Schottky groups and Mumford curves

References: Gerritzen - Van der Put, Fresnel - Vand der Put. Silverman (for week 4), Bosch (for week 5-6, lecture notes on rigid geometry)

Contents

0	Introduction / Overview (Jeroen): 0.1 Uniformisations over \mathbb{C} 0.2 Uniformisations over \mathbb{C}_p 0.3 Schottky groups	3 3 3 3
	0.4 <i>p</i> -adic geometry	4
1	\mathbb{P}^1 as a topological space (Marc) 1.1 Trees	5 5
2	\mathbb{P}^1 as an Analytic Space (Samir)2.1 Holomorphic Functions2.2 G-topology on \mathbb{P}	7 7 8
3	Schottky groups and their actions (Chris Williams)	9
	3.1Discontinuous groups \ldots \ldots \ldots 3.1.1Classification of elements of $PGL_2(K)$ \ldots \ldots	9 9
	3.1.2 Investigating limit points	$\begin{array}{c} 10\\11 \end{array}$
4	The Tate curve (Heline)	12
	4.1 Introduction	12
	4.2 Tate curve	12
	4.3 Elliptic curves over p-adic fields	$\begin{array}{c} 13\\14 \end{array}$
5	General Theory of Affinoids (Chris Birkbeck)	15
6	Affinoid Subdomain (Céline)	17
	6.1 Motivation and plan: \ldots	
	6.2 Affinoid functions	18
7	Tate's Acyclicity Theorem (Angelos)	19
	7.1 Grothendiecks Topology	19
8	Reductions of curves (Haluk)	21
	8.1 Recap	
	8.2 Rigid analytic space	
	8.3 Analytic Reduction of Rigid Analytic Space	22

9	\mathbf{Sch}	ottky groups and Mumford curves (Jeroen)	24
	9.1	Stable models	24
	9.2	From groups to curves	26
	9.3	From curves to groups	27

Introduction / Overview (Jeroen): 0

Start with \mathbb{Q} and look at its completion:

- \mathbb{R} and then its algebraic closure is \mathbb{C}
- \mathbb{Q}_p (where we say $\left|\frac{a}{b}\right| = p^{-n}$ if $\frac{a}{b} = p^n \frac{a_0}{b_0}$ with $p \nmid a_0, b_0$. Its algebraic closure is $\overline{\mathbb{Q}_p}$ and the completion of this is \mathbb{C}_p

Uniformisations over \mathbb{C} 0.1

Simplest case: E a genus 1 curve over \mathbb{C} . Then $E \cong E_{\Lambda} = \mathbb{C}/\Lambda$ where $\Lambda \cong \mathbb{Z}^2$ a lattice inside \mathbb{C} .

Meromorphic functions on E correspond to elliptic functions on $\mathbb C$ (meromorphic, doubly periodic with respect to Λ)

Similar results holds for line bundles.

Given $\Lambda = \mathbb{Z} + \tau \mathbb{Z}$ where $\operatorname{im}(\tau) > 0$. Let $q = e^{2\pi i \tau}$. Then E_{Λ} is isomorphic to the algebraic curve $E: y^2 + xy =$ $x^{3} + a_{4}(q)x + a_{6}(q)$ where $a_{4}(q) = -5S_{3}(q)$, $a_{6}(q) = \frac{-5S_{3}(q) + 7S_{5}(q)}{12}$ and $S_{k}(q) = \sum_{n \ge 1} \frac{a_{k}^{n}q^{n}}{1-q^{n}}$. Moral of the story, we know exactly how to go from one to the other.

Remark.

- a_i have nice integrality properties
- Application: construction of CM curves ($\Lambda \subset \mathcal{O}_K$ ideal inside imaginary quadratic number field)
- The story changes for curves of higher genus: if C over \mathbb{C} is a curve of genus > 1, then $C \cong \Gamma \setminus \mathcal{H}$ where \mathcal{H} is the upper half plane, and $\Gamma < \mathrm{PSL}_2(\mathbb{R}) \circlearrowright \mathcal{H}$.

0.2Uniformisations over \mathbb{C}_n

Let E be a genus 1 curve over \mathbb{C}_p . We can not expect $E \cong \mathbb{C}_p/\Lambda$, because additive subgroups of \mathbb{C}_p have an accumulation point at 0 (consider elements $p^n \lambda$ for $\lambda \in \Lambda$).

Over \mathbb{C} there is an isomorphism $\mathbb{C}/\Lambda \xrightarrow{z\mapsto \exp(2\pi i z)} \mathbb{C}^*/\langle q \rangle$, with |q| < 1 because $\operatorname{im}(\tau) > 0$. This also works over \mathbb{C}_p .

Now consider the quotient $E_q = \mathbb{C}_p^* / \langle q \rangle$ where |q| < 1.

Theorem 0.1 (Tate). The same series $a_4(q), a_6(q)$ converge and give an algebraic structure to the quotient E_q . Moreover if $q \in \mathbb{Q}_p$, then E_q is defined over \mathbb{Q}_p too.

Let L/\mathbb{Q}_p be algebraic, then the homomorphism $L^* \to E_q(L)$ is surjective, with kernel $\langle q \rangle$, and it is Galois equivariant for the action of $\operatorname{Gal}(L/\mathbb{Q}_p)$ on both sides.

Remark. Starting with |q| < 1, one obtains exactly those E over \mathbb{C}_p for which |j(E)| > 1. Over \mathbb{Q}_p : one obtains the curves E with multiplicative reduction. The equations give the split multiplicative E over \mathbb{Q}_p .

0.3Schottky groups

Mumford generalisation of Tate to higher genus.

From groups to curves

Let $\Gamma < \operatorname{PGL}_2(\mathbb{C}_p) \circlearrowright \mathbb{P}^1(\mathbb{C}_p)$.

Definition 0.2. $P \in \mathbb{P}^1(\mathbb{C}_p)$ is called a *limit point of* Γ if there is $q \in \mathbb{P}^1(\mathbb{C}_p)$ and distinct $\gamma_n \in \Gamma$ such that $P = \lim_{n \to \infty} \gamma_n(q).$

Set of limit points of Γ : $L(\Gamma)$

Definition 0.3. Γ is called *Schottky* if:

- $L(\Gamma) \neq \mathbb{P}^1(\mathbb{C}_p)$
- Γ is finitely generated and torsion free

Theorem. Let $\Omega_{\Gamma} = \mathbb{P}^1(\mathbb{C}_p) - L(T)$. Then the quotient $\Gamma \setminus \Omega_{\Gamma}$ has the structure of an algebraic curve over \mathbb{C} .

Remark.

- Schottky groups have nice fundamental domains.
- Reduction of $\Gamma \setminus \Omega_{\Gamma}$ is totally split, dual graph is the quotient of the tree on Ω_{Γ} (subset of Bruhat-Tits tree)
- Modular forms for Γ are completely classified as products of Θ -functions; these can be used to fund the canonical embedding of $\Gamma \setminus \Omega_{\Gamma}$.

From curves to groups

Definition 0.4. X curve over \mathbb{Q}_p is *totally split* if X has a (flat) model \underline{X} over \mathbb{Z}_p such that $X_0 = \underline{X} \otimes_{\mathbb{Z}_p} \mathbb{F}_p$ is a union of rational curves intersecting transversely in \mathbb{F}_p -rational points.

Theorem 0.5 (Mumford). Every totally split curve over \mathbb{Q}_p is a <u>Mumford curve</u>; they can be obtained as quotients $\Gamma \setminus \Omega_{\Gamma}$ of domains $\Omega_{\Gamma} \subset \mathbb{P}^1(\mathbb{C}_p)$ by Schottky groups Γ .

0.4 *p*-adic geometry

To obtain Ω : glue affine patches to the universal cover of the reduction graph.

Fundamental problem

The usual topology is totally disconnected. Tate found a solution by using the theory of <u>affinoid subdomains</u>. Idea: restrict the subsets and coverings that are used.

Goal:

- To understand parts of the "groups to curves" and "curves to groups" sections. Topics:
 - 1. \mathbb{P}^1 as a topological space (Marc)
 - 2. \mathbb{P}^1 as an analytic space (Samir)
 - 3. Group action (Chris W)
 - 4. The Tate curves (Heline)
 - 5. Affinoid spaces, rigid spaces (part 1) (Chris B)
 - 6. Affinoid spaces, rigid spaces (part 2) (Céline)
 - 7. Reduction of curves (Angelos)
 - 8. Modular functions and Mumford curves (Haluk)
 - 9. Totally split curves as Mumford curves (Jeroen)

1 \mathbb{P}^1 as a topological space (Marc)

1.1 Trees

Reference: [Mumford] An analytical Construction of degenerating curves..., [Chris W] 4th year essay Goal: To attach tree to a compact subset of $X \subset \mathbb{P}^1(K)$, where K is a local field. Motivation:

Real case: $\operatorname{PGL}_2^+(\mathbb{R})$ acts on $\mathcal{H} = \{z \in \mathbb{C} : \operatorname{im}(z) > 0\}$ via $z \mapsto \gamma z = \frac{az+b}{cz+d}$ (where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$) by isometries,

transitively. It has boundary $\partial \mathcal{H} = \mathbb{P}^1(\mathbb{R})$. $\Gamma \subset \mathrm{PSL}_2^+(\mathbb{R})$ is a discrete cocompact group with no elements of finite order, \mathcal{H}/Γ is a Riemann surface of some genus g.

Theorem 1.1. Any Riemann Surface of genus $g \ge 2$ is of this form.

Complex case: $\text{PSL}_2(\mathbb{C})$ acts isometrically and transitively on \mathbb{H} =hyperbolic 3-space (Can think of as $\mathbb{C} \times \mathbb{R}_{>0}$). We have $\partial \mathbb{H} = \mathbb{P}^1(\mathbb{C})$. Let $\Gamma \subset \text{PSL}_2(\mathbb{C})$ Kleinian group and finitely generated. $\mathbb{H}/\Gamma \supset (\partial \mathbb{H} \setminus \text{limit points of } \Gamma)/\Gamma \cong \text{Riemann}$ Surface of genus $g(\text{It is a theorem of Maskit that } \Gamma \text{ is a } \mathbb{C}\text{-Schottky, free on } g \text{ generators.})$

p-adic case: $\operatorname{PGL}_2(K)$ where K is a *p*-adic field acts on Δ (called Brahut - Tits tree), a tree. We have $\partial \Delta \cong \mathbb{P}^1(K)$. If $\Gamma \subset \operatorname{PGL}_2(K)$ is Schottky (to be defined) then we will obtain curves as $\partial \Delta / \Gamma$.

Notation. Let K be a local field: a finite extension of \mathbb{Q}_p or $\mathbb{F}_p((t))$. Let || be its valuation, \mathbb{Z}_K be the value ring and $\mathbb{Z}_K \supseteq m_K = (\pi), |\pi| < 1, k = \mathbb{Z}_K/\pi$. PGL₂(K) acts on $\mathbb{P}^1(K) = (K \times K \setminus \{0, 0\}) / \sim = K \cup \{\infty\}$ via $z \mapsto \frac{az+b}{cz+d}$. Consider lattices $M \subset K \times K$ (Rank 2 \mathbb{Z}_K -lattice), we say that $M \sim M'$ if $M' = \lambda M, \lambda \in K^*$ (M, M' are homothetic). Set $\Delta^{(0)}$ =set of classes [M] (call them vertices)

Remark. $\operatorname{PGL}_2(K)$ acts transitively on $\Delta^{(0)}$, stabiliser of $[\mathbb{Z}_K + \mathbb{Z}_K] = \operatorname{PGL}_2(\mathbb{Z}_K)$, hence $\Delta^{(0)} \cong \operatorname{PGL}_2(K)/\operatorname{PGL}_2(\mathbb{Z}_K)$

Definition. Distance: Given v_1, v_2 , we can find representative $v_1 = [M_1]$, $v_2 = [M_2]$ such that $M_1 = \langle a, b \rangle$ and $M_2 = \langle a, \alpha b \rangle$ (elementary divisor theorem). We define $\rho(v_1, v_2) := (\alpha)$ (the ideal generated by α). This is symmetrical, so defines a distance on $\Delta^{(0)}$.

"Triangle inequalities": Given 3 vertices $v_1, v_2, v_3 \in \Delta^{(0)}, \exists v \in \Delta^{(0)}$ such that $\rho(v_i, v_j) = (\lambda_i \lambda_j)$

Triples in $\mathbb{P}^1(K)$

Let x_1, x_2, x_3 pairwise distinct triple in $\mathbb{P}^1(K)$, defines a lattice $M(x_1, x_2, x_3)$ as follows: $x_i = [w_i], w_i \in K^2 \setminus \{0, 0\}, \lambda_1 w_1 + \lambda_2 w_2 + \lambda_3 w_3 = 0$ non-trivial relations, then $M(x_1, x_2, x_3) = \langle \lambda_1 w_1, \lambda_2 w_2 \rangle$ (independent on ordering of the x_i)

Remark. $x_1 = 0 = [0,1], x_2 = 1 = [1,1], x_3 = \infty = [1,0], \text{ then } M = \left\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle = \mathbb{Z}_K + \mathbb{Z}_K \subset K + K$

Given any pairwise distinct triple \underline{x} , there exists a unique $\gamma \in PGL_2(K)$ such that $\gamma(\underline{x}) = (0, 1, \infty)$. Hence all $v \in \Delta^{(0)}$ are classes of $M(\underline{x})$ for an appropriate \underline{x} .

Adjacency: We say v_1, v_2 are adjacent if there exists representative $v_1 = [M_1], v_2 = [M_2]$ such that $M_1 \supseteq M_2 \supseteq \pi M_1$ (if and only if $\rho(v_1, v_2) = m_K$). This gives us the tree Δ called the Bruhut - Tits tree of $\mathbb{P}^1(K)$ of $\mathrm{PGL}_2(K)$.

Remark. Given $v = [M] \in \Delta^{(0)}$, there are as many adjacent vertices as there are $M \supseteq M' \supseteq \pi M$. The number of lines in $M/\pi M \cong k^2 = \#\mathbb{P}^1(k) = \#k + 1$.

$$\Delta_X^{(0)} = \{ [M(x_1, x_2, x_3) : x_i \in X \} \subset \Delta^{(0)}.$$

Definition. A subset $\Delta_*^{(0)} \subset \Delta^{(0)}$ is *linked* if for all $v_1, v_2, v_3 \in \Delta_*^{(0)}$, the v in the triangle inequality if in $\Delta_*^{(0)}$.

Tree Theorem. If $\Delta_*^{(0)}$ is linked, then it can be made to be the set of vertices of a connected tree with lengths • such that $\rho(v, v') = \prod$ length of edges in path joining them (We get a tree Δ_X)

Proposition. $\Delta_X^{(0)}$ is a linked set of vertices

Example.
$$X = \{p^n : n \in \mathbb{Z}\} \cup \{0, \infty\} \subset \mathbb{P}^1(\mathbb{Q}_p)$$

Note: $\Gamma = \left\langle \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} \right\rangle$ acts on Δ_X via "translation". Quotient $\Delta/\Gamma = \circlearrowleft$ (fundamental group is \mathbb{Z})

Reduction point of view

Let $R : \mathbb{P}^1(K) \to \mathbb{P}^1(\mathbb{F}_K)$ be defined by $[x, y] \mapsto [\overline{x}, \overline{y}]$ if $x, y \in \mathbb{Z}_K$, $\max\{|x|, |y|\} = 1$. Given \underline{a} pairwise distinct triple in $\mathbb{P}^1(K)$, there exists $\gamma_a \in \mathrm{PGL}_2(K)$ such that $\gamma_{\underline{a}}(\underline{a}) = (0, 1, \infty)$. We define $R_{\underline{a}} = R \circ \gamma_{\underline{a}}$. If $X \subset \mathbb{P}^1(K)$ is compact, $\underline{a} \in X^3$, R_a determines a partition of $X = \sqcup_{p \in R_a(X)} R_a^{-1}(\{p\})$.

Definition. $\underline{a} \sim \underline{b}$ if R_a, R_b gives identical partitions

<u>a</u> is adjacent to <u>b</u> if <u>a</u> gives a partition X_1, \ldots, X_s and <u>b</u> gives a partition Y_1, \ldots, Y_t and X_i is adjacent to Y_j for all *i* and *j*.

Turns out that the graph you get using these notions is Δ_X via $\underline{a} \mapsto [M(\underline{a})]$.

Boundary

Given a linked set $\Delta_*^{(0)}$, define $\operatorname{Ends}(\Delta_*) = \underline{\operatorname{equivalence}}$ classes of half-line (where equivalence is defined as differ at finitely many terms)

Define $\partial \Delta_* = \operatorname{Ends}(\Delta_*)$

Proposition.

1. There is an injection $i: \partial \Delta_* \to \mathbb{P}^1(K)$ by intersecting nested lattices.

2. If
$$\Delta_*^{(0)} = \Delta_X^{(0)}$$
, then $i(\partial \Delta_X) = X$ (in particular, if $X = \text{PGL}_2(K)$, then i is bijective)

2 \mathbb{P}^1 as an Analytic Space (Samir)

Reference: Fresnel and Van der Put "Rigid Analytic Geometry and its Application" Chapter 2

The basic object of today is $\mathbb{P} = \mathbb{P}^1(\mathbb{C}_p)$. For this talk $K = \mathbb{C}_p$

Definition 2.1. (Disc). An open disc in \mathbb{P} has the form $\{z \in \mathbb{C}_p : |z-a| < r\}$ for some $a \in \mathbb{C}_p$ and $r \in \mathbb{R}^+$, or $\{z \in \mathbb{C}_p : |z-a| > r\} \cup \{\infty\}$.

A closed disc in \mathbb{P} has the form $\{z \in \mathbb{C}_p : |z-a| \leq r\}$ for some $a \in \mathbb{C}_p$ and $r \in \mathbb{R}^+$, or $\{z \in \mathbb{C}_p : |z-a| \geq r\} \cup \{\infty\}$.

A connected affinoid subset of \mathbb{P} has the form $\mathbb{P} \setminus \bigcup D_i$ (finite non-empty union, and D_i are open disc). (Note that we can write this as $\mathbb{P} \setminus \coprod D'_i$ where D'_i are open disc, h(X) = "holes in X" = $\{D'_i\}$)

An *affinoid* of \mathbb{P} is the finite union of connected affinoids.

Fact. If F is an affinoid, then $F = \coprod_{i=1}^{s} F_i$ where F_i are connected affinoids. The F_i are the connected components of F. This decomposition is unique.

Lemma 2.2. Let $f \in \mathbb{C}_p(z) \setminus \{0\}$, r > 0. Consider $\{a \in \mathbb{P} : |f(a)| \le r\}$, this is either an affinoid or empty.

Example. $f(z) = z(z-1), r = \frac{1}{p}$. Then

$$\begin{cases} z: |f(z)| \le \frac{1}{p} \end{cases} &= \left\{ z: |z| \le \frac{1}{p} \right\} \cup \left\{ z: |z-1| \le \frac{1}{p} \right\} \\ &= \mathbb{P} \setminus \left(\left\{ z: |z| > \frac{1}{p} \right\} \cup \{\infty\} \right) \cup \mathbb{P} \setminus \left(\left\{ z: |z-1| > \frac{1}{p} \right\} \cup \{\infty\} \right) \end{cases}$$

2.1 Holomorphic Functions

Definition 2.3. Let F be an affinoid, $\operatorname{Rat}(F) := \{f \in \mathbb{C}_p(z) : \text{poles of } f \text{ are outside } F\}$. Define $||f||_F = \sup_{a \in F} |f(a)| < \infty$.

The holomorphic functions on F, $\mathcal{O}(F)$:=completion of $\operatorname{Rat}(F)$ with respect to $\| \|$.

Fact.

- 1. $F \mapsto \mathcal{O}(F)$ is a sheaf
- 2. $X \supseteq Y$ are connected affinoids then the image of $\mathcal{O}(X) \to \mathcal{O}(Y)$ is dense if and only if $h(X) \to h(Y)$ is surjective.

Definition 2.4. $\mathcal{O}(F)^{\circ} := \{f \in \mathcal{O}(F) : ||f|| \leq 1\}$, this is an $\mathcal{O}_{\mathbb{C}_p}$ -algebra. $\underline{\mathcal{O}(F)}^{\circ\circ} := \{f \in \mathcal{O}(F) : ||f|| < 1\}$. $\overline{\mathcal{O}(F)} := \mathcal{O}(F)^{\circ}/\mathcal{O}(F)^{\circ\circ}$, this is an $\overline{\mathbb{F}_p}$ -algebra

Example. Let $F = \{a \in \mathbb{P} : |a| \le 1\} = \mathcal{O}_{\mathbb{C}_p}$.

1.
$$\mathcal{O}(F) = \{\sum_{n=0}^{\infty} c_n z^n : c_n \in \mathbb{C}_p, \lim c_n = 0\}, \|\sum c_n z^n\| = \max |c_n|.$$

2. $\mathcal{O}(F)^{\circ} = \{\sum_{n=0}^{\infty} c_n z^n : c_n \in \mathcal{O}_{\mathbb{C}_p}, \lim c_n = 0\}$
3. $\mathcal{O}(F)^{\circ \circ} = \{\sum_{n=0}^{\infty} c_n z^n : c_n \in \mathfrak{m}_{\mathbb{C}_p}, \lim c_n = 0\}.$

4.
$$\overline{\mathcal{O}(F)} = \overline{\mathbb{F}_p}[z].$$

Lemma 2.5 (Division with Remainder). Let $F = \{a \in \mathbb{P} : |a| \leq 1\}$. Let $f \in \mathcal{O}(F)$ with ||f|| = 1, so $\overline{f} \in \overline{\mathbb{F}_p}[z]$ with degree $d \geq 0$. Then for any $g \in \mathcal{O}(F)$ there exists unique $q, r \in \mathcal{O}(F)$ such that

- 1. g = qf + r
- 2. $r \in \mathbb{C}_p[z]$ of degree less than d

3. $||g|| = \max(||q||, ||r||).$

Definition 2.6. Define $\mathcal{O}(F)^+ := \{f \in \mathcal{O}(F) : f(\infty) = 0\}$

Proposition 2.7 (Mittag - Leffler). Let F be a connected affinoid with $\infty \in F$, $h(F) = \{D_1, \ldots, D_S\}$, $D_i = \{z : |z - a_i| < |\pi_i|\}$, where $a_i \in \mathbb{C}_p$ and $\pi_i \in \mathbb{C}_p^*$. Let $F_i = \mathbb{P} \setminus D_i$, so $F = \cap F_i$. Then

1.
$$\mathcal{O}(F)^+ = \bigoplus_{i=1}^s \mathcal{O}(F_i)^+$$

2. $\mathcal{O}(F_i)^+ = \left\{ \sum_{n>0} b_n \left(\frac{\pi_i}{z - a_i} \right)^n : b_n \in \mathbb{C}_p, \lim b_n = 0 \right\}.$

If we let $f = \sum f_i$, then $||f|| = \max ||f_i||_{F_i}$. Also $||\sum_{n>0} b_n \left(\frac{\pi_i}{z-a_i}\right)^n ||_{F_i} = \max |b_n|$.

Lemma 2.8. Let $F = \coprod F_i$ be an affinoid. Then $\mathcal{O}(F) = \oplus \mathcal{O}(F_i)$.

2.2 *G*-topology on \mathbb{P}

Definition 2.9. A *G*-topology is

- 1. A set X
- 2. A set $\mathcal{F} \subset \mathcal{P}(X)$ (power set of X). (The elements of \mathcal{F} are called the *admissible*)
- 3. For each $U \in \mathcal{F}$ a set Cov(U) (a set of covering, called the admissible covering). Cov(U) are of the form $\{U_i\}_{i \in I}$ such that $U_i \in \mathcal{F}$ and $\cup U_i = U$.

satisfying

- 1. $\emptyset, X \in \mathcal{F}$
- 2. $U, V \in \mathcal{F}$ then $U \cap V \in \mathcal{F}$
- 3. $\{U\} \in \operatorname{Cov}(U)$
- 4. If $U \supseteq V$ are admissible and $\{U_i\}_{i \in I} \in Cov(U)$, then $\{U_i \cap V\}_{i \in I} \in Cov(V)$.
- 5. If $U \in \mathcal{F}$, $\{U_i\}_{i \in I} \in \operatorname{Cov}(U)$ and for $\mathcal{U}_i \in \operatorname{Cov}(U_i)$, then $\cup \mathcal{U}_i \in \operatorname{Cov}(U)$.

We can define presheafs, sheafs, sheaffication and Cech Cohomology in the expected way, following this topology.

Definition 2.10. The weak *G*-topology on \mathbb{P} is

- 1. $X = \mathbb{P}$
- 2. $\mathcal{F} = \{\emptyset, \mathbb{P}\} \cup \{\text{affinoid}\}$
- 3. $\operatorname{Cov}(U)$ are $\{U_i\}, U_i \subseteq U$ are affinoid and U is the union of finitely many U_i .

Theorem 2.11. \mathcal{O} is a sheaf. $(\mathcal{O}(U) \to \overset{\vee}{H^0}(\mathcal{U}, \mathcal{O})$ is an isomorphism) Furthermore $\overset{\vee}{H^i}(\mathcal{U}, \mathcal{O}) = 0$ for all i > 0.

3 Schottky groups and their actions (Chris Williams)

3.1 Discontinuous groups

Let K be any local field, $\Gamma \leq \operatorname{PGL}_2(K)$

Definition 3.1. $\alpha \in \mathbb{P}^1(K)$ is a *limit point* for Γ if there exists $(\gamma_n)_{n=1}^{\infty} \subset \Gamma, \beta \in \mathbb{P}^1(K)$ such that

- 1. $\gamma_m \neq \gamma_n$ for all $m \neq n$
- 2. $\alpha = \lim \gamma_n(\beta)$.

Write $L = L(\Gamma)$ for the set of limit points of Γ

Definition 3.2. $\Gamma \leq PGL_2(K)$ is *discontinuous* if

- 1. $L(\Gamma) \neq \mathbb{P}^1(K)$
- 2. For any $\alpha \in \mathbb{P}^1(K)$, $\overline{\Gamma_{\alpha}}$ is compact

Remark. If K is a local field, then condition 2. is automatic. Discontinuous implies Discrete. In particular, $\gamma_n \to \gamma$, then $\gamma_n \gamma^{-1} \to I$, implying $L(\Gamma) = \mathbb{P}^1(K)$.

3.1.1 Classification of elements of $PGL_2(K)$

Definition 3.3. Let $\gamma \in PGL_2(K)$ with eigenvalue λ, μ . Say γ is

- 1. hyperbolic if $|\lambda| \neq |\mu|$
- 2. Elliptic if $|\lambda| = |\mu|$ but $\lambda \neq \mu$
- 3. Parabolic if $\lambda = \mu$

Proposition 3.4. Let $\lambda \in PGL_2(K)$

1. γ is hyperbolic if and only if it is conjugate in $PGL_2(K)$ to $\begin{pmatrix} q & 0 \\ 0 & 1 \end{pmatrix}$ with 0 < |q| < 1

2. γ is elliptic/parabolic if and only if γ^2 is conjugate to an element of $PGL_2(\mathcal{O}_K)$.

Proposition 3.5.

1. Let $\gamma \in PGL_2(K)$ be hyperbolic. Then $\langle \gamma \rangle$ is discontinuous

2. IF Γ is discontinuous and $\gamma \in \Gamma$ is elliptic/parabolic, then γ has finite order.

Proof.

1. $\langle \gamma \rangle$ has 2 limit points, corresponding to eigenvectors of γ

2. γ is conjugate to

(a)
$$\begin{pmatrix} \lambda & 0\\ 0 & 1 \end{pmatrix}$$
, $|\lambda| = 1$ or
(b) $\begin{pmatrix} 1 & \mu\\ 0 & 1 \end{pmatrix}$

In the case a) $\langle \gamma \rangle \cong \{\lambda^n\}$, discrete subgroup of \mathcal{O}_K^* hence finite In the case b) $\langle \gamma \rangle \cong \{n_\mu\}$, discrete subgroup of \mathcal{O}_K^* , hence $\mu = 0$.

3.1.2 Investigating limit points

Without loss of generality, $\infty \notin L$

Let $\begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix} \subset \Gamma$ be an infinite sequence. Compactness of $\mathbb{P}^1(K)$ implies we can take subsequence such that $a_n/c_n, b_n/c_n, d_n/c_n$ converges. Without loss of generality, none of these are ∞ , so $\begin{pmatrix} a_n/c_n & b_n/c_n \\ 1 & d_n/c_n \end{pmatrix} \to \begin{pmatrix} a & b \\ 1 & d \end{pmatrix}$.

As Γ is discrete, then this does not lie in $\operatorname{PGL}_2(K)$ which implies ad = b. For any $\beta \in \mathbb{P}^1$, we have $\lim_{n \to \infty} \gamma_n(\beta) = \frac{a\beta+b}{\beta+d} = \frac{a\beta+ad}{\beta+d} = a$, unless $\beta = -d = \lim \gamma_n^{-1}(\infty)$

Proposition 3.6.

- 1. Suppose $x \notin L$. Then if we define L(x) to be $\{\alpha \in L : \exists (\gamma_n) \text{ with } \gamma_n(x) \to \alpha\}$. Then L = L(x)
- 2. If $A = \{x, y, z, \} \subset \mathbb{P}^1(K)$ distinct points, then there exists $w \in A$ such that L(w) = L

Proof.

- 1. $x \notin L$, so " $x \neq -d$ " in the above
- 2. Assume $x, y, z \in L$. As for any sequence γ_m , either " $x \neq -d$ " or " $y \neq -d$ ", we have $L = L(x) \cup L(y)$. So without loss of generality $z \in L(y)$. Then $L(z) \subset L(x)$, so $L = L(x) \cup L(z) \subset L(x) \subset L$, so L = L(x).

Proposition. L is compact

Proof. If $|L| \leq 2$, then this is clear.

If |L| > 2, choose $x \in L$ such that L = L(x), then $L = \overline{\Gamma}_x = L(x)$ is compact.

Definition 3.7. A Schottky group is a finitely generated discontinuous subgroup of $PGL_2(K)$ with no elements of finite order. (So no elliptic or parabolic elements)

We now assume that Γ is a Schottky group

To L, we associate a tree $\mathcal{T}(L)$. Γ acts on $\mathcal{T}(L)$ in a natural way.

Lemma 3.8. $\mathcal{T}(L)/\Gamma$ is finite.

Proof. Notation: If $\alpha \in \mathcal{T}(L)$, then $\mathcal{T}(L) \setminus \{\alpha\} = \coprod T_i$ where T_i are tree. Say $\operatorname{fin}(\alpha) := \bigcup_{T_i \text{finite}} T_i$. Fix α . Pick \mathcal{U} to be the minimal subtree such that for $\Gamma' \subset \Gamma$ to be a finite generated set (containing I inverses).

- 1. $\forall \gamma \in \Gamma', \ \gamma(\alpha) \in \mathcal{U}$
- 2. $\forall \beta \in \mathcal{U}, \operatorname{fin}(\beta) \subset \mathcal{U}.$

Define $\mathcal{V} = \bigcup_{\gamma \in \Gamma} \gamma \mathcal{U}$. Then we claim $\mathcal{V} = \mathcal{T}(L)$. To see this take $\beta \in \mathcal{T}(L)$, without loss of generality, there is a halfline in $\mathcal{T}(L)$ starting at α through β . From Marc's talk, this halfline correspond to a limit point $z = \lim \gamma_n(z_0)$. So in particular, β lies in a path from $\gamma_n(z_0)$ to $\gamma_{n+1}(z_0)$ for some n. Therefore $\beta \in \mathcal{V}$, as $\gamma_n(z_0)$ and $\gamma_{n+1}(z_0) \in \mathcal{V}$ (the halfline starts at α)

Corollary 3.9. Any Schottky group is free

Proof. $\mathcal{T}(L)$ is the universal cover of $\mathcal{T}(L)/\Gamma$, covering translations Γ . As $\mathcal{T}(L)/\Gamma$ is finite, Van Kampen implies the result.

3.1.3 Fundamental Domain

- Take $B_1, \ldots, B_g, C_1, \ldots, C_g$ disjoint open balls in $\mathbb{P}^1(\mathbb{C}_p)$ with centres in KSuppose there exists $\gamma_1, \ldots, \gamma_j \in \mathrm{PGL}_2(K)$ with $\gamma_i(\mathbb{P} \setminus B_i) = \overline{C_i}$ and $\gamma_i(\mathbb{P} \setminus \overline{B_i}) = C_i$. Let $\Gamma := \langle \gamma_1, \ldots, \gamma_g \rangle$. Then:
 - Γ is non-abelian free,
 - In particular, no elements of finite order

Define $F := \mathbb{P}^1(\mathbb{C}_p) \setminus (\cup B_i \cup C_i)$. Define $\Omega = \bigcup_{\gamma \in \Gamma} \gamma F \neq \mathbb{P}^1(\mathbb{C}_p)$.

Theorem 3.10.

- 1. $\mathcal{L}(\Gamma) = \mathbb{P}^1(\mathbb{C}_p) \setminus \Omega$
- 2. Γ is Schottky
- 3. Moreover, every Schottky groups occurs in this way
- Ω/Γ is a curve of genus g.

4 The Tate curve (Heline)

4.1 Introduction

With an elliptic curve over \mathbb{C} , we get a parametrisation \mathbb{C}/Λ where $\Lambda = \mathbb{Z} + \tau \mathbb{Z}$ is a lattice.

We want to do this over \mathbb{Q}_p . Note that if we have $0 \neq t \in \Lambda \subset \mathbb{Q}_p$, then $p^n t \in \Lambda \forall n$, and $\lim_{n \to \infty} p^n t = 0$, so 0 is an accumulation point, so this method will not work.

Note that an elliptic curve over \mathbb{C} , $\mathbb{C}/\Lambda \cong \mathbb{C}^*/q^{\mathbb{Z}}$ where $z \in \mathbb{C}$, $z \mapsto u = e^{2\pi i z}$. And we have that $q^{\mathbb{Z}} \subset \mathbb{Q}_p^*$, so we want to show that the elliptic curve over \mathbb{Q}_p gives rise to $\mathbb{Q}_p^*/q^{\mathbb{Z}}$.

Convention: K is a finite extension of \mathbb{Q}_p with characteristic $k \neq 2, 3$. $q \in \mathbb{Q}_p^*$ such that |q| < 1 (where | | is the absolute value associated to K)

4.2 Tate curve

Definition 4.1. $s_k(q) = \sum_{n \ge 1} \frac{n^k q^n}{1 - q^n}, a_4(q) = -s_3(q), a_6(q) = -\frac{5s_3(q) + 7s_5(q)}{12}.$

Fact. If $q \in K^*$ with |q| < 1 then $a_4(q)$ and $a_6(q)$ converges in K.

Definition 4.2. Let E_q be the curve defined by $y^2 + xy = x^3 + a_4(q)x + a_6(q)$. This is called the *Tate curve*

Fact. E_q is an elliptic curve with discriminant $\Delta(E_q) = q \prod_{n \ge 1} (1-q^n)^{24}$ and *j*-invariant $j(E_q) = q^{-1} + 744 + 196884q + \dots$ Note that $|j(E_q)| = |q^{-1}| > 1$

Definition 4.3. $X(u,q) = \sum_{n \in \mathbb{Z}} \frac{q^n u}{(1-q^n u)^2} - 2s_1(q)$ $Y(u,q) = \sum_{n \in \mathbb{Z}} \frac{(q^m u)^2}{(1-q^n u)^3} + s_1(q)$

Fact. For all $u \in \overline{K}$, $u \notin q^{\mathbb{Z}}$, X(u,q) and Y(u,q) converges

Theorem 4.4 (Tate). Let E_q be a Tate curve. There exists a surjective homomorphism $\phi : \overline{K}^* \to E_q(\overline{K})$ defined by $u \mapsto \begin{cases} (X(u,q), Y(u,q)) & \text{if } u \notin q^{\mathbb{Z}} \\ \infty & \text{if } u \in q^{\mathbb{Z}} \end{cases}$. The kernel is $q^{\mathbb{Z}}$.

 ϕ is compatible with the Galois action, $\operatorname{Gal}(\overline{K}/K)$. That is $\phi(P^{\sigma}) = \phi(P)^{\sigma}$ for all $\sigma \in \operatorname{Gal}(\overline{K}/K)$, $P \in \overline{K}^*$.

So we get $E_q(\overline{K}) \cong \overline{K}^*/q^{\mathbb{Z}}$.

Sketch of Proof. We show it is a homomorphism: $u_1u_2 = u_3$, $\phi(u_i) = P_i$, $P_1 + P_2 = P_3$. Note that $\phi(qu) = \phi(u)$, so we can assume $|q| < u_1 \le 1$, $1 \le |u_2| < |q^{-1}|$, and hence $|q| < |u_3| < |q^{-1}|$. So u_1 will be in a domain of convergence $X, Y, \phi(1) = 0$, so $u_1 \ne 1 \ne u_2$, $P_1 + P_2 = 0$. $X(u_i, q) = x_i$

If $x_1 \neq x_2$, we need to check addition law, identities.

Lemma. When we have a map ϕ from a multiplicative group to an additive group which takes infinitely many distinct values and $\phi(u_1u_2) = \phi(u_1) + \phi(u_2)$ for all $u_1 \neq \pm u_2$, then ϕ is a homomorphism.

Proof of Lemma. Pick u such that $\phi(u) \neq \pm \phi(u_1), \ \phi(u) \neq \phi(u_1) \pm \phi(u_2), \ \phi(u) \neq \phi(u_1u_2)$. Then $\phi(uu_1) = \phi(u) + \phi(u_1) \neq \pm \phi(u_2), \ and \ \phi(u) + \phi(u_1u_2) = \phi(uu_1u_2) = \phi(uu_1) + \phi(u_2) = \phi(u) + \phi(u_1) + \phi(u_2)$.

To show that we satisfy the lemma, note that for $t \in K^*$, |t| < 1, $|X(t+1,q)| = |t|^{-2}$, so we get infinitely many distinct value.

We will not prove the surjectivity part, just read Silverman pg 429 to 438.

4.3 Elliptic curves over *p*-adic fields

In the complex case, $E \cong \mathbb{C}^*/q^{\mathbb{Z}}$ for some q.

Question: Is this also true in the *p*-adic case? The answer is no. Consider $|j(E_q)| = |q^{-1}| > 1$, so elliptic curve with |j(E)| < 1 can not be isomorphic to a Tate curve. But we will show that |j(E)| > 1 is a sufficient condition for *E* to be isomorphic to a Tate curve E_q .

Lemma 4.5. Let $\alpha \in \overline{\mathbb{Q}_p^*}$, $|\alpha| > 1$. Then there exists a unique $q \in \mathbb{Q}_p(\alpha)^*$ such that $j(E_q) = \alpha$.

Proof. Let
$$f(q) = j(E_q)^{-1} = q - 744q^2 + 356652q^3 + \dots \in \mathbb{Z}[[q]].$$

Uniqueness Suppose $q, q' \in \mathbb{Q}_p(\alpha)^*$ are such that $j(E_q) = j(E_{q'})$. Then $0 = |f(q) - f(q')| = |q - q'| |1 - 744(q + q') + \dots | = |q - q'|$, hence q = q'.

Existence There exists $g(q) \in \mathbb{Z}[[q]]$ such that g(f(q)) = q, in fact g(q) = q + h.o.t. Let $\beta \in \overline{\mathbb{Q}_p^*}$ with $|\beta| < 1$, $g(\beta)$ converges. Then $|g(\beta)| = |\beta|$. We know that $|\alpha| > 1$, so $|\alpha^{-1}| < 1$, so set $q = g(\alpha^{-1})$. Then $0 < |q| = |g(\alpha^{-1})| < 1$. Also note that $j(E_q)^{-1} = f(q) = f(g(\alpha^{-1})) = \alpha^{-1}$, hence $j(E_q) = \alpha$.

Definition 4.6. Let E/K be an elliptic curve in long Weierstrass equation, with $j(E) \neq 0, 1728$. Let c_4 and c_6 be the "usual quantities". Define the Hasse invariant (γ -invariant) to be defined as $\gamma(E/K) := -\frac{c_4}{c_6} \in K^*/(K^*)^2$.

Lemma 4.7.

- 1. $\gamma(E/K)$ is well defined and independent of choice of Weierstrass equations
- 2. If $j \neq 0,1728$ then $E \cong_K E'$ if and only if j(E) = j(E') and $\gamma(E/K) = \gamma(E'/K)$.

3. If
$$j(E) = j(E')$$
 and $\gamma(E/K) \neq \gamma(E'/K)$, let $t = \sqrt{\frac{\gamma(E/K)}{\gamma(E'/K)}}$ and $L = K(t)$ then $E \cong_L E'$.

Proof. Assume $E: Y^2 = X^3 + AX + B$

- 1. Let $u \in K^*$, $u^4c_4 = c'_4$ and $u^6c_6 = c'_6$, hence independent of the Weierstrass equations
- 2. j(E) = j(E') implies $\frac{A'^3}{B'^2} = \frac{A^3}{B^2}$, and j(E/K) = j(E'/K) implies $t \in K^*$ such that $\frac{A}{B}t = \frac{A'}{B'}$. Hence we get $t^4A = A'$ and $t^6B = B'$
- 3. The isomorphism is defined by $(x, y) \mapsto (t^2 x, t^3 y)$.

Theorem 4.8 (Tate's p-adic uniformisation). Let E/K be an elliptic curve |j(E)| > 1

- 1. There exists a unique $q \in K^*$ such that $E \cong E_q$ over \overline{K} .
- 2. The Following Are Equivalent:

(a)
$$E \cong E_a$$
 over K

(b)
$$\gamma(E/K) = 1$$

(c) E has split multiplicative reduction.

Proof.

- 1. This follows from the Lemma
- 2.

a) ⇔ b) E ≃ E_q over K is the same as j(E) = j(E_q) and γ(E/K) and γ(E_q/K). So we just need to show that γ(E_q/K) = 1 for all q. We use the following lemma
Lemma. Let α ∈ K*, |α| < 1, then 1 + 4α is a square in K.
γ(E_q/K) = 1+240s₃(q)/(1-504s₅(q)), so we can use the lemma to see that j(E_q/K) = 1.
a) ⇒ c) To see this, note that |a₄(q)| = |a₆(q)| = |q| < 1. So Ẽ_q : Y² + XY = X³.
c) ⇒ b) Read Chris' 4th year project.

4.4 Application

Theorem 4.9. Let K be a number field, E/K an elliptic curve with $j(E) \notin \mathcal{O}_K$ then $\operatorname{End}(E) = \mathbb{Z}$.

Proof. Uses Tate's curve.

5 General Theory of Affinoids (Chris Birkbeck)

Let K be a field, complete with respect to a non-archimedean norm $|\cdot|$. Let \overline{K} be its algebraic closure. If $K \subseteq E \subseteq \overline{K}$, $[E:K] < \infty$, then E is complete with respect to $|\cdot|$. Let $B_n(\overline{K}) = \left\{ (x_1, \dots, x_n) \in \overline{K}^n | \cdot |x_i| \le 1 \right\}$.

Fact. A formal power series with coefficients in K, $f = \sum_{v \in \mathbb{N}^n} c_v X^v$ converges on $B_n(\overline{K})$ if and only if $\lim_{\sum v_i \to \infty} |c_v| = 0$.

Definition 5.1. The Tate Algebra, $T_n = K \langle x_1, \ldots, x_n \rangle$ is the K-algebra of power series converging on $B_n(\overline{K})$.

Think of $f \in T_n$ as a map $B_n(\overline{K}) \to \overline{K}$.

Define a norm on T_n called the Gauss Norm as follows: take $f \in T_n$, $f = \sum_v c_v X^v$. Let $|f| = \max_v |c_v|$.

Exercise. Prove its a norm.

 $\operatorname{Let}:$

- $K^{\circ} = \{a \in K | |a| \le 1\}$
- $K^{\circ\circ} = \{a \in K | |a| < 1\}$
- $\widetilde{K} = K^{\circ}/K^{\circ\circ}$

There exists a unique epimorphism $K^{\circ} \to \widetilde{K}$ defined by $c \mapsto \widetilde{c}$. This extends to an epimorphism $K^{\circ} \langle X_1, \ldots, X_n \rangle \to \widetilde{K}[X_1, \ldots, X_n]$. (*f* is an epimorphism, $f: X \to Y$ if for all $\forall g_1, g_2: Y \to Z$ such that $g_1 \circ f = g_2 \circ g \Rightarrow g_1 = g_2$)

Fact.

- T_n is complete with respect to the Gauss norm
- If $f \in T_n$, |f| = 1, then $f \in T_n^*$ if and only if $\widetilde{f} \in \widetilde{K}^*$. In general |f f(0)| < |f(0)| if and only if $\widetilde{f} \in \widetilde{K}^*$.
- (Maximum principle) if $f \in T_n$, then $|f(x)| \leq |f|$, and there exists $x \in B_n(\overline{K})$ such that |f(x)| = |f|.

Definition 5.2. Let $g \in T_n$, $g = \sum_{v=0}^{\infty} g_v X_n^v$ for $g_v \in T_{n-1}$. We say g is X_n -distinguished of order s if:

- 1. $g_s \in T^*_{n-1}$
- 2. $|g| = |g_s|$ and $|g_s| > |g_v|$ for all v > s.

If |g| = 1 then $g X_n$ -distinguished of order s implies $\tilde{g} = \tilde{g}_s X_n^s + \cdots + \tilde{g}_0 X_n^0$ with $\tilde{g}_s \in \tilde{K}^*$. Order 0 if and only if g is a unit.

Corollary 5.3 (Weierstrass preparation). If $g \in T_n$ is X_n distinguished of order s, then there exists a unique $w \in T_{n-1}[X_n]$ of degree s and there exist $e \in T_n^*$ such that g = ew. Such w is called Weierstrass polynomial.

Corollary 5.4 (Noether Normalisation). For a proper ideal $a \subsetneq T_n$ there is a K-algebra homomorphism $T_d \to T_n$ $(d = \text{krulldim}T_n/a)$ such that $T_d \to T_n \to T_n/a$ is a finite monomorphism.

Fact.

- T_n is Noetherian
- Each ideal is complete (hence closed)
- $B_n(\overline{K}) \to \operatorname{Max}(T_n)$ by $x \mapsto m_x = \{f \in T_n | f(x) = 0\}$. Here f(x) is image of $f \in T_n/m_x$. For every $g \in T_n$, g(x) denotes the image of $g \in T_n/m_x$. This is well defined up to $\operatorname{Gal}(\overline{K}/K)$
- $m \subseteq T_n$ is a maximal ideal, then $[T_n/m:K] < \infty$.

Definition 5.5. A K-algebra A is an affinoid algebra if there exists an epimorphism $\alpha: T_n \to A$ for some n.

We define the suprenum norm as follows: let $f \in A$, set $|f|_{\sup} = \sup_{x \in Max(A)} |f(x)|$. This is a seminorm, as $|f|_{\sup} = 0$ does not implies f = 0. We do have $|f|_{\sup} = 0$ if and only if f is nilpotent. We define Affinoid spaces as follows: Let A be an affinoid algebra. Let Sp(A) be the set Max(A) +the

"functions". The morphism $\operatorname{Sp}(A) \to \operatorname{Sp}(B)$ is defined by $\sigma: B \to A, \sigma^*: \operatorname{Max}(A) \to \operatorname{Max}(B)$.

 $a \subseteq A$ is an ideal, $V(a) = \{x \in \operatorname{Sp}(A) | f(x) = 0 \forall f \subseteq a\}$. If $Y \subseteq \operatorname{Sp}(A)$ we can define $I(Y) = \{f \in A | f(y) = x\}$ $0 \forall y \in Y \} = \cap_{y \in Y} m_y.$

Canonical topology: Let $X = \text{Sp}(A), f \in A, \epsilon \in \mathbb{R}$. Write $X(f, \epsilon) = \{x \in X | |f(x)| < \epsilon\}$.

 $X\left(\frac{f_1}{f_0},\ldots,\frac{f_n}{f_0},1\right) := X\left(\frac{f_1}{f_0},1\right) \cap \cdots \cap X\left(\frac{f_n}{f_0},1\right) \text{ with } f_i \text{ no common zero. They are called rational domains.}$ Affinoid subdomain U is a finite union of rational domains.

6 Affinoid Subdomain (Céline)

6.1 Motivation and plan:

Zariski topology is too coarse, so we want to define a topology: Canonical topology induced by topology on K

- Define open sets
- Define Affinoid Subdomain
- Define affinoid functions.

Let $X = \operatorname{Sp}(A)$ an Affinoid K-space. Set $X(f, \epsilon) = \{x \in X | |f(x)| \le \epsilon\}$ with $f \in A, \epsilon \in \mathbb{R}_{\ge 0}$.

Definition 6.1. The canonical topology is generated by sets of the type $X(f, \epsilon)$ where $f \in A, \epsilon \in \mathbb{R}_{\geq 0}$.

This implies that $U \subset X$ is open (with respect to the canonical topology) if and only if it is the union of finite intersections of $X(f, \epsilon)$.

Notation. $X(f) = X(f, 1), X(f_1, \ldots, f_r) = X(f_1) \cap \cdots \cap X(f_r).$

Proposition 6.2. The canonical topology is generated by sets of type X(f) for f varying in A.

Proof. Let $f \in A$, then the function $|f| : \operatorname{Sp}(A) \to \mathbb{R}_{\geq 0}$ takes values in $|\overline{K}|$. Thus, if $\epsilon \in \mathbb{R}_{\geq 0}$, we can write

$$X(f,\epsilon) = \bigcup_{\epsilon' \in \left|\overline{K}^*\right|, \epsilon' \le \epsilon} X(f,\epsilon')$$

. For $\epsilon' \in \left|\overline{K}^*\right|$ we can find $c \in K^*$ and $s \in \mathbb{Z}$ such that $\epsilon'^s = |c|$. Hence

$$X(f,\epsilon') = X(f^s,\epsilon'^s) = X(c^{-1}f^s)$$

Lemma 6.3. Consider $f \in A$, $x \in \text{Sp}(A)$ such that $|f(x)| = \epsilon > 0$. Then there exists $g \in A$ with g(x) = 0 such that $|f(y)| = \epsilon$ for all $y \in X(g)$. This implies that X(g) is an open neighbourhood of x contained in $\{y \in X | f(y) = \epsilon\}$

Proof. To each x, there correspond a maximal ideal $m_x \subset A$. Write \overline{f} for the residue class of f in A/m_x . Let $P(\zeta) = \zeta^n + c_1 \zeta^{n-1} + \dots + c_n \in K[\zeta]$ is the minimal polynomial for \overline{f} and let $P(\zeta) = \prod_{i=1}^n (\zeta - \alpha_i)$ its product decomposition over \overline{K} . Choose $A/m_x \hookrightarrow \overline{K}$, then $\epsilon = |f(x)| = |\overline{f}| = |\alpha_i| \forall i$ by uniqueness of valuation in \overline{K} . Consider $g = P(f) \in A$, then g(X) = P(f(x)) = 0. We claim that for $y \in X$ with $|g(y)| < \epsilon^n$ then $|f(y)| = \epsilon$. To see this, choose $A/m_y \hookrightarrow \overline{K}$, $|f(y) - \alpha_i| = \max\{|f(y)|, |\alpha_i|\} \ge |\alpha_i| = \epsilon \forall i$. Hence $|g(y)| = |P(f(x))| = \prod_{i=1}^n |f(y) - \alpha_i| \ge \epsilon^n$ which is a contradiction to the choice of y. Hence if $c \in K^*$ satisfies $|c| < \epsilon^n$, then $|f(y)| = \epsilon \forall y \in X(c^{-1}g)$.

Open Sets:

- $\{x \in \operatorname{Sp}A | f(x) \neq 0\}$
- $\{x \in \operatorname{Sp}A | f(x) \le \epsilon\}$
- $\{x \in \operatorname{Sp}A | f(x) \ge \epsilon\}$
- $\{x \in \operatorname{Sp}A | f(x) = \epsilon\}$
- $\{x \in \operatorname{Sp}A | f(x) < \epsilon\}$
- $\left\{ x \in \operatorname{Sp}A \middle| f(x) > \epsilon \right\}$

Proposition 6.4. Let $x \in X$, Sets $X(f_1, \ldots, f_r)$ forms a basis of neighborhood for x.

Proposition 6.5. Continuity: Let $\phi^* : A \to B$ be morphism of Affinoid K-algebra and $\phi : \operatorname{Sp}B \to \operatorname{Sp}A$ associated morphism of affinoid K-spaces. For $f_1, \ldots, f_r \in A$ then $\phi^{-1}((\operatorname{Sp}A), (f_1, \ldots, f_r)) = (\operatorname{Sp}B)(\phi^*(f_1), \ldots, \phi^*(f_r))$. Hence ϕ is continuous with respect to the canonical topology.

Proof. $y \in \text{Sp}B$, we have the following commutative diagram:

 $A/m_{\phi(y)} \to B/m_y \hookrightarrow \overline{K}$. Then $|f(\phi(y))| = |\phi^*f(y)| \forall f \in A$. This implies $\phi^{-1}((\operatorname{Sp} A)(f)) = \operatorname{Sp} B(\phi^*(f))$, so take intersections and we are done.

Definition 6.6.

1. $X(f_1, \ldots, f_r) = \{x \in X | |f_i(x)| \le 1\}$ is called *Weierstrass domain* in X

2.
$$X(f_1, \ldots, f_r, g_1^{-1}, \ldots, g_s^{-1}) = \{x \in X | |f_i(x)| \le 1, |g_j(x)| \ge 1\}$$
 called *Laurent domains* in X

3. $X(\frac{f_1}{f_0}, \dots, \frac{f_r}{f_0}) = \{x \in X | |f_i(x)| \le |f_0(x)|\}$ for f_0, \dots, f_r without common zeros, it is called a *rational domain* in X.

Definition 6.7. A subset $U \subset X$ is an affinoid subdomain of X if there exists a morphism of affinoid K-spaces: $\iota: X' \to X$ such that $\iota(X') \subset U$.

The following universal property must hold: If $\phi : Y \to X$ such that $\phi(Y) \subset U$, then there exists a unique $\phi' : Y \to X'$ such that the following diagram commutes

Lemma 6.8. Notation as above. X = SpA, X' = SpA', let $\iota^* : A \to A'$ be the associated K-morphims. Then ι is injective and $\iota(X') = U$ and bijection of sets $X' \cong U$.

This let us identify $U \subset X$ with X', which in turn gives a structure of affinoid K-space on any affinoid subdomains $U \subset X$.

Proposition 6.9. Weierstrass, Laurent and rational domains are called special affinoid subdomains.

Proposition 6.10. $V \subset X$ an affinoid subdomain, $U \subset V$ is an affinoid subdomain, then $U \subset X$ is also an affinoid subdomain.

Remark. If $V \subset X$ is a Weierstrass (respectively rational) subdomain, and $U \subset V$ is Weierstrass (or respectively rational) then $U \subset X$ is also Weierstrass (respectively rational). But this is not true for Laurent domain.

Theorem 6.11 (Gerritzen - Grauert). Let X be an affinoid K-space, $U \subset X$ an affinoid subdomain, then U is a finite union of rational subdomains of X.

6.2 Affinoid functions

Denote $\mathcal{O}_X(U)$ the affinoid K-algebra corresponding to $U \subset X$ an affinoid subdomain. If $U \subset V$ is an inclusion of affinoid subdomain, then we have a canonical map $\mathcal{O}_X(V) \to \mathcal{O}_X(U)$ of K-algebra. This is a restrictions of functions on V to U. More precisely: \mathcal{O}_X is a presheaf of affinoid K-algebra on the category of affinoid subdomain of X, called presheaf of affinoid functions on X. This can not be sheafified, hence more topology will need to be defined.

7 Tate's Acyclicity Theorem (Angelos)

Let X be an affinoid domain and T_X the category of affinoid subdomain of X, with inclusions as morphisms. We have seen that \mathcal{O}_X is a presheaf \mathcal{F} , where \mathcal{O}_X is the set of affinoid functions on X such that $\mathcal{F}(U) = \mathcal{O}_X(U)$. We have the following sequence

$$\mathcal{O}_X(U) \longrightarrow \prod_{i \in I} \mathcal{O}_X(U_i) \Longrightarrow \prod_{i,j} \mathcal{O}_X(U_i \cap U_j) \quad (*)$$
$$f \longmapsto (f|_{U_i})_{i \in I}, (f_i)_{i \in I} \longmapsto f_j|_{U_i \cap U_j}$$

where $U \in T_X$ and $\Delta = (U_i)_{i \in I}$ of U and $U_i, U_j \in T_X$

Definition 7.1. If $A \longrightarrow B \implies C$, we say that the *sequence is exact* if A is mapped bijectively to the subset of B such that the elements have the same images under the map $B \implies C$.

Definition 7.2. For a presheaf \mathcal{F} on X and a covering $\Delta = (U_i)_{i \in I}$ of X, $U_i \in T_X$, we say that \mathcal{F} is a Δ -sheaf, if for all $U \in T_X$ we have that the sequence (*) applied to $\Delta|_U = (U \cap U_i)_{i \in I}$ is exact.

Theorem 7.3 (Tate). Let X, \mathcal{O}_X be as above, then \mathcal{O}_X is a Δ -sheaf for any finite covering of X be affinoid subdomainn

Comments:

1. The main idea is to reduce the general case to "well-known" cases such that an easy calculations proves the theorem.

We can define Cech cohomology with respect to a covering Δ (finite) and our presheaf \mathcal{F}

Theorem 7.4 (Tate). Let X be an affinoid k-space and Δ a finite covering of X, then $H^q(\Delta, \mathcal{O}_X) = 0$ for q > 0. We say that Δ is acyclic.t

7.1 Grothendiecks Topology

Definition 7.5. For any affinoid k-space X, the Weak Grothendieck Topology T on X consists of

- 1. CatT the category of affinoid subdomains of X with inclusion as morphism.
- 2. CovT the set of all finite families $(U_i \to U)_{i \in I}$ of inclusions of affinoid subdomains in X such that $U = \bigcup_{i \in I} U_i$.

Definition 7.6. Let X be an affinoid k-space the Strong Grothendieck Topology on X is given as follows:

- 1. A subset $U \subset X$ is called *admissible open* if there is a (not necessarily finite) covering $U = \bigcup_{i \in I} U_i$ by affinoid subdomains $U_i \subseteq X$ such that for all morphisms of affinoid k-spaces $\phi : Z \to X$ satisfying $\phi(Z) \subseteq U$ the covering $(\phi^{-1}(U_i))_{i \in I}$ of Z admits a subcovering, which is a finite covering of Z by affinoid subdomains.
- 2. A covering $V = \bigcup_{i \in I} V_i$ of some admissible open subset $V \subseteq X$ by means of admissible open set V_i is called admissible if for each morphism of affinoid k-spaces $\phi : Z \to X$ satisfying $\phi(Z) \subset V$, the covering $(\phi^{-1}(V_i))_{i \in I}$ of Z admits a subcovering, which is a finite covering of Z by affinoid subdomains.

Proposition 7.7. Let X be an affinoid k-space for $f \in \mathcal{O}_X(X)$ and we define

- $U = \{x \in X | |f(x)| < 1\}$
- $U' = \{x \in X | |f(x)| > 1\}$
- $U'' = \{x \in X | |f(x)| > 0\}$

Any finite union of set of this types is admissable open. Any finite covering by finite unions of sets of this type is admissible.

Corollary 7.8. Let X be an affinoid k-space. The strong Grothendieck topology on X is finer than the Zariski, *i.e.*, each Zariski open subset $U \subseteq X$ is admissible open, and each Zariski covering is admissable.

The presheaf \mathcal{O}_X of analytic functions is not a sheaf under the weak Grothendieck topology or the canonical topology, but it is a sheaf under the strong Grothendieck topology.

8 Reductions of curves (Haluk)

8.1 Recap

Set-up: $K = \overline{K}$ a non-archimedean complete valued field, $\mathbb{P} = (K^2 \setminus \{0, 0\}) / \sim$ the projective line over KOpen disks: $\{z \in L : |z - a| < r\}$ or $\{z \in K : |z - a| > r\} \cup \{\infty\}$ Connected affinoid subset of \mathbb{P} : $\mathbb{P} \setminus \{$ finite union of open disc $\}$ Affinoid subset of \mathbb{P} : finite union of affinoid subsets Tate Algebra: $T_n := K \langle z_1, \ldots, z_n \rangle =$ formal power series in z_1, \ldots, z_n convergent on the polydisc \mathbb{D}_n Affinoid Algebra: $A=\mathbb{T}_n$ /I for some $n \ge 1$ and $I \lhd T_n$ Affinoid Space: $X = \operatorname{Sp}(A) = \operatorname{Max}(A)$ (the set of maximal ideals) for some affinoid algebra ANotes:

- $\operatorname{Sp}(T_n) \cong \mathbb{D}_n$
- $\phi: T_n \to A$ with $\ker(\phi) = I, \phi^*: \operatorname{Sp}(A) \hookrightarrow \mathbb{D}_n$, can view $\operatorname{Sp}(A)$ as zero set of I inside \mathbb{D}_n

Affine subdomain: $U \subseteq X = \operatorname{Sp}(A)$ such that there exists $\phi : A \to B$ (B unique) with $\phi^*(\operatorname{Sp}(B)) = U$ and some universal condition

Weak G-Topology on X: Open sets are affine subdomains, covers are finite covers.

8.2 Rigid analytic space

Definition 8.1. A Rigid Analytic Space (X, \mathcal{O}_X) where

- X is a space with a G-topoligy
- \mathcal{O}_X a sheaf of K-algebra

such that there is an admissable covering $\{X_i\}$ such that $\{X_i, \mathcal{O}_X|_{X_i}\}$ is an affinoid space with $\forall U \subseteq X_i$ is affinoid subdomain $\mathcal{O}|_{X_i}(U) = B$.

In practice, we start with $\{X_i\}$ and glue them:

• $\{X_i\}_{i \in I}$ affinoid spaces such that

 $\begin{aligned} &-\forall (i,j) \in I^2, i \neq j: \text{ there exists affinoid subdomain } X_{i,j} \subseteq X_i \text{ and there exists isomorphism } \phi_{j,i}: X_{i,j} \to X_{j,i} \\ &- \phi_{i,j}^{-1} = \phi_{j,i} \\ &- \forall i, j, k \in I, \ \phi_{j,i}(X_{i,j} \cap X_{i,k}) = X_{j,i} \cap X_{j,k} \text{ and } \phi_{k,i} = \phi_{k,j} \circ \phi_{j,i} \text{ on } X_{i,j} \cap X_{i,k} \end{aligned}$

There exists a unique Rigid Analutic Space X with G-topology T_X such that $U \subseteq X$ is in T_X if and only if $\forall i U \cap X_i$ is admissible opne

Example. Take \mathbb{P} , $X_0 = \operatorname{Sp}(K \langle T_o \rangle) \cong \mathbb{D}_1$ and $X_{\infty} = \operatorname{Sp}(K \langle T_{\infty} \rangle) \cong \mathbb{D}_1$. Then $X_{0,\infty} = \operatorname{Sp}(K \langle T_0, T_0^{-1} \rangle) \cong \partial \mathbb{D}_1$, $X_{\infty,0} = \operatorname{Sp}(K \langle T_{\infty}, T_{\infty}^{-1} \rangle) \cong \partial \mathbb{D}_1$. We define $\phi : K \langle T_0, T_0^{-1} \rangle \to K \langle T_{\infty}, T_{\infty}^{-1} \rangle$ by $T_0 \mapsto T_{\infty}^{-1}$. This gives $\phi^* : \partial \mathbb{D}_1 \to \partial \mathbb{D}_1$ defined by $z \mapsto 1/z$.

Analytification: X/K an algebraic variety, this gives X = X(K): we can put a Rigid Analytic Space structure on this X^{an}

8.3 Analytic Reduction of Rigid Analytic Space

Let $(X, \mathcal{O}_X), \{U_i\}$ be "nice" cover by affinoid spaces. We construct an algebraic variety \overline{X}/k .

Step 1 Fix $U_i = U$. U = Sp(A) for some A affinoid algebra.

 $A^{\circ} = \left\{ f \in A \big| \|f\| \le 1 \right\} \text{ is a } \mathbb{Z}_{K}\text{-algebra}$ $A^{\circ \circ} = \left\{ f \in A \big| \|f\| < 1 \right\} \text{ is an ideal of } A^{\circ}$

 $\overline{A}:=A^{\circ}/A^{\circ\circ}$ is a k-algebra of finite type

 $\overline{U} = \operatorname{Spec}(\overline{A})$ an algebraic variety over k.

There is a surjection of sets, $\{\phi : A \to K\} = \operatorname{Set}(A) \twoheadrightarrow \operatorname{Sp}(\overline{A}) = \{\phi : \overline{A} \to k\}.$

Maximal Modulus Principle: $||f|| = \max_{x \in U} |f(x)|$. This implies $\phi(A^{\circ}) \subseteq \mathbb{Z}_K$ and $\phi(A^{\circ\circ}) \subseteq m_k$. Start with $\phi: A \to K$, $\phi|_{A^0}: A^{\circ} \to \mathbb{Z}_k$. Mod out by $A^{\circ\circ}$ we get $\overline{\phi}: \overline{A} \to k$.

Step 2 Glue \overline{U}_i to get \overline{X}/k . We need $\overline{U_i \cap U_j} \xrightarrow{\longrightarrow} \overline{U_i}$ to be "open immersion"

Example.

First Example: $X = \operatorname{Sp}(K\langle T \rangle) \cong \mathbb{D}_1$. $A^{\circ} = \mathbb{Z}_K \langle T \rangle$, $A^{\circ \circ} = m_k \langle T \rangle$. Hence $\overline{A} = k[t]$, $\overline{X} = \mathbb{A}^1$ over k

- Second Example: $A = K \langle T, T^{-1} \rangle$, $X = \partial \mathbb{D}_1 = \operatorname{Sp}(A)$, $A^\circ = \mathbb{Z}_K \langle T, T^{-1} \rangle$, $A^{\circ\circ} = m_k \langle T, T^{-1} \rangle$. Hence $\overline{A} = k[T, T^{-1}]$, $\overline{X} = \mathbb{G}_m$ over k
- Third Example: \mathbb{P} , $X_0 = S_p(K\langle T_0 \rangle) \to \overline{X}_0 = \mathbb{A}^1$ over k. $X_\infty = Sp(K\langle T_\infty \rangle) \to \overline{X}_\infty = \mathbb{A}^1$ over k. Then $X_{0,\infty} = Sp(K\langle T_0, T_0^{-1} \rangle) \to \overline{X}_{0,\infty} = \mathbb{G}_m$ over k. $X_{\infty,0} = Sp(K\langle T_\infty, T_\infty^{-1} \rangle) \to \overline{X}_{\infty 0} = \mathbb{G}_m$ over k. Then we have the map $\overline{X}_{0,\infty} \to \overline{X}_{\infty,0}$ defined by $z \mapsto z^{-1}$. We have $\overline{X} = \mathbb{P}^1$ over k.

Fourth Example: Take $q \in K^*$ such that 0 < |q| < 1. Let $\mathcal{L} = \{q^n | n \in \mathbb{Z}\} \cup \{0, \infty\}$ and $\mathcal{L}^* = \{0, \infty\}$. Consider $X = \mathbb{P} \setminus \mathcal{L}^*$. Consider the covering $\{X_n\}_{n \in \mathbb{Z}}$ where $X_n = \left\{z \in K^* : |q|^{\frac{n+1}{2}} \le |z| \le |q|^{\frac{n}{2}}\right\}$. This is an affinoid space $X_n = \operatorname{Sp}\left(K\left\langle q^{-\frac{n}{2}}z_n, q^{\frac{n+1}{2}}z_n^{-1}\right\rangle\right), X_{n+1} = \operatorname{Sp}\left(K\left\langle q^{-\frac{n+1}{2}}z_{n+1}, q^{\frac{n+2}{2}}z_{n+1}^{-1}\right\rangle\right)$. We glue X_n with X_{n+1} , by sending $q^{\frac{n+1}{2}}z_n^{-1} \mapsto q^{-\frac{n+1}{2}}z_{n+1}$.

Now \overline{X}_n is the union of two lines $l_{1,n}$ and $l_{2,n}$ meeting at P_n . Then we $\left\{|z| = |q|^{n/2}\right\} \to l_{1,n} \setminus \{P_n\}$ and $\left\{|z| = |q|^{-\frac{n+1}{2}}\right\} \to l_{2,n} \setminus \{P_n\}$ while the annulus $\left\{|q|^{-\frac{n+1}{2}} < |z| < |q|^{\frac{n}{2}}\right\} \to P_n$. We have $A = K\left\langle q^{-\frac{n}{2}}z, q^{\frac{n+1}{2}}z^{-1}\right\rangle, \overline{A} = k[u', z']/(uz).$

To glue all of this together, note that we have the map $l_{2,n} \setminus \{P_n\} \to l_{1,n+1} \setminus \{P_{n+1}\}$ defined by $z \mapsto z^{-1}$. So we get that \overline{X} is the union of copies of \mathbb{P}^1 over k each intersecting exactly two others.

Fact. The intersection graph is a tree _____

$$\left\{ \begin{pmatrix} q^n & 0 \\ 0 & 1 \end{pmatrix} : n \in \mathbb{Z} \right\}$$
 gives rise to Γ

Theorem 8.2. Let \mathcal{L} be an infinite compact subset of \mathbb{P} . Put $X = \mathbb{P} \setminus \mathcal{L}^*$. X has a certain Rigid Analytic Space structure and a certain cover $\{X_i\}$ which with respect to which the reduction $R: X \to \overline{X}$ has the following structure:

- 1. \overline{X} is an algebraic variety over k (locally finite type schemes over k)
- 2. Each irreducible component of \overline{X} is a \mathbb{P}^1 over k.
- 3. Intersections of irreducible components are either \emptyset or an ordinary double points.
- 4. The intersection graph is a tree
- 5. Points in $\mathcal{L} \setminus \mathcal{L}^*$ are mapped down to non-singular points of \overline{X} .

9 Schottky groups and Mumford curves (Jeroen)

Notation.

Rings:

- K: finite extension of \mathbb{Q}_p , with p odd
- R: Valuation ring of K
- k: Residue field of R

Curves:

- X: Curve over K
- X_R : model (flat, proper, regular) over R
- $\overline{X}_R = \overline{X}_{\mathcal{U}}$: reduction of X_R (special fiber), curve over k

Groups (as done by Chris W.)

- $\Gamma = \langle \gamma_1, \dots, \gamma_g \rangle \subseteq \operatorname{PGL}_2(K)$ Schottky group
- $D = \mathbb{P}^1 \setminus \cup^{2g} B_i$ fundamental domain
- $\gamma_i(\beta_i) = \mathbb{P} \setminus \overline{B_{i+g}}$
- $\gamma_i(\overline{\beta_i}) = \mathbb{P} \setminus B_{i+g}$
- \mathcal{L}_{Γ} set of limit points of Γ

Uniformisation

•
$$\Omega_{\Gamma} = \mathbb{P}^1 \setminus \mathcal{L}_{\Gamma}$$

- $\rho: \Omega_{\Gamma} \to T_{\Gamma}$ (as in Haluk's talk)
- $T^*_{\Gamma} \subseteq \operatorname{BT}(K)$ dual graph

9.1 Stable models

Definition 9.1. X is said to admit a *semistable* (respectively *stable*, respectively *totally split*) model if it admits a model X_R such that

1. \overline{X}_R is reduced with ordinary double points as singularity

(respectively in addition to 1. :

2. Each component of \overline{X}_R that is isomorphism with \mathbb{P}^1_k contains at least 3 ordinary double points

respectively in addition to 1. :

3. Each components of \overline{X}_R has a normalisation isomorphic to \mathbb{P}^1_k and all ordinary double points are rationals)

Example. An elliptic curve E over K has semistable reduction if and only if:

- 1. E has good reduction
- 2. E has multiplicative reduction

 ${\cal E}$ has totally split reduction if ${\cal E}$ has split multiplicative reduction

Note. Any elliptic curve acquires semistable reduction over K(E[12])

Example. Let X be an hyperelliptic curve, $X \xrightarrow{2:1} \mathbb{P}^1$ ramified over $s_1, \ldots, s_n \in \mathbb{P}^1(K)$, so n = 2g(X) + 2. The reduction type of X then only depends on the reduction map $\rho_S : \mathbb{P}^!_K \to T_S$, where $S = \{s_1, \ldots, s_n\}$. **Construction 1:** Let M_1, \ldots, M_n be the lattices corresponding to the elements of $S^3 \setminus \Delta$. Then ρ_S is given by

where $L_i = \prod_{j=1}^N U_j$, $U_j = \operatorname{Red}_{[M_j]}([M_i])$ and $U_i = \mathbb{P}(M_i \otimes k)$ **Construction 2:** iterative constructions. Suppose $\rho_{S'}$ for $S' = \{s_1, \ldots, s_n\}$ is constructed. To construct ρ_S :

1. $\rho_S(s_n)$ is not a double point and not in $\rho_{S'}(S')$. Then put $\rho_S = \rho_{S'}$

2. $\rho_{S'}(s_n)$ is not double point but is in $\rho_{S'}(S')$.

In the formula we have to add $M(s_i, s_j, s_n)$. This gives a blowup

3. $\rho_{S'}(s_n)$ is a double point:

Add the lattice $M(s_i, s_j, s_m)$ to get

Intersections are:

This is a special case of the cover defined by Haluk

Fact. X has totally split reduction if and only if for all $L \subset T_S$ the partition of S obtained by contracting onto L contains at most two sets of odd cord.

9.2From groups to curves

 Γ gives rise to $\mathcal{L} = \mathcal{L}_{\Gamma}, \ \Omega = \Omega_{\Gamma} = \mathbb{P}^1 \setminus \mathcal{L}$ Reduction of Ω :

 \mathcal{L} gives rise to a reduction $\mathbb{P}^1 \dashrightarrow T_{\mathcal{L}} = T_{\Gamma}$ (the reduction is only defined on $\Omega \subset \mathbb{P}^1$, so we get $\rho_{\mathcal{L}} : \Omega \to T_{\mathcal{L}}$)

Theorem 9.2.

- 1. $X = \Gamma \setminus \Omega_{\Gamma}$ is a rigid analytic space defined by algebraic equations in some \mathbb{P}^{N}
- 2. X admits a cover \mathcal{U} such that $\overline{X}_{\mathcal{U}}$ is totally split
- 3. The intersection graph of $\overline{X}_{\mathcal{U}}$ is isomorphism with $\Gamma \setminus T_{\Gamma}$.

Proof. Consider $\rho : \Omega \to T_{\Gamma}$. Cover Ω with $U(e^*)$, $U(v^*)$. $X = \Gamma \setminus \Omega$ is obtained by considering the action of Γ on T_{Γ} and gluing/identifying the $U(e^*)$ according to this action.

Algebraically: Use theta function for Γ to embed into \mathbb{P}^N use GAGA

9.3 From curves to groups

Theorem 9.3. Let X be a curve over K admitting a totally split model X_R . Then X is of the form $\Gamma \setminus \Omega_{\Gamma}$ for some Schottky group Γ .

Proof. X_R gives $\rho: X \to \overline{X}_R$. Construct corresponding sets $U(e^*)$, $U(v^*)$ for e^*, v^* in the intersection graph of \overline{X}_R . Construct Ω : G^* intersection graph of \overline{X}_R . Let $\pi: T^* \to G^*$ be the universal cover. Set $\Omega(e') = U(\pi(e'))$, $\Omega(v') = U(\pi(v'))$ where $e' \in T^*$ edge and $v' \in T^*$ vertex. Glue $\Omega(e')$ to $\Omega(e'')$ via $\Omega(v)$ if the edges e, e' meet in v. Now $X = \pi_1(G^*) \setminus \Omega$ by construction (so let $\Gamma = \pi_1(G^*)$).

We want to embed $\Omega \hookrightarrow \mathbb{P}^1$. To do this, $\Omega \to T^*$ defined by $p \mapsto q$ an ordinary double point on $v_o \in T^*$ say. Define a sheaf \mathcal{F} on Ω via $\mathcal{F}|_{\Omega(e)} = \mathcal{O}_{\Omega(e)}$ if v_0 is not a vertex of e. $\mathcal{F}|_{\Omega(e)} = \frac{1}{f_e} \mathcal{O}_{\Omega(e)}$ if v_0 is a vertex of e, where $f_e \in \mathcal{O}(\Omega(e))$ such that f_e is single ordinary at p. We get a Cech complex

$$0 \longrightarrow \prod_{e} \mathcal{F}|_{\Omega(e)} \longrightarrow \prod_{v} F|_{\Omega(v)} \longrightarrow 0$$

Nakayam can be used to show that $H^0(\Omega, \mathcal{F}) = K \oplus Kf$.

Fact: f defines $\Omega \hookrightarrow \mathbb{P}^1$.

Fact: Γ acting on Ω extend to an action on \mathbb{P}^1 . Then Γ , being free in g generators is a Schottky group