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0 Introduction / Overview (Jeroen):

Start with Q and look at its completion:

• R and then its algebraic closure is C

• Qp (where we say
∣∣a
b

∣∣ = p−n if ab = pn a0b0 with p - a0, b0. Its algebraic closure is Qp and the completion of this
is Cp

0.1 Uniformisations over C
Simplest case: E a genus 1 curve over C. Then E ∼= EΛ = C/Λ where Λ ∼= Z2 a lattice inside C.

Meromorphic functions on E correspond to elliptic functions on C (meromorphic, doubly periodic with respect
to Λ)

Similar results holds for line bundles.
Given Λ = Z+ τZ where im(τ) > 0. Let q = e2πiτ . Then EΛ is isomorphic to the algebraic curve E : y2 + xy =

x3 + a4(q)x+ a6(q) where a4(q) = −5S3(q), a6(q) = =5S3(q)+7S5(q)
12 and Sk(q) =

∑
n≥1

nkqn

1−qn .
Moral of the story, we know exactly how to go from one to the other.

Remark.

• ai have nice integrality properties

• Application: construction of CM curves (Λ ⊂ OK ideal inside imaginary quadratic number �eld)

• The story changes for curves of higher genus: if C over C is a curve of genus > 1, then C ∼= Γ\H where H is
the upper half plane, and Γ < PSL2(R) � H.

0.2 Uniformisations over Cp

Let E be a genus 1 curve over Cp. We can not expect E ∼= Cp/Λ, because additive subgroups of Cp have an
accumulation point at 0 (consider elements pnλ for λ ∈ Λ).

Over C there is an isomorphism C/Λ z 7→exp(2πiz)→ C∗/ 〈q〉, with |q| < 1 because im(τ) > 0. This also works over
Cp.

Now consider the quotient Eq = C∗p/ 〈q〉 where |q| < 1.

Theorem 0.1 (Tate). The same series a4(q), a6(q) converge and give an algebraic structure to the quotient Eq.
Moreover if q ∈ Qp� then Eq is de�ned over Qp too.

Let L/Qp be algebraic, then the homomorphism L∗ → Eq(L) is surjective, with kernel 〈q〉, and it is Galois
equivariant for the action of Gal(L/Qp) on both sides.

Remark. Starting with |q| < 1, one obtains exactly those E over Cp for which |j(E)| > 1. Over Qp: one obtains
the curves E with multiplicative reduction. The equations give the split multiplicative E over Qp.

0.3 Schottky groups

Mumford generalisation of Tate to higher genus.

From groups to curves

Let Γ < PGL2(Cp) � P1(Cp).

De�nition 0.2. P ∈ P1(Cp) is called a limit point of Γ if there is q ∈ P1(Cp) and distinct γn ∈ Γ such that
P = lim−→∞ γn(q).

Set of limit points of Γ: L(Γ)
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De�nition 0.3. Γ is called Schottky if:

• L(Γ) 6= P1(Cp)

• Γ is �nitely generated and torsion free

Theorem. Let ΩΓ = P1(Cp)− L(T ). Then the quotient Γ\ΩΓ has the structure of an algebraic curve over C.

Remark.

• Schottky groups have nice fundamental domains.

• Reduction of Γ\ΩΓ is totally split, dual graph is the quotient of the tree on ΩΓ (subset of Bruhat-Tits tree)

• Modular forms for Γ are completely classi�ed as products of Θ-functions; these can be used to fund the
canonical embedding of Γ\ΩΓ.

From curves to groups

De�nition 0.4. X curve over Qp is totally split if X has a (�at) model X over Zp such that X0 = X ⊗Zp
Fp is a

union of rational curves intersecting transversely in Fp-rational points.

Theorem 0.5 (Mumford). Every totally split curve over Qp is a Mumford curve; they can be obtained as quotients
Γ\ΩΓ of domains ΩΓ ⊂ P1(Cp) by Schottky groups Γ.

0.4 p-adic geometry

To obtain Ω: glue a�ne patches to the universal cover of the reduction graph.

Fundamental problem

The usual topology is totally disconnected. Tate found a solution by using the theory of a�noid subdomains.
Idea: restrict the subsets and coverings that are used.

Goal:

To understand parts of the �groups to curves� and �curves to groups� sections.
Topics:

1. P1

as a topological space (Marc)

2. P1 as an analytic space (Samir)

3. Group action (Chris W)

4. The Tate curves (Heline)

5. A�noid spaces, rigid spaces (part 1) (Chris B)

6. A�noid spaces, rigid spaces (part 2) (Céline)

7. Reduction of curves (Angelos)

8. Modular functions and Mumford curves (Haluk)

9. Totally split curves as Mumford curves (Jeroen)
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1 P1 as a topological space (Marc)

1.1 Trees

Reference: [Mumford] An analytical Construction of degenerating curves..., [Chris W] 4th year essay
Goal: To attach tree to a compact subset of X ⊂ P1(K), where K is a local �eld.
Motivation:

Real case: PGL+
2 (R) acts on H = {z ∈ C : im(z) > 0} via z 7→ γz = az+b

cz+d (where γ =

(
a b
c d

)
) by isometries,

transitively. It has boundary ∂H = P1(R). Γ ⊂ PSL+
2 (R) is a discrete cocompact group with no elements

of �nite order, H/Γ is a Riemann surface of some genus g.

Theorem 1.1. Any Riemann Surface of genus g ≥ 2 is of this form.

Complex case: PSL2(C) acts isometrically and transitively on H =hyperbolic 3-space (Can think of as C×R>0). We
have ∂H = P1(C). Let Γ ⊂ PSL2(C) Kleinian group and �nitely generated. H/Γ ⊃ (∂H\limit points of Γ)/Γ ∼=Riemann
Surface of genus g(It is a theorem of Maskit that Γ is a C-Schottky, free on g generators.)

p-adic case: PGL2(K) where K is a p-adic �eld acts on ∆ (called Brahut - Tits tree), a tree. We have ∂∆ ∼= P1(K).
If Γ ⊂ PGL2(K) is Schottky (to be de�ned) then we will obtain curves as ∂∆/Γ.

Notation. Let K be a local �eld: a �nite extension of Qp or Fp((t)). Let | | be its valuation, ZK be the value ring
and ZK ⊇ mK = (π), |π| < 1, k = ZK/π. PGL2(K) acts on P1(K) = (K×K \{0, 0})/ ∼= K ∪{∞} via z 7→ az+b

cz+d .

Consider lattices M ⊂ K × K (Rank 2 ZK-lattice), we say that M ∼ M ′ if M ′ = λM , λ ∈ K∗ (M , M ′ are
homothetic). Set ∆(0) =set of classes [M ] (call them vertices)

Remark. PGL2(K) acts transitively on ∆(0), stabiliser of [ZK+ZK ] = PGL2(ZK), hence ∆(0) ∼= PGL2(K)/PGL2(ZK)

De�nition. Distance: Given v1, v2, we can �nd representative v1 = [M1], v2 = [M2] such that M1 = 〈a, b〉
and M2 = 〈a, αb〉 (elementary divisor theorem). We de�ne ρ(v1, v2) := (α) (the ideal generated by α). This is
symmetrical, so de�nes a distance on ∆(0).

�Triangle inequalities�: Given 3 vertices v1, v2, v3 ∈ ∆(0), ∃v ∈ ∆(0) such that ρ(vi, vj) = (λiλj)

v1

λ1

v
λ2

λ3

v2 v3

Triples in P1(K)

Let x1, x2, x3 pairwise distinct triple in P1(K), de�nes a lattice M(x1, x2, x3) as follows: xi = [wi], wi ∈ K2 \{0, 0},
λ1w1 + λ2w2 + λ3w3 = 0 non-trivial relations, then M(x1, x2, x3) = 〈λ1w1, λ2w2〉 (independent on ordering of the
xi)

Remark. x1 = 0 = [0, 1], x2 = 1 = [1, 1], x3 =∞ = [1, 0], then M =

〈(
1
0

)
,

(
0
1

)〉
= ZK + ZK ⊂ K +K

Given any pairwise distinct triple x, there exists a unique γ ∈ PGL2(K) such that γ(x) = (0, 1,∞). Hence all
v ∈ ∆(0) are classes of M(x) for an appropriate x.

Adjacency: We say v1, v2 are adjacent if there exists representative v1 = [M1], v2 = [M2] such thatM1 )M2 )
πM1 (if and only if ρ(v1, v2) = mK). This gives us the tree ∆ called the Bruhut - Tits tree of P1(K) of PGL2(K).
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Remark. Given v = [M ] ∈ ∆(0), there are as many adjacent vertices as there are M ) M ′ ) πM . The number of
lines in M/πM ∼= k2 = #P1(k) = #k + 1.

∆
(0)
X = {[M(x1, x2, x3) : xi ∈ X} ⊂ ∆(0).

De�nition. A subset ∆
(0)
∗ ⊂ ∆(0) is linked if for all v1, v2, v3 ∈ ∆

(0)
∗ , the v in the triangle inequality if in ∆

(0)
∗ .

Tree Theorem. If ∆
(0)
∗ is linked, then it can be made to be the set of vertices of a connected tree with lengths

•
λ2

• λ1 • λ4 • λ5 •

•

λ3

such that ρ(v, v′) =
∏

lenght of edges in path joining them (We get a tree ∆X)

Proposition. ∆
(0)
X is a linked set of vertices

Example. X = {pn : n ∈ Z} ∪ {0,∞} ⊂ P1(Qp)

Note: Γ =

〈(
p 0
0 1

)〉
acts on ∆X via �translation�. Quotient ∆/Γ =	 (fundamental group is Z)

Reduction point of view

Let R : P1(K) → P1(FK) be de�ned by [x, y] 7→ [x, y] if x, y ∈ ZK , max{|x| , |y|} = 1. Given a pairwise distinct
triple in P1(K), there exists γa ∈ PGL2(K) such that γa(a) = (0, 1,∞). We de�ne Ra = R ◦ γa.

If X ⊂ P1(K) is compact, a ∈ X3, Ra determines a partition of X = tp∈Ra(X)R
−1
a ({p}).

De�nition. a ∼ b if Ra, Rb gives identical partitions
a is adjacent to b if a gives a partition X1, . . . , Xs and b gives a partition Y1, . . . , Yt and Xi is adjacent to Yj for

all i and j.

Turns out that the graph you get using these notions is ∆X via a 7→ [M(a)].

Boundary

Given a linked set ∆
(0)
∗ , de�ne Ends(∆∗) = equivalence classes of half-line (where equivalence is de�ned as di�er

at �nitely many terms)
De�ne ∂∆∗ = Ends(∆∗)

Proposition.

1. There is an injection i : ∂∆∗ → P1(K) by intersecting nested lattices.

2. If ∆
(0)
∗ = ∆

(0)
X , then i(∂∆X) = X (in particular, if X = PGL2(K), then i is bijective)
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2 P1 as an Analytic Space (Samir)

Reference: Fresnel and Van der Put �Rigid Analytic Geometry and its Application� Chapter 2
The basic object of today is P = P1(Cp). For this talk K = Cp

De�nition 2.1. (Disc). An open disc in P has the form {z ∈ Cp : |z − a| < r} for some a ∈ Cp and r ∈ R+, or
{z ∈ Cp : |z − a| > r} ∪ {∞}.

A closed disc in P has the form {z ∈ Cp : |z − a| ≤ r} for some a ∈ Cp and r ∈ R+, or {z ∈ Cp : |z − a| ≥
r} ∪ {∞}.

A connected a�noid subset of P has the form P \ ∪Di (�nite non-empty union, and Di are open disc). (Note
that we can write this as P \

∐
D′i where D

′
i are open disc, h(X) =�holes in X” = {D′i})

An a�noid of P is the �nite union of connected a�noids.

Fact. If F is an a�noid, then F =
∐s
i=1 Fi where Fi are connected a�noids. The Fi are the connected components

of F . This decomposition is unique.

Lemma 2.2. Let f ∈ Cp(z) \ {0}, r > 0. Consider {a ∈ P : |f(a)| ≤ r}, this is either an a�noid or empty.

Example. f(z) = z(z − 1), r = 1
p . Then{

z : |f(z)| ≤ 1

p

}
=

{
z : |z| ≤ 1

p

}
∪
{
z : |z − 1| ≤ 1

p

}
= P \

({
z : |z| > 1

p

}
∪ {∞}

)
∪ P \

({
z : |z − 1| > 1

p

}
∪ {∞}

)

2.1 Holomorphic Functions

De�nition 2.3. Let F be an a�noid, Rat(F ) := {f ∈ Cp(z) : poles of f are outsideF}.
De�ne ‖f‖F = supa∈F |f(a)| <∞.
The holomorphic functions on F , O(F ) :=completion of Rat(F ) with respect to ‖ ‖.

Fact.

1. F 7→ O(F ) is a sheaf

2. X ⊇ Y are connected a�noids then the image of O(X) → O(Y ) is dense if and only if h(X) → h(Y ) is
surjective.

De�nition 2.4. O(F )◦ := {f ∈ O(F ) : ‖f‖ ≤ 1}, this is an OCp
-algebra.

O(F )◦◦ := {f ∈ O(F ) : ‖f‖ < 1}.
O(F ) := O(F )◦/O(F )◦◦, this is an Fp-algbera

Example. Let F = {a ∈ P : |a| ≤ 1} = OCp
.

1. O(F ) = {
∑∞
n=0 cnz

n : cn ∈ Cp, lim cn = 0}, ‖
∑
cnz

n‖ = max |cn|.

2. O(F )◦ = {
∑∞
n=0 cnz

n : cn ∈ OCp , lim cn = 0}

3. O(F )◦◦ =
{∑∞

n=0 cnz
n : cn ∈ mCp

, lim cn = 0
}
.

4. O(F ) = Fp[z].

Lemma 2.5 (Division with Remainder). Let F = {a ∈ P : |a| ≤ 1}. Let f ∈ O(F ) with ‖f‖ = 1, so f ∈ Fp[z] with
degree d ≥ 0. Then for any g ∈ O(F ) there exists unique q, r ∈ O(F ) such that

1. g = qf + r

2. r ∈ Cp[z] of degree less than d
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3. ‖g‖ = max(‖q‖, ‖r‖).

De�nition 2.6. De�ne O(F )+ := {f ∈ O(F ) : f(∞) = 0}

Proposition 2.7 (Mittag - Le�er). Let F be a connected a�noid with ∞ ∈ F , h(F ) = {D1, . . . , DS}, Di =
{z : |z − ai| < |πi|}, where ai ∈ Cp and πi ∈ C∗p. Let Fi = P \Di, so F = ∩Fi. Then

1. O(F )+ = ⊕si=1O(Fi)
+

2. O(Fi)
+ =

{∑
n>0 bn

(
πi

z−ai

)n
: bn ∈ Cp, lim bn = 0

}
.

If we let f =
∑
fi, then ‖f‖ = max ‖fi‖Fi

. Also ‖
∑
n>0 bn

(
πi

z−ai

)n
‖Fi

= max |bn|.

Lemma 2.8. Let F =
∐
Fi be an a�noid. Then O(F ) = ⊕O(Fi).

2.2 G-topology on P
De�nition 2.9. A G-topology is

1. A set X

2. A set F ⊂ P(X) (power set of X). (The elements of F are called the admissible)

3. For each U ∈ F a set Cov(U) (a set of covering, called the admissible covering). Cov(U) are of the form
{Ui}i∈I such that Ui ∈ F and ∪Ui = U .

satisfying

1. ∅, X ∈ F

2. U, V ∈ F then U ∩ V ∈ F

3. {U} ∈ Cov(U)

4. If U ⊇ V are admissible and {Ui}i∈I ∈ Cov(U), then {Ui ∩ V }i∈I ∈ Cov(V ).

5. If U ∈ F , {Ui}i∈I ∈ Cov(U) and for Ui ∈ Cov(Ui), then ∪Ui ∈ Cov(U).

We can de�ne presheafs, sheafs, shea��cation and Cech Cohomology in the expected way, following this topology.

De�nition 2.10. The weak G-topology on P is

1. X = P

2. F = {∅,P} ∪ {affinoid}

3. Cov(U) are {Ui}, Ui ⊆ U are a�noid and U is the union of �nitely many Ui.

Theorem 2.11. O is a sheaf. (O(U)→
∨
H0(U ,O) is an isomorphism)

Furthermore
∨
Hi(U ,O) = 0 for all i > 0.
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3 Schottky groups and their actions (Chris Williams)

3.1 Discontinuous groups

Let K be any local �eld, Γ ≤ PGL2(K)

De�nition 3.1. α ∈ P1(K) is a limit point for Γ if there exists (γn)∞n=1 ⊂ Γ, β ∈ P1(K) such that

1. γm 6= γn for all m 6= n

2. α = lim γn(β).

Write L = L(Γ) for the set of limit points of Γ

De�nition 3.2. Γ ≤ PGL2(K) is discontinuous if

1. L(Γ) 6= P1(K)

2. For any α ∈ P1(K), Γα is compact

Remark. If K is a local �eld, then condition 2. is automatic.
Discontinuous implies Discrete. In particular, γn → γ, then γnγ

−1 → I, implying L(Γ) = P1(K).

3.1.1 Classi�cation of elements of PGL2(K)

De�nition 3.3. Let γ ∈ PGL2(K) with eigenvalue λ, µ. Say γ is

1. hyperbolic if |λ| 6= |µ|

2. Elliptic if |λ| = |µ| but λ 6= µ

3. Parabolic if λ = µ

Proposition 3.4. Let λ ∈ PGL2(K)

1. γ is hyperbolic if and only if it is conjugate in PGL2(K) to

(
q 0
0 1

)
with 0 < |q| < 1

2. γ is elliptic/parabolic if and only if γ2 is conjugate to an element of PGL2(OK).

Proposition 3.5.

1. Let γ ∈ PGL2(K) be hyperbolic. Then 〈γ〉 is discontinuous

2. IF Γ is discontinuous and γ ∈ Γ is elliptic/parabolic, then γ has �nite order.

Proof.

1. 〈γ〉 has 2 limit points, corresponding to eigenvectors of γ

2. γ is conjugate to

(a)

(
λ 0
0 1

)
, |λ| = 1 or

(b)

(
1 µ
0 1

)
In the case a) 〈γ〉 ∼= {λn}, discrete subgroup of O∗K hence �nite

In the case b) 〈γ〉 ∼= {nµ}, discrete subgroup of O∗K , hence µ = 0.
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3.1.2 Investigating limit points

Without loss of generality, ∞ /∈ L

Let

(
an bn
cn dn

)
⊂ Γ be an in�nite sequence. Compactness of P1(K) implies we can take subsequence such that

an/cn, bn/cn, dn/cn converges. Without loss of generality, none of these are ∞, so

(
an/cn bn/cn

1 dn/cn

)
→
(
a b
1 d

)
.

As Γ is discrete, then this does not lie in PGL2(K) which implies ad = b.
For any β ∈ P1, we have limn→∞ γn(β) = aβ+b

β+d = aβ+ad
β+d = a, unless β = −d = lim γ−1

n (∞)

Proposition 3.6.

1. Suppose x /∈ L. Then if we de�ne L(x) to be {α ∈ L : ∃ (γn) with γn(x)→ α}. Then L = L(x)

2. If A = {x, y, z, } ⊂ P1(K) distinct points, then there exists w ∈ A such that L(w) = L

Proof.

1. x /∈ L, so �x 6= −d� in the above

2. Assume x, y, z ∈ L. As for any sequence γm, either �x 6= −d� or �y 6= −d�, we have L = L(x) ∪ L(y). So
without loss of generality z ∈ L(y). Then L(z) ⊂ L(x), so L = L(x) ∪ L(z) ⊂ L(x) ⊂ L, so L = L(x).

Proposition. L is compact

Proof. If |L| ≤ 2, then this is clear.
If |L| > 2, choose x ∈ L such that L = L(x), then L = Γx = L(x) is compact.

De�nition 3.7. A Schottky group is a �nitely generated discontinuous subgroup of PGL2(K) with no elements of
�nite order. (So no elliptic or parabolic elements)

We now assume that Γ is a Schottky group
To L, we associate a tree T (L). Γ acts on T (L) in a natural way.

Lemma 3.8. T (L)/Γ is �nite.

Proof. Notation: If α ∈ T (L), then T (L) \ {α} =
∐
Ti where Ti are tree. Say fin(α) := ∪TifiniteTi. Fix α. Pick U

to be the minimal subtree such that for Γ′ ⊂ Γ to be a �nite generated set (containing I inverses).

1. ∀γ ∈ Γ′, γ(α) ∈ U

2. ∀β ∈ U , fin(β) ⊂ U .

De�ne V = ∪γ∈ΓγU . Then we claim V = T (L). To see this take β ∈ T (L), without loss of generality, there is a
hal�ine in T (L) starting at α through β. From Marc's talk, this hal�ine correspond to a limit point z = lim γn(z0).
So in particular, β lies in a path from γn(z0) to γn+1(z0) for some n. Therefore β ∈ V, as γn(z0) and γn+1(z0) ∈ V
(the hal�ine starts at α)

Corollary 3.9. Any Schottky group is free

Proof. T (L) is the universal cover of T (L)/Γ, covering translations Γ. As T (L)/Γ is �nite, Van Kampen implies
the result.
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3.1.3 Fundamental Domain

Take B1, . . . , Bg, C1, . . . , Cg disjoint open balls in P1(Cp) with centres in K
Suppose there exists γ1, . . . , γj ∈ PGL2(K) with γi(P \Bi) = Ci and γi(P \Bi) = Ci.
Let Γ := 〈γ1, . . . , γg〉 . Then:

• Γ is non-abelian free,

• In particular, no elements of �nite order

De�ne F := P1(Cp) \ (∪Bi ∪ Ci). De�ne Ω = ∪γ∈ΓγF 6= P1(Cp).

Theorem 3.10.

1. L(Γ) = P1(Cp) \ Ω

2. Γ is Schottky

3. Moreover, every Schottky groups occurs in this way

Ω/Γ is a curve of genus g.
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4 The Tate curve (Heline)

4.1 Introduction

With an elliptic curve over C, we get a parametrisation C/Λ where Λ = Z + τZ is a lattice.
We want to do this over Qp. Note that if we have 0 6= t ∈ Λ ⊂ Qp , then pnt ∈ Λ∀n, and limn→∞ pnt = 0, so 0

is an accumulation point, so this method will not work.
Note that an elliptic curve over C, C/Λ ∼= C∗/qZ where z ∈ C, z 7→ u = e2πiz. And we have that qZ ⊂ Q∗p , so

we want to show that the elliptic curve over Qp gives rise to Q∗p/qZ.
Convention: K is a �nite extension of Qp with characteristic k 6= 2, 3. q ∈ Q∗p such that |q| < 1 (where | | is

the absolute value associated to K)

4.2 Tate curve

De�nition 4.1. sk(q) =
∑
n≥1

nkqn

1−qn , a4(q) = −s3(q), a6(q) = − 5s3(q)+7s5(q)
12 .

Fact. If q ∈ K∗ with |q| < 1 then a4(q) and a6(q) converges in K.

De�nition 4.2. Let Eq be the curve de�ned by y2 + xy = x3 + a4(q)x+ a6(q). This is called the Tate curve

Fact. Eq is an elliptic curve with discriminant ∆(Eq) = q
∏
n≥1(1 − qn)24 and j-invariant j(Eq) = q−1 + 744 +

196884q + . . . . Note that |j(Eq)| =
∣∣q−1

∣∣ > 1

De�nition 4.3. X(u, q) =
∑
n∈Z

qnu
(1−qnu)2 − 2s1(q)

Y (u, q) =
∑
n∈Z

(qmu)2

(1−qnu)3 + s1(q)

Fact. For all u ∈ K, u /∈ qZ, X(u, q) and Y (u, q) converges

Theorem 4.4 (Tate). Let Eq be a Tate curve. There exists a surjective homomorphism φ : K
∗ → Eq(K) de�ned

by u 7→

{
(X(u, q), Y (u, q)) if u /∈ qZ

∞ if u ∈ qZ
. The kernel is qZ.

φ is compatible with the Galois action, Gal(K/K). That is φ(Pσ) = φ(P )σ for all σ ∈ Gal(K/K), P ∈ K∗.

So we get Eq(K) ∼= K
∗
/qZ.

Sketch of Proof. We show it is a homomorphism: u1u2 = u3, φ(ui) = Pi, P1 +P2 = P3. Note that φ(qu) = φ(u), so
we can assume |q| < u1 ≤ 1, 1 ≤ |u2| <

∣∣q−1
∣∣ ,and hence |q| < |u3| <

∣∣q−1
∣∣ . So u1 will be in a domain of convergence

X,Y , φ(1) = 0, so u1 6= 1 6= u2, P1 + P2 = 0. X(ui, q) = xi
If x1 6= x2, we need to check addition law, identities.

Lemma. When we have a map φ from a multiplicative group to an additive group which takes in�nitely many
distinct values and φ(u1u2) = φ(u1) + φ(u2) for all u1 6= ±u2, then φ is a homomorphism.

Proof of Lemma. Pick u such that φ(u) 6= ±φ(u1), φ(u) 6= φ(u1) ± φ(u2), φ(u) 6= φ(u1u2). Then φ(uu1) =
φ(u) + φ(u1) 6= ±φ(u2), and φ(u) + φ(u1u2) = φ(uu1u2) = φ(uu1) + φ(u2) = φ(u) + φ(u1) + φ(u2).

To show that we satisfy the lemma, note that for t ∈ K∗, |t| < 1, |X(t+ 1, q)| = |t|−2
, so we get in�nitely many

distinct value.
We will not prove the surjectivity part, just read Silverman pg 429 to 438.
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4.3 Elliptic curves over p-adic �elds

In the complex case, E ∼= C∗/qZ for some q.
Question: Is this also true in the p-adic case? The answer is no. Consider |j(Eq)| =

∣∣q−1
∣∣ > 1, so elliptic curve

with |j(E)| < 1 can not be isomorphic to a Tate curve. But we will show that |j(E)| > 1 is a su�cient condition
for E to be isomorphic to a Tate curve Eq.

Lemma 4.5. Let α ∈ Q∗p, |α| > 1. Then there exists a unique q ∈ Qp(α)∗ such that j(Eq) = α.

Proof. Let f(q) = j(Eq)
−1 = q − 744q2 + 356652q3 + · · · ∈ Z[[q]].

Uniqueness Suppose q, q′ ∈ Qp(α)∗ are such that j(Eq) = j(Eq′). Then 0 = |f(q)− f(q′)| = |q − q′| |1− 744(q + q′) + . . . | =
|q − q′|, hence q = q′.

Existence There exists g(q) ∈ Z[[q]] such that g(f(q)) = q, in fact g(q) = q + h.o.t. Let β ∈ Q∗p with |β| < 1,

g(β) converges. Then |g(β)| = |β| . We know that |α| > 1, so
∣∣α−1

∣∣ < 1, so set q = g(α−1). Then

0 < |q| =
∣∣g(α−1)

∣∣ < 1. Also note that j(Eq)
−1 = f(q) = f(g(α−1)) = α−1, hence j(Eq) = α.

De�nition 4.6. Let E/K be an elliptic curve in long Weierstrass equation, with j(E) 6= 0, 1728. Letc4 and c6 be

the �usual quantities�. De�ne the Hasse invariant (γ-invaraint) to be de�ned as γ(E/K) := − c4c6 ∈ K
∗/ (K∗)

2
.

Lemma 4.7.

1. γ(E/K) is well de�ned and independent of choice of Weierstrass equations

2. If j 6= 0, 1728 then E ∼=K E′ if and only if j(E) = j(E′) and γ(E/K) = γ(E′/K).

3. If j(E) = j(E′) and γ(E/K) 6= γ(E′/K), let t =
√

γ(E/K)
γ(E′/K) and L = K(t) then E ∼=L E

′.

Proof. Assume E : Y 2 = X3 +AX +B

1. Let u ∈ K∗, u4c4 = c′4 and u6c6 = c′6, hence independent of the Weierstrass equations

2. j(E) = j(E′) implies A′3

B′2 = A3

B2 ,and j(E/K) = j(E′/K) implies t ∈ K∗ such that A
B t = A′

B′ . Hence we get
t4A = A′ and t6B = B′

3. The isomorphism is de�ned by (x, y) 7→ (t2x, t3y).

Theorem 4.8 (Tate's p-adic uniformisation). Let E/K be an elliptic curve |j(E)| > 1

1. There exists a unique q ∈ K∗ such that E ∼= Eq over K.

2. The Following Are Equivalent:

(a) E ∼= Eq over K

(b) γ(E/K) = 1

(c) E has split multiplicative reduction.

Proof.

1. This follows from the Lemma

2.
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a) ⇐⇒ b) E ∼= Eq over K is the same as j(E) = j(Eq) and γ(E/K) and γ(Eq/K). So we just need to show
that γ(Eq/K) = 1 for all q. We use the following lemma

Lemma. Let α ∈ K∗, |α| < 1, then 1 + 4α is a square in K.

γ(Eq/K) = 1+240s3(q)
1−504s5(q) , so we can use the lemma to see that j(Eq/K) = 1.

a)⇒ c) To see this, note that |a4(q)| = |a6(q)| = |q| < 1. So Ẽq : Y 2 +XY = X3.

c)⇒ b) Read Chris' 4th year project.

4.4 Application

Theorem 4.9. Let K be a number �eld, E/K an elliptic curve with j(E) /∈ OK then End(E) = Z.

Proof. Uses Tate's curve.
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5 General Theory of A�noids (Chris Birkbeck)

LetK be a �eld, complete with respect to a non-archimedean norm | |. LetK be its algebraic closure. IfK ⊆ E ⊆ K,
[E : K] <∞, then E is complete with respect to | |.

Let Bn(K) =
{

(x1, . . . , xn) ∈ Kn| |xi| ≤ 1
}
.

Fact. A formal power series with coe�cients in K, f =
∑
v∈Nn cvX

v converges on Bn(K) if and only if lim∑
vi→∞ |cv| =

0.

De�nition 5.1. The Tate Algebra, Tn = K 〈x1, . . . , xn〉 is the K-algebra of power series converging on Bn(K).

Think of f ∈ Tn as a map Bn(K)→ K.
De�ne a norm on Tn called the Gauss Norm as follows: take f ∈ Tn, f =

∑
v cvX

v. Let |f | = maxv |cv|.

Exercise. Prove its a norm.

Let:

• K◦ = {a ∈ K| |a| ≤ 1}

• K◦◦ = {a ∈ K| |a| < 1}

• K̃ = K◦/K◦◦

There exists a unique epimorphism K◦ → K̃ de�ned by c 7→ c̃. This extends to an epimorphism K◦ 〈X1, . . . , Xn〉 →
K̃ [X1, . . . , Xn]. (f is an epimorphism, f : X → Y if for all ∀g1, g2 : Y → Z such that g1 ◦ f = g2 ◦ g ⇒ g1 = g2)

Fact.

• Tn is complete with respect to the Gauss norm

• If f ∈ Tn, |f | = 1, then f ∈ T ∗n if and only if f̃ ∈ K̃∗. In general |f − f(0)| < |f(0)| if and only if f̃ ∈ K̃∗.

• (Maximum principle) if f ∈ Tn, then |f(x)| ≤ |f |, and there exists x ∈ Bn(K) such that |f(x)| = |f |.

De�nition 5.2. Let g ∈ Tn, g =
∑∞
v=0 gvX

v
n for gv ∈ Tn−1. We say g is Xn-distinguished of order s if:

1. gs ∈ T ∗n−1

2. |g| = |gs| and |gs| > |gv| for all v > s.

If |g| = 1 then g Xn-distinguished of order s implies g̃ = g̃sX
s
n + · · ·+ g̃0X

0
n with g̃s ∈ K̃∗.

Order 0 if and only if g is a unit.

Corollary 5.3 (Weierstrass preparation). If g ∈ Tn is Xn distinguished of order s, then there exists a unique
w ∈ Tn−1[Xn] of degree s and there exist e ∈ T ∗n such that g = ew. Such w is called Weierstrass polynomial.

Corollary 5.4 (Noether Normalisation). For a proper ideal a ( Tn there is a K-algebra homomorphism Td → Tn
(d = krulldimTn/a) such that Td → Tn → Tn/a is a �nite monomorphism.

Fact.

• Tn is Noetherian

• Each ideal is complete (hence closed)

• Bn(K) � Max(Tn) by x 7→ mx = {f ∈ Tn|f(x) = 0}. Here f(x) is image of f ∈ Tn/mx. For every g ∈ Tn,
g(x) denotes the image of g ∈ Tn/mx. This is well de�ned up to Gal(K/K)

• m ⊆ Tn is a maximal ideal, then [Tn/m : K] <∞.
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De�nition 5.5. A K-algebra A is an a�noid algebra if there exists an epimorphism α : Tn → A for some n.
We de�ne the suprenum norm as follows: let f ∈ A, set |f |sup = supx∈Max(A) |f(x)|. This is a seminorm, as

|f |sup = 0 does not implies f = 0. We do have |f |sup = 0 if and only if f is nilpotent.
We de�ne A�noid spaces as follows: Let A be an a�noid algebra. Let Sp(A) be the set Max(A) + the

�functions�. The morphism Sp(A)→ Sp(B) is de�ned by σ : B → A, σ∗ : Max(A)→ Max(B).
a ⊆ A is an ideal, V (a) = {x ∈ Sp(A)|f(x) = 0∀f ⊆ a}. If Y ⊆ Sp(A) we can de�ne I(Y ) = {f ∈ A|f(y) =

0∀y ∈ Y } = ∩y∈Ymy.
Canonical topology: Let X = Sp(A), f ∈ A, ε ∈ R. Write X(f, ε) = {x ∈ X| |f(x)| < ε}.
X
(
f1
f0,
, . . . , fnf0 , 1

)
:= X

(
f1
f0
, 1
)
∩ · · · ∩X

(
fn
f0
, 1
)
with fi no common zero. They are called rational domains.

A�noid subdomain U is a �nite union of rational domains.
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6 A�noid Subdomain (Céline)

6.1 Motivation and plan:

Zariski topology is too coarse, so we want to de�ne a topology: Canonical topology induced by topology on K

• De�ne open sets

• De�ne A�noid Subdomain

• De�ne a�noid functions.

Let X = Sp(A) an A�noid K-space. Set X(f, ε) = {x ∈ X| |f(x)| ≤ ε} with f ∈ A, ε ∈ R≥0.

De�nition 6.1. The canonical topology is generated by sets of the type X(f, ε) where f ∈ A, ε ∈ R≥0.

This implies that U ⊂ X is open (with respect to the canonical topology) if and only if it is the union of �nite
intersections of X(f, ε).

Notation. X(f) = X(f, 1), X(f1, . . . , fr) = X(f1) ∩ · · · ∩X(fr).

Proposition 6.2. The canonical topology is generated by sets of type X(f) for f varying in A.

Proof. Let f ∈ A, then the function |f | : Sp(A)→ R≥0 takes values in
∣∣K∣∣. Thus, if ε ∈ R≥0, we can write

X(f, ε) =
⋃

ε′∈|K∗|,ε′≤ε
X(f, ε′)

. For ε′ ∈
∣∣∣K∗∣∣∣ we can �nd c ∈ K∗ and s ∈ Z such that ε′s = |c|. Hence

X(f, ε′) = X(fs, ε′s) = X(c−1fs)

Lemma 6.3. Consider f ∈ A, x ∈ Sp(A) such that |f(x)| = ε > 0. Then there exists g ∈ A with g(x) = 0 such that
|f(y)| = ε for all y ∈ X(g). This implies that X(g) is an open neighbourhood of x contained in {y ∈ X|f(y) = ε}

Proof. To each x, there correspond a maximal ideal mx ⊂ A. Write f for the residue class of f in A/mx. Let
P (ζ) = ζn + c1ζ

n−1 + · · · + cn ∈ K[ζ] is the minimal polynomial for f and let P (ζ) =
∏n
i=1(ζ − αi) its product

decomposition over K. Choose A/mx ↪→ K, then ε = |f(x)| =
∣∣f ∣∣ = |αi| ∀i by uniqueness of valuation in K.

Consider g = P (f) ∈ A, then g(X) = P (f(x)) = 0. We claim that for y ∈ X with |g(y)| < εn then |f(y)| = ε.
To see this, choose A/my ↪→ K, |f(y)− αi| = max {|f(y)| , |αi|} ≥ |αi| = ε∀i. Hence |g(y)| = |P (f(y))| =∏n
i=1 |f(y)− αi| ≥ εn which is a contradiction to the choice of y. Hence if c ∈ K∗ satis�es |c| < εn, then
|f(y)| = ε∀y ∈ X(c−1g).

Open Sets:

•
{
x ∈ SpA

∣∣f(x) 6= 0
}

•
{
x ∈ SpA

∣∣f(x) ≤ ε
}

•
{
x ∈ SpA

∣∣f(x) ≥ ε
}

•
{
x ∈ SpA

∣∣f(x) = ε
}

•
{
x ∈ SpA

∣∣f(x) < ε
}

•
{
x ∈ SpA

∣∣f(x) > ε
}
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Proposition 6.4. Let x ∈ X, Sets X(f1, . . . fr) forms a basis of neighborhood for x.

Proposition 6.5. Continuity: Let φ∗ : A→ B be morphism of A�noid K-algebra and φ : SpB → SpA associated
morphism of a�noid K-spaces. For f1, . . . , fr ∈ A then φ−1((SpA), (f1, . . . , fr)) = (SpB)(φ∗(f1), . . . , φ∗(fr)).
Hence φ is continuous with respect to the canonical topology.

Proof. y ∈ SpB, we have the following commutative diagram:

A
φ∗ //

��

B

��
A/mφ(y)

// B/my

A/mφ(y) → B/my ↪→ K. Then |f(φ(y))| = |φ∗f(y)| ∀f ∈ A. This implies φ−1((SpA)(f)) = SpB(φ∗(f)), so
take intersections and we are done.

De�nition 6.6.

1. X(f1, . . . , fr) = {x ∈ X| |fi(x)| ≤ 1} is called Weierstrass domain in X

2. X(f1, . . . , fr, g
−1
1 , . . . , g−1

s ) = {x ∈ X| |fi(x)| ≤ 1, |gj(x)| ≥ 1} called Laurent domains in X

3. X( f!f0 , . . .
fr
f0

) = {x ∈ X| |fi(x)| ≤ |f0(x)|} for f0, . . . , fr without common zeros, it is called a rational domain
in X.

De�nition 6.7. A subset U ⊂ X is an a�noid subdomain of X if there exists a morphism of a�noid K-spaces:
ι : X ′ → X such that ι(X ′) ⊂ U .

The following universal property must hold: If φ : Y → X such that φ(Y ) ⊂ U , then there exists a unique
φ′ : Y → X ′ such that the following diagram commutes

Y
φ //

∃!φ′   

X

ι

��
X ′

Lemma 6.8. Notation as above. X = SpA, X ′ = SpA′, let ι∗ : A→ A′ be the associated K-morphims. Then ι is
injective and ι(X ′) = U and bijection of sets X ′ ∼= U .

This let us identify U ⊂ X withX ′, which in turn gives a structure of a�noidK-space on any a�noid subdomains
U ⊂ X.

Proposition 6.9. Weierstrass, Laurent and rational domains are called special a�noid subdomains.

Proposition 6.10. V ⊂ X an a�noid subdomain, U ⊂ V is an a�noid subdomain, then U ⊂ X is also an a�noid
subdomain.

Remark. If V ⊂ X is a Weierstrass (respectively rational) subdomain, and U ⊂ V is Weierstrass (or respectively
rational) then U ⊂ Xis also Weierstrass (respectively rational). But this is not true for Laurent domain.

Theorem 6.11 (Gerritzen - Grauert). Let X be an a�noid K-space, U ⊂ X an a�noid subdomain, then U is a
�nite union of rational subdomains of X.

6.2 A�noid functions

Denote OX(U) the a�noid K-algebra corresponding to U ⊂ X an a�noid subdomain. If U ⊂ V is an inclusion
of a�noid subdomain, then we have a canonical map OX(V ) → OX(U) of K-algebra. This is a restrictions of
functions on V to U . More precisely: OX is a presheaf of a�noid K-algebra on the category of a�noid subdomain
of X, called presheaf of a�noid functions on X. This can not be shea��ed, hence more topology will need to be
de�ned.
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7 Tate's Acyclicity Theorem (Angelos)

Let X be an a�noid domain and TX the category of a�noid subdomain of X, with inclusions as morphisms. We
have seen that OX is a presheaf F , where OX is the set of a�noid functions on X such that F(U) = OX(U). We
have the following sequence

OX(U) // ∏
i∈I OX(Ui)

//
//
∏
i,j OX(Ui ∩ Uj)

f � // (f |Ui
)i∈I , (fi)i∈I

� //
fi|Ui∩Uj

fj |Ui∩Uj

(∗)

where U ∈ TX and ∆ = (Ui)i∈I of U and Ui, Uj ∈ TX

De�nition 7.1. If A // B //// C , we say that the sequence is exact if A is mapped bijectively to the subset

of B such that the elements have the same images under the map B // // C .

De�nition 7.2. For a presheaf F on X and a covering ∆ = (Ui)i∈I of X, Ui ∈ TX , we say that F is a ∆-sheaf, if
for all U ∈ TX we have that the sequence (∗) applied to ∆|U = (U ∩ Ui)i∈I is exact.

Theorem 7.3 (Tate). Let X, OX be as above, then OX is a ∆-sheaf for any �nite covering of X be a�noid
subdomainn

Comments:

1. The main idea is to reduce the general case to �well-known� cases such that an easy calculations proves the
theorem.

We can de�ne Cech cohomology with respect to a covering ∆ (�nite) and our presheaf F

Theorem 7.4 (Tate). Let X be an a�noid k-space and ∆ a �nite covering of X, thenHq(∆,OX) = 0 for q > 0.
We say that ∆ is acyclic.t

7.1 Grothendiecks Topology

De�nition 7.5. For any a�noid k-space X, the Weak Grothendieck Topology T on X consists of

1. CatT the category of a�noid subdomains of X with inclusion as morphism.

2. CovT the set of all �nite families (Ui → U)i∈I of inclusions of a�noid subdomains in X such that U = ∪i∈IUi.

De�nition 7.6. Let X be an a�noid k-space the Strong Grothendieck Topology on X is given as follows:

1. A subset U ⊂ X is called admissible open if there is a (not necessarily �nite) covering U = ∪i∈IUi by a�noid
subdomains Ui ⊆ X such that for all morphisms of a�noid k-spaces φ : Z → X satisfying φ(Z) ⊆ U the
covering

(
φ−1(Ui)

)
i∈I of Z admits a subcovering, which is a �nite covering of Z by a�noid subdomains.

2. A covering V = ∪i∈IVi of some admissible open subset V ⊆ X by means of admissible open set Vi is called
admissible if for each morphism of a�noid k-spaces φ : Z → X satisfying φ(Z) ⊂ V , the covering

(
φ−1(Vi)

)
i∈I

of Z admits a subcovering, which is a �nite covering of Z by a�noid subdomains.

Proposition 7.7. Let X be an a�noid k-space for f ∈ OX(X) and we de�ne

• U = {x ∈ X| |f(x)| < 1}

• U ′ = {x ∈ X| |f(x)| > 1}

• U ′′ = {x ∈ X| |f(x)| > 0}

Any �nite union of set of this types is admissable open. Any �nite covering by �nite unions of sets of this type is
admissible.
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Corollary 7.8. Let X be an a�noid k-space. The strong Grothendieck topology on X is �ner than the Zariski,
i.e., each Zariski open subset U ⊆ X is admissible open, and each Zariski covering is admissable.

The presheaf OX of analytic functions is not a sheaf under the weak Grothendieck topology or the canonical
topology, but it is a sheaf under the strong Grothendieck topology.
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8 Reductions of curves (Haluk)

8.1 Recap

Set-up: K = K a non-archimedean complete valued �eld, P = (K2 \ {0, 0})/ ∼ the projective line over K
Open disks: {z ∈ L : |z − a| < r} or {z ∈ K : |z − a| > r} ∪ {∞}
Connected a�noid subset of P: P \ {�nite union of open disc}
A�noid subset of P: �nite union of a�noid subsets
Tate Algebra: Tn := K 〈z1, . . . , zn〉 = formal power series in z1, . . . , zn convergent on the polydisc Dn
A�noid Algebra: A=T_n /I for some n ≥ 1 and I C Tn
A�noid Space: X = Sp(A) = Max(A) (the set of maximal ideals) for some a�noid algebra A
Notes:

• Sp(Tn) ∼= Dn

• φ : Tn � A with ker(φ) = I, φ∗ : Sp(A) ↪→ Dn, can view Sp(A) as zero set of I inside Dn

A�ne subdomain: U ⊆ X = Sp(A) such that there exists φ : A→ B (B unique) with φ∗(Sp(B)) = U and some
universal condition

Weak G-Topology on X: Open sets are a�ne subdomains, covers are �nite covers.

8.2 Rigid analytic space

De�nition 8.1. A Rigid Analytic Space (X,OX) where

• X is a space with a G-topoligy

• OX a sheaf of K-algebra

such that there is an admissable covering {Xi} such that {Xi,OX |Xi
} is an a�noid space with ∀U ⊆ Xi is a�noid

subdomain O|Xi
(U) = B.

In practice, we start with {Xi} and glue them:

• {Xi}i∈I a�noid spaces such that

� ∀(i, j) ∈ I2, i 6= j: there exists a�noid subdomain Xi,,j ⊆ Xi and there exists isomorphism φj,i : Xi,j →
Xj,i

� φ−1
i,j = φj,i

� ∀i, j, k ∈ I, φj,i(Xi,j ∩Xi,k) = Xj,i ∩Xj,k and φk,i = φk,j ◦ φj,i on Xi,j ∩Xi,k

There exists a unique Rigid Analutic Space X with G-topology TX such that U ⊆ X is in TX if and only if ∀i
U ∩Xi is admissible opne

Example. Take P, X0 = Sp (K 〈To〉) ∼= D1 and X∞ = Sp (K 〈T∞〉) ∼= D1.
Then X0,∞ = Sp

(
K
〈
T0, T

−1
0

〉) ∼= ∂D1, X∞,0 = Sp
(
K
〈
T∞, T

−1
∞
〉) ∼= ∂D1.

We de�ne φ : K
〈
T0, T

−1
0

〉
→ K

〈
T∞, T

−1
∞
〉
by T0 7→ T−1

∞ . This gives φ∗ : ∂D1 → ∂D1 de�ned by z 7→ 1/z.

Analyti�cation: X/K an algebraic variety, this gives X = X(K): we can put a Rigid Analytic Space structure
on this Xan
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8.3 Analytic Reduction of Rigid Analytic Space

Let (X,OX) , {Ui} be �nice� cover by a�noid spaces. We construct an algebraic variety X/k.

Step 1 Fix Ui = U . U = Sp(A) for some A a�noid algebra.

A◦ =
{
f ∈ A

∣∣‖f‖ ≤ 1
}
is a ZK-algebra

A◦◦ =
{
f ∈ A

∣∣‖f‖ < 1
}
is an ideal of A◦

A := A◦/A◦◦ is a k-algebra of �nite type

U = Spec(A) an algebraic variety over k.

Tehre is a surjection of sets, {φ : A→ K} = Set(A)� Sp(A) =
{
φ : A→ k

}
.

Maximal Modulus Principle: ‖f‖ = maxx∈U |f(x)|. This implies φ(A◦) ⊆ ZK and φ(A◦◦) ⊆ mk.

Start with φ : A→ K, φ|A0 : A◦ → Zk. Mod out by A◦◦ we get φ : A→ k.

Step 2 Glue U i to get X/k. We need Ui ∩ Uj
//
// Ui

Uj

to be �open immersion�

Example.

First Example: X = Sp(K 〈T 〉) ∼= D1. A
◦ = ZK 〈T 〉, A◦◦ = mk 〈T 〉. Hence A = k[t], X = A1 over k

Second Example: A = K
〈
T, T−1

〉
, X = ∂D1 = Sp(A), A◦ = ZK

〈
T, T−1

〉
,A◦◦ = mk

〈
T, T−1

〉
. Hence A =

k[T, T−1], X = Gm over k

Third Example: P, X0 = Sp (K 〈T0〉) → X0 = A1 over k. X∞ = Sp (K 〈T∞〉) → X∞ = A1 over k. Then
X0,∞ = Sp(K

〈
T0, T

−1
0

〉
)→ X0,∞ = Gm over k. X∞,0 = Sp

(
K
〈
T∞, T

−1
∞
〉)
→ X∞0 = Gm over k. Then

we have the map X0,∞ → X∞,0 de�ned by z 7→ z−1. We have X = P1 over k.

Fourth Example: Take q ∈ K∗ such that 0 < |q| < 1. Let L = {qn|n ∈ Z} ∪ {0,∞} and L∗ = {0,∞}. Consider

X = P \ L∗. Consider the covering {Xn}n∈Z where Xn =
{
z ∈ K∗ : |q|

n+1
2 ≤ |z| ≤ |q|

n
2

}
. This is an

a�noid space Xn = Sp
(
K
〈
q−

n
2 zn, q

n+1
2 z−1

n

〉)
, Xn+1 = Sp

(
K
〈
q−

n+1
2 zn+1, q

n+2
2 z−1

n+1

〉)
. We glue Xn

with Xn+1, by sending q
n+1
2 z−1

n 7→ q−
n+1
2 zn+1.

Now Xn is the union of two lines l1,n and l2,n meeting at Pn. Then we
{
|z| = |q|n/2

}
→ l1,n \ {Pn}

and
{
|z| = |q|−

n+1
2

}
→ l2,n \ {Pn} while the annulus

{
|q|−

n+1
2 < |z| < |q|

n
2

}
→ Pn. We have A =

K
〈
q−

n
2 z, q

n+1
2 z−1

〉
, A = k[u′, z′]/(uz).

To glue all of this together, note that we have the map l2,n \ {Pn} → l1,n+1 \ {Pn+1} de�ned by z 7→ z−1.
So we get that X is the union of copies of P1 over k each intersecting exactly two others.

Fact. The intersection graph is a tree • • • .{(
qn 0
0 1

)
: n ∈ Z

}
gives rise to Γ

Theorem 8.2. Let L be an in�nite compact subset of P. Put X = P \ L∗. X has a certain Rigid Analytic Space
structure and a certain cover {Xi} which with respect to which the reduction R : X → X has the following structure:
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1. X is an algebraic variety over k (locally �nite type schemes over k)

2. Each irreducible component of X is a P1 over k.

3. Intersections of irreducible components are either ∅ or an ordinary double points.

4. The intersection graph is a tree

5. Points in L \ L∗ are mapped down to non-singular points of X.

23



9 Schottky groups and Mumford curves (Jeroen)

Notation.
Rings:

• K: �nite extension of Qp, with p odd

• R : Valuation ring of K

• k: Residue �eld of R

Curves:

• X: Curve over K

• XR: model (�at, proper, regular) over R

• XR = XU : reduction of XR (special �ber), curve over k

Groups (as done by Chris W.)

• Γ = 〈γ1, . . . , γg〉 ⊆ PGL2(K) Schottky group

• D = P1 \ ∪2gBi fundamental domain

• γi(βi) = P \Bi+g

• γi(βi) = P \Bi+g

• LΓ set of limit points of Γ

Uniformisation

• ΩΓ = P1 \ LΓ

• ρ : ΩΓ → TΓ (as in Haluk's talk)

• T ∗Γ ⊆ BT(K) dual graph

9.1 Stable models

De�nition 9.1. X is said to admit a semistable (respectively stable, respectively totally split) model if it admits
a model XR such that

1. XR is reduced with ordinary double points as singularity

(respectively in addition to 1. :

2. Each component of XR that is isomorphism with P1
k contains at least 3 ordinary double points

respectively in addition to 1. :

3. Each components of XR has a normalisation isomorphic to P1
k and all ordinary double points are rationals)

Example. An elliptic curve E over K has semistable reduction if and only if:

1. E has good reduction

2. E has multiplicative reduction

E has totally split reduction if E has split multiplicative reduction
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Note. Any elliptic curve acquires semistable reduction over K(E[12])

Example. Let X be an hyperelliptic curve, X
2:1→ P1 rami�ed over s1, . . . , sn ∈ P1(K), so n = 2g(X) + 2. The

reduction type of X then only depends on the reduction map ρS : P!
K → TS , where S = {s1, . . . , sn}.

Construction 1: Let M!, . . . ,Mn be the lattices corresponding to the elements of S3 \∆. Then ρS is given by

ρs : P1

∏N
i=1 ρ[Mi]//

))

∏N
i=1 P(Mi ⊗ k)

∪Ni=1Li = TS
?�

OO

where Li =
∏N
j=1 Uj , Uj = Red[Mj ]([Mi]) and Ui = P(Mi ⊗ k)

Construction 2: iterative constructions. Suppose ρS′ for S
′ = {s1, . . . , sn} is constructed. To construct ρS :

1. ρS(sn) is not a double point and not in ρS′(S
′). Then put ρS = ρS′

2. ρS′(sn) is not double point but is in ρS′(S
′).

×
si

×
sj

sn
×
sl

In the formula we have to add M(si, sj , sn). This gives a blowup

×sn

×sk

×
si

×
sj

3. ρS′(sn) is a double point:

×sm

×sk

×
sj

×
sj

×
sn
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Add the lattice M(si, sj , sm) to get

×sm

×sk

×sn

×
si

×
sj

ρS gives rise to a cover of P1:
Generators are:

U(e∗) = ρ−1
S (TS \ ∪k 6=i,jLk)

= ρ−1
S


× ×

× ×


Intersections are:

U(v∗) = ρ−1
S (TS \ ∪k 6=iLk)

= ρ−1
S

 ×


This is a special case of the cover de�ned by Haluk

Fact. X has totally split reduction if and only if for all L ⊂ TS the partition of S obtained by contracting onto L
contains at most two sets of odd cord.

9.2 From groups to curves

Γ gives rise to L = LΓ, Ω = ΩΓ = P1 \ L
Reduction of Ω:
L gives rise to a reduction P1 99K TL = TΓ (the reduction is only de�ned on Ω ⊂ P1, so we get ρL : Ω→ TL)
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Theorem 9.2.

1. X = Γ \ ΩΓ is a rigid analytic space de�ned by algebraic equations in some PN

2. X admits a cover U such that XU is totally split

3. The intersection graph of XU is isomorphism with Γ \ TΓ.

Proof. Consider ρ : Ω→ TΓ. Cover Ω with U(e∗), U(v∗). X = Γ \ Ω is obtained by considering the action of Γ on
TΓ and gluing/identifying the U(e∗) according to this action.

Algebraically: Use theta function for Γ to embed into PN use GAGA

9.3 From curves to groups

Theorem 9.3. Let X be a curve over K admitting a totally split model XR. Then X is of the form Γ \ ΩΓ for
some Schottky group Γ.

Proof. XR gives ρ : X → XR. Construct corresponding sets U(e∗), U(v∗) for e∗, v∗ in the intersection graph of
XR. Construct Ω: G∗ intersection graph of XR. Let π : T ∗ → G∗ be the universal cover. Set Ω(e′) = U(π(e′)),
Ω(v′) = U(π(v′)) where e′ ∈ T ∗ edge and v′ ∈ T ∗ vertex. Glue Ω(e′) to Ω(e′′) via Ω(v) if the edges e, e′ meet in v.
Now X = π1(G∗)\Ω by construction (so let Γ = π1(G∗)).

We want to embed Ω ↪→ P1. To do this, Ω → T ∗ de�ned by p 7→ q an ordinary double point on vo ∈ T ∗ say.
De�ne a sheaf F on Ω via F|Ω(e) = OΩ(e) if v0 is not a vertex of e. F|Ω(e) = 1

fe
OΩ(e) if v0 is a vertex of e, where

fe ∈ O(Ω(e)) such that fe is single ordinary at p. We get a Cech complex

0 // ∏
e F|Ω(e)

// ∏
v F |Ω(v)

// 0

Nakayam can be used to show that H0(Ω,F) = K ⊕Kf .
Fact: f de�nes Ω ↪→ P1 .
Fact: Γ acting on Ω extend to an action on P1. Then Γ, being free in g generators is a Schottky group
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