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Abstract. The (pro) Λ-MW group is a projective limit of Mordell–Weil groups over a number
field k (made out of modular Jacobians) with an action of the Iwasawa algebra and the “big”

Hecke algebra. We prove a control theorem of the ordinary part of the Λ-MW groups under mild

assumptions. We have proven a similar control theorem for the dual completed inductive limit in
[H15].

1. Introduction

Fix a prime p. This article concerns weight 2 cusp forms of level Npr for r > 0 and p - N , and
for small primes p = 2, 3, they exists only when N > 2; thus, we may assume Npr ≥ 4. Then
the open curve Y1(Npr) (obtained from X1(Npr) removing all cusps) gives the fine smooth moduli
scheme classifying elliptic curves E with an embedding µNpr ↪→ E. We applied in [H86b] and [H14]
the techniques of U(p)-isomorphisms to Barsotti–Tate groups of modular Jacobian varieties of high
p-power level (with the fixed prime-to-p level N). In this article, we apply the same techniques of
U(p)-isomorphisms to the projective limit of Mordell–Weil groups of the Jacobians and see what we
can say (see Section 3 for U(p)-isomorphisms). We study the (inductive limit of) Tate–Shafarevich
groups of the Jacobians in another article [H16].

Let Xr = X1(Npr)/Q be the compactified moduli of the classification problem of pairs (E, φ)
of an elliptic curve E and an embedding φ : µNpr ↪→ E[Npr]. Write Jr/Q for the Jacobian whose
origin is given by the infinity cusp ∞ ∈ Xr(Q) of Xr. For a number field k, we consider the group

of k-rational points Jr(k). Put Ĵr(k) := lim←−n Jr(k)/pnJr(k) (as a compact p-profinite module). The

Albanese functoriality of Jacobians (twisted by the Weil involutions) gives rise to a projective system

{Ĵr(k)}r compatible with Hecke operators (see Section 6 for details of twisting), and we have

Ĵ∞(k) = lim←−
r

Ĵr(k)

equipped with the projective limit compact topology. By Picard functoriality, we have an injective

limit J∞(k) = lim−→r
Ĵr(k) (with the injective limit of the compact topology of Ĵr(k)) and J∞[p∞]/Q =

lim−→r
Jr[p

∞]/Q (the injective limit of the p-divisible Barsotti–Tate group). We define

J̌∞(k) = lim←−
n

J∞(k)/pnJ∞(k).

An fppf sheaf F (over Spec(k)) is a presheaf functor from the fppf site over Spec(k) to the category of
abelian groups satisfying the sheaf condition for an fppf covering {Ui} of T/k, that is, the exactness
of

(L) 0→ F(T )
ResUi/T−−−−−→

∏
i

F(Ui)
ResUij/Ui−ResUij/Uj−−−−−−−−−−−−−−→

∏
i,j

F(Uij),
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where ResU/V indicates the restriction map relative to U → V and Uij := Ui ×T Uj . Since the
category of fppf sheaves over Q (e.g., [EAI, §4.3.7]) is an abelian category (cf. [ECH, II.2.15]), if
we apply a left exact functor (of the category of abelian groups into itself) to the value of a sheaf,
it preserves the sheaf condition given by the left exactness (L). Thus projective limits and injective
limits exist inside the category of fppf sheaves. We may thus regard

R 7→ Ĵ∞(R) := lim←−
r

(Jr(R)⊗Z Zp) and R 7→ J∞(R)

as fppf sheaves over the fppf site over Q for an fppf extension R/k, though we do not use this fact

much (as we compute Ĵ∞(k) as a limit of Ĵs(k) not using sheaf properties of Ĵ∞). If one extends

Ĵs to the ind-category of fppf extensions, we no longer have projective limit expression. We have

given detailed description of the value Ĵs(R) in [H15, §2] and we will give a brief outline of this in
Section 2 in the text. We can think of the sheaf endomorphism algebra End(J∞/Q) (in which we
have Hecke operators T (n) and U(l) for l|Np).

The Hecke operator U(p) acts on Jr(k), and the p-adic limit e = limn→∞ U(p)n! is well defined

on Ĵr(k). As is well known (cf. [H86b] and [O99]; see an exposition on this in Section 6), T (n),
U(l) and diamond operators are endomorphisms of the injective (resp. projective) systems {Js(k)}s
(resp. {Ĵs(k)}s). The projective system comes from w-twisted Albanese functoriality for the Weil
involution w (as we need to twist in order to make the system compatible with U(p); see Section 6
for the twisting). The image of e is called the ordinary part. We attach as the superscript or the
subscript “ord” to indicate the ordinary part. Since these Zp-modules have natural action of the

Iwasawa algebra Λ through diamond operators, we call in particular the group Ĵ∞(k)ord the pro
Λ-MW group (“MW” stands for Mordell–Weil). We define the Λ-BT group G/Q by the ordinary

part J∞[p∞]ord
/Q of J∞[p∞]/Q whose detailed study is made in [H14, §4]. Though in [H14], we made

an assumption that p ≥ 5, as for the results over Q in [H14, §4], they are valid without any change
for p = 2, 3 as verified in [GK13] for p = 2 (and the prime p = 3 can be treated in the same
manner as in [H86a] or [H14, §4]). Thus we use control result over Q of G in this paper without
assuming p ≥ 5. Its Tate module TG := HomZp(Λ∨,G) is a continuous Λ[Gal(Q/Q)]-module under
the profinite topology, where M∨ = HomZp(M,Qp/Zp) (Pontryagin dual) for Zp-modules M . We
define the big Hecke algebra h = h(N) to be the Λ-subalgebra of EndΛ(TG) generated by Hecke

operators T (n) (n = 1, 2, . . . ). Then Ĵ∞(k)ord and J̌∞(k)ord are naturally continuous h-modules.
Take a connected component Spec(T) of Spec(h) and define the direct factors

Ĵs(k)ord
T := Ĵs(k)ord ⊗h T (s = 1, 2, . . . ,∞) and TGT := TG ⊗h T

of Ĵ∞(k)ord and TG, respectively. In this introduction, for simplicity, we assume that the component

T cuts out Ĵ∞(k)ord
T from Ĵ∞(k)ord a part with potentially good reduction modulo p (meaning that

GT[γp
s−1] extends to Λ-BT group over Zp[µps ]). This is to avoid technicality coming from potentially

multiplicative reduction of factors of Js outside Ĵs(k)ord
T .

The maximal torsion-free part Γ of Z×p (which is a p-profinite cyclic group) acts on these mod-
ules by the diamond operators. In other words, for modular curves Xr and X0(Npr), we identify
Gal(Xr/X0(Npr)) with (Z/NprZ)×, and Γ acts on Jr through its image in Gal(Xr/X0(Npr)).
Therefore the Iwasawa algebra Λ = Zp[[Γ]] = lim←−r Zp[Γ/Γ

pr ] acts on the pro Λ-MW group, the ind

Λ-MW group, the Λ-BT group and its Tate module. Then TG is known to be free of finite rank
over Λ [H86b], [GK13] and [H14, §4]. A prime P ∈ Spec(T)(Qp) is called arithmetic of weight 2 if P

factors through Spec(T⊗Λ Zp[Γ/Γp
r

]) for some r > 0. Associated to P is a unique Hecke eigenform
of weight 2 on X1(Npr) for some r > 0. Write BP for the Shimura’s abelian quotient associated to
fP of the jacobian Jr. Let AT be the set of all principal arithmetic points of Spec(T)(Qp) of weight
2 and put ΩT := {P ∈ AT|BP has good reduction over Zp[µp∞ ]}. The word “principal” means, as
a prime ideal of T, it is generated by a single element, often written as α. In this article, we prove

control results for the pro Λ-MW group Ĵ∞(k)ord and study the control of the ind Λ-MW-groups
J̌∞(k)ord in the twin paper [H15, Theorem 6.5]. Take a topological generator γ = 1 + pε of Γ, and
regard γ as a group element of Λ = Zp[[Γ]], where ε = 1 if p > 2 and ε = 2 if p = 2. We use this
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definition of ε throughout the paper (and we assume that r ≥ ε if the exponent r − ε shows up in a
formula). We fix a finite set S of places of Q containing all places v|Np and the archimedean place.
Here is a simplified statement of our finial result:

Theorem. If T is an integral domain, for almost all principal arithmetic prime P = (α) ∈ AT, we
have the following canonical exact sequence up to finite error of Hecke modules:

(1.1) 0→ Ĵord
∞ (k)T

α−→ Ĵord
∞ (k)T

ρ∞−−→ B̂ord
P (k)T.

This theorem will be proven as Theorem 9.2. The exact sequence in the theorem is a Mordell–Weil

analogue of a result of Nekovář in [N06, 12.7.13.4] for Selmer groups and implies that Ĵord
∞ (k) is a

Λ-module of finite type. In the text, we prove a stronger result showing finiteness of Coker(ρ∞) for
almost all principal arithmetic primes P if the ordinary part of Selmer group of BP0

is finite for one
principal arithmetic prime P0 (see Theorem 10.1).

Put J̌∞(k)∗ord := HomZp(J̌∞(k)ord,Zp). In [H15, Theorem 1.1], we proved the following exact
sequence:

J̌∞(k)∗ord,P
α−→ J̌∞(k)∗ord,P → ÂP (k)∗ord,P → 0

for arithmetic P of weight 2, in addition to the finiteness of J̌∞(k)∗ord as a Λ-module. This sequence
is a localization at P of the natural one. The two sequences could be dual each other if we have a
Λ-adic version of the Néron–Tate height pairing.

Here is some notation for Hecke algebras used throughout the paper. Let

hr(Z) = Z[T (n), U(l) : l|Np, (n,Np) = 1] ⊂ End(Jr),

and put hr(R) = hr(Z) ⊗Z R for any commutative ring R. Then we define hr = e(hr(Zp)). The
restriction morphism hs(Z) 3 h 7→ h|Jr ∈ hr(Z) for s > r induces a projective system {hr}r whose
limit gives rise to a big ordinary Hecke algebra

h = h(N) := lim←−
r

hr.

Writing 〈l〉 (the diamond operator) for the action of l ∈ (Z/NprZ)× = Gal(Xr/X0(Npr)), we have
an identity l〈l〉 = T (l)2 − T (l2) ∈ hr(Zp) for all primes l - Np. Thus we have a canonical Λ-
algebra structure Λ = Zp[[Γ]] ↪→ h. It is now well known that h is a free of finite rank over Λ

and hr = h ⊗Λ Λ/(γp
r−ε − 1) (cf. [H86a]). Though the construction of the big Hecke algebra is

intrinsic, to relate an algebra homomorphism λ : h → Qp killing γp
r − 1 for r > 0 to a classical

Hecke eigenform, we need to fix (once and for all) an embedding Q
ip−→ Qp of the algebraic closure

Q in C into a fixed algebraic closure Qp of Qp. We write i∞ for the inclusion Q ⊂ C.
The following two sections Sections 3 and 4 (after a description of sheaves associated to abelian

varieties) about U(p)-isomorphisms are an expanded version of a conference talk at CRM (see
http://www.crm.umontreal.ca/Representations05/indexen.html) in September of 2005 which
was not posted in the author’s web page, though the lecture notes of the two lectures [H05] at
CRM earlier than the conference have been posted. While converting [H05] into a research article
[H14], the author found an application to Mordell–Weil groups of modular Jacobians. The author is
grateful for CRM’s invitation to speak. The author would like to thank the referee of this paper for
careful reading (and the proof of (10.4) in the old version is incomplete as was pointed out by the
referee). Heuristically, as explained just after Theorem 10.1, this point does not cause much trouble
as we are dealing with the standard tower for which the root number for members of the family is
not equal to −1 for most arithmetic point; so, presumably, the Mordell Weil group of BP is finite
for most P .

Contents
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2. Sheaves associated to abelian varieties

Here is a general fact proven in [H15, §2] about sheaves associated to abelian varieties. Let
0 → A → B → C → 0 be an exact sequence of algebraic groups proper over a field k. The field k
is either a number field or a finite extension of the l-adic field Ql for a prime l. We assume that B
and C are abelian varieties. However A can be an extension of an abelian variety by a finite (étale)
group.

If k is a number field, let S be a set of places including all archimedean places of k such that all
members of the above exact sequence have good reduction outside S. We use the symbol K for kS

(the maximal extension unramified outside S) if k is a number field and for k (an algebraic closure
of k) if k is a finite extension of Ql. A general field extension of k is denoted by κ. We consider
the étale topology, the smooth topology and the fppf topology on the small site over Spec(k). Here
under the smooth topology, covering families are made of faithfully flat smooth morphisms.

For the moment, assume that k is a number field. In this case, for an extension X of abelian

variety defined over k by a finite étale group scheme, we define X̂(κ) := X(κ) ⊗Z Zp for an fppf
extension κ over k. By Mordell–Weil theorem (and its extension to fields of finite type over Q;

e.g., [RTP, IV]), we have X̂(κ) = lim←−nX(κ)/pnX(κ) if κ is a field extension of k of finite type.

We may regard the sequence 0 → Â → B̂ → Ĉ → 0 as an exact sequence of fppf abelian sheaves
over k (or over any subring of k over which B and C extends to abelian schemes). Since we find a
complementary abelian subvariety C ′ of B such that C ′ is isogenous to C and B = A+C ′ with finite
A ∩ C ′, adding the primes dividing the order |A ∩ C ′| to S, the intersection A ∩ C ′ ∼= Ker(C ′ → C)
extends to an étale finite group scheme outside S; so, C ′(K) → C(K) is surjective. Thus we have
an exact sequence of Gal(K/k)-modules

0→ A(K)→ B(K)→ C(K)→ 0.

Note that Â(K) = A(K) ⊗Z Zp :=
⋃
F Â(F ) for F running over all finite extensions of k inside K.

Then we have an exact sequence

(2.1) 0→ Â(K)→ B̂(K)→ Ĉ(K)→ 0.

Now assume that k is a finite extension of Ql. Again we use F to denote a finite field extension of
k. Then A(F ) ∼= OdimA

F ⊕∆F for a finite group ∆F for the l-adic integer ring OF of F (by [M55] or

[T66]). Thus if l 6= p, Â(F ) := lim←−nA(F )/pnA(F ) = ∆F ⊗Z Zp = A[p∞](F ). Recall K = k. Then

Â(K) = A[p∞](K) (for A[p∞] = lim−→n
A[pn] with A[pn] = Ker(pn : A → A)); so, defining Â, B̂ and

Ĉ by A[p∞], B[p∞] and C[p∞] as fppf abelian sheaves, we again have the exact sequence (2.1) of
Gal(k/k)-modules:

0→ Â(K)→ B̂(K)→ Ĉ(K)→ 0

and an exact sequence of fppf abelian sheaves

0→ Â→ B̂ → Ĉ → 0

whose value at a finite field extension κ/Ql coincides with X̂(κ) = lim←−nX(κ)/pnX(κ) for X =

A,B,C.
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Suppose l = p. For any module M , we define M (p) by the maximal prime-to-p torsion submodule
of M . For X = A,B,C and an fppf extension R/k, the sheaf R 7→ X(p)(R) = lim−→p-N X[N ](R)

is an fppf abelian sheaf. Then we define the fppf abelian sheaf X̂ by the sheaf quotient X/X(p).
Since X(F ) = OdimX

F ⊕ X[p∞](F ) ⊕ X(p)(F ) for a finite field extension F/k, over the étale site

on k, X̂ is the sheaf associated to a presheaf R 7→ OdimX
F ⊕ X[p∞](R). If X has semi-stable

reduction over OF , we have X̂(F ) = X◦(OF ) + X[p∞](F ) ⊂ X(F ) for the formal group X◦ of the
identity connected component of the Néron model of X over OF [T66]. Since X becomes semi-

stable over a finite Galois extension F0/k, in general X̂(F ) = H0(Gal(F0F/F ), X(F0F )) for any

finite extension F/K (or more generally for each finite étale extension F/k); so, F 7→ X̂(F ) is a
sheaf over the étale site on k. Thus by [ECH, II.1.5], the sheafication coincides over the étale site

with the presheaf F 7→ lim←−nX(F )/pnX(F ). Thus we conclude X̂(F ) = lim←−nX(F )/pnX(F ) for any

étale finite extensions F/k. Moreover X̂(K) =
⋃
K/F/k X̂(F ). Applying the snake lemma to the

commutative diagram with exact rows (in the category of fppf abelian sheaves):

A(p) ↪→−−−−→ B(p) �−−−−→ C(p)

∩
y ∩

y ∩
y

A −−−−→
↪→

B −−−−→
�

C,

the cokernel sequence gives rise to an exact sequence of fppf abelian sheaves over k:

0→ Â→ B̂ → Ĉ → 0

and an exact sequence of Gal(k/k)-modules

0→ Â(K)→ B̂(K)→ Ĉ(K)→ 0.

In this way, we extended the sheaves Â, B̂, Ĉ to fppf abelian sheaves keeping the exact sequence

Â ↪→ B̂ � Ĉ intact. However note that our way of defining X̂ for X = A,B,C depends on the base
field k = Q,Qp,Ql. Here is a summary for fppf algebras R/k:

(S) X̂(R) =


X(R)⊗Z Zp if [k : Q] <∞,

X[p∞](R) if [k : Ql] <∞ (l 6= p),

(X/X(p))(R) as a sheaf quotient if [k : Qp] <∞.

Here is a sufficient condition when X̂(κ) is given by the projective limit: lim←−nX(κ)/pnX(κ) for

X = A,B or C:
(2.2)

X̂(κ) = lim←−
n

X̂(κ)/pnX̂(κ) if


[k : Q] <∞ and κ is a field of finite type over k

[k : Ql] <∞ with l 6= p and κ is a field of finite type over k

[k : Qp] <∞ and κ is a finite algebraic extension over k.

A slightly weaker sufficient condition for X̂(κ) = lim←−n X̂(κ)/pnX̂(κ) is proven in [H15, Lemma 2.1].

For a sheafX under the topology ?, we write H•? (X) for the cohomology groupH1
? (Spec(k), X) un-

der the topology ?. If we have no subscript, H1(X) means the Galois cohomology H•(Gal(K/k), X)
for the Gal(K/k)-moduleX. For any Zp-moduleM , we put TpM = lim←−nM [pn] = HomZp(Qp/Zp,M).

The following fact is essentially proven in [H15, Lemma 2.2] (where it was proven for finite S but
the same proof works for infinite S as is obvious from the fact that it works under fppf topology):

Lemma 2.1. Let X be an extension of an abelian variety over k by a finite étale group scheme of
order prime to p. Then, we have a canonical injection

lim←−
n

X̂(k)/pnX̂(k) ↪→ lim←−
n

H1(X[pn]).
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Similarly, for any fppf or smooth extension κ/k of finite type which is an integral domain, we have
an injection

lim←−
n

X̂(κ)/pnX̂(κ) ↪→ lim←−
n

H1
? (Spec(κ), X[pn])

for ? = fppf or sm according as κ/k is an fppf extension or a smooth extension of finite type. For
Galois cohomology, we have an exact sequence for j = 0, 1:

0→ lim←−
n

Hj(X̂(k))/pnHj(X̂(k))→ lim←−
n

Hj+1(X[pn])→ TpH
j+1(X).

The natural map: lim←−nH
j+1(X[pn])

π−→ TpH
j+1(X) is surjective if either j = 0 or k is local or S is

finite. In particular, H1(TpX) for TpX = lim←−nX[pn] is equal to lim←−nH
1(X[pn]), and

0→ X̂(k)→ H1(TpX)→ TpH
1(X)[pn]→ 0

is exact.

We shall give a detailed proof of the surjectivity of π for Galois cohomology (which we will use)
along with a sketch of the proof of the exactness.

Proof. By p-divisibility, we have the sheaf exact sequence under the étale topology over Spec(κ)

0→ X[pn]→ X
pn−→ X → 0.

This implies, we have an exact sequence

0→ X[pn](K)→ X(K)
pn−→ X(K)→ 0.

By the long exact sequence associated to this sequence, for a finite intermediate extension K/κ/k,
we have exactness of

(∗) 0→ Hj(X(κ))/pnHj(X(κ))→ Hj+1(X[pn])→ Hj+1(X)[pn]→ 0.

Passing to the limit (with respect to n), we have the exactness of

0→ lim←−
n

Hj(X(κ))/pnHj(X(κ))→ Hj+1(TpX)→ TpH
j+1(X).

as lim←−nH
j+1(X[pn]) = Hj+1(lim←−nX[pn]) = Hj(TpX) for j = 0, 1 without assumption if j = 0 and

assuming S is finite if j = 1 (because of finiteness of X[pn](K) and p-divisibility of X; e.g., [CNF,
Corollary 2.7.6] and [H16, Lemma 7.1 (2)]).

Assume κ = k. If k is local or S is finite, by Tate duality, all the terms of (∗) is finite; so, the
surjectivity of (∗) is kept after passing to the limit. If j = 0 and κ = k, X(k)/pnX(k) is a finite
module; so, the sequences (∗) satisfied Mittag–Leffler condition. Thus again the surjectivity of (∗)
is kept after passing to the limit. �

For finite S, the following module structure of H1(Â) is well known (see [ADT, Corollary I.4.15]
or [H15, Lemma 2.3]):

Lemma 2.2. Let k be a finite extension of Q or Ql for a prime l. Suppose that S is finite if k is a

finite extension of Q. Let A/k be an abelian variety. Then H1(A)⊗Z Zp = H1(Â) is isomorphic to
the discrete module (Qp/Zp)r ⊕∆ for a finite r ≥ 0 and a finite p-torsion group ∆.

Hereafter we assume that S is a finite set unless otherwise indicated.
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3. U(p)-isomorphisms for group cohomology

For Z[U ]-modules X and Y , we call a Z[U ]-linear map f : X → Y a U -injection (resp. a U -
surjection) if Ker(f) is killed by a power of U (resp. Coker(f) is killed by a power of U). If f is
an U -injection and U -surjection, we call f is a U -isomorphism. If X → Y is a U -isomorphism, we
write X ∼=U Y . In terms of U -isomorphisms (for U = U(p), U∗(p), we describe briefly the facts we
need in this article (and in later sections, we fill in more details in terms of the ordinary projector
e and the co-ordinary projector e∗ := limn→∞ U∗(p)n!).

Let N be a positive integer prime to p. We consider the (open) modular curve Y1(Npr)/Q which
classifies elliptic curves E with an embedding φ : µpr ↪→ E[pr] = Ker(pr : E → E) of finite flat
groups. Let Ri = Z(p)[µpi ] and Ki = Q[µpi ]. For a valuation subring or a subfield R of K∞ over
Z(p) with quotient field K, we write Xr/R for the normalization of the j-line P(j)/R in the function

field of Y1(Npr)/K . The group z ∈ (Z/prZ)× acts on Xr by φ 7→ φ ◦ z, as Aut(µNpr ) ∼= (Z/NprZ)×.

Thus Γ = 1 + pεZp = γZp acts on Xr (and its Jacobian) through its image in (Z/NprZ)×. Hereafter
we take U = U(p), U∗(p) for the Hecke–Atkin operator U(p).

Let Jr/R = Pic0
Xr/R

be the connected component of the Picard scheme. We state a result com-

paring Jr/R and the Néron model of Jr/K over R. Thus we assume that R is a valuation ring. By
[AME, 5.5.1, 13.5.6, 13.11.4], Xr/R is regular; the reduction Xr ⊗R Fp is a union of irreducible com-
ponents, and the component containing the ∞ cusp has geometric multiplicity 1. Then by [NMD,
Theorem 9.5.4], Jr/R gives the identity connected component of the Néron model of the Jacobian of
Xr/R. In this paper, we do not use these fine integral structure of Xr/R but work with Xr/Q. We
just wanted to note these facts for possible use in our future articles.

We write Xs
r/R for the normalization of the j-line of the canonical Q-curve associated to the

modular curve for the congruence subgroup Γrs = Γ1(Npr) ∩ Γ0(ps) for 0 < r ≤ s. We denote
Pic0

Xr
s/R

by Jrs/R. Similarly, as above, Jrs/R is the connected component of the Néron model of Xr
s/K .

Note that, for αm =
(

1 0
0 pm

)
,

(3.1) Γrs\Γrsαs−rΓ1(Npr) =
{(

1 a
0 ps−r

) ∣∣∣a mod ps−r
}

= Γ1(Npr)\Γ1(Npr)αs−rΓ1(Npr).

Write Usr (ps−r) : Jsr/R → Jr/R for the Hecke operator of Γsrαs−rΓ1(Npr). Strictly speaking, the

Hecke operator induces a morphism of the generic fiber of the Jacobians and then extends to their
connected components of the Néron models by the functoriality of the model (or by Picard functori-
ality). Then we have the following commutative diagram from the above identity, first over C, then
over K and by Picard functoriality over R:

(3.2)

Jr/R
π∗−→ Jrs/R

↓ u ↙ u′ ↓ u′′

Jr/R
π∗−→ Jrs/R,

where the middle u′ is given by Usr (ps−r) and u and u′′ are U(ps−r). Thus

(u1) π∗ : Jr/R → Jrs/R is a U(p)-isomorphism (for the projection π : Xr
s → Xr).

Taking the dual U∗(p) of U(p) with respect to the Rosati involution associated to the canonical
polarization of the Jacobians, we have a dual version of the above diagram for s > r > 0:

(3.3)

Jr/R
π∗←− Jrs/R

↑ u∗ ↗ u′
∗ ↑ u′′∗

Jr/R
π∗←− Jrs/R.

Here the superscript “∗” indicates the Rosati involution of the canonical divisor of the Jacobians,
and u∗ = U∗(p)s−r for the level Γ1(Npr) and u′′

∗
= U∗(p)s−r for Γrs. Note that these morphisms

come from the following coset decomposition, for βm :=
(
pm 0
0 1

)
Γ1(Npr),

(3.4) Γrs\Γrsβs−rΓ1(Npr) =
{(

ps−r a
0 1

) ∣∣∣a mod ps−r
}

= Γ1(Npr)\Γ1(Npr)βs−rΓ1(Npr).

From this, we get
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(u∗1) π∗ : Jr/R → Jrs/R is a U∗(p)-isomorphism, where π∗ is the dual of π∗.

In particular, if we take the ordinary and the co-ordinary projector e = limn→∞ U(p)n! and
e∗ = limn→∞ U∗(p)n! on J [p∞] for J = Jr/R, Js/R, J

r
s/R, noting U(pm) = U(p)m, we have

π∗ : Jord
r/R[p∞] ∼= Jr,ord

s/R [p∞] and π∗ : Jr,co-ord
s/R [p∞] ∼= Jco-ord

r/R [p∞]

where “ord” (resp. “co-ord”) indicates the image of the projector e (resp. e∗). For simplicity, we
write Gr/R := Jord

r/R[p∞]/R, and we set G := lim−→r
Gr.

Pick a congruence subgroup Γ defining the modular curve X(C) = Γ\(H t P1(Q)), and write
its Jacobian as J . We now identify J(C) with a subgroup of H1(Γ,T) (for the trivial Γ-module
T := R/Z ∼= {z ∈ C× : |z| = 1} with trivial Γ-action). Since Γrs . Γ1(Nps), consider the finite

cyclic quotient group C :=
Γrs

Γ1(Nps) . By the inflation restriction sequence, we have the following

commutative diagram with exact rows:

(3.5)

H1(C,T)
↪→−−−−→ H1(Γrs,T) −−−−→ H1(Γ1(Nps),T)γ

pr=1 −−−−→ H2(C,T)x ∪
x x∪ x

? −−−−→ Jrs (C) −−−−→ Js(C)[γp
r−ε − 1] −−−−→ ?.

Since C is a finite cyclic group of order ps−r (with generator g) acting trivially on T, we have
H1(C,T) = Hom(C,T) ∼= C and

H2(C,T) = T/(1 + g + · · ·+ gp
s−r−1) = T/ps−rT = 0.

By the same token, replacing T by Tp := Qp/Zp, we get H2(C,Tp) = 0. By a sheer computation
(cf. [H86b, Lemma 6.1]), we confirm that U(p) acts on H1(C,T) and H1(C,Tp) via multiplication
by its degree p, and hence U(p)s−r kill H1(C,T) and H1(C,Tp). We record what we have proven:

(3.6) U(p)s−r(H1(C,Tp)) = H2(C,T) = H2(C,Tp) = 0.

This fact has been exploited by the author (for example, [H86b] and [H14]) to study the modular
Barsotti–Tate groups Js[p

∞].

4. U(p)-isomorphisms for arithmetic cohomology

To good extent, we reproduce the results and proofs in [H15, §3] as it is important in the sequel.
Let X → Y → S be proper morphisms of noetherian schemes. We now replace H1(Γ,T) in the
above diagram (3.5) by

H0
fppf(T,R

1f∗Gm) = R1f∗O
×
X(T ) = PicX/S(T )

for S-scheme T and the structure morphism f : X → S, and do the same analysis as in Section 3
for arithmetic cohomology in place of group cohomology (via the moduli theory of Katz-Mazur and

Drinfeld; cf., [AME]). Write the morphisms as X
π−→ Y

g−→ S with f = g ◦ π. Assume that π is finite
flat.

Suppose that f and g have compatible sections S
sg−→ Y and S

sf−→ X so that π ◦ sf = sg. Then
we get (e.g., [NMD, Section 8.1])

PicX/S(T ) = Ker(s1
f : H1

fppf(XT , O
×
X)→ H1

fppf(T,O
×
T ))

PicY/S(T ) = Ker(s1
g : H1

fppf(YT , O
×
YT

)→ H1
fppf(T,O

×
T ))

for any S-scheme T , where sqf : Hq(XT , O
×
XT

) → Hq(T,O×T ) and sng : Hn(YT , O
×
YT

) → Hn(T,O×T )
are morphisms induced by sf and sg, respectively. Here XT = X ×S T and YT = Y ×S T . We
suppose that the functors PicX/S and PicY/S are representable by group schemes whose connected
components are smooth (for example, if X,Y are curves and S = Spec(k) for a field k; see [NMD,
Theorem 8.2.3 and Proposition 8.4.2]). We then put J? = Pic0

?/S (? = X,Y ). Anyway we suppose

hereafter also that X,Y, S are varieties (in the sense of [ALG, II.4]).
For an fppf covering U → Y and a presheaf P = PY on the fppf site over Y , we define via Čech

cohomology theory an fppf presheaf U 7→ Ȟq(U , P ) denoted by Ȟ
q
(PY ) (see [ECH, III.2.2 (b)]). The
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inclusion functor from the category of fppf sheaves over Y into the category of fppf presheaves over
Y is left exact. The derived functor of this inclusion of an fppf sheaf F = FY is denoted by H•(FY )
(see [ECH, III.1.5 (c)]). Thus H•(Gm/Y )(U) = H•fppf(U , O

×
U ) for a Y -scheme U as a presheaf (here

U varies in the small fppf site over Y ).
Instead of the Hochschild-Serre spectral sequence producing the top row of the diagram (3.5),

assuming that f , g and π are all faithfully flat of finite presentation, we use the spectral sequence
of Čech cohomology of the flat covering π : X � Y in the fppf site over Y [ECH, III.2.7]:

(4.1) Ȟp(XT /YT , H
q(Gm/Y ))⇒ Hn

fppf(YT , O
×
YT

)
∼−→
ι
Hn(YT , O

×
YT

)

for each S-scheme T . Here F 7→ Hn
fppf(YT , F ) (resp. F 7→ Hn(YT , F )) is the right derived functor

of the global section functor: F 7→ F (YT ) from the category of fppf sheaves (resp. Zariski sheaves)
over YT to the category of abelian groups. The canonical isomorphism ι is the one given in [ECH,
III.4.9].

By the sections s?, we have a splitting Hq(XT , O
×
XT

) = Ker(sqf )⊕Hq(T,O×T ) and Hn(YT , O
×
YT

) =

Ker(sng )⊕Hn(T,O×T ). Write H•YT for H•(Gm/YT ) and Ȟ•(H0
YT

) for Ȟ•(YT /XT , H
0
YT

). Since

PicX/S(T ) = Ker(s1
f,T : H1(XT , O

×
XT

)→ H1(T,O×T ))

for the morphism f : X → S with a section [NMD, Proposition 8.1.4], from the spectral sequence
(4.1), we have the following commutative diagram with exact rows:

(4.2)

Ȟ1(H0
YT

)
↪→−−−−→ H1(T,O×T )⊕Ker(s1

g,T )
a−−−−→ Ȟ0(XTYT , H

1(Gm,Y )) −−−−→ Ȟ2(H0
YT

)

‖
x o

x x‖ x‖
Ȟ1(H0

YT
) −−−−→ PicT ⊕PicY/S(T )

b−−−−→ Ȟ0(XTYT ,PicY (T )) −−−−→ Ȟ2(H0
YT

)x ∪
x x∪ x

?1 −−−−→ PicT ⊕JY (T ) −−−−→
c

PicT ⊕Ȟ0(XTYT , JX(T )) −−−−→ ?2,

where we have written J? = Pic0
?/S (the identity connected component of Pic?/S). Here the horizontal

exactness at the top two rows follows from the spectral sequence (4.1) (see [ECH, Appendix B]).
Take a correspondence U ⊂ Y ×S Y given by two finite flat projections π1, π2 : U → Y of

constant degree (i.e., πj,∗OU is locally free of finite rank deg(πj) over OY ). Consider the pullback
UX ⊂ X ×S X given by the Cartesian diagram:

UX = U ×Y×SY (X ×S X) −−−−→ X ×S Xy y
U

↪→−−−−→ Y ×S Y
Let πj,X = πj ×S π : UX � X (j = 1, 2) be the projections.

Consider a new correspondence U
(q)
X =

q︷ ︸︸ ︷
UX ×Y UX ×Y · · · ×Y UX , whose projections are the

iterated product

πj,X(q) = πj,X ×Y · · · ×Y πj,X : U
(q)
X → X(q) (j = 1, 2).

Here is the first step to prove a result analogous to (3.6) for arithmetic cohomology.

Lemma 4.1. Let the notation and the assumption be as above. In particular, π : X → Y is a finite
flat morphism of geometrically reduced proper schemes over S = Spec(k) for a field k. Suppose that
X and UX are proper schemes over a field k satisfying one of the following conditions:

(1) UX is geometrically reduced, and for each geometrically connected component X◦ of X, its

pull back to UX by π2,X is also connected; i.e., π0(X)
π∗2,X−−−→
∼

π0(UX);

(2) (f ◦ π2,X)∗OUX = f∗OX .
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If π2 : U → Y has constant degree deg(π2), then, for each q > 0, the action of U
(q)
X on H0(X(q),O×

X(q))
factors through the multiplication by deg(π2) = deg(π2,X).

This result is given as [H15, Lemma 3.1, Corollary 3.2].
To describe the correspondence action of U on H0(X,O×X) in down-to-earth terms, let us first

recall the Čech cohomology: for a general S-scheme T ,

(4.3) Ȟq(
XT

YT
, H0(Gm/Y )) =

{(ci0,...,iq )|ci0,...,iq ∈ H0(X
(q+1)
T , O×

X
(q+1)
T

) and
∏
j(ci0...̌ij ...iq+1

◦ pi0...̌ij ...iq+1
)(−1)j = 1}

{dbi0...iq =
∏
j(bi0...̌ij ...iq ◦ pi0...̌ij ...iq )(−1)j |bi0...̌ij ...iq ∈ H0(X

(q)
T , O×

X
(q)
T

)}

where we agree to put H0(X
(0)
T , O

(0)
XT

) = 0 as a convention,

X
(q)
T =

q︷ ︸︸ ︷
X ×Y X ×Y · · · ×Y X ×ST,OX(q)

T

=

q︷ ︸︸ ︷
OX ×OY OX ×OY · · · ×OY OX ×OSOT ,

the identity
∏
j(c ◦ pi0...̌ij ...iq+1

)(−1)j = 1 takes place in O
X

(q+2)
T

and pi0...̌ij ...iq+1
: X

(q+2)
T → X

(q+1)
T

is the projection to the product of X the j-th factor removed. Since T ×T T ∼= T canonically, we

have X
(q)
T
∼=

q︷ ︸︸ ︷
XT ×T · · · ×T XT by transitivity of fiber product.

Consider α ∈ H0(X,OX). Then we lift π∗1,Xα = α ◦ π1,X ∈ H0(UX ,OUX ). Put αU := π∗1,Xα.

Note that π2,X,∗OUX is locally free of rank d = deg(π2) over OX , the multiplication by αU has its
characteristic polynomial P (T ) of degree d with coefficients in OX . We define the norm NU (αU ) to
be the constant term P (0). Since α is a global section, NU (αU ) is a global section, as it is defined
everywhere locally. If α ∈ H0(X,O×X), NU (αU ) ∈ H0(X,O×X). Then define U(α) = NU (αU ), and

in this way, U acts on H0(X,O×X).

For a degree q Čech cohomology class [c] ∈ Ȟq(X/Y , H
0(Gm/Y )) with a Čech q-cocycle c =

(ci0,...,iq ), U([c]) is given by the cohomology class of the Čech cocycle U(c) = (U(ci0,...,iq )), where
U(ci0,...,iq ) is the image of the global section ci0,...,iq under U . Indeed, (π∗1,Xci0,...,iq ) plainly satisfies

the cocycle condition, and (NU (π∗1,Xci0,...,iq )) is again a Čech cocycle as NU is a multiplicative
homomorphism. By the same token, this operation sends coboundaries to coboundaries, and define
the action of U on the cohomology group. We get the following vanishing result (cf. (3.6)):

Proposition 4.2. Suppose that S = Spec(k) for a field k. Let π : X → Y be a finite flat covering of

(constant) degree d of geometrically reduced proper varieties over k, and let Y
π1←− U

π2−→ Y be two
finite flat coverings (of constant degree) identifying the correspondence U with a closed subscheme

U
π1×π2
↪→ Y ×S Y . Write πj,X : UX = U ×Y X → X for the base-change to X. Suppose one of the

conditions (1) and (2) of Lemma 4.1 for (X,U). Then

(1) The correspondence U ⊂ Y ×S Y sends Ȟq(H0
Y ) into deg(π2)(Ȟq(H0

Y )) for all q > 0.
(2) If d is a p-power and deg(π2) is divisible by p, Ȟq(H0

Y ) for q > 0 is killed by UM if pM ≥ d.
(3) The cohomology Ȟq(H0

Y ) with q > 0 is killed by d.

This follows from Lemma 4.1, because on each Čech q-cocycle (whose value is a global section of

iterated product X
(q+1)
T ), the action of U is given by U (q+1) by (4.3). See [H15, Proposition 3.3]

for a detailed proof. We can apply the above proposition to (U,X, Y ) = (U(p), Xs, X
r
s ) with U

given by U(p) ⊂ Xr
s × Xr

s over Q. Indeed, U := U(p) ⊂ Xr
s × Xr

s corresponds to X(Γ) given by
Γ = Γ1(Npr) ∩ Γ0(ps+1) and UX is given by X(Γ′) for Γ′ = Γ1(Nps) ∩ Γ0(ps+1) both geometrically
irreducible curves. In this case π1 is induced by z 7→ z

p on the upper complex plane and π2 is the

natural projection of degree p. In this case, deg(Xs/X
r
s ) = ps−r and deg(π2) = p.

An easy criterion to see π0(U
(q)
X ) = π0(X(q)) (which will not be used in this paper), we can offer
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Lemma 4.3. For a finite flat covering V
π−→ X

f−→ Y of geometrically irreducible varieties over a
field k, if a fiber f ◦ π of a k-closed point y ∈ Y of V is made of a single closed point v ∈ V (k) (as

a topological space), then V (q) :=

q︷ ︸︸ ︷
V ×Y V ×Y · · · ×Y V and X(q) are geometrically connected.

Proof. The q-fold tensor product of the stalks at v given by

O(q)
V,v :=

q︷ ︸︸ ︷
OV,v ⊗OY,y OV,v ⊗OY,y · · · ⊗OY,y OV,v

is a local ring whose residue field is that of y. This fact holds true for the base change V/k′ →
X/k′ → Y/k′ for any algebraic extension k′/k; so, V (q) and X(q) are geometrically connected �

Assume that a finite group G acts on X/Y faithfully. Then we have a natural morphism φ :
X ×G→ X ×Y X given by φ(x, σ) = (x, σ(x)). In other words, we have a commutative diagram

X ×G (x,σ)7→σ(x)−−−−−−−→ X

(x,σ)7→x
y y
X −−−−→ Y,

which induces φ : X × G → X ×Y X by the universality of the fiber product. Suppose that φ is
surjective; for example, if Y is a geometric quotient of X by G; see [GME, §1.8.3]). Under this
map, for any fppf abelian sheaf F , we have a natural map Ȟ0(X/Y, F ) → H0(G,F (X)) sending
a Čech 0-cocycle c ∈ H0(X,F ) = F (X) (with p∗1c = p∗2c) to c ∈ H0(G,F (X)). Obviously, by the
surjectivity of φ, the map Ȟ0(X/Y, F ) → H0(G,F (X)) is an isomorphism (e.g., [ECH, Example
III.2.6, page 100]). Thus we get

Lemma 4.4. Let the notation be as above, and suppose that φ is surjective. For any scheme T fppf
over S, we have a canonical isomorphism: Ȟ0(XT /YT , F ) ∼= H0(G,F (XT )).

We now assume S = Spec(k) for a field k and that X and Y are proper reduced connected curves.
Then we have from the diagram (4.2) with the exact middle two columns and exact horizontal rows:

0 −−−−→ Z Z −−−−→ 0x deg

xonto deg

xonto

x
Ȟ1(H0

Y ) −−−−→ PicY/S(T )
b−−−−→ Ȟ0(XTYT ,PicY/S(T )) −−−−→ Ȟ2(H0

Y )x ∪
x x∪ x

?1 −−−−→ JY (T ) −−−−→
c

Ȟ0(XTYT , JX(T )) −−−−→ ?2,

Thus we have ?j = Ȟj(H0
Y ) (j = 1, 2).

By Proposition 4.2, if q > 0 and X/Y is of degree p-power and p|deg(π2), Ȟq(H0
Y ) is a p-group,

killed by UM for M � 0. Taking (X,Y, U)/S to be (Xs/Q, X
r
s/Q, U(p))/Q for s > r ≥ 1, we get for

the projection π : Xs → Xr
s

Corollary 4.5. Let F be a number field or a finite extension of Ql for a prime l. Then we have

(u) π∗ : Jrs/Q(F )→ Ȟ0(Xs/X
r
s , Js/Q(F ))

(∗)
= Js/Q(F )[γp

r−ε − 1] is a U(p)-isomorphism,

where Js/Q(F )[γp
r−ε − 1] = Ker(γp

r−ε − 1 : Js(F )→ Js(F )).

Here the identity at (∗) follows from Lemma 4.4. The kernel A 7→ Ker(γp
r−ε−1 : Js(A)→ Js(A))

is an abelian fppf sheaf (as the category of abelian fppf sheaves is abelian and regarding a sheaf as a

presheaf is a left exact functor), and it is represented by the scheme theoretic kernel Js/Q[γp
r−ε − 1]
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of the endomorphism γp
r−ε−1 of Js/Q. From the exact sequence 0→ Js[γ

pr−ε−1]→ Js
γp
r−ε
−1−−−−−−→ Js,

we get another exact sequence

0→ Js[γ
pr−ε − 1](F )→ Js(F )

γp
r−ε
−1−−−−−−→ Js(F ).

Thus

Js/Q(F )[γp
r−ε
− 1] = Js/Q[γp

r−ε
− 1](F ).

The above (u) combined with (u1) implies (u2) below:

(u2) π∗ : Jr/Q → Js/Q[γp
r−ε − 1] = Ker(γp

r−ε − 1 : Js/Q → Js/Q) is a U(p)-isomorphism.

Actually we can reformulate these facts as

Lemma 4.6. Then we have morphisms

ιrs : Js/Q[γp
r−ε
− 1]→ Jrs/Q and ιr,∗s : Jrs/Q → Js/Q/(γ

pr−ε − 1)(Js/Q)

satisfying the following commutative diagrams:

(4.4)

Jrs/Q
π∗−→ Js/Q[γp

r−ε − 1]

↓ u ↙ ιrs ↓ u′′

Jrs/Q
π∗−→ Js/Q[γp

r−ε − 1],

and

(4.5)

Jrs/Q
π∗←− Js/Q/(γ

pr−ε − 1)(Js/Q)

↑ u∗ ↗ ιr,∗s ↑ u′′∗

Jrs/Q
π∗←− Js/Q/(γ

pr−ε − 1)(Js/Q),

where u and u′′ are U(ps−r) = U(p)s−r and u∗ and u′′
∗

are U∗(ps−r) = U∗(p)s−r. In particular,

for an fppf extension T/Q, the evaluated map at T : (Js/Q/(γ
pr−ε − 1)(Js/Q))(T )

π∗−→ Jrs (T ) (resp.

Jrs (T )
π∗−→ Js[γ

pr−ε − 1](T )) is a U∗(p)-isomorphism (resp. U(p)-isomorphism).

Note here that the natural homomorphism:

Js(T )

(γpr−ε − 1)(Js(T ))
→ (Js/Q/(γ

pr−ε − 1)(Js/Q))(T )

may have non-trivial kernel and cokernel which may not be killed by a power of U∗(p). In other
words, the left-hand-side is an fppf presheaf (of T ) and the right-hand-side is its sheafication. On

the other hand, T 7→ Js[γ
pr−ε−1](T ) is already an fppf abelian sheaf; so, Jrs (T )

π∗−→ Js[γ
pr−ε−1](T )

is a U(p)-isomorphism without ambiguity.

Proof. We first prove the assertion for π∗. We note that the category of groups schemes fppf over
a base S is a full subcategory of the category of abelian fppf sheaves. We may regard Jrs/Q and

Js[γ
pr−ε − 1]/Q as abelian fppf sheaves over Q in this proof. Since these sheaves are represented

by (reduced) algebraic groups over Q, we can check being U(p)-isomorphism by evaluating the
sheaf at a field k of characteristic 0 (e.g., [EAI, Lemma 4.18]). By Proposition 4.2 (2) applied to
X = Xs/k = Xs ×Q k and Y = Xr

s/k (with S = Spec(k) and s ≥ r),

K := Ker(Jrs/Q → Js/Q[γp
r−ε
− 1])

is killed by U(p)s−r as d = ps−r = deg(Xs/X
r
s ). Thus we get

K ⊂ Ker(U(p)s−r : Jrs/Q → Jrs/Q).

Since the category of fppf abelian sheaves is an abelian category (because of the existence of the
sheafication functor from presheaves to sheaves under fppf topology described in [ECH, §II.2]), the
above inclusion implies the existence of ιrs with π∗ ◦ ιrs = U(p)s−r as a morphism of abelian fppf
sheaves. Since the category of group schemes fppf over a base S is a full subcategory of the category
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of abelian fppf sheaves, all morphisms appearing in the identity π∗ ◦ ιrs = U(p)s−r are morphism of
group schemes. This proves the assertion for π∗.

Note that the second assertion is the dual of the first; so, it can be proven reversing all the arrows

and replacing Js[γ
pr−ε − 1]/Q (resp. π∗, U(p)) by the quotient Js/(γ

pr−ε − 1)Js as fppf abelian

sheaves (resp. π∗, U
∗(p)). Since Js/(γ

pr−ε − 1)(Js) and Jrs are abelian schemes over Q, the quotient

abelian scheme Js/(γ
pr−ε − 1)(Js) is the dual of Js[γ

pr−ε − 1] and ιr,∗s is the dual of ιrs. �

By the second diagram of the above lemma, we get

(u∗) Js/(γ
pr−ε − 1)(Js)/Q

π∗−→ Jrs/Q is a U∗(p)-isomorphism of abelian fppf sheaves.

As a summary, we have

Corollary 4.7. Then the morphism π : Xs → Xr
s induces an isogeny

π∗ : Js/(γ
pr−ε − 1)(Js)/Q → Jrs/Q

whose kernel is killed by a sufficiently large power of U∗(p), and the pull-back map π∗ induces an

isogeny π∗ : Js[γ
pr−ε−1]→ Jrs whose kernel is killed by a high power of U(p). Moreover, for a finite

extension F of Q or Ql (for a prime l not necessarily equal to p), π∗ : Js[γ
pr−ε − 1](F )→ Jrs (F ) is

a U(p)-isomorphism.

Proof. Let C ⊂ Aut(Xs) be the cyclic group generated by the action of γp
r−ε

. Then Xs/Q/X
r
s/Q is

an étale covering with Galois group C (even unramified at cusps). Thus Lie(Jrs ) = H1(Xr
s ,OXrs ) =

H0(C,H1(Xs,OXs)) = H0(C,Lie(Js)). This shows that π∗ is an isogeny over Q and hence over Q,
which is a U∗(p)-isomorphism by Lemma 4.6. By taking dual, π∗ is also an isogeny, which is a U(p)-
isomorphism even after evaluating the fppf sheaves at F by Lemma 4.6 and the remark following
the lemma. This proves the corollary. �

Then we get

(u∗2) Js/(γ
pr−ε − 1)(Js)/Q → Jr/Q is a U∗(p)-isomorphism of abelian fppf sheaves.

We can prove (u∗2) in a more elementary way. We describe the easier proof. Identify Js(C) =
H1(Xs,T) whose Pontryagin dual is given by H1(Xs,Z). If k = Q, we have the Pontryagin dual
version of (u2):

(4.6) H1(Xr,Z)
π∗←− H1(Xs,Z)/(γp

r−ε
− 1)(H1(Xs,Z)) is a U∗(p)-isomorphism.

Since Js,Q(C) ∼= H1(Xs,R)/H1(Xs,Z) as Lie groups, we get

(4.7) Jr(C)
π∗←− Js(C)/(γp

r−ε
− 1)(Js(C)) is a U∗(p)-isomorphism.

This implies (u∗2). By (4.7), writing Q for the algebraic closure of Q in C and taking algebraic
points, we get

(4.8) Jr(Q)
π∗←− (Js/(γ

pr−ε − 1)(Js))(Q) = Js(Q)/(γp
r−ε
− 1)(Js(Q)) is a U∗(p)-isomorphism.

Remark 4.8. The U(p)-isomorphisms of Jacobians do not kill the part associated to finite slope
Hecke eigenforms. Thus the above information includes not just the information of p-ordinary forms
but also those of finite slope Hecke eigenforms.

5. Control of Λ-MW groups as fppf sheaves

Let k be either a number field in Q or a finite extension of Ql in Ql for a prime l. Write Ok (resp.
W ) for the (resp. l-adic) integer ring of k if k is a number field (resp. a finite extension of Ql). For

an abelian variety A/k, we have Â(κ) := lim←−A(κ)/pnA(κ) for a finite field extension κ/k as in (2.2).

A down-to-earth description of the value of Â(κ) is given by (S) just above (2.2).
We study Jr(k) equipped with the topology Jk(k) induced from k (so, it is discrete if k is a

number field and is l-adic if k is a finite extension of Ql). The p-adic limits e = limn→∞ U(p)n! and



CONTROL OF Λ-ADIC MORDELL–WEIL GROUPS 14

e∗ = limn→∞ U∗(p)n! are well defined on Ĵr(k). The Albanese functoriality gives rise to a projective

system {Ĵs(k), πs,r,∗}s for the covering map πs,r : Xs → Xr (s > r), and we have

J̃∞(k) = lim←−
r

Ĵr(k) (with projective limit of p-profinite compact topology)

on which the co-ordinary projector e∗ = limn→∞ U∗(p)n! acts. As before, adding superscript or
subscript “ord” (resp. “co-ord”), we indicate the image of e (resp. e∗) depending on the situation.

We study mainly in this paper the control theorems of the w-twisted version Ĵ∞(k)ord (which

we introduce in Section 6) of J̃∞(k)co-ord under the action of Γ and Hecke operators, and we have
studied J̌ord

∞ (k) in [H15] in a similar way. Here the word “w-twisting” means modifying the transition

maps by the Weil involution at each step. As fppf sheaves, we have an isomorphism i : Ĵ∞(k)ord ∼=
J̃∞(k)co-ord but i ◦ T (n) = T ∗(n) ◦ i for all n. Hereafter, unless otherwise mentioned, once our fppf
abelian sheaf is evaluated at k, all morphisms are continuous with respect to the topology defined
above (and we do not mention continuity often).

From (u1), we get

(5.1) Jr(k)
π∗−→ Jrs (k) is a U(p)-isomorphism (for the projection π : Xr

s → Xr).

The dual version (following from (u∗1)) is

(5.2) Jrs (k)
π∗−→ Jr(k) is a U∗(p)-isomorphism, where π∗ is the dual of π∗.

From (5.1) and (5.2), we get

Lemma 5.1. For a field k as above, we have

π∗ : Ĵrs (k)co-ord ∼= Ĵr(k)co-ord and π∗ : Ĵr(k)ord ∼= Ĵrs (k)ord

for all 0 < r < s with the projection π : Xr
s � Xr.

From Corollary 4.7 (or Lemma 4.6 combined with (u∗2) and (u2)), for any field k, we get

(I) π∗ : Jr(k)→ Js[γ
pr−ε − 1](k) is a U(p)-isomorphism, and obviously, π∗ : Jr → Js[γ

pr−ε − 1]
is a U(p)-isomorphism of abelian fppf sheaves.

(P) π∗ : Jr → Js/(γ
pr−ε − 1)Js is a U∗(p)-isomorphism of fppf abelian sheaves.

Note that (P) does not mean that Ĵs(k)

(γpr−ε−1)(Ĵs(k))
→ Ĵr(k) is a U∗(p)-isomorphism (as the sheaf

quotient Js/(γ
pr−ε − 1)Js and the corresponding presheaf quotient could be different).

We now claim

Lemma 5.2. For integers 0 < r < s, we have isomorphisms of fppf abelian sheaves

π∗ : Ĵord
r
∼= Ĵs[γ

pr−ε − 1]ord and π∗ : (
Ĵs

(γpr−ε − 1)Js
)co-ord ∼= Ĵco-ord

r .

The first isomorphism π∗ induces an isomorphism: Ĵord
r (T ) ∼= Ĵs[γ

pr−ε − 1]ord(T ) for any fppf

extension T/k but the morphism induced by the second one: Ĵs(T )co-ord

(γpr−ε−1)(Ĵs(T ))co-ord
→ Ĵr(T )co-ord may

not be an isomorphism.

Proof. By (I) above, Ĵord
r
∼= Âord for the abelian variety A = Js[γ

pr−ε − 1] and Â as in (S) above
(2.2). We consider the following exact sequence

0→ A→ Js
γp
r−ε
−1−−−−−−→ Js.

This produces another exact sequence 0→ Â→ Ĵs
γp
r−ε
−1−−−−−−→ Ĵs; so, we get Â ∼= Ĵs[γ

pr−ε−1]. Taking

ordinary part and combining with the identity: Ĵord
r
∼= Âord, we conclude Ĵord

r
∼= Ĵs[γ

pr−ε − 1]ord.
This holds true after evaluation at T as the presheaf-kernel of a sheaf morphism is still a sheaf. The
second assertion is the dual of the first. �

Passing to the limit, Lemmas 5.1 and 5.2 tells us
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Theorem 5.3. Let k be either a number field or a finite extension of Ql. Then we have isomorphisms
of fppf abelian sheaves over k:

(a) Jord
∞ [γp

r−ε − 1] ∼= Ĵord
r ;

(b) (J̃∞/(γ
pr−ε − 1)(J̃∞))co-ord ∼= Ĵco-ord

r

where we put J̃∞/(γ
pr−ε − 1)(J̃∞))co-ord := lim←−s

̂Js/(γp
r−ε − 1)(Js)

co-ord

as an fppf sheaf.

Proof. The assertion (b) is just the projective limit of the corresponding statement in Lemma 5.2.
We prove (a). Since injective limit always preserves exact sequences, we have

0→ Ĵr(k)ord → lim−→
s

Ĵs(k)ord γp
r−ε
−1−−−−−−→ lim−→

s

Ĵs(k)ord

is exact, showing (a). �

See [H15, Proposition 6.4] for a control result similar to (a) for J̌ord
∞ .

Remark 5.4. As is clear from the warning after (P), the isomorphism (b) does not mean that

lim←−
s

{
Ĵs(T )

(γpr−ε − 1)(Ĵs(T ))

}co-ord

→ Ĵr(T )co-ord

for each fppf extension T/k is an isomorphism. The kernel and the cokernel of this map will be
studied in Section 9.

6. Sheaves associated to modular Jacobians

We fix an element ζ ∈ Zp(1) = lim←−n µpn(Q); so, ζ is a coherent sequence of generators ζpn

of µpn(Q) (i.e., ζppn+1 = ζpn). We also fix a generator ζN of µN (Q), and put ζNpr := ζNζpr .

Identify the étale group scheme Z/NpnZ/Q[ζN ,ζpn ] with µNpn by sending m ∈ Z to ζmNpn . Then

for a couple (E, φNpr : µNpr ↪→ E)/K over a Q[µpr ]-algebra K, let φ∗ : E[Npr] � Z/NprZ be
the Cartier dual of φNpr . Then φ∗ induces E[Npr]/ Im(φNpr ) ∼= Z/NprZ. Define i : Z/prZ ∼=
(E/ Im(φNpr ))[Np

r] by the inverse of φ∗. Then we define ϕNpr : µNpr ↪→ E/ Im(φNpr ) by ϕNpr :

µNpr ∼= Z/NprZ i−→ (E/ Im(φNpr ])[p
r] ⊂ E/ Im(φNpr ). This induces an automorphism wr of Xr

defined over Q[µNpr ], which in turn induces an automorphism wr of Jr/Q[ζNpr ]). We have the
following well known commutative diagram (e.g., [MFM, Section 4.6]):

Jr
T (n)−−−−→ Jr

wr

yo wr

yo
Jr −−−−→

T∗(n)
Jr.

Let P ∈ Spec(h)(Qp) be an arithmetic point of weight 2. Then we have a p-stabilized Hecke
eigenform form fP associated to P ; i.e., fP |T (n) = P (T (n))fP for all n. Then f∗P = wr(fP ) is the
dual common eigenform of T ∗(n). If fP is new at every prime l|pN , f∗P is a constant multiple of the
complex conjugate f cP of fP (but otherwise, it is different).

We then define as described in (S) in Section 2 an fppf abelian sheaf X̂ for any abelian variety
quotient or subgroup variety X of Js/k over the fppf site over k = Q and Ql (note here the explicit

value of Ĵs depends on k as in (S)).
Pick an automorphism σ ∈ Gal(Q(µNpr )/Q) with ζσNpr = ζzNpr for z ∈ (Z/NprZ)×. Since wσr

is defined with respect to ζσNpr = ζzNpr , we find wσr = 〈z〉 ◦ wr = wr ◦ 〈z〉−1 (see [MW86, page

237] and [MW84, 2.5.6]). Here 〈z〉 is the image of z in (Z/NprZ)× = Gal(Xr/X0(Npr)). Let
πs,r,∗ : Js → Jr for s > r be the morphism induced by the covering map Xs � Xr through Albanese
functoriality. Then we define πrs = wr ◦ πs,r,∗ ◦ ws. Then (πrs)

σ = wr〈z−1〉πs,r,∗〈z〉ws = πrs for all
σ ∈ Gal(Q(µNps)/Q); thus, πrs is well defined over Q, and satisfies T (n) ◦ πrs = πrs ◦ T (n) for all n
prime to Np and U(q) ◦πrs = πrs ◦U(q) for all q|Np. Since w2

r = 1, by this w-twisting, the projective
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system {Js, πs,r,∗} equivariant under T ∗(n) is transformed into the isomorphic projective system
{Js, πrs}s>r (of abelian varieties defined over Q) which is Hecke equivariant (i.e., T (n) and U(l)-

equivariant). Thus what we proved for the co-ordinary part of the projective system {Ĵs, πs,r,∗}
is valid for the ordinary part of the projective system {Ĵs, πrs}s>r. If Xs is either an algebraic
subgroup or an abelian variety quotient of Js and πrs produces a projective system {Xs}s we define

X̂∞ := lim←−s X̂s(R) for an fppf extension R of k = Q,Ql (again the definition of X̂s and hence X̂∞
depends on k). For each ind-object R = lim−→i

Ri of fppf, smooth or étale algebras Ri/k, we define

X̂∞(R) = lim−→i
X̂∞(Ri).

Lemma 6.1. Let K/k be the Galois extension as in Section 2. Then the Gal(K/k)-action on

X̂∞(K) is continuous under the discrete topology on X̂∞(K). In particular, the Galois cohomology

group Hq(X̂∞(K)) := Hq(Gal(K/κ), X̂∞(K)) for q > 0 is a torsion Zp-module for any intermediate
extension K/κ/k.

Proof. By definition, X̂∞(K) =
⋃
K/F/k X̂∞(F ), and X̂∞(F ) ⊂ H0(Gal(K/F ), X̂∞(K)) for all

finite intermediate extension K/F/k. Thus X̂∞(K) = lim−→F
H0(Gal(K/F ), X̂∞(K)), which implies

the continuity of the action under the discrete topology. Then the torsion property follows from
[MFG, Corollary 4.26]. �

Let ι : Cr/Q ⊂ Jr/Q be an abelian subvariety stable under Hecke operators (including U(l) for
l|Np) and wr and tι : Jr/Q � tCr/Q be the dual abelian quotient. We then define π : Jr � Dr by
Dr := tCr and π = twr ◦ tιr ◦ wr for the map twr ∈ Aut(tCr/Q[µpr ]) dual to wr ∈ Aut(Cr/Q[µpr ]).
Again π is defined over Q. Then ι and π are Hecke equivariant. Let ιs : Cs := π∗s,r(C) ⊂ Js for
s > r and Ds be the quotient abelian variety of Js defined in the same way taking Cs in place of Cr
(and replacing r by s). Put πs : Js � Ds which is Hecke equivariant.

Since the two morphisms Jr → Jrs and Jrs → Js[γ
pr−ε − 1] (Picard functoriality) are U(p)-

isomorphism of fppf abelian sheaves by (u1) and Corollary 4.5, we get the following two isomorphisms
of fppf abelian sheaves for s > r > 0:

(6.1) Cr[p
∞]ord ∼−−→

π∗r,s
Cs[p

∞]ord and Ĉord
r

∼−−→
π∗r,s

Ĉord
s ,

since Ĉord
s is the isomorphic image of Ĉord

r ⊂ Ĵr in Ĵs[γ
pr−ε − 1]. By w-twisted Cartier duality [H14,

§4], we have

(6.2) Ds[p
∞]ord ∼−→

πrs
Dr[p

∞]ord.

Thus by Kummer sequence in Lemma 2.1, we have the following commutative diagram

D̂ord
s (κ)⊗ Z/pmZ = (Ds(κ)⊗ Z/pmZ)ord −−−−→

↪→
H1(Ds[p

m]ord)

πrs

y o
y(6.2)

D̂ord
r (κ)⊗ Z/pmZ = (Dr(κ)⊗ Z/pmZ)ord −−−−→

↪→
H1(Dr[p

m]ord)

This shows
D̂ord
s (κ)⊗ Z/pmZ ∼= D̂ord

r (κ)⊗ Z/pmZ.
Passing to the limit, we get

(6.3) D̂ord
s

∼−→
πrs

D̂ord
r and (Ds ⊗Z Tp)ord ∼−→

πrs
(Dr ⊗Z Tp)ord

as fppf abelian sheaves. In short, we get

Lemma 6.2. Suppose that κ is a field extension of finite type of either a number field or a finite
extension of Ql. Then we have the following isomorphism

Ĉr(κ)ord ∼−−→
π∗s,r

Ĉs(κ)ord and D̂s(κ)ord ∼−→
πrs

D̂r(κ)ord

for all s > r including s =∞.
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By computation, πrs ◦ π∗r,s = ps−rU(ps−r). To see this, as Hecke operators coming from Γs-coset
operations, π∗r,s = [Γs] (restriction map) and πr,s,∗ = [Γr] (trace operator for Γr/Γs). Thus we have
(6.4)

πrs◦π∗r,s(x) = x|[Γs]·ws·[Γr]·wr = x|[Γs]·[wswr]·[Γr] = x|[Γrs : Γs][Γ
r
s

(
1 0
0 ps−r

)
Γr] = ps−r(x|U(ps−r)).

Corollary 6.3. We have the following two commutative diagrams for s′ > s

Ĉord
s′

∼←−−−−
π∗
s,s′

Ĉord
s

πs
s′

y yps′−sU(p)s
′−s

Ĉord
s Ĉord

s .

and

D̂ord
s′

∼−−−−→
πs
s′

D̂ord
s

π∗
s,s′

x xps′−sU(p)s
′−s

D̂ord
s D̂ord

s .

Proof. By π∗r,s (resp. πrs), we identify Ĉord
s with Ĉord

r (resp. D̂ord
s with D̂ord

r ) as in Lemma 6.2. Then
the above two diagrams follow from (6.4). �

By (6.4), we have exact sequences

0→Cs[ps−r]ord → Cs[p
∞]ord πrs−→ Cr[p

∞]ord → 0,

0→Dr[p
s−r]ord → Dr[p

∞]ord
π∗r,s−−→ Ds[p

∞]ord → 0.

(6.5)

Applying (2.1) to the exact sequence Krs(K) ↪→ Cs(K) � Cr(K) for Krs(K) = Ker(πrs)(K) and
Kr,s(K) ↪→ Cr(K) � Ds(K) for Kr,s = Ker(π∗r,s), we get the following exact sequence of fppf
abelian sheaves:

0→K̂rs → Ĉs
πrs−→ Ĉr → 0,

0→K̂r,s → D̂r

π∗r,s−−→ D̂s → 0.

Taking the ordinary part, we confirm exactness of

0→Cs[ps−r]ord → Ĉord
s

πrs−→ Ĉord
r → 0,

0→Dr[p
s−r]ord → D̂ord

r

π∗r,s−−→ D̂ord
s → 0.

(6.6)

Write H1(X) = H1(Gal(K/κ), X) for an intermediate extension K/κ/k and Gal(K/k)-module X
and H1

? (X) = H1
? (Spec(κ), X) for a smooth/fppf extension for ? = sm or fppf. Then taking the p-

adic completion, we get the following exact sequences as parts of the long exact sequences associated
to (6.6)

0→Cs[ps−r]ord(κ)→ Ĉord
s (κ) −→

πrs
Ĉord
r (κ)→ H1

? (Cs[p
s−r]ord),

0→Dr[p
s−r]ord(κ)→ D̂ord

r (κ) −−→
π∗r,s

D̂ord
s (κ)→ H1

? (Dr[p
s−r]ord)

(6.7)

for ? = fppf, sm (cohomology under smooth topology) or nothing (i.e., Galois cohomology equivalent
to étale cohomology in this case). Here if ? = fppf, κ/k is an extension of finite type, if ? = sm, κ/k
is a smooth extension of finite type, and if ? is nothing, K/κ/k is an intermediate field.

By Lemma 6.2, we can rewrite the first exact sequence of (6.5) as

(6.8) 0→ Cr[p
s−r]ord(κ)

π∗r,s−−→ Ĉord
s (κ)

πrs−→ Ĉord
r (κ)→ H1

? (Cr[p
s−r]ord).
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This (combined with Corollary 6.3) induces the corresponding diagram for H1, for any extension
κ/k inside K,

H1(Cs[p
s′−r]ord)

∼←−−−−
π∗
r,s′

H1(Cr[p
s′−r]ord)

←↩←−−−−
(

Cr(κ)

ps′−rCr(κ)

)ord

πs
s′

y yps′−sU(p)s
′−s

yps′−sU(p)s
′−s

H1(Cs[p
s−r]ord)

∼←−−−−
π∗r,s

H1(Cr[p
s−r]ord)

←↩←−−−−
(

Cr(κ)

ps′−rCr(κ)

)ord

.

The right square is the result of Kummer theory for Cr. Passing to the projective limit with respect
to s, we get a sequence

(6.9) 0→ lim←−
s

Cr[p
s−r]ord(κ)

π∗r,s−−→ lim←−
s

Ĉord
s (κ)

πrs−→ Ĉord
r (κ)→ lim←−

s

H1(Cr[p
s−r]ord)

which is exact at left three terms up to the term Ĉord
r (κ).

Proposition 6.4. Let k be a finite extension field of Q or Ql for a prime l. Assume (2.2) for κ/k.
Then we have the following identity

Ĉ∞(κ)ord = lim←−
s

Ĉs(κ)ord ∼= lim←−
s

Cr[p
s−r](κ)ord = 0

and an exact sequence for K/k as in Section 2:

0→TpCord
r → lim←−

s

Ĉs(K)ord → Ĉr(K)ord → 0

0→TpCord
r → lim←−

s

Cs[p
∞](K)ord → Cr[p

∞](K)ord → 0.

In the last sequence, we have lim←−s Cs[p
∞](K)ord ∼= TpC

ord
r ⊗Z Q. By the first identity, Ĉord

∞ as a

smooth (resp. étale) sheaf vanishes if k is a number field or a local field with residual characteristic
l 6= p (resp. a p-adic field).

Proof. By (6.9), we get a sequence which is exact at the first three left terms (up to the term

Ĉord
r (κ)):

0→ lim←−
s

Cr[p
s−r](κ)ord → Ĉ∞(κ)ord −→

πrs
Ĉr(κ)ord δ−→ lim←−

s

H1(Cs[p
s−r]ord).

Since δ is injective by Lemma 2.1 under (2.2), we get the first two identities. The vanishing of
lim←−s Cr[p

s−r](κ)ord follows because Cr[p
∞]ord(κ) is a finite p-torsion module if κ/k is an extension

of finite type.
If κ = K, we may again pass to the limit of the first exact sequence of (6.6) again noting

Cs[p
s−r](K)ord ∼= Cr[p

s−r](K)ord. The limit keeps exactness (as {Cr[ps−r](K)}s is a surjective
projective system), and we get the following exact sequence

0→ TCr[p
∞](K)ord → lim←−

s

Ĉs(K)ord −→
πrs

Ĉr(K)ord → 0.

The divisible version can be proven taking the limit of (6.5). Since Cr[p
∞](K)ord is p-divisible and the

projective system of the exact sequences 0→ Cr[p](K)ord → Cr[p
∞](K)ord x 7→px−−−−→ Cr[p

∞](K)ord → 0
by the transition map x 7→ pnU(pn)(x) satisfies the Mittag–Leffler condition (as Cr[p](K)ord is finite),
lim←−s Cs[p

∞](K)ord is a p-divisible module. Thus by the exact sequence, we have TpC
ord
r ⊗Z Q ⊂

lim←−s Cs[p
∞](K)ord, which implies

TpC
ord
r ⊗Z Q ∼= lim←−

s

Cs[p
∞](K)ord

as TpC
ord
r ⊗Z Q/TpCr ∼= Cr[p

∞]ord(K). �
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We insert here Shimura’s definition of his abelian subvariety [IAT, Theorem 7.14] and abelian
variety quotient [Sh73] of Js associated to a member fP of a p-adic analytic family. Shimura mainly
considered these abelian varieties associated to a primitive Hecke eigenform. Since we need those
associated to old Hecke eigenforms, we give some details.

Let P ∈ Spec(h)(Qp) be an arithmetic point of weight 2. Then we have a p-stabilized Hecke
eigenform form fP associated to P ; i.e., fP |T (n) = P (T (n))fP for all n (e.g., [GME, Section 3.2]).
Then f∗P = wr(fP ) is the dual common eigenform of T ∗(n). If fP is new at every prime l|pN , f∗P is
a constant multiple of the complex conjugate f cP of fP (but otherwise, they are different). Shimura’s
abelian subvariety AP (associated to fP ) is defined to be the identity connected component of⋂
α∈P Jr[α] regarding P as a prime ideal of hr(Z).
The Rosati involution (induced by the canonical polarization) brings hr(Z) to h∗r(Z) ⊂ End(Jr/Q)

isomorphically, and h acts on Ĵ∞ (resp. J̃∞) through the identity T (n) 7→ T (n) (resp. through
T (n) 7→ T ∗(n)). Let f∗P |T ∗(n) = P (T (n))f∗P , and regard P as an algebra homomorphism P ∗ :

h∗r(Z) → Q (so, P ∗(T ∗(n)) = P (T (n))). Identify P ∗ with the prime ideal Ker(P ∗), and define A∗P
to be the identity connected component of Jr[P

∗] :=
⋂
α∈P∗ Jr[α]. Then AP ∼= A∗P by wr over

Q(µNpr ).
Assume that r = r(P ) is the minimal exponent of p in the level of fP . For s > r, we write As

(resp. A∗s) for the abelian variety associated to fP regarded as an old form of level ps (resp. ws(fP )).
In other words, regarding P ∗ as an ideal of h∗s(Z) via the projection h∗s(Z) � h∗r(Z), we define A∗s
by the identity connected component of Js[P

∗]. The Albanese functoriality π∗ : Js � Jr induces
an isogeny A∗s � A∗r = A∗P . Similarly the Picard functoriality π∗ : Jr → Js induces an isogeny
AP = Ar � As. Since f∗P is the complex conjugate of fP (assuming that fP is new), A∗P = AP
inside Jr (for r = r(P )). Since ws : As/Q[ζNps ]

∼= A∗s/Q[ζNps ] and As and A∗s are isogenous to AP
over Q, As and A∗s are isomorphic over Q. Consider the dual quotient Js � Bs (resp. Js � B∗s ) of
A∗s ↪→ Js (resp. As ↪→ Js). In the same manner as above, Bs and B∗s are isomorphic over Q. Then
Bs (resp. B∗s ) is stable under T (n) and U(p) (resp. T ∗(n) and U∗(p)) and ΩBs/C (resp. ΩB∗s/C)

is spanned by fσP dz (resp. gσP dz for gP = ws(fP )) for σ running over Gal(Q/Q). We mainly apply
Corollary 6.3 and Proposition 6.4 taking Cs (resp. Ds) to be As (resp. Bs).

7. Abelian factors of modular Jacobians

Let k be a finite extension of Q inside Q or a finite extension of Qp over Qp. We study the control

theorem for Ĵs(k) which is not covered in [H15].
Let Ar be a group subscheme of Jr proper over k; so, Ar is an extension of an abelian scheme

A◦r/Q by a finite étale group. Write As (s ≥ r) for the image of Ar in Js under the morphism

π∗ : Jr → Js given by Picard functoriality from the projection π : Xs → Xr. Hereafter we assume

(A) We have α ∈ h(N) such that (γp
r−ε −1) = αx with x ∈ h(N) and that h/(α) is free of finite

rank over Zp. Write αs for the image in hs (s ≥ r) and as = (αshs⊕ (1− e)hs(Zp))∩ hs(Z)
and put As = Js[as] and Bs = Js/asJs, where asJs is an abelian subvariety defined over Q
of Js with asJs(Q) =

∑
a∈as a(Js(Q)) ⊂ Js(Q).

Here for s > s′, coherency of αs means the following commutative diagram:

Ĵord
s′

π∗−−−−→ Ĵord
s

αs′

y yαs
Ĵord
s′ −−−−→

π∗
Ĵord
s

which is equivalent (by the self-duality of Js) to the commutativity of

Ĵco-ord
s

π∗−−−−→ Ĵco-ord
s′

α∗s

y yα∗s′
Ĵco-ord
s −−−−→

π∗
Ĵco-ord
s′ .
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The following fact is proven in [H16, Lemma 5.1]:

Lemma 7.1. Assume (A). Then we have Âord
s = Ĵord

s [αs] and Â◦s = Âs. The identity connected
component A◦s (s > r) of As is the image of A◦r in Js under the morphism π∗ = π∗s,r : Jr → Js
induced by Picard functoriality from the projection π = πs,r : Xs → Xr and is Q-isogenous to Bs.

The morphism Js → Bs factors through Js
πrs−→ Jr → Br. In addition, the sequence

0→ Âord
s → Ĵord

s
α−→ Ĵord

s
ρs−→ B̂ord

s → 0 for 0 < ε ≤ r ≤ s <∞

is an exact sequence of fppf sheaves.

This implies

Corollary 7.2. Recall the finite set S of places made of prime factors of Np and ∞. Let R = k if
k is local, and let R be the S-integer ring of k (i.e., primes in S is inverted in R) if k is a number

field. Then the sheaf αs(Ĵ
ord
s ) is a p-divisible étale/fppf sheaf over Spec(R), and its p-torsion part

αs(Ĵ
ord
s )[p∞] is a p-divisible Barsotti–Tate group over R.

In particular, the Tate module Tpα(Ĵord
s ) is a well defined free Zp-module of finite rank for all

r ≤ s <∞.

Proof. By the above lemma, the fppf sheaf αs(Ĵ
ord
s ) = Ker(Ĵord

s
ρs−→ B̂ord

s ) fits into the following
commutative diagram with exact rows:

As[p
∞]ord ↪→−−−−→ Js[p

∞]ord �−−−−→ α(Js[p
∞]ord)

∩
y ∩

y ∩
y

Âord
s

↪→−−−−→ Ĵord
s

�−−−−→ α(Ĵord
s )y y y

Âord
s /As[p

∞]ord ↪→−−−−→ Ĵord
s /Js[p

∞]ord �−−−−→ α(Ĵord
s )/α(Js[p

∞]ord).

The first two terms of the bottom row are sheaves of Qp-vector spaces, so is the last term. Thus

we conclude α(Js[p
∞]ord) = α(Ĵord

s )[p∞]. Since Âs = Â◦s, Âs[p
∞]ord is a direct summand of the

Barsotti–Tate group Js[p
∞]ord. Therefore α(Js[p

∞]ord) is a Barsotti–Tate group as desired.

Alternatively, we can identify αs(Ĵ
ord
s )[p∞] with the Barsotti–Tate p-divisible group of the abelian

variety quotient Js/A
◦
s. �

The condition (A) is a mild condition. Here are sufficient conditions for (α,As, Bs) to satisfy (A)
given in [H16, Proposition 5.2]:

Proposition 7.3. Let Spec(T) be a connected component of Spec(h) and Spec(I) be a primitive irre-
ducible component of Spec(T). Then the condition (A) holds for the following choices of (α,As, Bs):

(1) Suppose that an eigen cusp form f = fP new at each prime l|N belongs to Spec(T) and that
T = I is regular. Writing the level of fP as Npr, the algebra homomorphism λ : T → Qp
given by f |T (l) = λ(T (l))f gives rise to a height 1 prime ideal P = Ker(λ), which is principal

generated by a ∈ T. This a has its image as ∈ Ts = T⊗Λ Λs for Λs = Λ/(γp
s−ε − 1). Write

hs = h⊗Λ Λs = Ts⊕1shs as an algebra direct sum for an idempotent 1s. Then, the element
αs = as ⊕ 1s ∈ hs for the identity 1s of Xs satisfies (A). In this case, α = lim←−s αs.

(2) More generally than (1), we pick a general connected component Spec(T) of Spec(h). Pick
a (classical) Hecke eigenform f = fP (of weight 2) for P ∈ Spec(T). Assume that hs (for
every s ≥ r) is reduced and P = (a) for a ∈ T, and write as for the image of a in hs. Then
decomposing hs = Ts ⊕ 1shs, αs = as ⊕ 1s satisfies (A).

(3) Fix r > 0. Then α for a factor α|(γpr−ε −1) in Λ, satisfies (A) for As = Js[α]◦ (the identity
connected component).
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Remark 7.4. (i) Under (1), all arithmetic points P of weight 2 in Spec(I) satisfies (A).
(ii) For a given weight 2 Hecke eigenform f , for density 1 primes p of Q(f), f is ordinary at

p (i.e., a(p, f) 6≡ 0 mod p; see [H13, §7]). Except for finitely many primes p as above, f belongs
to a connected component T which is regular (e.g., [F02, §3.1] and [H16, Theorem 5.3]); so, (1) is
satisfied for such T.

8. Mordell–Weil groups of modular abelian factors

Consider the composite morphism $s : As ↪→ Js � Bs of fppf abelian sheaves for triples
(αs, As, Bs) as in (A), and apply the results in Section 6 to abelian varieties Cs = As and Ds = Bs.
Let Cord

s := (Ker($s)⊗Z Zp)ord be the p-primary ordinary part of Ker($s).
Recall we have written ρs for the morphism Js → Bs. As before, κ is an intermediate extension

K/κ/k finite over k. Define the error terms by

(8.1) Es1(κ) := α(Ĵord
s )(κ)/α(Ĵord

s (κ)) and Es2(κ) := Coker(Ĵord
s (κ)

ρs−→ B̂ord
s (κ))

for ρs : Ĵord
s (κ) → B̂ord

s (κ). Note that Es1(κ)(↪→ H1
? (Âord

s ) = H1
? (Aord

s ) ⊗Z Zp) and Es2(κ) =

Bord
s (κ)/ρs(Ĵ

ord
s (κ))(↪→ H1

? (α(Ĵord
s ))[α]) are p-torsion finite module as long as s is finite.

Lemma 8.1. We have the following commutative diagram with exact rows and exact columns:

(8.2)

Es1(κ)
↪→−−−−→ H1

? (Âord
s )

ιs−−−−→ H1
? (Ĵord

s )

onto

x x x
α(Ĵord

s )(κ)

α(α(Ĵord
s )(κ))

↪→−−−−→ H1
? (Cord

s )
�−−−−→ H1

? (α(Ĵord
s ))[α]

αs

x bs

x x∪
Ĵord
s (κ)

α(Ĵord
s )(κ)

ρs−−−−→
↪→

B̂ord
r (κ) −−−−→

�
Es2(κ).

Each term of the bottom two rows is a profinite module if either k is local or S is a finite set.

The last assertion follows as Cs is finite and B̂ord
r (κ) is profinite. We will define each map in the

following proof. The proof is the same in any cohomology theory: H1
? for ? = sm, fppf, étale and

Galois cohomology. Therefore, we prove the lemma for the Galois cohomology dropping ? from the
notation. This lemma is valid for the Galois cohomology for infinite S as is clear from the proof
below.

Proof. Exactness for the bottom row is from the definition of Es2(κ), and exactness for the left column
is by the definition of Es1(κ). The middle column is a part of the long exact sequence attached to

0→ Cord
s → Âord

s → B̂ord
r → 0, where B̂ord

s is identified with B̂ord
r by Lemma 6.2 applied to Ds = Bs.

The right column comes from the long exact sequence attached to 0→ α(Ĵord
s )→ Ĵord

s → B̂ord
r → 0,

again B̂ord
s is identified with B̂ord

r . The top row comes from the long exact sequence of 0→ Âord
s →

Ĵord
s

α−→ α(Ĵord
s )→ 0.

As for the middle row, we consider the following commutative diagram (with exact rows in the
category of fppf abelian sheaves):

(8.3)

α(Ĵord
s )

↪→−−−−→ Ĵord
s

�−−−−→
ρs

B̂ord
s

∪
x ∪

x x‖
0→ α(Ĵord

s )×Ĵord
s

Âord
s −−−−→

↪→
Âord
s

$s−−−−→
�

B̂ord
s .

Under this circumstance, we have α(Ĵord
s ) ∩ Âord

s = α(Ĵord
s ) ×Ĵord

s
Âord
s = Ker($s) which is a finite

étale p-group scheme over Q. Since α(Ĵord
s )∩ Âord

s is equal to α(Ĵord
s )[α], we have Cord

s = α(Ĵord
s )[α].
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Note that α2(Ĵord
s ) = α(Ĵord

s ) as sheaves (as α : α(Ĵord
s ) → α(Ĵord

s ) is an isogeny, and hence,

α(α(Ĵord
s (K))) = α(Ĵord

s )(K)). Thus we have a short exact sequence under ?-topology for ? = fppf,
sm and ét:

0→ Cord
s (K)→ α(Ĵord

s )(K)
α−→ α(Ĵord

s )(K)→ 0.

Look into the associated long exact sequence

0→ α(Ĵord
s )(k)/α(α(Ĵord

s )(k))→ H1(α(Ĵord
s )[α])→ H1(α(Ĵord

s ))
α−→ H1(α2(Ĵord

s ))

which shows the exactness of the middle row, taking the p-primary parts (and then the ordinary
parts). �

In the diagram (8.2), we identify Âord
s with Âord

r by π∗s,r : Jr → Js for the projection πs,r : Xs →
Xr (Picard functoriality); so, the projective system {Âord

s = Âord
r , πrs}s (w-twisted Albanese functo-

riality) gives rise to the nontrivial maps πrs : Âord
s = Âord

r → Âord
r given by x 7→ U(ps−r)(ps−rx). If

we write H1(Âord
r ) = (Qp/Zp)m ⊕∆r for a finite p-torsion group ∆r by Lemma 2.2 (assuming that

S is finite), we have

(8.4) lim←−
πrs∗:x 7→ps−rU(ps−r)(x)

H1(Âord
r ) ∼= lim←−

πrs∗:x7→ps−rx
((Qp/Zp)m ⊕∆r) = Qmp .

We quote from [CNF, Corollary 2.7.6] the following fact (which is valid also for infinite S):

Lemma 8.2. We have lim←−sH
1(Ar[p

s]ord) = H1(TpA
ord
r ).

We give a proof here for the sake of completeness.

Proof. More generally, let {Mn}n be a projective system of finite Gal(kS/k)-modules with surjective
transition maps. Let B(Mn) (resp. Z(Mn)) be the module of 1-coboundaries (resp. continuous 1-
cocycles G→Mn Let B(Mn) (resp. Z(Mn)) be the module of 1-coboundaries (resp. inhomogeneous
continuous 1-cocycles) G := Gal(kS/k) → Mn. We have the exact sequence 0 → B(Mn) →
Z(Mn) → H1(G,Mn) → 0. Plainly for m > n, the natural map B(Mm) → B(Mn) is onto. Thus
the above sequences satisfies the Mittag–Leffler condition, and plainly lim←−n?(Mn) =?(lim←−nMn) for

? = B,Z, we have lim←−nH
1(kS/k,Mn) = H1(kS/k, lim←−nMn). �

We have the following commutative diagram with exact rows:

Cord
s −−−−→

↪→
Âord
s −−−−→

�
B̂ord
sy y o
y

Cord
r −−−−→

↪→
Âord
r −−−−→

�
B̂ord
r .

By the snake lemma applied to the above diagram, we get the following exact sequence:

0→ Ar[p
s−r]ord → Cord

s → Cord
r → 0.

Passing to the limit (as continuous H1 for profinite coefficients is a projective limit of H1 of finite
coefficients; cf., [CNF, 2.7.6]), we have

(8.5) TpA = lim←−
s

Ar[p
s]ord = lim←−

s

Cord
s and H1(TpA

ord
r ) = lim←−

s

H1(Ar[p
s]ord) = lim←−

s

H1(Cord
s ).

9. Control theorems with an error term

Taking the projective limit of the exact sequence 0 → Âord
s → Ĵord

s
α−→ Ĵord

s , by the vanishing

lim←−s Â
ord
s (κ) = 0 in Proposition 6.4 applied to Cs = As, we get the injectivity of Ĵord

∞
α−→ Ĵord

∞ .

Since all the terms of the exact sequences: 0 → α(Ĵord
s )(κ) → Ĵord

s (κ) → Ĵord
s (κ)

α(Ĵord
s )(κ)

→ 0 are

compact p-profinite groups, after taking the limit with respect to πrs , we still have an exact sequence

0→ lim←−
s

α(Ĵord
s )(κ)→ lim←−

s

Ĵord
s (κ)→ lim←−

s

Ĵord
s (κ)

α(Ĵord
s )(κ)

→ 0
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with lim←−s
Ĵord
s (κ)

α(Ĵord
s )(κ)

↪→ B̂ord
r (κ). Thus

Ĵord
∞ (κ)

α(Ĵord
∞ )(κ)

:=
lim←−s Ĵ

ord
s (κ)

lim←−s α(Ĵord
s )(κ)

∼= lim←−
s

α(Ĵord
s )(κ)

α(α(Ĵord
s )(κ))

.

Here the last isomorphism follows from the injectivity of α. By the same token, we have

α(Ĵord
∞ )(κ)

α(α(Ĵord
∞ )(κ))

:=
lim←−s α(Ĵord

s )(κ)

lim←−s α(α(Ĵord
s )(κ))

= lim←−
s

α(Ĵord
s )(κ)

α(α(Ĵord
s )(κ))

.

Writing E∞j (κ) = lim←−sE
s
j (κ) and passing to projective limit of the diagram (8.2), we get the

following commutative diagram with exact rows:

(9.1)

E∞1 (κ)
↪→−−−−−−−→

Lemma 8.1
lim←−s:x 7→ps−rU(ps−r)(x)

H1(Âord
r )

ι∞−−−−→ H1(lim←−s Ĵ
ord
s (K))

onto

x x x
α(Ĵord
∞ )(κ)

α(α(Ĵord
∞ )(κ))

↪→−−−−→ H1(TpAr(K)ord)
a−−−−→ lim←−sH

1(α(Ĵord
s )(K))[α]

α∞

x b

x∪ c

x∪
Ĵord
∞ (κ)

α(Ĵord
∞ )(κ)

ρs−−−−→
↪→

B̂ord
r (κ)

d−−−−→ E∞2 (κ).

The rows are exact since projective limit is left exact. The maps a and d are onto if either S is finite
or k is local (as projective limit is exact for profinite modules). By the same token, the right and
left columns are also exact. Therefore E∞j (κ) (j = 1, 2) is a torsion Λ-module of finite type.

To see, we look into the cohomology exact sequence of the short exact sequence: Cs ↪→ Âord
r �

B̂ord
r with transition maps ps

′−sU(p)s
′−s for {Cs}s and {Âord

r }s and U(p)s
′−s for {B̂ord

r }s. Thus we
have the limit sequence

0→ lim←−
s:x 7→ps−rU(ps−r)(x)

Âord
r (κ)/Cs(κ)→ B̂ord

r (κ)
b−→ lim←−

s

H1(Cs) = H1(TpA
ord
r ).

This sequence is exact as all the terms are profinite compact modules at each step. Since

lim←−
s:x7→ps−rU(ps−r)(x)

Âord
r (κ)/Cs(κ) = 0,

the map b is injective.

Passing to the limit of exact sequences of profinite modules: Cs(κ) → Âord
r (κ)

$s−−→ B̂ord
r (κ) �

Coker($s), we get the limit exact sequence 0→ B̂ord
r (κ) ∼= lim←−s Coker($s). By the left exactness of

projective limit, the sequence

0→ lim←−
s

Coker($s)→ H1(TpA
ord
r )→ lim←−

s

H1(Âord
r )

is exact. Therefore the middle column is exact; so,

(9.2) α∞ is injective.

Since Ĵ∞(κ)ord[α] = Âord
∞ (κ) = 0, α : α(Ĵord

∞ )(κ)→ α(Ĵord
∞ )(κ) is injective.

This shows

Lemma 9.1. Let κ be a field extension of Q or Ql for a prime l, but we assume finiteness condition
(2.2) for the extension κ/k. We allow an infinite set S of places of k when k is finite extension of
Q. Let α be as in (A). Then we have the following exact sequences (of p-profinite Λ-modules) up to
Λ-torsion error:

0→ Ĵord
∞ (κ)

α−→ α(Ĵord
∞ )(κ)→ E∞1 (κ)ord → 0

and

0→ α(Ĵord
∞ )(κ)→ Ĵord

∞ (κ)
ρ∞−−→ B̂ord

r (κ)→ E∞2 (κ)→ 0.
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Here E∞j (κ) is a Λ-torsion module of finite type. In particular, taking α = γ − 1, we conclude that

the compact module Ĵ∞(κ) is a Λ–module of finite type.

The statement of this lemma is independent of the set S (though in the proof, we used Galois
cohomology groups for finite S if k is global); therefore, the lemma is valid also for an infinite set S
of places of k (as long as S contains all p-adic and archimedean places and places over N).

The left column of (9.1) is made up of compact modules for which projective limit is an exact
functor; so, left column is exact; in particular

lim←−
s

α(Ĵord
s )(κ)

α(α(Ĵord
s )(κ))

→ E∞1 (κ) := lim←−
s

Es1(κ)

is onto.
Take the maximal Λ-torsion module X inside Ĵord

∞ (κ). Since X is unique, it is an h-module. The

module Ĵord
∞ (κ) is pseudo-isomorphic to X ⊕ ΛR for a positive integer R. Since α is injective on

Ĵord
∞ (κ), for the α-localization h(α), we have Xα = X⊗h h(α) = 0. Thus Ĵord

∞ (κ)⊗h h(α) is ΛPα -free,

where Pα = (α) ∩ Λ. Thus
α(Ĵord
∞ )(κ)

α(α(Ĵord
∞ )(κ))

⊗Zp Qp and
Ĵord
∞ (κ)

α(Ĵord
∞ )(κ)

⊗Zp Qp have equal Qp-dimension.

Therefore, by the injectivity of α∞ (9.2), E∞1 (κ) is p-torsion. However by (8.4), this torsion module
is embedded in a Qp-vector space by the top sequence of (9.1), we have E∞1 (κ) = 0. This shows

Theorem 9.2. Let α be as in (A) and k be a finite field extension of either Q or Ql for a prime
l. Assume (2.2) for the extension κ/k. Then we have the following exact sequence (of p-profinite
Λ-modules):

0→ Ĵord
∞ (κ)

α−→ Ĵord
∞ (κ)

ρ∞−−→ B̂ord
r (κ)→ E∞2 (κ)→ 0.

In particular, taking α = γ − 1, we conclude that the Λ-module Ĵ∞(κ) is a Λ–module of finite type

and that Ĵ∞(κ) does not have any pseudo-null Λ-submodule non null (i.e., Ĵ∞(κ) has Λ-homological
dimension ≤ 1).

By this theorem (applied to α = γp
s−1 for s = 1, 2, . . . ), the localization Ĵ∞(κ)P at an arithmetic

prime P is ΛP -free of finite rank, which also follows from [N06, Proposition 12.7.13.4] as Ĵ∞(κ) can
be realized inside Nekovář’s Selmer group by the embedding of Lemma 2.1.

10. Control theorem for a number field

The following theorem is the final result of this paper for a number field k.

Theorem 10.1. Let the notation be as in the introduction. Suppose that k is a finite extension
of Q. Let AT be the set of all principal arithmetic points of Spec(T)(Qp) of weight 2 and put
ΩT := {P ∈ AT|AP has good reduction over Zp[µp∞ ]}. Suppose that we have a single point P0 ∈ ΩT
with finite Selk(AP0

)ord, and write Spec(I) for the unique irreducible component on which P0 lies.
Let k be a finite field extension of either Q or Ql for a prime l. Then, for almost all P ∈ ΩT∩Spec(I),
we have the following exact sequence (of p-profinite Λ-modules):

0→ Ĵord
∞,T(k)

α−→ Ĵord
∞,T(k)

ρ∞−−→ B̂ord
P (k)→ E∞2 (k)→ 0

with finite error term |E∞2 (k)| <∞.

Since T is étale at P0 over Λ, only one irreducible component of Spec(T) contains P0 (e.g. [HMI,
Proposition 3.78]).

Since the root number of L(s,AP ) is not equal to −1 for most points (as {Xr}r is the standard
tower), we expect that |Selk(AP )ord| <∞ for most arithmetic P ; so, the assumption of the theorem
is a reasonable one.

Proof. The Selmer group Selk(AP )ord is the one defined in [H16, §8]. By [N06, 12.7.13.4] or [H16,
Theorem A], the finiteness |Selk(AP0

)ord| < ∞ for a single point P0 ∈ ΩT implies that Selk(AP )ord

is finite for almost all P ∈ ΩT ∩ Spec(I). Though in [H16, Theorem A], it is assumed that T is
regular to guarantee that all arithmetic points are principal, what we need to get the result is the
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principality of P0 and P in T; so, this holds true for P ∈ ΩT ∩ Spec(I). By the well known exact
sequence

0→ B̂ord
P (k)⊗Zp Qp/Zp → Selk(AP )ord →Wk(AP )ord → 0,

the finiteness of Selk(AP )ord implies finiteness of B̂ord
P (k); so, E2(k) is finite as well. �

11. Local error term

Now let k be an l-adic field. As before, we write Hq(M) for Hq(k,M). For any abelian vari-

ety X/k, we have an exact sequence X̂(k) ↪→ H1(TpX) � lim←−nH
1(X̂)[pn] by Lemma 2.1. Simi-

larly, by Corollary 7.2, Lemma 2.1 tells us that α(Ĵord
s (k)) ↪→ H1(Tpα(Ĵord

s )) � TpH
1(α(Ĵord

s )) :=

lim←−nH
1(α(Ĵord

s ))[pn] is exact. Thus we have the following commutative diagram in which the first

two columns and the first three rows are exact by Lemma 8.2 and left exactness of the formation of
projective limits combined (the surjectivity of the three horizontal arrows cj (j = 1, 2, 3) are valid if
S is finite or k is local):

(11.1)

α(Ĵord
s )(k)

↪→−−−−→ H1(Tpα(Ĵord
s ))

c1−−−−→
�

TpH
1(α(Ĵord

s ))

∩
yi a

y yb
Ĵord
s (k)

↪→−−−−→
f

H1(TpJ
ord
s )

c2−−−−→
�

TpH
1(Ĵord

s )

ρs

y j

y yh
B̂ord
r (k)

↪→−−−−→
β

H1(TpB
ord
r )

c3−−−−→
�

TpH
1(B̂ord

r )

onto

yπ $s

y yg
Es2(k)

es−−−−→ H2(Tpα(Ĵord
s )) −−−−→ TpH

2(α(Ĵord
s )).

Assuming that S is finite, the right column is made of Zp-free modules, and hence, the rows are split
exact sequences.

To see the existence of the map es, we suppose that x = ρs(y) ∈ Im(ρs). Then we have

$s(β(x)) = $s(β(ρs(y))) = $s(j(f(y))) = 0.

If b ≡ b′ mod Im(ρs) for b, b′ ∈ B̂ord
r (k), we have $s(β(b)) = $s(β(b′)). In other words, π(b) 7→

$(β(b)) is a well-defined homomorphism from Es2(k) ∼= B̂ord
r (k)/ Im(ρs) into Im($s) ∼= Coker(j) ⊂

H2(Tpα(Ĵord
s )), which we have written as es.

We have the following fact (cf. [H15, Corollary 4.4]).

Lemma 11.1. We have H0(TpB
ord
r ) = H0(TG) = 0, where TG := HomΛ(Λ∨,G) ∼= lim←−s TpJ

ord
s .

Proof. We only need to prove this for a finite field extension k of Ql (as this implies the result for a
number field) and TpBr (as we can take Br := Jr, which implies the result for TG). Write B = Br.
By replacing k be a finite field extension, we may assume that B has either good reduction or split
multiplicative reduction over the valuation ring O of k with residue field F. If B has good reduction
over O and l 6= p, TpB

ord is unramified at l. All the eigenvalues of the action of the l-Frobenius
element φ are a Weil l-number of positive weight; so, we conclude

H0(TpB) ⊂ Ker(φ− 1 : TpB → TpB) = 0,

and the assertion follows.
Modifying B by an isogeny does not affect the outcome; so, by doing this, we may assume that

End(B/Q) contains the integer ring OB of the Hecke field. Suppose that p = l, and take a prime

factor p|p in OB such that TpB
ord = TpB := lim←−nB[pn](Q). Then B[p∞]ord extends to an ordinary

Barsotti–Tate group. If B does not have complex multiplication, by [Z14], the connected-étale exact
sequence

0→ B[p]◦,ord → B[p∞]ord → B[p∞]ét → 0
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is non-split as a Gal(Qp/k)–module; so, H0(TpB
ord) = 0 again. If B has complex multiplication, by

the Cartier duality, we have a Galois equivariant non-degenerate pairing

(TpB[p∞]ét ⊗Zp Qp)× (TpB[p]◦,ord ⊗Zp Qp)→ Qp(1).

On TpB[p∞]ét ⊗Zp Qp, again the eigenvalues of the action of the p-Frobenius element φ are Weil

p-numbers of positive weight. This shows H0(TpB[p∞]ét) = 0. By duality, H0(TpB[p∞]◦,ord) = 0.
Then from the exact sequence

0→ TpB[p∞]◦,ord → TpB
ord → TpB[p∞]ét → 0,

we conclude H0(TpB
ord) = 0.

If B is split multiplicative over O, this fact is a well known result of Mumford–Tate [Mu72]. �

By the above lemma, the map a in (11.1) is injective.

Lemma 11.2. Let k be either a number field or a finite extension of Ql for a prime l. Then the
map b in the diagram (11.1) is injective, and if k is local with l 6= p, we have Im(b) = Ker(h) = 0 in
(11.1) (so the right column is exact).

Proof. Applying the snake lemma to the first two rows of (11.1), we find that b is injective.
Suppose that k is local. For an abelian variety X over k with Xt := Pic0

X/k, Xt(k) is isomorphic

to Zml times a finite group; so, if l 6= p, X̂t(k) is finite p-group. By [ADT, I.3.4], H1(k,X) ∼=
Xt(k)∨; so, H1(k, X̂) is a finite group. Therefore H1(k, Ĵord

s ) and H1(k, B̂ord
r ) are finite groups,

and TpH
1(k, Ĵord

s ) = TpH
1(k, B̂ord

r ) = 0. Since b is injective, TpH
1(k, α(Ĵord

s )) = 0; so, Ker(h) =
Im(b) = 0. �

We note the following fact: If k is local non-archimedean, for an abelian variety A over k,

(11.2) H2(k, Â) = H2(k,A) = 0 for any abelian variety A over k.

This follows from [ADT, Theorem I.3.2], since H2(k, Â) = H2(k,A)⊗Z Zp.

Proposition 11.3. If k be a finite extension of Ql with l 6= p, then Es2(k) = 0.

Proof. Since the left column of (11.1) by Lemma 11.2 if l 6= p, applying the snake lemma to the
middle two exact rows of (11.1), we find an exact sequence

(11.3) 0→ Es2(k)
es−→ Im($s)→ Coker(h)→ 0.

This implies Es2(k) ↪→ Im($s).
Let X/k be a p-divisible Barsotti–Tate group. We have H2(k, TpX) = lim←−nH

2(k,X[pn]) (e.g.,

[CNF, 2.7.6]). By Tate duality (e.g., [MFG, Theorem 4.43]), we have H2(k,X[pn]) ∼= Xt[pn](k)∨ for
the Cartier dual Xt := Hom(TpX,µp∞) of X. Thus we have

H2(k, TpX) = lim←−
n

(Xt[pn](k)∨) ∼= (lim−→
n

H0(k,Xt[pn]))∨,

since we have a canonical pairing X[pn]×Xt[pn]→ µpn (i.e., Xt[pn](k)∨ ∼= X[pn](−1)(k)).

Apply this to the complement X of Âs[p
∞]ord in Js[p

∞]ord; so, X + As[p
∞]ord = Js[p

∞]ord with
finite X ∩ As[p∞]ord. Requiring X to be stable under hs, for hs(Qp) = hs ⊗Zp Qp, X is uniquely

determined as hs(Qp) = (hs(Qp)/αshs(Qp))⊕1shs(Qp) for an idempotent 1s (so, X = 1sJs[p
∞]ord).

By local Tate duality, we get H2(k, TpX) ∼= H0(k,X[p∞]t)∨ and conclude

H2(k, TpX) ∼= lim−→
n

H0(k,Hom(X[pn](k), µpn(k))) = lim−→
n

X[pn](−1)(k) = X[p∞](−1)(k).

Thus we conclude the injectivity:

H2(k, TpX) ∼= X[p∞](−1)(k)
↪→−→ Js[p

∞]ord(−1)(k) ∼= H2(k, TpJs)
ord,
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which is injective as X ⊂ Js[p
∞]ord. By definition, we have X + As[p

∞]ord = Js[p
∞]ord. By the

assumption (A) and the definition of X, X = αs(Js[p
∞]ord). Therefore we get an injection:

H2(k, Tpα(Ĵord
s )) ∼= H2(k, Tpα(Js[p

∞]ord))

∼= α(Js[p
∞]ord)(−1)(k)

a2−→
↪→

Js[p
∞]ord(−1)(k) ∼= H2(k, TpJs)

ord.

We have an exact sequence

H1(k, Tpα(Ĵord
s ))

$s−−→ H2(k, TpAr)
ord a2−→ H2(k, TpJs)

ord.

Since a2 is injective, we find Im($s) = 0; so, Es2(k) = 0 if k is l-adic with l 6= p. �

Here are some remarks what happens when l = p for the local error terms. For simplicity, we
assume that k = Qp; so, Ws = Zp[µps ]. For l 6= p, the proof of the above proposition is an argument
purely of characteristic 0. In [H16, §17], we studied the error term of the control of inductive limit

Jord
∞ (Qp) := lim−→s

Ĵord
s (Qp) using a result of P. Schneider [Sc83] and [Sc87] on universal norm for

abelian varieties over ramified Zp-extension. It works well for the inductive limit Jord
∞ (Qp) but

perhaps not for the projective limit Ĵord
∞ (Qp) for the following reason.

This involves study of integral models of the abelian variety (in particular, its formal Lie group
over W∞). Let Ir (resp. Xr,0) be the Igusa tower of level pr over X0 := X1(N) ⊗Zp Fp containing
the zero cusp (resp. the infinity cusp). Then for P ∈ ΩT, if the conductor of BP is divisible by
pr with r > 0, BP ×Wr

Fp is the quotient of Pic0
Ir/Fp ×Pic0

Xr,0/Fp (cf. [AME, Chapter 14] or [H14,

§6]). On Pic0
Ir/Fp ×Pic0

Xr,0/Fp , U(p) and U∗(p) acts in a matrix form with respect to the two factors

Pic0
Ir/Fp and Pic0

Xr,0/Fp in this order

(11.4) U(p) =
(
F ∗
0 V 〈p(p)〉

)
and U∗(p) =

(
V 〈p(p)〉 0
∗ F

)
,

where 〈p(p)〉 is the diamond operator of the class of p modulo N . See [MW84, §3.3] or [H14, (6-1)]
for this formula. Since the shoulder term ∗ of the above matrix form of U(p) vanishes once restricted

to BP if r > 0, from (11.4), B̂ord
P (F) must be the quotient of Pic0

Ir/Fp , and the ordinary part of the

formal Lie group B̂◦,ord
P/Fp of B̂P has to be the quotient of Pic0

Xr,0/Fp . Similarly, B̂co-ord
P (F) must be

the quotient of Pic0
Xr,0/Fp , and the co-ordinary part of the formal Lie group B̂◦,co-ord

P/Fp of B̂P has to

be the quotient of Pic0
Ir/Fp .

Write Bs for the quotient of Js corresponding to BP . We consider the exact sequence defining
Es2(Qp):

0→ α(Ĵord
s,T )(Qp)→ Ĵord

s,T (Qp)
ρs−→ B̂ord

s (Qp)→ Es2(Qp)→ 0,

which is equivalent to, by the involution ws over characteristic 0 field, the following exact sequence

0→ α∗(Ĵco-ord
s,T )(Qp)→ Ĵco-ord

s,T (Qp)
ρ∗s−→ tÂco-ord

s (Qp)→ Es2 (Qp)→ 0.

Thus we study the second exact sequence of the co-ordinary parts. Here we have used the self duality
of Js,

tAs is the dual abelian variety of As and α∗ is the image of α under the Rosati involution.
Consider the complex of Néron models over Ws:

0→ α∗(Js)→ Js → tAs → 0

and its formal completion along the identity

0→ α∗(J◦s )→ J◦s → tA◦s → 0.

Here X◦ is the formal group of an abelian variety X/Ws
. These sequence might not be exact as

Ws/Zp is highly ramified at p (see [NMD, §7.5]). But just to go forward, we assume the sequence of
the co-ordinary parts of the formal Lie groups are exact (and still we find some difficulties).

As explained in [H16, (17.3)], taking the T∗-component (the image of T under the Rosati involu-
tion), the complex

(11.5) 0→ α∗(Ĵ◦s,T∗)→ Ĵ◦s,T∗ → tÂ◦s,T∗ → 0
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is, by our assumption, an exact sequence of formal Lie groups over Ws; so, the top complex of the
following commutative diagram is a short exact sequence:

α∗(Ĵ◦s,T∗)(Ws)
↪→−−−−→ Ĵ◦s,T∗(Ws)

�−−−−→ tÂ◦s,T∗(Ws)

Nα∗(Js)

y NJs

y Ns

y
α∗(Ĵ◦s,T∗)(Ws)

Gal(ks/kr) ↪→−−−−→ Ĵ◦s,T∗(Ws)
Gal(ks/kr) ρ∗s−−−−→ tÂ◦r,T∗(Wr),

where NX,s is the norm map relative to ks/kr of an abelian variety X defined over kr. By Schneider
[Sc87], Ns is almost onto with the index of the image bounded independent of s. However, we do
not know yet ρ∗s is surjective up to finite bounded error for the following reason:

Though tÂco-ord
s

∼= tÂco-ord
r because Âord

r
∼= Âord

s as seen in [H16], the projection map

tÂ◦, co-ord
s (Ws)→ tÂ◦, co-ord

r (Ws)

is not an isomorphism. After reducing modulo p, as already remarked, the formal Lie group of
tÂco-ord

s is in the identity connected component of Pic0
X0,s

. Note that Is = X
(ps)
s,0 (the ps-power

Frobenius twist); so, the projection Is → Ir is given by F s−r ◦ π for the projection π : Xs,0 →
Xr,0 ([AME, Theorem 13.11.4 (1)] or [H14, §6]) which is purely inseparable. This shows that π∗ :
tÂco-ord

s → tÂco-ord
r is not an isomorphism. Thus we have two problems for proving bounded-ness

of Es2 (Qp) (and hence of Es2(Qp))
(1) (11.5) may not be exact;

(2) the projection tÂco-ord
s/Fp →

tÂco-ord
r/Fp is purely inseparable of degree ≥ ps−r (as the polarization

of As has degree of high p-power ≥ ps).
These problems do not appear for the pull-back map Âord

r
∼−→ Âord

s even over Fp as the exactness of

Âord
r ↪→ Ĵord

s � α(Ĵord
s ) is proven by the control of the Λ-adic BT group G in [H16, §17] and the

projection Xs,0 → Xr,0 is étale outside the super-singular points for all s.
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