation that can be defined over \mathbb{Q}, but it is not a \mathbb{Z}-linear combination of $\mathbb{I}_{H} \uparrow^{G}$ for all $H \leq G$, but twice that is.

Definition 3.7. A group is called p-quasi-elementary if it's of the form $G=C \rtimes P$ where C is cyclic and P a p-group (i.e., order p^{n} for some n).

Without loss of generality, we can assume $p \nmid|G|$.
Solomon Induction. There exists $a_{H} \in \mathbb{Z}$ for $H \leq G$ quasi-elementary subgroups such that $\mathbb{I}=\sum_{H \leq G} a_{H} \mathbb{I}_{H} \uparrow G$.
Brauer's Induction Theorem. Let $\phi \in \operatorname{Irr}(G)$. Then there exists $a_{H, \lambda} \in \mathbb{Z}$ for H of the form $H=C \times P$ (with C cyclic and P a p-group, these are called elementary groups), such that $\phi=\sum a_{H, \lambda} \lambda \uparrow^{G}$, where λ are 1-dimensional characters of elementary subgroups.

We will first deduce Brauer from Solomon, to do so we will use for the first time the ring structure of the ring of class functions.
Definition 3.8. We define $R(G)=\langle\operatorname{Irr}(G)\rangle_{\mathbb{Z}}=\left\{\sum_{\chi \in \operatorname{Irr}(G)} a_{\chi} \cdot \chi \mid a_{\chi i n} \mathbb{Z}\right\}$.
For any family of subgroups of G, \mathcal{H}, we define $I_{\mathcal{H}}(G)=\left\{\sum_{H \in \mathcal{H}, \lambda \in \operatorname{Irr}(H)} a_{H, \lambda} \lambda_{H} \uparrow^{G} \mid a_{H, \lambda} \in \mathbb{Z}\right\}$.
Lemma 3.9. Let $H \leq G$, ϕ a class function of H, ψ a class function of G. Then $\phi_{H} \uparrow^{G} \cdot \psi=\left(\phi \cdot \psi \downarrow_{H}\right) \uparrow^{G}$.
Proof. Just do it. (exercise)
Corollary 3.10. $I_{\mathcal{H}}(G)$ is an ideal in $R(G)$
Proof. If $\phi=\sum a_{H, \lambda} \lambda_{H} \uparrow^{G} \in I_{\mathcal{H}}(G), \psi \in \operatorname{Irr}(G)$, then $\psi \cdot \phi=\sum a_{H, \lambda} \psi \lambda_{H} \uparrow^{G}=\sum a_{H, \lambda}\left(\psi \downarrow_{H} \cdot \lambda\right) \uparrow^{G} \in I_{\mathcal{H}}(G)$.
Now let $\mathcal{H}=\{C \times P \leq G \mid C$ cyclic, P a p group $\}$. We will prove Brauer if we can show

- $\mathbb{I} \in I_{\mathcal{H}}(G)=: I(G)$
- All elementary groups are M-groups, i.e., every irreducible characters is monomial, i.e., induced from a 1dimensional character. (This is left as an exercise)

Theorem 3.11. $\mathbb{I} \in I(G)$.

Proof (assuming Solomon). We do this by induction on $|G|$. We can use elementary groups G as our base case.
Assume that the theorem holds for all proper subgroups of G, i.e., for all $H \leq G, \mathbb{I}_{H}=\sum_{U \leq H \text { elem, } \lambda \in \operatorname{Irr}(U)} a_{U, \lambda} \lambda_{U} \uparrow^{H}$. Then it is enough to show that

$$
\mathbb{I}=\sum_{H \lesseqgtr G, \lambda \in \operatorname{Irr}(H)} b_{H, \lambda} \lambda_{H} \uparrow^{G}
$$

because then, each $\lambda=\sum_{U \leq H \text { elem }} a_{u, \mu}^{(\lambda)} \mu \uparrow^{H}$ and $\mathbb{I}_{G}=\sum \sum b_{H, \lambda} a_{U, \mu}^{(\lambda)} \mu \uparrow^{H} \uparrow^{G}$. If G is not quasi-elementary, then Solomon shows (\dagger).

So we are left with proving the statement

$$
\mathbb{I}=\sum_{H \not G G, \lambda \in \operatorname{Irr}(H)} b_{H, \lambda} \lambda_{H} \uparrow^{G}, b_{H, \lambda} \in \mathbb{Z}
$$

for $G=C \rtimes P$, where P acts non-trivially on C by conjugation, so that $G \neq C \times P$. Let $Z=Z_{C}(P)=\{x \in$ $\left.C \mid x p x^{-1}=p \forall p \in P\right\}$. Since $G \neq C \times P, Z \neq C$. Set $E=Z P \neq G$.

We have $\mathbb{I}_{E} \uparrow^{G}=\mathbb{I}_{G}+\Xi$. It is enough to show that any irreducible summand of Ξ is induced from a proper subgroup. Let ξ be an irreducible summand of Ξ. Let χ be an irreducible summand of $\xi \downarrow_{C}$. Let $S=\operatorname{Stab}_{G}(\chi)$. Recall that if ι is an irreducible summand of $\chi \uparrow^{S}$, then $\iota \uparrow^{G}$ is irreducible and all summands of $\chi \uparrow^{G}$ are of this form (in particular this is true for ξ). So we now just need to know that $S \neq G$, i.e., that χ is not invariant under the G-action. To do so, we use the following lemma.

Lemma 3.12. Let $G=C \rtimes P, p \nmid C \mid, \chi \in \operatorname{Irr}(C), Z=Z_{C}(P)$ and assume $Z \in \operatorname{ker} \chi=: K$. If χ is invariant in G, then $\chi=\mathbb{I}_{C}$.

Proof. χ is a faithful character on C / K, so for χ to be invariant, G has to preserve each coset $c K$. But if P acts on $c K$, then the number of points moved is divisible by p (by Orbit - Stabiliser). But $p \nmid|C|$ so $p \nmid|K|$, hence $p \nmid|c K|$. So there is at least one point in $c K$ that is normalised by P, i.e., $c K \cap Z \neq \emptyset$. But $Z \subseteq K$, so $c K=K$ for all c, i.e., $\operatorname{ker} \chi=K=C$.

In our situation, $Z \triangleleft G$, so by Clifford, $Z \subset \operatorname{ker}\left(\mathbb{I}_{E} \uparrow^{G}\right)$, so in particular $Z \subset \operatorname{ker} \chi$. We claim that $\chi \neq \mathbb{I}$: note

$$
\begin{aligned}
\left\langle\mathbb{I}_{G} \downarrow_{C}+\Xi \downarrow_{C}, \mathbb{I}\right\rangle & =\left\langle\mathbb{I}_{E} \uparrow^{G} \downarrow_{C}, \mathbb{I}\right\rangle \\
& =\left\langle\oplus_{E \backslash G / C} \mathbb{I} \downarrow \uparrow, \mathbb{I}\right\rangle \quad \text { but } E \backslash G / C=E \cdot 1 \cdot C \\
& =1
\end{aligned}
$$

So $\left\langle\xi \downarrow_{C}, \mathbb{I}\right\rangle=0$, so $\chi \neq \mathbb{I}$. Hence χ is not invariant.
Lemma 3.13 (Banashewski). Let S be a finite set, and R be a rng (i.e., a ring which does not necessarily contain 1) of functions $f: S \rightarrow \mathbb{Z}$. Then either $R \ni \mathbb{I}_{S}$ or there exists $s \in S$ and a prime p such that $p \mid f(x) \forall x \in R$.

Proof. Suppose there is no such x, p. Then for any $x \in S$, $\operatorname{gcd}\{f(x) \mid f \in R\}=1$. So there exists $x \in R$ such that $f_{x}(x)=1$. Consider $\prod_{x \in S}\left(f_{x}-\mathbb{I}_{S}\right) \equiv 0$ on S. So expanding the product gives an expression for \mathbb{I}_{S} as a linear combination of products of $f_{x} \in R$.

Definition 3.14. We define $P_{\mathcal{H}}(G)=\left\{\sum_{H \in \mathcal{H}} a_{H} \mathbb{I}_{H} \uparrow^{G} \mid a_{H} \in \mathbb{Z}\right\}$.
Lemma 3.15. Suppose that \mathcal{H} is closed under taking subgroups, i.e., $H \in \mathcal{H}$ implies $U \in \mathcal{H}$ for all $U \leq H$. Then $P_{\mathcal{H}}(G)$ is a rng.
Proof. Either use

$$
\begin{aligned}
\mathbb{I}_{H} \uparrow^{G} \cdot \mathbb{I}_{H} \uparrow^{G} & =\left(\mathbb{I}_{H} \cdot \mathbb{I}_{H} \uparrow^{G} \downarrow_{H}\right) \uparrow^{G} \\
& =\sum_{H \backslash G / H^{\prime}} \mathbb{I} \downarrow_{H \cap g H^{\prime} g^{-1}} \uparrow^{G} \in P_{\mathcal{H}}(G)
\end{aligned}
$$

or note that if v_{1}, \ldots, v_{n} is a permutation basis of V, w_{1}, \ldots, w_{m} is a permutation basis of W, then $v_{i} \otimes w_{j}$ is a permutation basis. and the point stabiliser of $v_{i} \otimes w_{j}=\operatorname{Stab}\left(v_{i}\right) \cap \operatorname{Stab}\left(w_{j}\right) \in \mathcal{H}$ if one of the other stabilisers was in \mathcal{H}.

We want to use Banaschewski's lemma to conclude that if $\mathcal{H}=\{$ quasi-elementary subgroups $\}$, then $\mathbb{I}_{G} \in P_{\mathcal{H}}(G)$.
Lemma 3.16. For any prime p, any $x \in G$, there exists a quasi-elementary $H \leq G$ such that $p \nmid \mathbb{I}_{H} \uparrow^{G}(x)$.
Proof. For $x \in G$, write $\langle x\rangle=C_{p} \times C_{p^{\prime}}$, where C_{p} is a p-group and $C=C_{p^{\prime}}$ has order not divisible by p. Let $N=N_{G}(C)$, let P be a p-Sylow group in N containing C_{p}. Set $H=C \rtimes P$.
Claim. $p \nmid \mathbb{I}_{H} \uparrow^{G}(x)$
Indeed,

$$
\begin{aligned}
\mathbb{I}_{H} \uparrow^{G}(x) & =\#\{g H \in G / H \mid x g H=g H\} \\
& =\#\left\{g H \in G / H \mid g^{-1} x g \in H\right\}
\end{aligned}
$$

If $g^{-1} x g \in H$, then $g^{-1} C g=C$. So

$$
\begin{aligned}
\mathbb{I}_{H} \uparrow^{G}(x) & =\#\left\{g H \in G / H \mid g^{-1} C g=C \text { and } g^{-1} x g \in H\right\} \\
& =\#\left\{g H \in N / H \mid g^{-1} x g \in H\right\}
\end{aligned}
$$

The action of $\langle x\rangle$ on N / H factors through $\langle x\rangle / C$, i.e., C acts trivially on N / H : indeed $C \triangleleft N$ and $C \leq H$, so $c \cdot n H=n \cdot c^{\prime} \cdot H=n H$. But $\langle x\rangle / C$ is a p-group, so the number of elements of N / H that are not fixed by $\langle x\rangle / C$ is a multiple of p. So

$$
\begin{aligned}
\mathbb{I}_{H} \uparrow^{G}(x) & \equiv|N / H| \quad \bmod p \\
& \equiv 0 \bmod p
\end{aligned}
$$

because H / C is a p-Sylow of N / C.

Remark. There is a counterpart to Brauer's theorem, which is called "Brauer's characterisation of Characters":
Theorem 3.17. A class function ϕ of G is a \mathbb{Z}-linear combination of characters $(\phi \in R(G))$ if and only if $\phi \downarrow_{H} \in R(G)$ for all $H \leq G$ elementary subgroups.

Idea of Proof. Define $R_{\mathcal{H}}(G)=\left\{\right.$ class functions ϕ of $\left.G \mid \phi \downarrow_{H} \in R(H) \forall H \in \mathcal{H}\right\}$. Note that $I_{\mathcal{H}}(G) \subset R_{\mathcal{H}}(G)$ is an ideal (exercise). But $\mathbb{I} \in I_{\mathcal{H}}(G)$, so $I_{\mathcal{H}}(G)=R_{\mathcal{H}(G)}$.

For consequences, see Isaacs, chapter on Brauer's Theorem

4 Rationality questions, Schur indices.

Definition 4.1. Let M be a $K[G]$-module, $F \subset K$ a subfield. We say that M is realisable over F if there exists an $F[G]$-module M_{F} such that $M_{F} \otimes_{F} K \cong M$.

In the language of representations: In the language of representations, this means that we can find a K-basis on M such that all $g \in G$ are represented by matrices with entries in F with respect to this basis.

Example. Consider $G=S_{3}$. We have $\rho:(123) \mapsto\left(\begin{array}{cc}e^{2 \pi i / 3} & 0 \\ 0 & e^{4 \pi i / 3}\end{array}\right),(12) \mapsto\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. But we can change this basis in such a way that ρ becomes $(123) \mapsto\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right),(12) \mapsto\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. So the $K[G]$-representation ρ $\left(K=\mathbb{Q}\left(e^{2 \pi i / 3}\right)=\mathbb{Q}(\sqrt{-3})\right)$ is realisable over \mathbb{Q}.

- In fact, ρ is induced from $\chi:(123) \mapsto e^{2 \pi i / 3},\langle(123)\rangle \cong C_{3} \triangleleft S_{3}$. This χ is definitely not realisable over \mathbb{Q}, since $\mathrm{GL}_{1}(K)$ is commutative, so change of basis doesn't do anything to $\chi((123))$.
More generally, the character of a representation is independent of basis, so if ρ realisable over F, then we need $F \supseteq \mathbb{Q}\left(\chi_{\rho}\right)$, where $\mathbb{Q}\left(\chi_{\rho}\right)$ is the field generated over \mathbb{Q} by $\chi_{\rho}(g)$ for all $g \in G$.

Let $G=Q_{8}=\left\langle x, y \mid x^{4}=1, x^{2}=y^{2}, y x y^{-1}=x^{-1}\right\rangle$. Let $\rho: x \mapsto\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right), y \mapsto\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, this is a $K[G]$ representation where $K=\mathbb{Q}(i)$. We already know that ρ can not be defined over \mathbb{R}, so it is certainly not realisable over \mathbb{Q}. But we have exactly two copies of ρ inside $\mathbb{C}[G]$, which is realisable over \mathbb{Q}. The other summands in $\mathbb{C}[G]$ are 1-dimensional, all realisable over \mathbb{Q}. So $\mathbb{Q}[G] /\left(\right.$ all 1-dimensional subrepresentations) $\cong \rho^{\oplus 2}$. So $\rho^{\oplus 2}$ is realisable over \mathbb{Q}.

Definition 4.2. Let $K \subset \mathbb{C}, \rho$ an irreducible (complex) representation of G, the Schur index, $m_{K}(\rho)$, of ρ over K is the the smallest integer m such that there exists an irreducible $K[G]$-representation τ with $\langle\tau, \rho\rangle=m$. Equivalently, it's the unique integer m such that $m \mid\langle\rho, \tau\rangle$ for all $K[G]$-module τ.

Example. We have:

- $m_{\mathbb{Q}}\left(\right.$ standard representation of $\left.Q_{8}\right)=2$
- $m_{\mathbb{Q}}\left(\right.$ standard representation of $\left.S_{3}\right)=1$.
- $m_{\mathbb{Q}}\left(\chi:(123) \mapsto e^{2 \pi i / 3}\right)=1$, although χ is not realisable over \mathbb{Q}. (Note that $\chi+\bar{\chi}$ is definable over $\left.\mathbb{Q}\right)$

Definition 4.3. A representation over K is said to be absolutely irreducible if it is irreducible over \mathbb{C}.
A field $K \subset \mathbb{C}$ is called a splitting field of G if every irreducible $K[G]$-representation is absolutely irreducible, equivalently if every complex G-representation is realisable over K.

Lemma 4.4. Let χ be an irreducible character of $G, F \subset \mathbb{C}$ such that $F(\chi)=F$, i.e., χ takes values in F. Let τ be an irreducible $F[G]$-representations such that $\langle\tau, \chi\rangle \neq 0$. Then $\tau \otimes \mathbb{C}=m_{F}(\chi) \cdot \chi$.
Proof. The element $e_{\chi}=\frac{1}{|G|} \sum_{g \in G} \chi(g) g^{-1} \in F[G]$. So $e_{\chi} \cdot \tau=\tau$. But for any complex representation V, $e_{\chi} \cdot V \cong \chi^{\oplus n}$, for some n. But this n has to be $m_{F}(\chi)$.

If χ_{ρ} is a character, why is χ_{ρ}^{σ} a character for all $\sigma \in \operatorname{Gal}\left(\mathbb{Q}\left(\chi_{\rho}\right) / \mathbb{Q}\right)=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) / \operatorname{Gal}\left(\overline{\mathbb{Q}} / \mathbb{Q}\left(\chi_{\rho}\right)\right)$? We have that if $\rho: G \rightarrow \mathrm{GL}_{n}(\overline{\mathbb{Q}})$ is defined by $g \mapsto\left(a_{i j}\right)$, then $\rho^{\sigma}: G \rightarrow \mathrm{GL}_{n}(\overline{\mathbb{Q}})$ is defined by $g \mapsto\left(a_{i j}^{\sigma}\right)$. Now if σ fixes $\mathbb{Q}\left(\chi_{\rho}\right)$, then by definition $\chi_{\rho^{\sigma}}=\chi_{\rho}$. Hence $\rho^{\sigma} \cong \rho$.

Theorem 4.5. Let $K \subset \mathbb{C}$ be arbitrary, $\rho \in \operatorname{Irr}(G)$, τ a simple $K[G]$-module such that $\langle\tau, \rho\rangle \neq 0$. Then

$$
\tau \otimes \mathbb{C}=m_{K}(\rho) \sum_{\sigma \in \operatorname{Gal}\left(K\left(\chi_{\rho}\right) / K\right)} \rho^{\sigma} .
$$

Proof. Let $F=K\left(\chi_{\rho}\right)$, let ψ be a simple $F[G]$-module such that $\langle\tau, \psi\rangle \neq 0$. So by the lemma, $\psi \otimes \mathbb{C}=m_{F}(\rho) \cdot \rho$. Let $\sigma \in \operatorname{Gal}(F / K)$. Since $\tau^{\sigma}=\tau$ (as τ is a $K[G]$-module),

$$
\begin{aligned}
\left\langle\tau, \psi^{\sigma}\right\rangle & =\left\langle\tau^{\sigma}, \psi^{\sigma}\right\rangle \\
& =\frac{1}{|G|} \sum_{g \in G} \chi_{\tau}^{\sigma} \overline{\chi_{\psi}^{\sigma}} \\
& =\left(\frac{1}{|G|} \sum_{g \in G} \chi_{\tau} \overline{\chi_{\psi}}\right)^{\sigma} \\
& =\langle\tau, \psi\rangle^{\sigma} \\
& =\langle\tau, \psi\rangle
\end{aligned}
$$

So each Galois conjugate occurs with equal multiplicity inside τ, i.e., $\tau \otimes F=\alpha \sum \psi^{\sigma}+$ stuff that is not Galois conjugate to ψ. So $\tau \otimes \mathbb{C}=\alpha m_{F}(\rho) \sum_{\sigma \in \operatorname{Gal}(F / K)} \rho^{\sigma}+$ stuff that has nothing to do with ρ. In particular $m_{F}(\rho) \mid m_{K}(\rho)$. We just need to prove now that $m_{F}(\rho) \sum \rho^{\sigma}$ is realisable over K.

Let V be the F-vector space on which ψ is represented. Regarding F as a $|\operatorname{Gal}(F / K)|$-dimensional K-vector space, we can think of V as a $|\operatorname{Gal}(\mathrm{F} / \mathrm{K})| \cdot \operatorname{dim}_{F} V$-dimensional vector space over K. Inspecting the action of G on

Example. Let $G=C_{7} \rtimes C_{9}$, where C_{9} acts on C_{7} through $C_{9} / C_{3} \cong C_{3}$. Let $\chi \in \operatorname{Irr}\left(C_{7}\right)$ be faithful, extended trivially to $S_{\chi} \cong C_{3}$. Let τ be a faithful character of $C_{3} \cong C_{7} \times C_{3} / C_{7}, \rho=(\chi \otimes \tau) \uparrow^{G} \in \operatorname{Irr}(G)$. The field $\mathbb{Q}\left(\chi_{\rho}\right)$ is the degree 4 subfield of $\mathbb{Q}\left(\zeta_{21}\right)$, call it F. In particular, $\sum_{\sigma \in \operatorname{Gal}(F / \mathbb{Q})} \rho^{\sigma}$ takes values in \mathbb{Q}. But $m_{\mathbb{Q}}(\rho)=3$. So $\sum_{\sigma \in \operatorname{Gal}(F / \mathbb{Q})} \rho^{\sigma}$ is not a character of a $\mathbb{Q}[G]$-module, but 3 times it is (and it's a simple $\mathbb{Q}[G]$-module).

Corollary 4.6. We have $m_{K}(\rho)=m_{K\left(\chi_{\rho}\right)}(\rho)$.
Theorem 4.7. Let $e=\operatorname{exponent}(G)=\min \left\{n \in \mathbb{N} \mid g^{n}=\operatorname{id} \forall g \in G\right\}$. Let $F=\mathbb{Q}\left(\zeta_{e}\right)$. Then F is a splitting field for G.

Proof. Let $\chi \in \operatorname{Irr}(G)$. Write

$$
\chi=\sum_{H \leq G \text { elem }, \lambda \in \operatorname{Irr}(H) 1-\operatorname{dim}} a_{H, \lambda} \lambda_{H} \uparrow^{G}
$$

with $a_{H, \lambda} \in \mathbb{Z}$. Clearly λ can be realised over F, therefore so can $\lambda \uparrow^{G}$. But $m_{F}(\chi) \mid\langle\chi$, every $F[G]-$ module \rangle, so $m_{F}(\chi) \mid\langle\mathrm{RHS}, \chi\rangle=\langle\chi, \chi\rangle=1$. So $m_{F}(\chi)=1$, so χ is realisable over F.

Remark.

- Schur indices can be arbitrarily large: let p, q be primes, $q \equiv 1 \bmod p$ and $q \not \equiv 1 \bmod p^{2}$. Let $G=C_{q} \rtimes C_{p^{2}}$ where $C_{p^{2}}$ acts on C_{q} through $C_{p^{2}} / C_{p} \cong C_{p}$. Then using the same notation as in the above example $\chi \otimes \psi$ is a faithful irreducible character of $C_{q} \times C_{p}$. Now let $p=(\chi \otimes \psi) \uparrow^{G}$, then $m_{\mathbb{Q}}(\rho)=p$ (this claim can not be proven with techniques learn in this course)
- Schur indices don't behave very well under induction, restriction and tensor products (in part, if $G=H \times K$, $\left.\chi \in \operatorname{Irr}(H), \psi \in \operatorname{Irr}(K), m_{\mathbb{Q}}(\chi \otimes \psi) \neq m_{\mathbb{Q}}(\chi) \cdot m_{\mathbb{Q}}(\psi)\right)$.
- Schur indices are hard to calculate. There is an algorithm, based on another induction theorem (Witt Berman). But it's difficult to understand Schur indices in natural families.
- There is no unique minimal field of definition for $\rho \in \operatorname{Irr}(G)$.

Example. Let $G=Q_{8}$ and ρ be the standard representation. We know that ρ is not realisable over \mathbb{Q}. But it is realisable over $\mathbb{Q}(i)$. In fact ρ is realisable over K if and only if $-1=x^{2}+y^{2}$ for some $x, y \in K$. In particular, ρ is realisable in infinitely many quadratic fields.

- Note: $m_{\mathbb{Q}}(\rho)=1$ if and only if $\sum_{\sigma \in \operatorname{Gal}\left(\mathbb{Q}\left(\chi_{\rho}\right) / \mathbb{Q}\right)} \rho^{\sigma}$ is realisable over \mathbb{Q}, if and only if ρ is realisable over $\mathbb{Q}\left(\chi_{\rho}\right)$.

4.1 Schur indices and Artin - Wedderburn

Recall: $K[G] \cong \oplus_{i} M_{n_{i}}\left(D_{i}\right)$ with $n_{i} \in \mathbb{N}$, and D_{i} are division algebras over K. These D_{i} are isomorphic to End ${ }_{G}\left(A_{i}\right)$ as A_{i} ranges over simple non-isomorphic $K[G]$-modules. Each D_{i} contains K in its centre, $Z=Z\left(D_{i}\right)$. Also Z is a field, but D_{i} can also contain bigger fields.

Example. Let $D=\mathbb{H}=\langle 1, i, j, k\rangle_{\mathbb{R}}$. Note that $\mathbb{Z} \cong \mathbb{R}=\langle 1\rangle$, but $\langle 1, i\rangle_{\mathbb{R}} \cong \mathbb{C}$.
We will show the following theorem:
Theorem 4.8. If $\chi \in \operatorname{Irr}(G), K=\mathbb{Q}(\chi), M$ a simple $K[G]$-module with $\langle M, \chi\rangle \neq 0$, i.e., $M \otimes \mathbb{C}=m_{K}(\chi) \cdot \chi$, and let $D=\operatorname{End}_{K[G]}(M)$. If $F \subset D$ is a maximal subfield of D, then χ can be realised by a representation over F. Moreover $[F: K]=m_{K}(\chi)$, and χ cannot be realised over any smaller degree extension.

Lemma 4.9. Let $\rho: G \rightarrow \mathrm{GL}_{n}(F)$ be an irreducible representation over F. Then the following are equivalent:

1. ρ is absolutely irreducible
2. The centraliser of $\rho(G)$ in $M_{n}(F)$ is just scalar matrices.

Proof. Note that the centraliser of $\rho(G)$ in $M_{n}(F)$ is $\operatorname{End}_{G}(\rho) \cong F$.

1. $\Rightarrow 2$. Suppose that ρ is absolutely irreducible, let $M \in M_{n}(F)$ commute with $\rho(g)$ for all $g \in G$. Let L / F be an extension in which M has an eigenvalue, λ. Then $M-\lambda I$ commutes with $\rho(g)$ for all $g \in G$. But $\rho \otimes L$ is still simple, so Schur's lemma implies $M-\lambda I$ is either 0 or invertible. But, its singular, so $M-\lambda I=0$, so $M=\lambda I$.
$2 . \Rightarrow 1$. Suppose that ρ is not absolutely irreducible. Let L / F be a finite Galois extension of F such that $\rho \otimes L \cong \rho_{1} \oplus \rho_{2}$, so with respect to a suitable L-basis, $\rho \rightarrow\left({ }^{*}{ }_{*}\right)$. Let X be the change of basis matrix form the original basis to this one. Any matrix of the form $A_{\lambda_{1} \lambda_{2}}=\left(\begin{array}{l|l}\lambda_{1} I_{d_{1}} & \\ \hline & \lambda_{2} I_{d_{2}}\end{array}\right)$ commutes with $\rho(G)$, note $\lambda_{1}, \lambda_{2} \in L$. So $X A_{\lambda_{1}, \lambda_{2}} X^{-1}$ commutes with $\operatorname{im}\left(\rho \rightarrow M_{n}(F)\right)$. Also $\bar{A}=$ $\sum_{\sigma \in \operatorname{Gal}(L / F)}\left(X A_{\lambda_{1} \lambda_{2}} X^{-1}\right)^{\sigma} \in M_{n}(F)$ commutes with $\operatorname{im}\left(\rho \rightarrow M_{n}(F)\right)$. Exercise: by varying λ_{1}, λ_{2}, we can arrange \bar{A} to not be scalar.

Proof of Theorem 4.8. Since $F \subset \operatorname{End}_{G[K]}(M), M$ can be thought as a vector space over F, and this F-commutes with the G-action, so M becomes an $F[G]$-module. But $\operatorname{End}_{F[G]}(M)$ is the centraliser of $F[G]$ in D. But by the maximality of $F, \operatorname{End}_{F[G]}(M) \cong F$, so M is an absolutely simple $F[G]$-module. So $M \otimes_{F} \mathbb{C}$ has character χ.

It remains to compute $[F: K]$. Regarding F as a K-vector space, M becomes a $K[G]$-module of K-dimension equal to $\operatorname{dim}_{F}(M) \cdot[F: K]$. But also, this dimension is $m_{K}(\chi) \cdot \chi(1)$; on the other hand, M is an absolutely simple $F[G]$-module, so $\operatorname{dim}_{F}(M)=\chi(1)$. So $m_{K}(\chi)=[F: K]$. Also, if L / K is a degree d-extension such that χ is realised by a simple $L[G]$-module M^{\prime} then regarding L as a K-vector space, M^{\prime} becomes a $K[G]$-module with $\operatorname{dim}_{K}\left(M^{\prime}\right)=\operatorname{dim}_{L}\left(M^{\prime}\right) \cdot[L: K]=[L: K] \cdot \chi(1)$. So by definition, $m_{K}(\chi) \mid[L: K]$.

Remark.

- There is a local to global theory of Schur indices: If D is a division algebra over a number field K, one defines $m_{\mathfrak{p}}(D)=m\left(D \otimes K_{\mathfrak{p}}\right)$ for all place (finite and infinite) \mathfrak{p} of K, and $m(D)=\operatorname{lcm}\left(m_{\mathfrak{p}}(D)\right)$.
- If p is an odd prime, and G is a p-group, then $m_{\mathbb{Q}}(\chi)=1$ for all $\chi \in \operatorname{Irr}(G)$.

If $p=2$ and G is a 2 -group, then $m_{\mathbb{Q}}(\chi)=1$ or 2 , and it's 1 if and only if χ is realisable over \mathbb{R}.

- $m(\chi)^{2}| | G \mid$

For more details see Curtis - Reiner, Vol II.

5 Examples

1. Let $G=C_{2}$ 乙 $C_{3}=\left(C_{2} \times C_{2} \times C_{2}\right) \rtimes C_{3}$. The conjugacy classes:

- $1=((0,0,0), \mathrm{id})$
- $((1,0,0), \mathrm{id})$, this has 3 elements
- $((1,1,0), \mathrm{id})$, this has 3 elements
- $((1,1,1)$, id $)$, this has 1 element
- $((0,0,0),(123))$, this has 4 elements
- $((0,0,0),(132))$, this has 4 elements
- $((1,0,0),(123))$, this has 4 elements
- $((1,0,0),(132))$, this has 4 elements

All irreducible characters are $(\chi \otimes \psi) \uparrow \uparrow^{G}$, with $\chi \in \operatorname{Irr}\left(C_{2}^{3}\right)$ and $\psi \in \operatorname{Irr}\left(\operatorname{Stab}_{C_{3}}(\chi)\right)$. Let ϵ denote the sign representation.

- $\chi=\mathbb{I}$. Then $\operatorname{Stab}(\chi)=C_{3}$, so we get 3 irreducible characters corresponding to the irreducible characters of C_{3}.
- $\chi=(\epsilon, \mathbb{I}, \mathbb{I})$, then $\operatorname{Stab}(\chi)=\{1\}$. Hence $\chi \uparrow^{G}$ is irreducible.
- $\chi=(\epsilon, \epsilon, \mathbb{I})$, then $\operatorname{Stab}(\chi)=\{1\}$. Hence $\chi \uparrow^{G}$ is irreducible.
- $\chi=(\epsilon, \epsilon, \epsilon)$, then $\operatorname{Stab}(\chi)=C_{3}$. So $\chi \otimes \psi$ is irreducible for $\psi \in \operatorname{Irr}\left(C_{3}\right)$.

	\square	$\begin{aligned} & \approx \\ & \approx \\ & = \\ & = \end{aligned}$	$\begin{aligned} & \underset{\sim}{O} \\ & \underset{0}{-} \\ & \vdots \end{aligned}$					$\begin{aligned} & \overparen{\mathrm{O}} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$
$\chi_{1}=\mathbb{I}$	1	1	1	1	1	1	1	1
χ_{2}	1	1	1	1	$e^{2 \pi i / 3}$	$e^{4 \pi i / 3}$	$e^{2 \pi i / 3}$	$e^{4 \pi i / 3}$
χ_{3}	1	1	1	1	$e^{4 \pi i / 3}$	$e^{2 \pi i / 3}$	$e^{4 \pi i / 3}$	$e^{2 \pi i / 3}$
χ_{4}	1	-1	-1	1	1	1	-1	-1
χ_{5}	1	-1	-1	1	$e^{2 \pi i / 3}$	$e^{4 \pi i / 3}$	$-e^{2 \pi i / 3}$	$-e^{4 \pi i / 3}$
χ_{6}	1	-1	-1	1	$e^{4 \pi i / 3}$	$e^{2 \pi i / 3}$	$-e^{4 \pi i / 3}$	$-e^{2 \pi i / 3}$
χ_{7}	3	-3	1	-1	0	0	0	0
χ_{8}	3	3	-1	-1	0	0	0	0

We see that $s_{2}\left(\chi_{2,3,5,6}\right)=0, s_{2}(\mathbb{I})=1, s_{2}\left(\chi_{4}\right)=1$, and $s_{2}\left(\chi_{7,8}\right)=1$ because the corresponding representations are inductions of rational representations.
So for example, the number of square roots of

$$
\begin{aligned}
((1,1,1), \mathrm{id}) & =\sum_{\chi \in \operatorname{Irr}} s_{2}(\chi) \cdot \chi((1,1,1), \mathrm{id}) \\
& =1-1-3+3=0 .
\end{aligned}
$$

Indeed, there are no elements of order 4.
We could explicate Brauer's induction theorem, e.g., $\chi_{7}=\operatorname{Ind}_{c_{2}^{3}}$. But for $\chi_{1 \ldots 6}$, need to induce various characters of elementary subgroups and look for linear relationships.
2. Let $G=\operatorname{PSL}_{2}\left(\mathbb{F}_{7}\right)=\mathrm{SL}_{2}\left(\mathbb{F}_{7}\right) /\{ \pm \mathrm{id}\}$. This is a simple group of order 168 . This has conjugacy classes are id, $\left(\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right),\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right),\left(\begin{array}{ll}4 & 3 \\ 2 & 0\end{array}\right),\left(\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}5 & 5 \\ 1 & 4\end{array}\right)$. Let $B=\left\langle\left(\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\rangle \cong C_{7} \rtimes C_{3}$. Using Machke, you can check that if χ is a one-dimensional non-trivial character of B, then $\chi \uparrow^{G}$ is irreducible (8-dimensional). (To compute $\left\langle\chi \uparrow^{G}, \chi \uparrow^{G}\right\rangle=\left\langle\chi, \chi \uparrow^{G} \downarrow_{B}\right\rangle=\left\langle\chi, \oplus_{B \backslash G / B}{ }^{g} \chi \downarrow_{B \cap{ }^{g} B}\right\rangle$).
G acts doubly-transitively on lines in $\left(\mathbb{F}_{7}\right)^{2}$. (SL_{2} acts doubly transitively, because, the line $\langle(1,0)\rangle$ is stabilised by $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, which permutes the lines $\langle(a, 1)\rangle$; and \pm id acts trivially). Hence the (permutation character $\left.-\mathbb{I}\right)$ is irreducible. (7-dimensional).
Also, $\operatorname{PSL}_{2}\left(\mathbb{F}_{7}\right) \cong \mathrm{GL}_{3}\left(\mathbb{F}_{2}\right) \cong \operatorname{PSL}_{3}\left(\mathbb{F}_{2}\right)$, which acts on non-zero vectors in $\left(\mathbb{F}_{2}\right)^{3}$. So we get an irreducible $7-1=6$-dimensional character. By $|G|=\sum(\operatorname{dim} \chi)^{2}$, there are 23 -dimensional irreducible characters.
These can be obtained by column orthogonality. It then turns out that $s_{2}(3$-dimensionals $)=0$. The 7 dimensional character is the character of a $\mathbb{Q}[G]$-module $/ \mathbb{Q}[G]$-submodule, so the representation is defined over \mathbb{Q}. Similarly, the 6-dimensional one. The 8-dimensional is, a priory, defined over $\mathbb{Q}(\sqrt{-3})=\mathbb{Q}\left(e^{2 \pi i / 3}\right)$. But on the other hand, it is real-valued, and $s_{2}\left(\chi \uparrow^{G}\right)=1$ (check, but only if you feel adventurous). From general theory of Schur indices (beyond the scope of this course), $m_{\mathbb{Q}}\left(\chi \uparrow^{G}\right)=1$.
3. Let $G=S_{7}$. The conjugacy classes are: id, (12), (12)(34), (12)(34)(56), .. (there are 15 of them).

Obvious Characters: \mathbb{I}, sign, $\chi=$ (standard permutation character $-\mathbb{I}$) which is 6 dimensional, and $\chi \otimes$ sign. Consider $\chi^{\otimes 2}=S^{2} \chi \oplus \wedge^{2} \chi$, note that $S^{2} \chi=\mathbb{I}+\ldots$, hence it is still reducible. We have $\wedge^{2} \chi(g)=$ $\frac{1}{2}\left(\chi(g)^{2}-\chi\left(g^{2}\right)\right)$, so we can explicitly work out its values, and hence can calculate that $\left\langle\wedge^{2} \chi, \wedge^{2} \chi\right\rangle=1$, so $\wedge^{2} \chi$ is irreducible. This also gives us $\wedge^{2} \chi \otimes \operatorname{sign}$ for free.
It turns out that $\wedge^{k} \chi(g)$ is $(-1)^{k}$ times the coefficient of x^{k} in $\operatorname{det}(\rho(g)-x \cdot \mathrm{id})$. So again, we can explicatively calculate $\wedge^{3} \chi(g)$ for all g, and find that $\wedge^{3} \chi$ is irreducible.
4. Generalised quaternions: $Q_{2^{n+2}}=\left\langle c, x \mid c^{2^{n}}=x^{2}, x c x^{-1}=c^{-1}\right\rangle\left(\right.$ so $\left.\operatorname{ord}(c)=2^{n+1}, \operatorname{ord}(x)=4\right)$. Hence $\left|Q_{2^{n+2}}\right|=2^{n+2}$.
Let $n=2$, so consider $G=Q_{2^{4}}$: We have the conjugacy classes:

Representative	Size	Order
id	1	1
x^{2}	1	2
x	4	4
c^{2}	2	4
$c x$	4	4
c	2	8
c^{3}	2	8

Let $G^{\prime}=\left\langle c^{2}\right\rangle, G / G^{\prime} \cong C_{2} \times C_{2}$, so we get 4 1-dimensional characters.

	id	x^{2}	x	c^{2}	$c x$	c	c^{3}
\mathbb{I}	1	1	1	1	1	1	1
χ_{1}	1	1	-1	1	1	-1	1
χ_{2}	1	1	-1	1	-1	1	1
χ_{3}	1	1	1	1	-1	-1	-1
τ_{1}	2	2	0	-2	0	0	0
τ_{2}	2	-2	0	0	0	$\sqrt{2}$	$-\sqrt{2}$
τ_{3}	2	-2	0	0	0	$-\sqrt{2}$	$\sqrt{2}$

quotient of order 8 (hence either Q_{8} or D_{8}, but they have the same character table)

We now compute the Frobenius - Schur indicator: $s_{2}\left(\chi_{i}\right)=1, s_{2}\left(\tau_{1}\right)=\frac{1}{16} \sum_{g \in G} \tau_{1}\left(g^{2}\right)=\frac{1}{16}(2+2+2 \cdot 2+4 \cdot 2+\ldots)>$ 0 , hence $s_{2}\left(\tau_{1}\right)=1$. This actually shows that $G /\left\langle c^{4}\right\rangle \cong D_{8}$ (and not Q_{8}), and τ_{1} is realisable over \mathbb{Q}. Next we compute $s_{2}\left(\tau_{2}\right)=s_{2}\left(\tau_{3}\right)=-1$. So τ_{2}, τ_{3} are nor realisable over \mathbb{R} (in particular not over $\mathbb{Q}(\sqrt{2})$). In particular, $m_{\mathbb{Q}}\left(\tau_{2,3}\right)>1$. Let $H=\langle c\rangle \cong C_{8}$,

$$
\begin{aligned}
\left\langle\tau_{2} \downarrow_{H},\left(c \mapsto e^{2 \pi i / 8}\right)\right\rangle_{H} & =\frac{1}{|H|} \sum_{k=0}^{7} \tau_{2}\left(c^{k}\right) \cdot e^{2 \pi i k / 8} \\
& =1 \\
& =\left\langle\tau_{2},\left(c \mapsto e^{2 \pi i / 8}\right) \uparrow^{G}\right\rangle_{G}
\end{aligned}
$$

Hence $\tau_{2}=\left(c \mapsto e^{2 \pi i / 8}\right) \uparrow^{G}$. So we can define τ_{2} over $\mathbb{Q}\left(e^{2 \pi i / 8}\right)$. Note that $\left[\mathbb{Q}\left(e^{2 \pi i / 8}\right): \mathbb{Q}(\sqrt{2})\right]=2$, so $m_{\mathbb{Q}}\left(\tau_{2}\right)=2$. Similarly for τ_{3}. This last calculation also verifies Brauer's induction theorem for τ_{2} and τ_{3}.
Let us verify Artin's Induction:

- The cyclic subgroups are: $1, Z=\left\langle x^{2}\right\rangle, C_{1}=\left\langle c^{2}\right\rangle, C_{2}=\langle x\rangle, C_{3}=\langle c x\rangle, C_{4}=\langle c\rangle$.
- So we get $\mathbb{I}_{\{1\}} \uparrow^{G}=1+\chi_{1}+\chi_{2}+\chi_{3}+\chi_{4}+2 \cdot\left(\tau_{1}+\tau_{2}+\tau_{3}\right)$
- $\mathbb{I}_{Z} \uparrow^{G}=1+\chi_{1}+\chi_{2}+\chi_{3}+2 \tau_{1}$
- etc

6 Symmetric Groups

Motivation:

1. Artin - Wedderburn: $\mathbb{C}[G] \cong \oplus_{i=1}^{t} M_{n_{i}}(\mathbb{C})$. It's clear what the simple modules of the RHS look like (they are, as submodules of the regular module, columns). If $e_{i}=\left(0, \ldots, 0, I_{n_{i}}, 0, \ldots, 0\right) \in \oplus M_{n_{i}}(\mathbb{C})$, then $e_{i} \cdot \oplus M_{n_{i}}(\mathbb{C})$ is a direct sum of n_{i} mutually isomorphic simple modules. By finding that $e_{i}=\frac{\chi_{i}(1)}{|G|} \sum_{g \in G} \chi_{i}\left(g^{-1}\right) g \in \mathbb{C}[G]$, one finds the " χ_{i} "-isotypical block $M_{n_{i}}(\mathbb{C})$ as a submodule of $\mathbb{C}[G]$. For example:

- $\mathbb{I}=\left\langle\sum_{g \in G} g\right\rangle \leq \mathbb{C}[G]$.
- $G=S_{3}, \chi$ the standard representation, so $e_{\chi}=\frac{2}{6}(2 \mathrm{id}-(123)-(132)) \in \mathbb{C}\left[S_{3}\right]$, and $e_{\chi} \mathbb{C}[G]$ is 4dimensional.

But if we knew what $f_{i}=\left(\begin{array}{cccc}1 & & & \\ & 0 & & \\ & & \ddots & \\ & & & 0\end{array}\right) \in M_{n_{i}}(\mathbb{C})$ looks like as an element of $\mathbb{C}[G]$, then $\mathbb{C}[G] f_{i}$ would give us a simple summand.
2. We know that the number of conjugacy classes of elements of G is the same as the number of isomorphism classes of simple $\mathbb{C}[G]$-modules. But there is, in general, no canonical bijection between these two sets.

6.1 Young Diagrams

Conjugacy classes of $S_{n} \leftrightarrow$ cycle types \leftrightarrow partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ of n such that $\lambda_{i} \in \mathbb{N}, \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}$ and $\sum \lambda_{i}=n$.

The associated Young diagram is

which corresponds to $5+4+4+1+1=15$.

The conjugate partition is obtained by reflecting the Young diagram in the \diagonal. A Young tableau is a numbering of the boxes of a Young Diagram by numbers from 1 to n. S_{n} acts on the Young tableau of any given Young diagram. Fix any tableau of the Young diagram corresponding to λ (e.g., the obvious one), define $P_{\lambda}=\left\{g \in S_{n} \mid g\right.$ fixes each row of the tableau $\}$.

For example

$\lambda=$| | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 5 | |
| 6 | | |
| 7 | | |\quad, then $P_{\lambda}=\langle(123),(45),(12)\rangle \cong S_{3} \times S_{2} \times S_{1} \times S_{1}$.

We also define $Q_{\lambda}=\left\{g \in S_{n} \mid g\right.$ fixes each columns of the tableau $\}$. Define:

- $a_{\lambda}=\sum_{g \in P_{\lambda}} g \in \mathbb{C}\left[S_{n}\right]$
- $b_{\lambda}=\sum_{g \in Q_{\lambda}} \operatorname{sgn}(g) \cdot g \in \mathbb{C}\left[S_{n}\right]$,
- $c_{\lambda}=a_{\lambda} \cdot b_{\lambda}$. This is the Young symmetriser corresponding to λ.

Example. Let $G=S_{3}$ and $\lambda=(2,1)$, i.e., | 1 | 2 |
| :--- | :--- |
| | 3 | . Then $P_{\lambda}=\langle(12)\rangle, Q_{\lambda}=\langle(13)\rangle, a_{\lambda}=\mathrm{id}+(12), b_{\lambda}=\mathrm{id}-(13)$ and hence $c_{\lambda}=\mathrm{id}+(12)-(13)-(123)$.

Theorem 6.1. $V_{\lambda}:=\mathbb{C}[G] \cdot c_{\lambda}$ is a simple S_{n}-module, only depending on λ up to isomorphism. $V_{\lambda}=V_{\mu}$ if and only $\lambda=\mu$, and all simple modules are isomorphic to some V_{λ}.

Reference for the proof: Fulton, Harris: Representation Theory: a first course.
Example. Continuing from above, $G=S_{3}$ and $\lambda=(2,1)$, we get $\mathbb{C}[G] c_{\lambda}=\left\langle c_{\lambda},(13) \cdot c_{\lambda}\right\rangle:=\left\langle v_{1}, v_{2}\right\rangle$. Then see how S_{3} acts on v_{1}, v_{2} :

- (13) $v_{1}=v_{2},(13) v_{2}=v_{1}$
- $(123) v_{1}=(123)+(23)-(12)-(132)=-v_{1}-v_{2},(123) v_{2}=v_{1}$.

Example. Let $G=S_{n}$:

- Consider $\lambda=(n)$. Then we have $P_{\lambda}=S_{n}, Q_{\lambda}=\{1\}, a_{\lambda}=\sum_{g \in S_{n}} g=c_{\lambda}$. So $V_{\lambda} \cong \mathbb{I}$.
- Consider $\lambda=(1, \ldots, 1)$. Then we have $P_{\lambda}=\{1\}, Q_{\lambda}=S_{n}, b_{\lambda}=\sum_{g \in S_{n}} \operatorname{sgn}(g) \cdot g=c_{\lambda}$. So $V_{\lambda} \cong \operatorname{sign}$.
- Consider $\lambda=(n-1,1)$. Then we have $P_{\lambda}=S_{n-1}=\operatorname{stab}_{S_{n}}(n) \leq S_{n}, Q_{\lambda}=\langle(1 n)\rangle$. So $a_{\lambda}=\sum_{g \in \operatorname{Stab}(n)} g$, $b_{\lambda}=\operatorname{id}-(1 n)$, hence $c_{\lambda}=\sum_{g \in \operatorname{Stab}(n)} g-\sum_{g \in \operatorname{Stab}(n) \cdot(1 n)} g$. After some work, you should find that V_{λ} is the standard representation of $S_{n}((n-1)$-dimensional)
- More generally: $\lambda=(n-i, 1, \ldots, 1)$, then $V_{\lambda}=\wedge^{i} V_{(n-1,1)}$.

6.2 Frobenius's Formula

Let χ_{λ} be the character of V_{λ}. Let $g \in S_{n}, i_{1}=$ number of 1 -cycles in $g, i_{2}=$ number of 2 -cycles of $g, \ldots, i_{n}=$ number of n-cycles of g. As usual $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$. Consider the following symmetric function in x_{1}, \ldots, x_{k} :

- $P_{j}(\underline{\mathrm{x}})=x_{1}^{j}+\cdots+x_{k}^{j}, 1 \leq j \leq n$
- $\Delta(\underline{\mathrm{x}})=\prod_{i<j}\left(x_{i}-x_{j}\right)$

Set $l_{1}=\lambda_{1}+(k-1), l_{2}=\lambda_{2}+(k-2), \ldots, l_{k}=\lambda_{k}$.
Theorem 6.2 (Frobenius). $\chi_{\lambda}(g)$ is the coefficient of $x_{1}^{l_{1}} \ldots x_{k}^{l_{k}}$ in

$$
\Delta(\underline{x}) \prod_{j=1}^{n} P_{j}(\underline{x})^{i_{j}} .
$$

Example. Let $G=S_{3}, \lambda=(2,1)$.

- $g=(12)$, then we have $i_{1}=1, i_{2}=1, i_{3}=0, l_{1}=2+2-1=3, l_{2}=1+2-2=1$. We have $\Delta(\underline{\mathrm{x}})=x_{1}-x_{2}$, so $\chi_{\lambda}(g)$ is the coefficient of $x_{1}^{3} x_{2}$ in $\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right)^{1}\left(x_{1}^{2}+x_{2}^{2}\right)^{1}=\left(x_{1}^{4}-x_{2}^{4}\right)$. So $\chi_{\lambda}(g)=0$.
- $g=(123)$, then we have $i_{1}=0, i_{2}=0, i_{3}=1, l_{1}=3, l_{2}=1$. So $\chi_{\lambda}(g)$ is the coefficient of $x_{1}^{3} x_{2}$ in $\left(x_{1}-x_{2}\right)\left(x_{1}^{3}+x_{2}^{3}\right)=x_{1}^{4}+x_{1} x_{2}^{3}-x_{2} x_{1}^{3}-x_{2}^{4}$. So $\chi_{\lambda}(g)=-1$.

Note that with manipulation, we can find that

$$
\operatorname{dim} \chi_{\lambda}=\frac{n!}{l_{1}!\ldots l_{k}!} \cdot \prod_{i<j}\left(l_{1}-l_{j}\right) .
$$

Another dimension formula: Define the look length of a box in a Young Diagram is the number of boxes to the right and underneath it (counting the box itself once). E.g.,

7	4	3	1
5	2	1	
2			
1			

Theorem 6.3.

$$
\operatorname{dim} \chi_{\lambda}=\frac{n!}{\prod \text { hook length in } \lambda}
$$

E.g., with the example above, we find that $\chi_{\lambda}=\frac{9!}{2 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 7}=\frac{6 \cdot 8 \cdot 9}{2}=216$.

Remark. Since $c_{\lambda} \in \mathbb{Q}[G]$, all simple $\mathbb{C}\left[S_{n}\right]$-modules are realisable over \mathbb{Q}.

7 Revision Quiz Session

True or False

- If $H \leq G, \chi \in \operatorname{Irr}(G)$, then all irreducible summands of $\chi \downarrow_{H}$ have the same dimension.

No: Let $H=S_{3}$, we are looking for $G \geq S_{3}$ and $\chi \in \operatorname{Irr}(G)$, such that $\left\langle\chi\right.$, stand $\left.\uparrow{ }^{\mathrm{G}}\right\rangle=\left\langle\chi \downarrow_{S_{3}}\right.$, stand $\rangle \neq 0 \neq$ $\left\langle\chi \downarrow_{S_{3}}\right.$, a 1-dimensional char $\rangle=\left\langle\chi, 1-\operatorname{dim} \uparrow^{G}\right\rangle$. Let ρ be the standard representation and τ the 1-dimensional representation, then we want $\left\langle\rho \uparrow^{G}, \tau \uparrow^{G}\right\rangle \neq 0$. We have

$$
\begin{aligned}
\left\langle\rho \uparrow^{G}, \tau \uparrow^{G}\right\rangle & =\left\langle\rho \uparrow^{G} \downarrow_{S_{3}}, \tau\right\rangle \\
& =\sum_{S_{3} \backslash G / S_{3}}\left\langle{ }^{g} \rho \downarrow_{S_{3} \cap{ }_{S} S_{3}} \uparrow^{S_{3}}, \tau\right\rangle
\end{aligned}
$$

If $G=S_{6}, S_{3}=\operatorname{Stab}(4,5,6)$, there exists a $g \in G$ such that ${ }^{g} S_{3}=\operatorname{Stab}(1,2,3)$, so $S_{3} \cap{ }^{g} S_{3}=\{1\}$, so $\rho \downarrow_{S_{3} \cap{ }^{g} S_{3}}=\mathbb{I}+\mathbb{I}$.

- If $H=N \triangleleft G, \chi \in \operatorname{Irr}(G)$, then all irreducible summand of $\chi \downarrow_{H}$ have the same dimension.

Yes: (Clifford).

- If $H \leq G, \chi \in \operatorname{Irr}(H)$, then all irreducible summand of $\chi \uparrow^{G}$ have the same dimension.

No: Consider the regular representation with any groups.

- If $H=N \triangleleft G, \chi \in \operatorname{Irr}(H)$, then all irreducible summand of $\chi \uparrow^{G}$ have the same dimension.

No: by the above reasoning.

- If χ is realisable over K, then so are all irreducible summands of $\chi \downarrow_{H}$.

No: Let $G=S_{3}, H=C_{3}, \chi$ be the standard representation.

- If χ is realisable over K, then so are all irreducible summands of $\chi \uparrow^{G}$.

No: Take the regular representation.

- If $\chi_{H} \uparrow^{G}$ is realisable over K, then so is χ.

No: Let $\chi \in \operatorname{Irr}\left(C_{3}\right)$ be non-trivial and $G=S_{3}$.

- If F / K is an extension of fields, then $m_{F}(\chi) \leq m_{K}(\chi)$.

Yes: By definition of $m(\chi)$. (Also using Tower laws we get $m_{F}(\chi) \mid m_{K}(\chi)$)
Recall: If F / K is a finite field extension, M an $F[G]$-module, by thinking of F as a K-vector space, we can think of M as a $K[G]$-module of K-dimension equal to $\operatorname{dim}_{F}(M) \cdot[F: K]$.

A completely different instance of the same "philosophy": Let C be a curve over \mathbb{Q}, e.g., $C: y^{2}=x^{3}+x$. We can think of this as a curve over $\mathbb{Q}[i]$. So now, write $x=u+i v$ and $y=w+i z$, with $u, v, w, z \in \mathbb{Q}$. So $C:(w+i z)^{2}=(u+i v)^{3}+(u+i v)$. By equating real and imaginary parts, we get two equations in four unknowns over \mathbb{Q}. So we now have a surface over \mathbb{Q}.

